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ABSTRACT
Functional scenario comprehension of screens in Android appli-
cations paves the way for Android app development and Android
UI testing, especially in automated UI testing and test reuse. On
the one hand, the screens of diverse Android applications contain
widgets with many combinations. On the other hand, the screens
of different scenarios may leverage similar widgets to fulfill the
functionalities. Due to the above reasons, scenario comprehension
is still hard to be solved by current approaches. In this paper, to
fully understand the functionality of each screen, we propose a
novel approach that employs Graph Neural Networks (GNN) to
classify scenarios leveraging the transitions between screens and
other available information of screens altogether. According to the
result evaluated on 30 popular applications in the file management
category, our approach improves the classification accuracy by at
least 6% compared to previous work, demonstrating that GNN can
fully utilize the potential relations and dependencies between the
transitioned screens.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Graph neural networks, functional scenario classification, Android
testing, UI testing
ACM Reference Format:
Guiyin Li, Fengyi Zhu, Jun Pang, Tian Zhang, Minxue Pan, and Xuandong
Li. 2022. Functional Scenario Classification for Android Applications using
GNNs. In 13th Asia-Pacific Symposium on Internetware (Internetware 2022),

∗Corresponding author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

Internetware 2022, June 11–12, 2022, Hohhot, China
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9780-3/22/06.
https://doi.org/10.1145/3545258.3545270

June 11–12, 2022, Hohhot, China. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3545258.3545270

1 INTRODUCTION
Mobile applications often have multiple functionalities that provide
services to users. As a result, for Android app developers, it is a
critical mission to develop an Android app with rich functional
scenarios that is easy to use and occupies the applications markets
such as Google Play more quickly. Since most applications interact
with users through the rich graphical user interface (GUI), GUI
testing has become a necessary part of app testing before the release,
and functional scenarios can help testers prepare GUI test scripts.
In script-based testing, tests are recorded as scripts that can be
automated executed using tools such as Appium [6], Robotium [17]
and others [8]. These test scripts are often manually coded for
specific applications and specific functional scenarios instead of
testing the app as a whole, which tend to be a series of scenario
tests and require testers to maintain frequently.

Furthermore, functional scenarios also play an essential role
in Android GUI automated testing, which aims to achieve a high
code coverage and generate test sequences in a relatively short
period of time. The testing or exploring process often requires
covering multiple functional scenarios because different scenarios
are usually bound to various code and can help find more potential
bugs. For example, the state-of-the-art tool Q-testing [14], which
is based on reinforcement learning, guides the testing towards
unfamiliar functionalities by recording previously visited states
and judging whether the two states belong to the same functional
scenario to determine the reward during the exploration process.
As a result, the scenario division module can guide Q-testing to
explore different functional scenarios preferentially and improve
the efficiency of Q-testing. More accurate classification of functional
scenarios can improve the exploration strategies of such tools.

There are ample opportunities to reuse tests in Android GUI
testing since many applications belong to the same category and
implement similar functionalities. For example, almost all file man-
agement applications provide services such as copying and pasting,
browsing files, searching for files, setting the app, playing music,
etc. Therefore, in the research of script generation, script migration,
and script reuse [1, 10, 18, 23], they all try to reuse some modular
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test scripts with the same functionalities in the same category of
applications or different versions of the same app to reduce the
manual work. When reusing scripts, it is necessary to classify or
identify the screen of the new app into standard predefined func-
tional screen categories in the test library to determine the purpose
of the current screen and synthesize new test scripts.

Current scenario classification approaches are all based on avail-
able screen information extracted from three perspectives: the lay-
out files and activity names of screens and the snapshots. For in-
stance, Ariel et al. [18] and Luca et al. [1] both use the types and
numbers of widget attributes in layout files, such as the number
of clickable widgets. Q-testing encodes selected widget attributes
in layout files into vectors using neural networks. Hu et al. [10]
develop AppFlow that converts all the above three types of infor-
mation into vectors. Through manual scenario classification of the
screens, we find that screens are not isolated, and determining the
category of a screen often requires checking one or more prede-
cessor screens that reach the current one. This is reasonable since
many functionalities are connected and interdependent. For exam-
ple, in the file management applications, we need to select one or
more files and then choose to cut or copy to reach the paste scenario.
Therefore, we aim to utilize the transitions or connections between
the screens for functional scenario classification. The transition cor-
responds to an event triggered by interactions with the GUI and can
lead to a new screen state. We construct a directed transition graph
by taking screens as nodes and transitions as edges and novelly
leverage Graph Neural Networks (GNNs) [24] to learn this graph
and mine potential functional dependencies and relations between
screens. We apply our approach to scenario classifications on 30
file management applications. The results demonstrate the effec-
tiveness of our approach by showing an improvement of 6% more
classification accuracy than those produced by current approaches
without transitions between screens.

The contributions of this paper are summarised as the following:
• We novelly employ the connections and transitions between
the screens in classifying the functional scenarios of screens.

• We construct a directed transition graph whose nodes are
screens and edges are transitions so that all screens are no
longer isolated, and propose a GNN-based scenarios classi-
fication approach to learn the transition graph and capture
the potential functional dependencies between screens.

• We implement our approach and evaluate it to classify sce-
narios on 30 file management applications. The evaluation
results show its effectiveness compared with existing ap-
proaches.

Structure of the paper. Section 2 illustrates a motivating example.
Section 3 provides the overview and the details of the approach.
Section 4 presents the experimental evaluation. Section 5 reviews
research studies that are closely related to this work. Section 6
concludes the paper.

2 MOTIVATION
In the scenario classification of screens, we notice that two rela-
tions between screens’ connections and functional scenarios are
not considered by previous work but have an impact on the clas-
sification accuracy. We use an app called OI File Manager (OIFM)

as an illustrative example. OIFM is a very famous open-source file
management app that has been installed more than 53,000 times
on Google Play.

The first kind of relation is the dependency between consecutive
screens.Whenwe determine the scenarios for some screens, wemay
not be able to do so solely based on the information of the current
screen, since we need to check the predecessor screens further.
As the OIFM example in Figure 1 shows, we define a bookmarks
scenario with coarse granularity, including bookmarks’ creation
and potential operation. Then screens S1 and S2 both belong to this
scenario, and S1 can reach S2 by long-pressing the widget called
emulated (the first item in ListView [7]). However, if we ignore the
relation between S1 and S2, we may mistakenly determine that S2
is a screen of deleting files scenario, which means long-pressing
and then deleting the file. In fact, the folder called emulated will
not be deleted on storage after long-pressing and deleting it, and
two scenarios are bound to different source codes. Let us check
another scenario called searching, which is related to operations for
searching for files or folders. Screens S3 and S4 both belong to this
scenario, and we can reach S4 from S3 by clicking the enter key. If
we ignore the connection between S3 and S4, we may misjudge S4
as a screen of browsing files scenario. Obviously, the two scenarios’
source codes and subsequent operable element actions on their
screens are entirely different. Therefore, relations between screens
help us to classify functional scenarios more accurately.

The other kind of relation is dependencies between functional
scenarios since the designers considered the logic sequence rela-
tions between these functionalities during the design phase. If we
define browsing files scenario, long-pressing files scenario, menu
scenario, compressing files scenario, decompressing files scenario,
viewing files’ properties scenario and other scenarios in file man-
agement applications, we find that for common file management
applications, these scenarios have the same logic sequence relations
in Figure 2. For example, if we need to view the properties of a file,
we must first click the menu button to reach the menu screen after
long-pressing the file, and then click the button named properties
or details on the menu screen. In other words, if we reach the menu
scenario, the following scenario may be one of compressing files,
decompressing files, or viewing files’ properties. More generally, if
we want to get to the pasting files scenario, we need to reach the
cutting files scenario or copying files scenario first.

Through the above example, we can easily conclude that there
exist relations between screens’ connections and functional sce-
narios. By adding edges between screens, some of the relations
mentioned above can be preserved, which in turn can help us mine
the potential functional dependencies between screens and classify
the functional scenarios of screens with higher accuracy. In the next
section, we develop a new approach towards functional scenario
classification for Android apps by utilizing these identified relations
between screens.
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(a) Screen S1 (b) Screen S2 (c) Screen S3 (d) Screen S4

Figure 1: Snapshots of OIFM screens in two scenarios (bookmarks and searching)

Browsing Files Long Pressing 
Files Menu

Compressing Files

Decompressing Files

Viewing Files’ Properties

Figure 2: Part of the logic sequence relations in file manage-
ment applications

3 APPROACH
3.1 Definitions

Definition 3.1 (Functional Scenario). Our definition of functional
scenarios is the same as in Q-testing [14], that is, functional sce-
narios are used to describe the functionalities provided by an ap-
plication from the user’s perspective. Since the user interacts with
the app through the rich GUI, we categorize the screen of a specific
state when a user performs the task or uses the functionality as
some functional scenario. Hence, the classification of functional
scenarios is equivalent to the classification of screens. Since dif-
ferent users have different understandings of the same functional
scenario, the granularity of the definition will be different. For ex-
ample, the scenario of searching for files can be divided into two
sub-scenarios: the searching process and the viewing of the search
results. Therefore, we need to ensure the same understanding and
classification granularity when defining and classifying functional
scenarios.

Definition 3.2 (Directed Transition Graph). The directed transition
graph of an application is similar to a state machine constructed by
taking screens of the interface as nodes and transitions between
screens as directed edges. Each node represents a GUI state during
the running process, including a screenshot of the interface in the
form of Portable Network Graphics (PNG) and a layout file in the
form of XML. Each directed edge represents an event triggered by
interactions with the GUI of the source state and can reach a new

screen state. For example, if the user clicks button B on screen A
and then arrives at screen C, there will be an edge e from node u
representing screen A to node v representing screen C, where edge
e represents the event of clicking button B on screen A.

Definition 3.3 (Problem Definition). Our problem is to perform
functional scenario classification on the screens of the applications
in the test set based on the training result on the training set. We use
applications that belong to the same category as the experimental
object. We predefine several functional scenarios for these applica-
tions, and each screen of these applications belongs to one of these
scenarios. We select a part of these applications as the training set,
that is, the labels of all the screens included are known, and select
a part of them as the validation set and test set, respectively.

3.2 Background on Graph Neural Networks
A directed or undirected graph, denoted asG = (V ,E,X), is a triple
where: (1) V = {v1, . . . ,vi , . . . ,vn } is a node set; (2) E = {ei, j =
(vi ,vj )} ⊆ (V ×V ) is an edge set; (3) X = {x1, . . . , xi , . . . , xn } is a
feature matrix, xu ∈ Rd is d-dimensional feature of the node vu in
V .

As a major field in deep learning [4], Graph Neural Networks
(GNNs) [12, 20–22, 24] directly structure the learning process on the
graph, which can effectively analyze graph structure data. GNNs
learn a new representation or embedding vector of a node based
on both graph structure information and node feature X, which
is called message passing scheme or neighborhood aggregation
scheme. Propagation at layer (k) consists of three steps: (1) Mes-
sage passing. For every linked nodes i, j , GNNs compute a message
by utilizing their embeddings from the previous layer and edge fea-
tures from node j to node i . (2) Neighborhood aggregation. For
every node i , GNNs then aggregate the messages between node i
and all its neighbors N (i). (3) Update. For every node i , GNNs fi-
nally use a non-linear differentiable function to update embeddings
xki based on the aggregated messages and their embedding from
the previous layer. Therefore, after (k) iterations of the propaga-
tion, every node’s embedding captures the structural information
from its k-hop network neighbors. Message passing graph neural
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networks can be described as:

x(k )i = γ (k )
(
x(k−1)i ,□j ∈N(i) ϕ

(k )
(
x(k−1)i , x(k−1)j , ej,i

))
(1)

In the above equation, x(k−1)i ∈ RF represents the feature of
node i at layer (k − 1) and ej,i ∈ RD represents edge features from
node j to node i . □ corresponds to the aggregation way of step 2,
such as sum and mean, and ϕ and γ correspond to the message
passing of step 1 and the updating of step 3.

3.3 Approach Overview

UI Test Scripts APKs 

Dataset Construction Phase

Screenshots

Scenario 1 Scenario 2

Scenario 3

Train

Predict

Classification Phase

Layout Files Activities Transitions Labels

Training Apps

Transition Graphs

Testing Apps
Graph Neural Network

Figure 3: Approach Framework

Figure 3 briefly shows the overall framework of the approach in
this paper. The classification of the functional scenarios in Android
applications using GNNs can be mainly divided into two phases.

In the dataset construction phase, we select the APKs of applica-
tions in the same category and UI test scripts for those applications
as input. Running these test scripts can automatically test the UI of
these applications, and at the same time, save screenshots, layout
files, and activity information of all screens and transitions between
screens during the running process. After collecting all running
data, we classify the functional scenarios of these screens manually.
We obtain the labeled data in this phase.

The classification phase can be subdivided into three parts: the
transition graph construction process, feature extraction, and the
GNN classification process. In the transition graph construction
process, we merge the same screens according to the saved layout
files and screenshots and then build a directed transition graph
based on the transitions between screens. In the feature extrac-
tion process, we extract useful information from the layout files,
screenshots, and activity information as the feature vectors of the
screens, which corresponds to the initial features of the nodes in

the transition graphs. In the GNN classification process, we input
the transition graphs, the initial features of the nodes, and the la-
bel information of functional scenarios of the applications as the
training set, train a GNN model and save all the parameters. At
last, we use the trained GNN model to classify all the nodes in the
transition graphs of the test set.

3.4 Dataset Construction Process
Since the existing related work does not consider the transitions
between screens, the existing datasets don’t record the transitions.
Therefore, we need to create a new labeled dataset with both screens
and transitions to construct the transition graphs. The construction
of the dataset is mainly divided into the following four steps.

3.4.1 Find APKs. Through research on the applications on Google
Play and F-droid, we find that applications belonging to the same
category often share multiple identical functional scenarios, so we
selected applications of the same category to construct the dataset.
For these applications of the selected category, we download and
install manually based on the number of downloads on Google
Play. After manually running and checking these applications, we
record the common and identical functional scenarios and use these
functional scenarios as the subsequent set of scenarios we want
to classify, that is, the subsequent set of labels. Further, we can
continue to look for applications of this category that contain these
functional scenarios on Google Play to expand the app collection.
The found applications will be randomly selected as a training set
and a validation set in the subsequent steps, and the rest will be
used as a test set.

3.4.2 Write UI Test Scripts. In the step of finding APKs, we have
obtained the set of functional scenarios to be classified, so wemainly
write test scripts for each app according to the above functional
scenarios. Similar to the way it is written in AppFlow [10], we write
a specific test flow for each functional scenario, that is, write a test
script in the form of a function that covers a complete logical test of
the functional scenario. In reality, tests of a functional scenario often
contain different situations. For example, for the compression test,
we can choose to compress into Zip, 7z, Rar, and other formats, and
at the same time, we can choose "OK" or "Cancel the compression"
in the last step of compression. We keep all possibilities in the
form of function arguments for these options. Unlike AppFlow, the
scripts we choose to write in the mainstream Python language are
based on the Appium testing framework.

Next, we briefly describe how we write a function for a specific
functional scenario. We define a global counter to number all states
in order of execution time. When writing a specific test flow for
each functional scenario, we need to start counting from the current
counter value and save the screenshots, layout files, and activity
information of all UI states, and the transitions between states dur-
ing the running process. For screenshots, layout files, and activity
information of the UI state, we only need to call the three functions
officially provided by Webdriver [19] every time we reach a new
state, which can be understood as saving the current state after
executing each test action. For each transition between states, we
record it as a four-tuple ⟨S,D,A,E⟩, where S represents the source
state before executing the test action, D represents the destination
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state after executing the test action, A represents the test action
such as "click" and E represents the element or widget triggered by
A. Common test actions include click , lonдpress , ⟨edit , text⟩, clear ,
swipe , back , ⟨press_keycode, code number ⟩ and so on. ⟨edit , text⟩
means entering "text" on the widget. ⟨press_keycode, code number ⟩
means sending a keycode "code number" to the device. For widget
E, we use a 5-tuple consisting of class attribute, bounds attribute,
text attribute, resource-id attribute, and content-desc attribute to
define and locate due to the fact that there are multiple widgets
sharing the same class attribute or bounds attribute or resource-id
attribute, and the content-desc attribute values of many widgets
are empty or null. These 5 attributes can be directly obtained by
calling the functions of Webdriver.

3.4.3 Run UI Tests and Collect Data. After running the UI test
scripts written as required, we call automatically collect all neces-
sary data. Like AppFlow and Q-testing, all screenshots are saved in
the form of PNG, layout files are saved in the form of XML, and ac-
tivity information is saved in the form of TXT. The only difference
between our data and existing related works’ data is that we save
the transitions between interfaces. The format of the transitions
we saved is shown in Figure 4. The numbers in the figure represent
the global numbers of the source and destination states.

0 1 click ['android.widget.RelativeLayout', '[21,1456][1059,1624]', '', None, None]
1 2 back
2 3 longpress ['android.widget.ImageButton', '[0,189][148,311]', '', None, None]
3 4 click ['android.widget.TextView', '[586,604][1017,667]', 'Settings', 'android:id/title', ’’]
4 5 click ['android.widget.TextView', '[63,302][210,365]', 'Sort by', 'android:id/title', ’’]
5 6 click ['android.widget.CheckedTextView', '[70,824][1010,950]', 'Size', 'android:id/text1', None]
6 7 click ['android.widget.TextView', '[63,302][210,365]', 'Sort by', 'android:id/title', ’’]
7 8 click ['android.widget.CheckedTextView', '[70,696][1010,822]', 'Name', 'android:id/text1', None]
8 9 <edit, abc> ['android.widget.EditText', '[112,900][968,1002]', 'Folder name', filemanager:id/foldername', None]
9 10 clear ['android.widget.EditText', '[112,900][968,1002]', 'Folder name', filemanager:id/foldername', None]
10 11 longpress ['android.widget.RelativeLayout', '[21,315][1059,483]', '', None, None]
11 12 click ['android.widget.TextView', '[638,63][785,189]', '', 'filemanager:id/menu_delete', 'Delete’]
12 13 click ['android.widget.Button', '[541,953][1010,1079]', 'OK', 'android:id/button1', None]
13 14 longpress ['android.widget.RelativeLayout', '[21,315][1059,483]', '', None, None]
…

Figure 4: An example of transitions between screens

3.4.4 Label Screens. After collecting all the data, we need to label
all the saved screenshots with scenario tags manually, and the label
comes from the set of functional scenarios we defined in the first
step. For example, if we define scenario 1, scenario 2, etc., we need to
classify each screenshot into one of the above scenarios. In the end,
we obtain a dataset with labeled screens that will fit our purposes.

3.5 Transition Graph Construction Process
Since there are operations such as returning to the previous state or
clicking the "cancel this operation" button in the process of testing,
the collected data has the same state, so we need to remove the
duplicated states and renumber the remaining states.

Each GUI state contains a corresponding screenshot in PNG
format and a layout file in XML. Each layout file corresponds to a
screenshot, and each node it contains can correspond to a widget on
the screenshot. Generally speaking, the contents of the layout file
can be directly read into a long complete string, and comparing two
states is equivalent to comparing whether two strings are equal. We
find that the layout file contains some cached information belonging
to the running process, which will lead to slight differences in the
content of the layout files of two identical states. Still, the content

of the screenshot is exactly the same when viewed visually. So the
strategy is that if the layout files of the two states or the pixel values
of their screenshots are the same, we consider them to be the same
state.

After removing the duplicated states, we need to start numbering
all the remaining states from 0, and at the same time, we need to
update the number of screenshots, layout files, activity information,
and labels related to these states. Finally, we need to update the
numbers of the source state and destination state in the transitions.
Therefore, we complete the state compression.

Figure 5: A transition graph from an app

For each app’s state set, we build it into a directed transition
graph. The graph has been defined in the above article. In short,
each state corresponds to a node in the graph, and each transition
is a directed edge. The transition graph of an application we have
built is shown in Figure 5. In addition, our graphs are constructed
following two principles:

• Discard all self-loops, that is, we do not add edges like from
state A to state A to the graph. If there is an edge from
state A to state A, it means that after performing an action
on a widget of state A, it is still in state A. In fact, we can
perform invalid operations on state A (such as clicking on a
non-widget or long-pressing a widget whose long-clickable
attribute is false, etc.), then any node has a self-loop.

• Any directed edge can only be added once, that is, there is
only one directed edge from state A to state B. This is also in
line with the expectations of most mainstream graph neural
networks.

3.6 Feature Extraction Process
Feature extraction is critical to our classification results. We need
to extract information relevant to our task from each screen and
encode it into a fixed-length feature vector. Each screen involves
three types of information, which have been obtained in the pre-
vious steps of the approach, namely screenshot, layout file, and
activity information. The most relevant to the functional scenario
classification is the text information and the icon information with a
specific meaning. For example, in a searching scenario, we may see
a search box or text information related to searching. As verified in
AppFlow, these three types of information can provide text or icon
information to help classify scenarios, so we choose to use their
feature extraction approach. For the icon information, AppFlow
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converts it into text descriptions, so that we can finally get a text
(keyword) list for each screen. The keywords of the three types of
information in each screen are extracted in the following ways.

Layout File . Each screen has a corresponding layout file in XML
format, which contains the attribute information of UI widgets
on the screen and the relations between widgets. Each layout file
can be parsed into a tree, and each node in the tree corresponds
to a UI widget. The resource-id attribute of each widget is the id
information assigned to help developers cite key resources. The
text attribute is used to describe the functionality or usage of the
widget, usually the text displayed on the screens. The content-desc
attribute helps users understand the purpose of the widgets. These
three attributes are all represented in the form of strings in the
layout file, and we can directly extract these texts and process them
in a specific word segmentation approach. For some icon widgets
that do not contain texts, the above attributes can often give their
real functional descriptions. Although the class attribute cannot
provide more specific functional information than the above three,
some special widgets such as EditText and ImageView can still
provide some functional information.

For some widgets that are not actually displayed in the inter-
face or are not important, we determine their status as hidden by
comparing the attribute information with the text on the screen
recognized by OCR. So for a layout file, we traverse all nodes in
pre-order. For each node, we first judge whether it belongs to the
hidden state according to specific rules. If so, we skip the node.
Otherwise, we first extract keywords from their resource-id, text,
content-desc, class attribute. Because the position and size informa-
tion of the widget can also provide some functional information, the
bounds attribute is converted into keywords such as TOP, WIDE,
BIG, XXL, etc. according to the AppFlow’s approach, and then we
calculate the Cartesian product of these keywords and keywords
from resource-id attribute, these keywords and keywords from class
attribute separately to supplement the extracted keyword list.

Screenshot . In the practice of manual classification, we will check
the text prompts shown on the screenshot to judge the function-
ality of the current screen. So for each screenshot, we use Optical
Character Recognition (OCR) to automatically extract all words as
keywords for this part.

Activity Information. In Android applications, an activity is usu-
ally a separate screen, which can display some widgets or listen to
and respond to user events, so each screen has its activity name. Al-
though many developers make most screens share the same activity
names for brevity, generally speaking, there are some activity names
containing relevant functional scenario information. For example,
the screens corresponding to ".bookmarks.BookmarkListActivity"
belong to functional scenarios related to bookmarks. Therefore, we
use a custom tokenization approach to segment the activity name
to extract keywords.

Term Frequency–Inverse Document Frequency (TF-IDF) is used
to evaluate the importance of a word in an article or in a corpus,
so we use TF-IDF to convert the extracted keywords from each
screen into numerical features. We take each keyword list from a
screen as an article in TF-IDF, the keywords as its words, and all
the screens of applications in the training set as a corpus, so that

a feature vector with a fixed dimension can be calculated for each
screen.

3.7 GNN Classification Process
In the practice of manual scenario classification of the screens,
we found that the screens are not isolated and the connections of
the screens can help us to classify the functional scenarios, so we
connect the screens in the form of edges. The goal of a GNN is to
recognize patterns in graph data, based both on the data within
the nodes and the inter-connectivity. So we use a GNN to learn the
transition graph and capture the potential functional dependencies
between screens.

Common GNN architectures include the classic and basic Graph
Convolutional Network (GCN) [12], Graph Attention Networks
(GAT) [20]with multi-head attention, and Graph Sample And Ag-
gregate (GraphSAGE) [9] with inductive learning. Each functional
scenario often involves multiple consecutive screens, and the de-
pendencies between functional scenarios also involve multiple sce-
narios. Therefore, as shown in Figure 5, the transition graph has
a deep depth or long diameter. The GNN architectures mentioned
above usually only support neighborhood aggregation with a small
number of convolutional layers. When there are too many layers,
these models may overfit due to too many parameters, or the gra-
dient will be vanished or exploded during backpropagation. We
employ the Gated Graph Neural Networks (GGNN) [13] combined
with modern recurrent neural networks to solve this problem. For-
mula 2 below shows how it works. Node i first aggregates messages
from its neighbors, then uses the Gated Recurrent Unit (GRU) [3]
to combine messages from its previous layer with messages from
neighbors to update its new hidden state or representation vec-
tor. When aggregating neighborhood messages, the aggregation
function we use is not Sum but Mean, because we believe the in-
formation provided by multiple source screens is similar andMean
is conceptually better fitted to our setting.

h0i = [xi ∥0]

ati =
∑

j ∈N(i)

Wei jh
t
j

ht+1i = GRU(ati ,h
t
i )

(2)

The transition graphs of the training set, the extracted features of
the nodes in the graphs, and the scenario label information of nodes
are input into GGNN for training. Since our case is a multi-class
problem, the loss function uses the cross-entropy, and the optimizer
uses themainstreamAdam [11]. The parameters of the initial GGNN
model are random, and the parameters are updated through forward
propagation, back propagation, and gradient descent. Finally, the
GGNN model converges. When classifying screens of a new app,
we just need to input the transition graph and initial node features
into trained GGNN, and the model outputs the label results of these
nodes, that is, the label information is the scenario classification
result of the corresponding screens.

4 EVALUATION
To evaluate our approach, we conduct the following experiments
on our constructed dataset to answer the following two questions:
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Table 1: Definition of 16 pre-defined scenarios

Scenario Description
Browsing Viewing files and folders in different folders.
Compressing Compressing files in different forms, such as 7z, zip, en-

crypted, etc.
Searching Searching for files, such as limited search, global search,

etc.
Playing Music The operations related to music files, such as playing, paus-

ing, creating a new playlist, etc.
Sidebar The sidebar of this app.
Deleting Deleting files and emptying deleted files.
Decompressing Decompressing the file to the specified folder, which in-

volves inputting the unzip password, etc.
Editing Editing the content of text files.
Creating Creating a new file or folder.
Selecting Selecting one or more files and folders after long pressing.
Pasting Pasting the files that have been copied or cut.
Viewing properties Viewing the properties of the file, such as size, modification

information, md5, etc.
Renaming Renaming the file or folder.
Menu The menu of this app.
Setting Setting various configurations of the applications, includ-

ing background, color, font, etc.
Bookmarks The operations related to bookmarks, such as adding, mod-

ifying, deleting, renaming, etc.

RQ1: How effectively does our approach classify functional scenarios?
(Is ours more accurate than existing approaches?)

RQ2: Is GGNN the most effective approach in this situation among
several classic GNN models?

4.1 Experiment Setup
Application Collection.We choose file management as the cate-
gory of experimental applications because we find that such appli-
cations tend to contain many of the same functional scenarios. We
download the top 40 file management applications by popularity
from Google Play and F-droid. In the manual installation and oper-
ation stage, we remove ten applications that do not meet our needs,
such as having no common functional scenarios, failing to run with
the Appium testing framework, etc. At the same time, we discover
and record 16 common functional scenarios, including searching for
files, creating new files, and compressing files and other scenarios.
The specific scenario definitions are shown in Table 1.
Screenshot Collection. To get the screenshots of each app, we
write test UI test scripts for these 30 applications, which mainly re-
volve around the above 16 functional scenarios. Running these test
scripts, we can automatically collect all the required data, and man-
ually label these screenshots for the following stages (i.e., training
and testing), corresponding to the 16 functional scenarios. Accord-
ing to the approach of Section 3.5, we remove the duplicated UI
states and build a transition graph for each app respectively. The
specific data of the 30 applications are shown in Table 2, where the
number of screens and transitions is the number after deduplica-
tion. For instance, column 4 and 5 in row 2 separately denotes the
transition graph of OI File Manager containing 310 nodes (screens)
and 550 edges (transitions).
Data Split . We randomly select 24 applications from the 30 ap-
plications as the training set, 3 as the validation set, and 3 as the
test set. That is, the split for training/validation/test set is 80%: 10%:
10%. We randomly split 5 times in this way (denoted in later tables
as Data1, Data2, etc.) to avoid training bias. Our task is to perform
a 16-class classification for each dataset respectively.

Table 2: Data of 30 applications in experiments

App Package Version Screens Transitions

OI File Manager org.openintents.filemanager 2.2.3 310 550
File Manager Pro com.michaldabski.filemanager 0.5 146 308
AmazeFileManager com.amaze.filemanager 3.5.3 364 555

MaterialFiles me.zhanghai.android.files 1.2.0 564 882
AnExplorer dev.dworks.applications.anexplorer 4.1.1 298 461

Simple File Manager com.simplemobiletools.filemanager.pro 6.8.7 276 496
Mi File Manager com.mi.android.globalFileexplorer 1-210304 172 333
RS File Manager com.rs.explorer.filemanager 1.7.1 316 521
Cx File Explorer com.cxinventor.file.explorer 1.5.1 147 249
File Manager Plus com.alphainventor.filemanager 2.6.3 407 645
Files by Google com.google.android.applications.nbu.files 1.0.357865958 218 381
FileMaster com.root.clean.boost.explorer.filemanager 1.2.4 298 446

DV dv.fileexplorer.filebrowser.filemanager 1.9.18 331 515
Solid Explorer File Manager pl.solidexplorer2 2.8.9 288 483

FX File Explorer nextapp.fx 8.0.1.0 410 789
Explorer com.speedsoftware.explorer 3.9.1 171 350

FE File Explorer com.skyjos.applications.fileexplorerfree 4.3.3 440 738
File Manager by Lufick com.cvinfo.filemanager 5.0.3 406 755
Simple FileManager com.simple.filemanager 1.1.06 240 390
FS File Explorer com.ioapplications.fsexplorer 4.0.6 589 805

ESx File Manager & Explorer filemanager.fileexplorer.manager 1.4.2 199 362
ES File Explorer com.estrongs.android.pop 4.2.0.3.4 496 794
File Manager files.fileexplorer.filemanager 1.0.3.3 153 256

Simple Explorer com.dnielfe.manager 2.3.1 347 499
File Manager com.cv.filemanager 3.3.4 285 531
File Manager com.itel.filemanager 3.0.10 256 441
MK Explorer pl.mkexplorer.kormateusz 2.5.4 394 681
File browser filebrowser.filemanager.file.folder.app 1.0.5 232 423
File Manager fm.clean 1.13.0 185 333
File Manager com.photovideotools.file.manager 1.5.0 139 245

4.2 RQ1: Effectiveness compared to other
approaches

To test the validity of the feature extraction and learning model
for scenario classification from the perspective of ablation, we
introduce the similarities and differences between our approaches
and others. We use the notation of feature extraction + model to
represent an approach.
Our Approach. The widget information in layout files, widgets in
screenshots, and activity names contain abundant semantic infor-
mation, which can be fully utilized to understand the functionality
of different scenarios. We call our procedure for extracting semantic
features Text Extraction (abbreviated as Text in Table 3 and 4).

Different from AppFlow [10], we preserve the transitions be-
tween screens and build a transition graph. Due to the long di-
ameter of the graph, we choose Gated Graph Neural Networks
(GGNN) as our classifier. Because the keyword features are sparse,
we use a fully connected layer (FC) to reduce the feature dimension.
Based on actual verification and experience, we use the 4-layer
neighborhood aggregation, which is more suitable for our task.
Therefore our GGNN model contains one fully connected layer,
four convolutional layers, one fully connected layer for classifica-
tion, trained with Adam optimizer with a learning rate of 0.01. We
use Pytorch [16] and Pytorch Geometric [5] for our implementation.
We run our approach for 200 epochs for each dataset. We denote
our approach as Text + GGNN .
Other Approaches . In AppFlow, they utilize Multilayer Percep-
tron (MLP) as a classifier, which contains a hidden layer with 68
neurons, optimized by a stochastic gradient-based optimizer. We
denote their approach asText +MLP . According to our experiment
settings, we find that the results are slightly better with 60 neurons,
so we modify their model parameter configuration.

Since the approach proposed by Luca et al. [1] has a slight im-
provement of the approach proposed by Ariel et al. [18], and they
demonstrate better classification results, we do not compare with
the latter [18]. In a recent work [1], the approach divides the screen
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Table 3: Test accuracy compared to existing approaches

Data1 Data2 Data3 Data4 Data5 Average
Text+MLP 78.48% 72.05% 88.16% 85.86% 89.56% 82.82%
Count+LR 43.87% 57.50% 62.01% 53.36% 52.89% 53.93%

LayoutMD5+GGNN 41.00% 40.33% 51.91% 35.66% 50.55% 43.89%
Text+GGNN 89.52% 81.65% 93.69% 89.48% 92.50% 89.37%

Table 4: Test weighted-F1 compared to existing approaches

Data1 Data2 Data3 Data4 Data5 Average
Text+MLP 81.36% 72.09% 88.00% 85.36% 89.18% 83.20%
Count+LR 38.00% 50.00% 58.00% 48.00% 49.00% 48.60%

LayoutMD5+GGNN 26.27% 39.36% 47.18% 33.18% 44.45% 38.09%
Text+GGNN 89.36% 81.64% 93.18% 89.36% 92.27% 89.16%

into three areas by the ratio of 20%: 60%: 20%, and count the num-
ber of various widgets of these three areas as features, such as
the number of Clickable widgets on the top 20% of the screen, the
number of EditText widgets in the bottom 20% of the screen, etc.
In their experiments, it is verified that logistic regression performs
the best. So we reproduce and apply their feature extraction and
classification algorithm to our dataset. We denote their approach
as Count + LR.

Q-testing utilizes the siamese network [2] to determine whether
two UI states are in the same functional scenario, which is different
from all the work mentioned above and our work. However, we can
still use their feature extraction approaches for comparison. They
extract features from the layout file of each screen and encode the
attributes of selected nodes in the layout file. For example, they use
the MD5 message-digest algorithm to hash resource-id attributes,
text attributes, etc., into numbers and normalize the four integers
of the bounds attribute. We apply it in conjunction with GGNN to
our data and denote this approach as LayoutMD5 + GGNN .

For five sets of data split, the parameters of each of the above
models are fixed. We set 10 random seeds, respectively, and each
approach is run ten times to take the mean value as the result. The
accuracy of all results is shown in Table 3. Because our task is a
multi-class problem and there is a class imbalance in our data, we
also leverage weighted-F1 scores of all results as another evaluation
metric, as shown in Table 4.

According to Table 3 and Table 4, feature extraction Text con-
tributes the best to scenario classification, whether it is combined
with simple model MLP (row 2) or novel model GGNN (row 5). As
expected, Text is the most reasonable feature extraction method
for classifying scenarios among all the other ways, which fully
utilizes the corresponding semantic information via layout files,
screenshots, and activity information. Comparing row 2 and row
3, it can be indicated that utilizing Count as features extraction ig-
nores a lot of important text information, which proves that relying
only on the position and statistical information of widgets has less
benefit on classifying functional scenarios. According to rows 4
and 5, the features of LayoutMD5 are as high as 21400 dimensions,
but the results are the worst, which may be attributed to the fact
that GGNN cannot precisely capture the semantic information from
high-dimensional features like Siamese LSTM.

For each dataset, our approach achieves the best results for both
accuracy and weighted-F1. The average accuracy and weighted-F1

Table 5: Test accuracy compared to other GNNs

Data1 Data2 Data3 Data4 Data5 Average
GCN (K=4) 52.21% 35.40% 54.43% 56.92% 59.39% 51.67%

GraphSAGE (K=4) 81.00% 67.73% 87.57% 88.19% 86.25% 82.15%
GAT (K=4) 52.98% 37.62% 59.40% 62.88% 63.05% 55.19%
GIN (K=4) 45.61% 35.78% 50.32% 51.18% 52.99% 47.18%

GGNN (K=4) 89.52% 81.65% 93.69% 89.48% 92.50% 89.37%
GCN (K=1) 69.78% 67.43% 78.08% 78.72% 83.45% 75.49%

GraphSAGE (K=2) 83.31% 80.43% 93.30% 88.17% 91.58% 87.36%
GAT (K=1) 68.57% 64.90% 75.51% 77.58% 78.48% 73.01%
GIN (K=1) 65.74% 62.88% 75.84% 76.28% 79.01% 71.95%

Table 6: Test weighted-F1 compared to other GNNs

Data1 Data2 Data3 Data4 Data5 Average
GCN (K=4) 51.73% 34.18% 53.73% 56.00% 57.46% 50.62%

GraphSAGE (K=4) 81.82% 69.09% 87.82% 88.27% 85.73% 82.55%
GAT (K=4) 51.64% 38.36% 57.64% 62.36% 61.55% 54.31%
GIN (K=4) 44.09% 34.82% 48.28% 50.36% 52.64% 46.04%

GGNN (K=4) 89.36% 81.64% 93.18% 89.36% 92.27% 89.16%
GCN (K=1) 69.64% 63.36% 76.64% 77.91% 82.91% 74.09%

GraphSAGE (K=2) 83.64% 79.73% 93.09% 88.18% 91.09% 87.15%
GAT (K=1) 67.45% 61.09% 74.36% 76.82% 77.82% 71.51%
GIN (K=1) 64.64% 63.27% 75.82% 75.64% 78.00% 71.47%

on the 5 datasets can both reach about 89%, the average accuracy is
improved by 6.55% compared to AppFlow, and even the accuracy is
improved by 11.04% on data 1, which also verifies that in the case
of the same screen features, the transitions between screens can
help us classify functional scenarios.

4.3 RQ2: Effectiveness compared to other GNNs
To evaluate the effectiveness of GGNN and find the better GNN
structures, we replace the GGNN with other common GNN struc-
tures mentioned above, including GCN, GraphSAGE, and GAT. We
also experiment with the most popular expressive GNN framework:
Graph Isomorphism Network (GIN) [22]. All models use the same
Text features as initial node features and use the same hyperpa-
rameters: 1 fully connected layer for reducing sparse node features,
200 dimensional hidden units, four GNN layers (K=4), one fully con-
nected layer for classification. We choose four layers considering
that the diameter of our graph is relatively long, which corresponds
to a functional scenario with multiple continuous screens. The final
results are shown in the first six rows in Tables 5 and 6. We can
see that when dealing with deeper networks, the GGNN combined
with GRU has the best accuracy and weighted-F1 results on each
data, the results of GraphSAGE are sub-optimal, and the results of
other models can only be around 50%. This also verifies our conjec-
ture in Section 3.7: other models are only suitable for dealing with
networks containing 1-3 layers.

To ensure the completeness of the experiment and verify the
influence of layer numbers on model performance, we control the
variable of layer number with better results for other models based
on our data. GCN, GAT, and GIN have better results with one layer
(K=1), respectively, and GraphSAGE has two layers (K=2). The final
results are shown in the bottom four rows of Tables 5 and 6. Even
if we adjust the number of layers for each model, they are still not
suitable for our task, and GGNN (K=4) is still optimal. All results
confirm the effectiveness of the GGNN.
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5 RELATEDWORK
There is a large number of related works on the classification and
matching of screens in Android applications [1, 10, 14, 15, 18, 23],
most of which are related to UI automated testing and test reuse.
Their work uses one or more layout files, screenshots, and activity
names of screens to help classification. For example, Ariel et al. [18]
and Luca et al. [1] both extract the number of widgets they consider
important from the layout files and adopt a basic classification al-
gorithm similar to KStar or logistic regression. They only utilize
a small amount of screen information: the position and number
of widgets, so their feature dimensions are only two digits. Their
approach can only be applied to relatively simple and rough sce-
nario classification. Pan et al. [14] utilize scenario comparison to
help optimize the exploration strategy of automated testing tools.
Hu et al. [23] use accurate scenario classification to help synthesize
reusable UI tests and combine the three types of information of the
screen in a better and more reasonable way with a neural network.
Compared with these tools, we take advantage of the transitions
between screens with the GNNmodel for the first time and improve
the classification accuracy.

6 CONCLUSION AND FUTUREWORK
In this paper, we focused on the problem of classifying functional
scenarios in Android applications and proposed transitions and
dependencies between screens to improve classification accuracy.
We constructed a directed transition graph to preserve transition
information, whose nodes are screens and edges are transitions. We
proposed a novel GNN-based scenario classification approach using
GNNs to learn directed transition graphs and classify screens. We
evaluated our approach on 30 popular file management apps. The
results showed that both the classification accuracy and weighted-
F1 of our approach are improved by about 6% compared to the
state-of-the-art approach. Currently, we use transitions as edges
in a direct way. In the future, we will try to extract useful wid-
get information from transitions, optimize feature extraction, and
experiment with other categories of apps to further improve our
work.
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