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Abstract
Neural code intelligence models are cutting-edge automated

code understanding technologies that have achieved remarkable
performance in various software engineering tasks. However, the
lack of deep learning models’ interpretability hinders the applica-
tion of deep learning based code intelligence models in real-world
scenarios, particularly in security-critical domains. Previous studies
use program simplification to understand neural code intelligence
models, but they have overlooked the fact that the most significant
difference between source code and natural language is the code’s
structural semantics.

In this paper, we first conduct an empirical study to identify the
critical code structural semantic features valued by neural code
intelligence models, and then we propose a novel program simplifi-
cation method called SSGPS (Structural-Semantics Guided Program
Simplification). Results on three code summarization models show
that SSGPS can reduce training and testing time by 20-40% while
controlling the decrease in model performance by less than 4%,
demonstrating that our method can retain the critical code struc-
tural semantics for understanding neural code intelligence models.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging; • Computing methodologies→ Feature selection.
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1 Introduction
Neural code intelligence models are now the cutting-edge tech-

nologies for automated code understanding and have achieved
remarkable performance in a variety of software engineering tasks,
including code summarization [19], code search [3], and vulnerabil-
ity detection [4]. The powerful generalization performance of deep
neural networks enables these models to learn rich representations
by passing raw data through several transforming layers [13]. As a
result, the burden of feature engineering is significantly reduced
in challenging fields such as computer vision, natural language
processing, and source code understanding.

Before the popularity of deep learning, researchers typically rely
on their domain expertise to solve automated code intelligence tasks
using heuristic rules [20, 21], pattern matching [6, 10], or other tech-
niques. As a result, their tools are quite explainable, enabling them
to provide users with a convincing explanation of the tool’s effec-
tiveness. However, deep learning based code intelligence models
lack this ability. Despite years of research dedicated to interpret-
ing deep neural models’ behavior, they stubbornly maintain their
“black box" characteristics [15]. The lack of deep neural models’
interpretability hinders the application of neural code intelligence
models in real-world scenarios, especially in security-critical do-
mains.

Previous studies have attempted to understand neural code intel-
ligencemodels by using program simplification techniques based on
delta debugging [17, 18, 23] or attention weights [2, 31]. However,
most of these studies only regard source code as plain text, over-
looking the fact that the most significant difference between source
code and natural language lies in the code’s structural semantics.
Meanwhile, several researchers have incorporated the structural
representation of code, such as the Abstract Syntax Tree (AST), as
multi-modal auxiliary information into neural code intelligence
models, resulting in better performance than models solely based
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on plain source code [7, 9]. Therefore, it is essential to identify
the key code structural semantic features that neural code intel-
ligence models focus on. This will help us understand why code
structural representation can aid neural code intelligence models
better completing various software engineering tasks.

The attention mechanism provides a way to evaluate the impor-
tance of each input element of the neural model, and the element
with a higher attention weight is generally more essential [2]. To
uncover the critical structural semantics learned by neural code
intelligence models, we first conduct an empirical study on SiT [29]
— a code summarization model based on structure-induced Trans-
former and using AST as input. Our study aims to find out the
following:
• What type of AST node does the model pay more attention to
when encoding representations and generating predictions?
• Is there a dissimilar distribution pattern for the impact of different
node types to their neighbors when encoding representations?

To answer the above two questions, we extract the attentionweights
obtained by each node type in the SiT encoder and decoder and
use them to evaluate the significance of different node types. Our
findings show that the model pays more attention to node types
related to rich functional semantics such as method signatures and
member calls. Besides, the impact distribution of different node
types to their neighbors is distinct. Some node types have a critical
impact on all their neighbors, while others only make sense to
neighbors corresponding to the same grammar structure.

Based on our empirical findings, we propose a novel program
simplification method called SSGPS (Structural-Semantics Guided
Program Simplification). SSGPS simplifies the program at the AST
level while retaining the essential structural semantic features of
the program and eliminating unnecessary information. SSGPS con-
siders both the node’s contribution to encoding representation and
generating predictions and adopts a two-stage pruning scheme to
enhance the reduction efficiency.

We apply SSGPS to three code summarization models, namely
SiT [29], SCRIPT [8], and AST-Trans [24]. We measure the simpli-
fication performance of SSGPS by relative size and time cost in
training and testing. Meanwhile, we assess whether the simplified
program retains the key structural semantics by examining the
decrease in the baseline models’ evaluation scores. Experimental
results show that SSGPS can reduce training and testing time by
20-40% while controlling the decrease in models’ performance by
less than 4%, which indicates that SSGPS successfully retains the
structural semantic information that the neural code intelligence
model attaches importance to.

Overall, our contributions in this paper are threefold:
• We conduct an in-depth study about the critical code structural
semantic features valued by neural code intelligence models.
• We propose a novel program simplification approach SSGPS
based on our empirical findings, which simplifies the program at
the AST level while preserving the key code structural semantics.
• We extensively evaluate SSGPS on three code summarization
models and our experimental results demonstrate the effective-
ness of SSGPS.

Structure of the paper. Section 2 introduces the background
knowledge and related work of our research, and Section 3 provides

our empirical study and its results. We present our novel program
simplification method SSGPS in Section 4, while Section 5 records
the setup, results, and corresponding analysis of our experiments.
Section 6 analyzes the threats to the validity of our research and
Section 7 concludes the paper with future work.

2 Background and Related Work
This section provides background information on our research,

including code structural representation and the attention mecha-
nism. We also introduce related work on code intelligence models
understanding based on program simplification.

2.1 Background
Code structural representation. Code structural representations such
as Abstract Syntax Tree (AST), Control Flow Graph (CFG), and
Data Flow Graph (DFG), are constructed from plain source code
and describe the structural semantics of source codes. These code
structural representations play an essential role in source code
comprehension, helping us understand the code’s functionality
and concrete behaviors. Of these representations, AST is the most
widely used in current code intelligence tasks, likely because it
provides richer structural semantics than CFG and DFG. In this
paper, we focus on the importance of different AST node types and
mine the key structural semantic features that are valuable for the
neural code intelligence model.
Attention mechanism. The attention mechanism serves as the foun-
dation of our evaluation of AST node types’ importance and has
become an essential component in many popular attention-based
models, such as the well-known Transformer [25] and GAT [26].
It can be defined as a function that maps a query vector and a set
of key-value vector pairs to an output vector. The output vector is
obtained by taking a weighted sum of the value vectors, where the
weight assigned to each value vector is determined by a compati-
bility function of the query with the corresponding key. Since the
discriminative weights reflect the impact of input elements on the
outputs of neural models, we utilize the attention weights obtained
from each AST node type to assess its importance.

2.2 Related Work
Besides our work, there have been several other studies that

aim to understand neural code intelligence models using program
simplification. AutoFocus [2] evaluates the impact of a specific
code fragment by deleting it from the original program and con-
firms that the attention weights have a similar effect to code per-
turbation. WheaCha [28], a method based on reducing and mu-
tating, distinguishes the critical and useless input features in the
code method name prediction models. P2IM [17] captures vulner-
ability signals from models’ prediction by applying prediction-
preserving input simplification based on delta debugging [30]. Simi-
larly, SIVAND [17] simplifies the program through delta debugging
to extract the features that play a key role in the text input of source
code for the code intelligence models. SIVAND-Perses [18] further
uses Perses [22] to conduct syntax-guided code simplification and
extracts the critical source code features to the model while retain-
ing the syntax characteristics. More recently, DietCodeBERT [31]
analyzes the importance of different tokens and statements to the
code pre-training models through attention weights, and based
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on empirical results, it simplifies the source code to accelerate the
pre-training models’ fine-tuning and testing.

Despite the excellent results of previous work, they still have
some incomplete considerations. At first, most of the previous stud-
ies only regard the source code as plain text, overlooking the fact
that the most significant difference between source code and nat-
ural language is the code’s structural semantics. Secondly, delta
debugging is an iterative algorithm, in which each iteration needs
to input the simplified code into the model to obtain the output.
Therefore, the efficiency of the delta debugging based approaches
such as SIVAND, P2IM, and SIVAND-Perses is very limited, taking
a massive amount of time (>30000 hours) to process more than 1
million functions [31], which makes it difficult to apply them on
the large-scale code dataset. Besides, DietCodeBERT only considers
the key tokens and statements in the CodeSearchNet [12], which
makes the generalization ability poor, as performance may decline
when applied to other data sets.

3 Empirical Study and Analyse
In order to identify the key code structural semantic features

valued by neural code intelligence models, we design an empirical
study based on attention weights obtained by different AST node
types. In the following subsection, we present our study design and
empirical analysis.

3.1 Study Design
In this section, we describe our study methodology and experi-

mental setup. Different from previous works, we concentrate on
identifying the critical code structural semantic features valued by
neural code intelligence models. Intuitively, each AST node repre-
sents a specific source code behavior, such as variable declaration
and method invocation, and the edges between AST nodes contains
the high-level structural semantics between different grammatical
units. Therefore, we evaluate the key structural semantic features
by analyzing the AST nodes’ attention weights obtained from the
attention-based model. Besides, neural code intelligence models of-
ten adopt the Encoder-Decoder structure. The encoder and decoder
have different functionality: the encoder converts the input in a
certain format to a fixed-dimensional intermediate representation,
while the decoder generates the model’s final predictions based on
the intermediate representation. In our research, we separate the
encoder and decoder to analyze their possible different behaviors.

We choose a neural intelligence model named SiT [29] as the
basic model for research, which takes the AST node sequence as
input and incorporates their adjacency relationship into the model.
As an exhaustive research, we start with mining the most important
AST node types in the encoder and decoder, respectively. Next, we
investigate the impact of different AST node types to their different
neighbors in the encoder. In a word, we design our empirical study
by answering the following research questions:

• RQ1: What type of AST node does the model pay more
attention to when encoding representation and generating
predictions? We explore the critical local structural semantic
features that Sit focused onwhen converting code to intermediate
representations in the encoder and generating final predictions
in the decoder.

Figure 1: Process of attention weight extraction.

• RQ2: Is there a dissimilar distribution pattern for the im-
pact of different node types to their neighbors when en-
coding representations?We further explore how SiT uses the
structure information of AST when encoding representations,
andwhether different types of AST nodes have different influence
patterns on their neighbors.

Following previous studies [2, 31], we use the attention weights
of AST nodes to measure their importance. Figure 1 shows the
process of attention weights extraction. Specifically, for each code
data in the dataset, we parse it into AST and then sub-tokenize
each AST node’s value to obtain Sub-AST. The motivation behind
constructing Sub-AST is to address the out-of-vocabulary challenge,
spliting each AST nodes’ value that are in form of the CamelCase
or snake_case into sub-tokens. Next, we convert the Sub-AST to
its preorder node sequence and adjacency matrix, and then input
them into SiT to get the attention weights matrix from the encoder
and decoder. We average the attention weights of all layers and
heads for each node and sum the attention weights of all Sub-AST
nodes to their original AST node.

Considering that there may be multiple nodes of the same type in
an AST, instead of simply using the attention weights obtained by
each node, we use the sum of the attention scores of the same type
of nodes to indicate their importance to the whole AST. Otherwise,
this will cause those important node types with high frequency to
gain the wrong low importance. For example, suppose there are
two method invocation type nodes in an AST, and their attention
scores are 0.1 and 0.2, respectively. This means the importance
of the method invocation node type should be the total attention
score divided by the number of AST with this node, which is (0.1 +
0.2)/1 = 0.3, rather than the total attention score divided by the
total number of this type of nodes, which is (0.1 + 0.2)/2 = 0.15.

We conduct our experiments on two corpora: one Java dataset [11]
and one Python dataset [27]. The Java dataset contains 87136 Java
code snippets with comments written by the developers and the
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Python dataset contains 87226 Python code snippets with com-
ments. Following the default partitioning of the dataset, the pro-
portions of training, validation and testing set are 8:1:1 and 6:2:2,
respectively, for the Java and Python dataset, and we only use data
from the training set in our empirical analysis. For RQ1, we trans-
form the attention weight matrix into an attention weight sequence
by averaging and analyze the node types valued by the encoder and
decoder respectively. For RQ2, we compute the average weights of
each pair of node types gained from the encoder attention weights
matrix and explore the different impact modes of different node
types.

3.2 Results and Analyse
In this section, we provide the empirical results and analysis.

RQ1: What type of AST node does SiT pay more attention to in the
SiT encoder and decoder? Figure 2 reveals the average attention
weights of different types of Java AST nodes in the SiT encoder
and decoder. The results show that the encoder and decoder assign
more attention to part of the node types such as MemberReference,
MethodInvocation, ReferenceType, ConstructorDeclaration
and MethodDeclaration. We speculate that these node types con-
tain richer code semantic information such as method names, vari-
able names, and type names, which is essential for understand-
ing the functionality of the source code. Furthermore, except for
ReturnStatement, the node types that represent statement types
receive lower attention weights in both SiT encoder and decoder,
possibly because they are difficult to relate to semantically rich parts
of the source code, whereas ReturnStatement is usually associated
to the method’s returned content. This indicates that the SiT model
may be not concerned with control flow-related structures, such as
loops and conditional branching.

Among all the Java AST node types, MemberReference has the
highest attention weight in both the encoder and decoder, 2.99e-1
and 2.11e-1, respectively. The node type that obtained the lowest
attention weight in the encoder is Statement, only 3.11e-4, while
in the decoder it is ContinueStatement, with a weight of 9.46e-3.
The standard deviation of these weights is 5.48e-2 in the encoder
and 4.33e-2 in the decoder.

Interestingly, although the SiT encoder and decoder have simi-
lar attention weights distribution patterns, the distribution in the
encoder is a bit more extreme, which is represented by a larger
standard deviation and higher attention weights obtained by rich
semantics node types. This is somehow expected, indicating that
in the encoder, SiT tends to progressively propagate key informa-
tion from semantic-rich nodes to others, while in the decoder, SiT
prefers to focus on all nodes comprehensively and generate final
predictions based on their encoded representations.

Similar conclusions can be drawn from the experimental re-
sults of the Python dataset . Both the SiT encoder and decoder
focus more on rich-semantics node types such as Name, Attribute,
FunctionDef and Call, among which Name gets the highest av-
erage attention weight. In addition, While, For, Continue, Break,
and other nodes related to the type of statement are assigned very
limited attention weights. Compared to results on the Java dataset,
the standard deviation of attention weights for Python AST node
types is a little higher, which is 6.70e-2 in the encoder and 5.50e-2
in the decoder.

RQ2: Is there a dissimilar distribution pattern for the impact of dif-
ferent node types to their neighbors when encoding representations?
Figure 3 shows four examples of the average attention weights
obtained by different Java AST node types from their neighbors,
including MemberReference, MethodDeclaration, TypeArgument
and VariableDeclaration. According to these examples, there are
indeed dissimilar distribution patterns in the impact of different
node types to their neighbors, which can be roughly divided into
two categories.

The first category is those node types that are considered to
be critical to SiT in RQ1. Although there is a clear difference be-
tween the size of attention weights among different neighbor types,
these nodes have an obvious influence on all their neighbors. Fig-
ure 3a represents the impact of MemberReference node type on
its neighbors, with a minimum attention weight of 5.1e-2, which
is still a large value for some other node types. The node type of
MethodDeclaration is slightly different. As we can see from Fig-
ure 3b, it has more importance to the nodes related to function signa-
tures such as Annotation, FormalParameter and TypeParameter,
followed by other nodes, but it still maintains a high attention
weight overall.

The second category is those node types that only appear in
a specific grammar structure, which only have a high impact to
neighbors related to the specific grammar structure. For example,
the TypeArgument node type is related to generic programming in
Java, which is usually associated with a specific type. As shown
in Figure 3c, the TypeArgument node type has the greatest impact
on the ReferenceType node type, showing the semantics of para-
metrical types in generic programming. Similarly, the declaration
of a variable is closely linked to the type of the variable and the
specific declarator. Besides, the declaration of iterative variables is
extremely meaningful to the for statement. Therefore, as Figure 3d
shows, the VariableDeclaration node type has a high impact on
ReferenceType, BasicType, VariableDeclarator, ForControl
and EnhancedForControl nodes, while it has little influence on
other neighbor nodes.

Similar observations can also be made from the experiments
on the Python dataset. Python AST node types such as Name and
FunctionDef can be classified as the first category. These node
types obtain the top average attention weights and have a signifi-
cant impact on all their neighbor nodes. For the second category,
the node type Comprehension is related to a specific syntax in
Python, which provides users with a short and concise way to use
predefined sequences to construct new sequences (such as lists,
sets, dictionaries, etc.). Python supports 4 types of comprehension:
List Comprehensions, Dictionary Comprehensions, Set Compre-
hensions, and Generator Comprehensions. Thus, it is considered
critical by such node types as ListComp, DictComp, SetComp, and
GeneratorExp, which represent the above 4 types respectively,
while the attention weights of other neighbors are quite low.

4 Structural-Semantics Guided Program
Simplification

From the previous empirical study and analyses, we discover
that certain AST node types are unimportant to code intelligence
models and a few node types only have a significant impact on
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(a) Encoder (b) Decoder

Figure 2: Attention weights of different types of Java AST nodes in SiT encoder and decoder.

(a) MemberReference (b) MethodDeclaration

(c) TypeArgument (d) VariableDeclaration

Figure 3: Examples of the average attention weights of different Java AST node types obtained from their neighbors.
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neighbors that belong to the same semantic behavior, which proves
the existence of key code structural semantic features. By selec-
tively pruning nodes while preserving these key features, we can
effectively reduce the input size of code intelligence models, leading
to improved efficiency. While a straightforward approach to node
pruning involves gradually removing nodes with lower attention
weights until the entire AST reaches a desired scale, this strategy
proves to be inefficient. Furthermore, there is a risk that such a
simplistic approach may result in the pruning of the AST to a mere
collection of method and variable names, thereby compromising
the structural semantics that the AST inherently possesses.

Considering that certain node types that only occur within spe-
cific syntax structures have a significant impact on other node
types within the same structure, it becomes apparent that if the
code intelligence model does not value the semantics of these spe-
cific structures, the nodes within them can be deemed unimportant.
Hence, we propose a two-stage node pruning algorithm. In the
first stage, we adopt the statement as the granularity and perform
coarse-grained pruning. The aim is to eliminate syntax structures
that are not valued by the code intelligence model. Subsequently,
in the second stage, we proceed with fine-grained pruning using
the node as the granularity. Here, we selectively remove nodes that
are not valued by the code intelligence model. To preserve the key
code structural semantic features, we introduce SSGPS, a Structural-
Semantics Guided Program Simplification method that leverages
the insights mentioned above. SSGPS employs attention weights
to compute the importance of AST nodes, enabling the pruning of
redundant nodes and retaining the critical code structural semantic
features.

4.1 Attention Information Extracting
Similar to the empirical study in Section 3, we use the attention

matrix in the SiT encoder and decoder to compute node importance.
Specifically, as shown in Figure 1, we extract the attention weights
matrix from the encoder and decoder to generate 𝐸𝑀𝑎𝑝 and 𝐷𝑀𝑎𝑝 .
The input to 𝐸𝑀𝑎𝑝 is a pair of node types (𝑢, 𝑣), and the output
from 𝐸𝑀𝑎𝑝 tells the importance of node type 𝑢 to another node
type 𝑣 . To compute 𝐸𝑀𝑎𝑝 , we extract the attention weights of each
pair of nodes from the encoder, record each node types pair’s atten-
tion weights and occurrences, and eventually compute the average
attention weights of each pair of node types after processing all
data. On the other hand, the input to 𝐷𝑀𝑎𝑝 is a single node type 𝑢,
and 𝐷𝑀𝑎𝑝 outputs the contribution of node type 𝑢 to the model’s
final prediction. Different from the calculation of 𝐸𝑀𝑎𝑝 , for 𝐷𝑀𝑎𝑝

we reduce the dimension of the decoder’s attention matrix to obtain
the average attention weight of each node in input AST and then
calculate the 𝐷𝑀𝑎𝑝 in a similar way to 𝐸𝑀𝑎𝑝 . To make full use of
the attention information of multiple layers and heads, we average
the attention weights of all layers and heads for each node.

4.2 Node Importance
When calculating the importance of an AST node, we need to

comprehensively consider the role of the node in encoding inter-
mediate representations and predicting final results. In addition,
if a node only has a significant impact on some of its neighbors,
and these neighbor nodes are not valued, then the importance of
the node should be lowered correspondingly. Given that 𝐸𝑀𝑎𝑝

and 𝐷𝑀𝑎𝑝 have been obtained to denote the importance of each
node type to others types and the importance of each node type
when making a final prediction, the importance of a node can be
calculated as

Importance(𝑢) = 𝐷𝑀𝑎𝑝 (𝑇𝑦𝑝𝑒 (𝑢))+
1

| Neigh(𝑢) |
∑︁

𝑣∈Neigh(𝑢 )
𝐸𝑀𝑎𝑝 (𝑇𝑦𝑝𝑒 (𝑢), Type(𝑣)) (1)

where Importance(𝑢) means the importance of node 𝑢, Type(𝑢)
denotes the type of node 𝑢 and Neigh(𝑢) represents the neighbor
set of node𝑢 in the AST. Equation (1) allows us to determine a node’s
importance by combining its own importance and its influence on
other nodes. Note that there might be other ways to achieve the
same objective, we choose this simple formulation which is already
effective as demonstrated by experiments in Section 5.

4.3 Pruning Algorithm
Using Equation (1) and the 𝐸𝑀𝑎𝑝 and 𝐷𝑀𝑎𝑝 obtained from

Section 4.1, given any AST node and its adjacency relationship,
we can directly calculate its importance to the code intelligence
model. We use 𝐿 as the maximum number of nodes contained in the
reduced AST. Intuitively, we can prune the most unimportant node
one by one until the number of remaining nodes in the AST equals 𝐿.
However, it is significantly time-consuming since each deletion of a
node requires recalculating the importance of all remaining nodes.
Therefore, to balance the effectiveness and efficiency of program
reduction, we implement a two-stage pruning algorithm containing
coarse-grained pruning and fine-grained pruning.

Algorithm 1 summarizes the whole two-stage program reduction
procedure. In the first stage, we use the statement as the granularity
for coarse-grain pruning, while in the fine-grain pruning stage, we
use the single AST node. Before the AST level program reduction,
we extract the attention weight information from the encoder and
decoder of SiT and convert it into 𝐸𝑀𝑎𝑝 and 𝐷𝑀𝑎𝑝 , respectively.

In the coarse-grained pruning stage, we begin the reducing pro-
cedure with extracting a statement based sub-graph from a given
AST, where each node corresponds to a statement-type node and
several other types of nodes in the original AST. We use a map to
maintain the relationship between sub-graph nodes and original
AST nodes, by which the sub-graph can be easily restored to AST
after coarse-grain pruning. For the importance of each sub-graph
node, we use the sum of the importance of all associated AST nodes
as its importance. Then, we greedily delete the sub-graph nodes
that obtain the lowest importance until the current deletion will
cause the current number of nodes to be less than the predefined
maximum number 𝐿. It is worth emphasizing that every deletion
of the sub-graph node will lead to structural changes in the sub-
graph and the corresponding AST. Therefore, it is quite necessary
to update the adjacency matrix and recalculate the importance of
the remaining nodes after each deletion.

In the fine-grained pruning phase, we first rebuild the whole AST
from the pruned sub-graph, and then remove the most unimportant
AST nodes one by one until satisfying the maximum number of
nodes. Similar to the coarse-grained pruning phase, we also update
the adjacency matrix and recalculate the importance of the left AST
nodes after each removal.
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Algorithm 1 The Two-stage node pruning algorithm
Require:

The original AST, 𝑇 = (𝑉 , 𝐸) ,where
𝑉 = {𝑛1;𝑛2; ...;𝑛 |𝑉 | } and 𝐸 = {(𝑛𝑢 , 𝑛𝑣) | 𝑛𝑢 , 𝑛𝑣 ∈ 𝑉 };
Attention map of a pair of AST node types, 𝐸𝑀𝑎𝑝;
Attention map of a single AST node type, 𝐷𝑀𝑎𝑝 ;
The max number of pruned AST nodes, 𝐿;

Ensure:
The pruned AST, 𝑇𝑝 = (𝑉𝑝 , 𝐸𝑝 ) where
𝑉𝑝 = {𝑛𝑝1 ;𝑛

𝑝

2 ; ...;𝑛
𝑝

𝑉𝑝
} and

𝐸𝑝 = {(𝑛𝑝𝑢 , 𝑛
𝑝
𝑣 ) | 𝑛

𝑝
𝑢 , 𝑛

𝑝
𝑣 ∈ 𝑉𝑝 };

1: Extract a statement based subgraph 𝑇𝑠 from 𝑇 ,
𝑇𝑠 = (𝑉𝑠 , 𝐸𝑠 ) where 𝑉𝑠 = {𝑛𝑠1, 𝑛

𝑠
2, ..., 𝑛

𝑠
|𝑉𝑠 | } and

𝐸𝑠 = {(𝑛𝑠𝑢 , 𝑛𝑠𝑣) | 𝑛𝑠𝑢 , 𝑛𝑠𝑢 ∈ 𝑉𝑠 }
2: Maintain a relationship map SubgraphMap, whose key is node

𝑛𝑠 ∈ 𝑉𝑠 of 𝑇𝑠 and value is the set of nodes in 𝑉 related to 𝑛𝑠
3: Current number of nodes 𝐿𝑐 ←| 𝑉 |
4: while 𝐿𝑐 > 𝐿 do
5: // coarse grain prune
6: for 𝑛𝑠 ∈ 𝑉𝑠 do
7: use (1) to compute the importance of 𝑛𝑠 ,

Importance(𝑛𝑠 ) = ∑
𝑛∗∈SubgraphMap (𝑛𝑠 ) 𝐼 (𝑛∗)

8: end for
9: 𝑛𝑠

′
= argmin𝑛𝑠 ∈𝑉𝑠 Importance(𝑛𝑠 )

10: if 𝐿𝑐− | SubgraphMap(𝑛𝑠′ ) |≤ 𝐿 then
11: break;
12: else
13: 𝑉𝑠 ← 𝑉𝑠 \ {𝑛𝑠

′ }
14: 𝑉 ← 𝑉 \ SubgraphMap(𝑛𝑠′ )
15: update 𝐸𝑠 and 𝐸
16: 𝐿𝑐 ← 𝐿𝑐− | 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝 (𝑛𝑠′ ) |
17: end if
18: end while
19: Rebuild 𝑇𝑝 = (𝑉𝑝 , 𝐸𝑝 ) from pruned subgraph 𝑇𝑠
20: while 𝐿𝑐 > 𝐿 do
21: // fine grain prune
22: for 𝑛𝑝 ∈ 𝑉𝑝 do
23: use Equation (1) to compute importance of 𝑛𝑝 ,

Importance(𝑛𝑝 ) = 𝐼 (𝑛𝑝 )
24: end for
25: 𝑛𝑝 ′ = argmin𝑛𝑝 ∈𝑉𝑝 Importance(𝑛𝑝 )
26: 𝑉𝑝 ← 𝑉𝑝 \ {𝑛𝑝 ′}
27: update 𝐸𝑝
28: 𝐿𝑐 ← 𝐿𝑐 − 1
29: end while
30: 𝑇𝑝 = (𝑉𝑝 , 𝐸𝑝 )
31: return 𝑇𝑝 ;

5 Experiments
In this section, we first introduce the setup of our experiments,

including datasets, metrics, baselines, and research questions. Then
we present the experimental results and detailed analysis.

5.1 Experiments Setup
Datasets. We select two widely used code summarization bench-
marks, one in Java [11] and the other in Python [27]. Both have
been used for our empirical study in Section 3. We follow the
train/valid/test partition of the original data set and replace the
numeric constants, character or string constants, and Boolean con-
stants in the code with _NUM_, _STR_, and _BOOL_. Then, we use
the javalang and ast packages to convert the Java and Python
source code to the corresponding AST, respectively. Besides, to
solve the out-of-vocabulary problem, we split the source code and
the leaf nodes in ASTs into sub-tokens that are in form of the
CamelCase or snake_case. Table 1 shows the statistics of the two
datasets.

Table 1: Statistics of the datasets.

Dataset Split Original Cleaned

JCSD
Train 69,708 69,708
Valid 8,714 8,714
Test 8,714 8,714

PCSD
Train 55,538 55,532
Valid 18,505 18,503
Test 18,502 18,500

Metrics. To evaluate our method’s effectiveness, we use two metrics.
The first one is Relative Size (RS), which shows how much of AST
nodes is remained after structural program simplification. It is
calculated from the percentage of the ratio of the reduced number
of AST nodes to the original number of AST nodes. The smaller the
relative size, the greater the simplification of the original program.
The other metric is time cost, including training time (fine-tuning
time in RQ2) and testing time. We record the time of training from
scratch, fine-tuning, and testing time of different baseline models
under different experimental conditions in seconds.

On the other hand, we measure the performance of different code
summarization models under different settings using the following
widely used metrics: BLEU [16], ROUGE-L [14] and METEOR [1].
BLEU is a corpus-level metric and it calculates constituent n-grams
precision scores with a penalty for short sequences. ROUGE-L
is a widely used metric in text summarization evaluation and it
computes F-score using the Longest Common Subsequences (LCS).
METEOR uses the harmonic average of precision and recall to
measure the quality of the generated summaries. All the scores are
presented in percentages and the higher the scores, the better the
performance of the model.
Baselines. In our experiments, for the code summarization models,
We first choose SiT as the baseline for the reason that the model is
used for key feature extraction by us. Additionally, to demonstrate
the generalization of key features extracted through the SiT model,
we also select two code structural representations powered baseline
models, SCRIPT and AST-Trans:
• SiT [29]: It extends the Transformer architecturewith the structure-
induced self-attention mechanism, which provides the model
with the ability to extract structural features.
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• SCRIPT [8]: It enables the model to learn the structural relative
correlations between AST nodes by encoding the relative position
information of each node in AST, which is beneficial for code
semantic learning.
• AST-Trans [24]: It applies the tree-structured attention to dynam-
ically assign weights for relevant nodes and propose an efficient
and parallelizable implementation.

For all the above models, we use their open-source implementation
and maintain the values for all the hyperparameters.

For the program simplification baseline methods, we select Di-
etCodeBERT [31] which aims at lightweight leverage of large pre-
training models for source code such as CodeBERT [5] by dropping
the unimportant statements and tokens. Methods based on delta
debugging are inefficient, taking over 30,000 hours to process more
than one million functions [31], so we don’t choose these methods
as the baselines.

We run all models on a machine with a CPU of Intel(R) Xeon(R)
Silver 4214R 2.40GHz and a GPU of Nvidia Tesla P40.

Research questions. To evaluate the effectiveness of SSGPS, we aim
to answer the following research questions through intensive ex-
periments:

• RQ3: How effective is SSGPS in program simplification?We
evaluate the performance and time cost of SSGPS on three code
summarization models and compare them with baseline models.
Meanwhile, we compare the experimental results of SSGPS and
DietCodeBERT and use an example to show the superiority of
SSGPS.
• RQ4: How effective is SSGPS in the fine-tuning condition?
By answering this question, we try to evaluate whether SSGPS
can use the trained model to avoid training from scratch.
• RQ5: How effective is SSGPS under different relative sizes
(RS)? We study the effect of different relative sizes on the evalu-
ation in order to discover the proper relative size leading to the
best balance of model performance and efficiency.
• RQ6: What the effect of different information is in SSGPS?
In SSGPS, we comprehensively study the information of the
encoder and decoder. We conduct an ablation study to study the
effect of encoder information and decoder information.

5.2 Experimental Results
RQ3: How effective is SSGPS in program simplification? Table 2
presents the experimental results of various baseline methods on
the code summarization task. They can be divided into 4 groups
based on the different experimental settings, with the first three
groups being used for answering RQ3. The first group includes the
time costs and evaluation scores of three baseline code summariza-
tion models. In the second group, we show the influence of SSGPS
on the three baseline models and finally, the experimental results
of CodeBERT and DietCodeBERT on JCSD and PCSD are presented
in the third group.

The results in Table 2 show that SSGPS is highly effective in code
summarization models. It can reduce training and testing time by
20% to 40% while maintaining model evaluation scores within a 4%
decline. On SiT and SCRIPT, SSGPS can save training and testing
time costs without sacrificing model performance or even slightly
improving it. For instance, on JCSD, the original SCRIPT model

achieves a BLEU score of 46.01, a Rouge score of 55.97, and a Meteor
score of 27.67 at the expense of 110,266 seconds for training and
302.33 seconds for testing. When using SSGPS to limit the number
of input AST nodes to 128, the training time and testing time are
reduced to 72,931 seconds and 215.03 seconds, respectively, with
a comparable level on all evaluation scores to the original model.
The impact of SSGPS on AST-Trans is slightly higher, with BLEU,
Rouge, and Meteor decreasing by 2.1%, 2.2%, and 2.8% in JCSD and
2.0%, 3.8%, and 4.0% in PCSD.

In comparison to the existing program simplification method
DietCodeBERT, SSGPS exhibits better stability. In our experiments
on JCSD and PCSD, DietCodeBERT reduces fine-tuning time by
28.4% and 32.9% and testing time by 18.0% and 19.9%, separately.
Meanwhile, the evaluation scores’ declines of BLEU, Rouge, and
Meteor on JCSD are 3%, 2.9%, and 4.0%, which is a passable level
for users. However, on PCSD, the damage of DietCodeBERT on
CodeBERT’s performance is unacceptable, reaching 24%, 12%, and
25% on BLEU, Rouge, and Meteor, respectively. As for SSGPS, the
largest decrease in evaluation scores occurs on the Meteor score of
AST-Trans (4%), which is still within the tolerable range.

Figure 4 provides an example of program simplification using
DietCodeBERT and SSGPS. The purpose of the original source code
(Figure 4a) is to read content from a file with the given filename.
The result of DietCodeBERT (Figure 4b) remains the code’s core
functionality, but there still exists redundant information that is
not related to the code functionality, such as try and finally. Be-
cause SSGPS does not consider syntax correctness when performing
structural pruning at the AST level, the pruned AST cannot be re-
stored to the original code, but we can still analyze its effect from
the remaining AST’s node values and overall structure. Figure 4c
shows that SSGPS successfully removes redundant nodes that are
semantically independent while retaining nodes that are related to
concrete semantics.

RQ4: How effective is SSGPS in the fine-tuning condition? Table 2
also provides the experimental results of applying SSGPS to SiT
and SCRIPT under fine-tuning settings in the 4th group. Overall,
comparable performance to the model trained from scratch can
be achieved in 20% of the training time by fine-tuning the trained
model using the dataset processed by SSGPS. On JCSD, the effec-
tiveness of SSGPS is very significant, which can reduce the testing
time of SiT and SCRIPT by 27% and 27.5%, while slightly improving
BLEU, Rouge, and Meteor scores. On the other hand, on PCSD,
the BLEU, Rouge, and Meteor scores of SiT and SCRIPT descend
negligibly to varying degrees, ranging from 0.4% to 2.6%.

RQ5: How effective is SSGPS under different relative sizes? Figure 5
shows the BLEU score of SiT and AST-Trans under different relative
sizes. It can be observed that the performance of SiT remains stable,
even when the relative size drops to 0.25, compared to the original
model. This may be because SSGPS utilizes attention weights infor-
mation extracted from SiT, which enables it to effectively remove
redundant structural features. As for AST-Trans, when the relative
size is above 0.625, the BLEU score is comparable to that of the
original AST-Trans. However, when the relative size drops below
0.5, the BLEU score decreases significantly. Therefore, a relative size
of around 0.5 may be the best trade-off between model performance
and efficiency for all baseline code summarization models.
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Table 2: Experimental results of various baseline methods on the code summarization task (𝑆𝑖𝑛 : input size; RS: relative size; FT:
fine-tuning).

Model JCSD PCSD

𝑆𝑖𝑛 RS Train/FT Time Test Time BLEU Rouge Meteor 𝑆𝑖𝑛 RL Train/FT Test Time BLEU Rouge Meteor

SiT 256 100% 58393s 385.46s 45.17 55.21 26.83 256 100% 58011s 413.40s 36.53 49.93 21.80
AST-Trans 256 100% 107298s 154.28s 46.34 53.63 29.28 256 100% 112277s 343.91s 33.96 40.53 19.90
SCRIPT 256 100% 110266s 302.33s 46.01 55.97 27.67 256 100% 90163s 434.02s 36.63 49.96 21.93

SiT (reduced) 128 50% 44658s(-23.5%) 288.46s(-25.2%) 45.33 (+0.3%) 55.40(+0.3%) 26.91(+0.3%) 128 50% 40125s(-30.8%) 329.42s(-20.3%) 36.53(+0%) 49.93(+0%) 21.68(-0.5%)
AST-Trans (reduced) 128 50% 68843s(-30.5%) 117.03s(-24.1%) 45.35(-2.1%) 52.47(-2.2%) 28.46(-2.8%) 128 50% 67577s(-39.8%) 250.21s(-27.2%) 33.29(-2.0%) 38.99(-3.8%) 19.10(-4.0%)
SCRIPT (reduced) 128 50% 72931s(-33.9%) 215.03s(-29.9%) 46.50(+1.1%) 56.27(+0.4%) 28.35(+2.3%) 128 50% 62443s(-30.7%) 344.22s(-20.7%) 36.63(+0%) 49.83(-0.3%) 21.93(+0%)

CodeBERT 256 100% 83080s 2516s 44.63 55.94 26.53 256 100% 74083s 3653s 36.53 50.82 22.37
DietCodeBERT 128 50% 59518s(-28.4%) 2064s(-18.0%) 43.29(-3.0%) 54.31(-2.9%) 25.47(-4.0%) 128 50% 49762s(-32.9%) 2926s(-19.9%) 27.77(-24.0%) 44.53(-12.4%) 16.78(-25.0%)

SiT (fine-tuned) 128 50% 10230s(-82.5%) 281.34s(-27.0%) 45.23(+0.1%) 55.36(+0.5%) 27.09(+2.1%) 128 50% 11711s(-80.0%) 326.38s(-21.0%) 36.38(-0.4%) 49.70(-0.5%) 21.67(-0.6%)
SCRIPT (fine-tuned) 128 50% 15224s(-86.2%) 219.29s(-27.5%) 46.24(+0.5%) 56.20(+0.5%) 28.10(+1.6%) 128 50% 17749s(-80.3%) 344.65s(-20.6%) 36.15(-1.0%) 49.22(-1.4%) 21.37(-2.6%)

(a) The original source code [31] (b) simplified by DietCodeBERT [31]

(c) simplified by SSGPS

Figure 4: An example of program simplification by DietCodeBERT and SSGPS

RQ6: What the effect of different information is in SSGPS? Table 3
presents the ablation results of SiT and AST-Trans with only en-
coder information or decoder information on JCSD and PCSD
datasets. The purpose is to investigate the role of encoder and
decoder information in the importance evaluation of AST nodes.
Specifically, we only utilize encoder information and decoder infor-
mation separately to calculate AST node importance in Equation 1
and analyze their impact on the performance of different models.

The experimental results show that when only encoder informa-
tion or decoder information is used, SSGPS achieves satisfactory

enough results on different models in different datasets, but the
results are still lower than those obtained by a comprehensive con-
sideration of both encoder and decoder information. This indicates
that both encoder and decoder information is important, and it is
valuable to consider them comprehensively when evaluating the
importance of AST nodes.

One possible explanation for this is that the encoder and decoder
have different functionalities. The encoder tends to propagate infor-
mation from semantically rich nodes to others, while the decoder
focuses on all nodes to generate final predictions based on their
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Figure 5: BLEU score of SiT and AST-Trans under different
relative sizes on JCSD

Table 3: Ablation results of SiT and AST-Trans with only
encoder information or decoder information on JCSD and
PCSD

Model Type Dataset BLEU Rouge Meteor

SiT All JCSD 45.33 55.40 26.91
SiT Encoder Only JCSD 45.12 55.17 26.88
SiT Decoder Only JCSD 45.11 55.18 26.85
SiT All PCSD 36.53 49.93 21.68
SiT Encoder Only PCSD 36.51 49.82 21.60
SiT Decoder Only PCSD 36.47 49.84 21.65

AST-Trans All JCSD 45.35 52.47 28.46
AST-Trans Encoder Only JCSD 45.24 52.35 28.43
AST-Trans Decoder Only JCSD 45.25 55.18 28.29
AST-Trans All PCSD 33.29 38.99 19.10
AST-Trans Encoder Only PCSD 32.90 37.95 18.51
AST-Trans Decoder Only PCSD 32.93 38.30 18.71

encoded representations. Therefore, the comprehensive considera-
tion of both encoder and decoder information can more thoroughly
capture the structural semantics and effectively remove redundant
structural features.

6 Threats to Validity
Although the experimental results in Section 5 demonstrate the

superior effectiveness of SSGPS, we identify the following three
primary threats to the validity of our research.
• The first threat is related to the datasets used in this paper. Our
experiments are conducted only in Java and Python, and although
we have obtained similar results for both languages, other pro-
gramming languages like C++ and PHP may have different struc-
tural semantics and attention weight distribution patterns. Fur-
ther evaluations involving more diverse programming languages
are necessary for future research.
• Secondly, we must acknowledge that we have only evaluated
our approach on the code summarization task, which presents
a potential threat to the validity of our research. While our ex-
perimental results demonstrate that our method can effectively

remove redundant code structural semantic features in this task,
it is essential to verify its applicability to other code intelligence
tasks through additional experiments.
• In addition, the third threat to validity lies in the syntactic cor-
rectness of structural code reduction. In our approach, we mainly
focus on preserving key structural semantics and removing re-
dundant features, without paying much attention to the syntax
correctness of the simplified code. This could introduce bias in
our datasets and affect the results of our research.

7 Conclusion
This paper has presented an empirical analysis of the crucial

structural semantic features valued by code intelligence models
in Java and Python. Our findings suggested that code intelligence
models prioritize semantic-rich AST node types, such as those
related to function names, variable names, and type names. Further-
more, we observed that different AST node types exhibited different
patterns of impact distribution on their neighboring nodes. Some
node types corresponding with specific syntax structures only sig-
nificantly affected neighbors that appear within the same syntax
structure. Based on our empirical findings, we have proposed SSGPS
(Structural-Semantics Guided Program Simplification), a two-stage
program simplification algorithm that performs coarse-grained and
fine-grained structural program reduction at the AST level to elim-
inate structural semantic information which is irrelevant to the
models. Our experiments on three code summarization models
showed that SSGPS can reduce training and testing time costs by
20% to 40% while maintaining the model’s performance drop to less
than 4%, demonstrating its effectiveness.

For future work, we plan to explore more node importance calcu-
lation strategies for the original AST node importance calculation
and the statement-based subgraph node importance calculation.
By incorporating these methods, we can develop more effective
program simplification algorithms. Additionally, we intend to inves-
tigate a more automated approach by designing the model structure
to enable the identification and removal of redundant structural
semantic features through fine-tuning. As a continuation of our
current research, we will conduct evaluations of the performance
of SSGPS on other programming languages such as C++ and PHP.
We will also extend our approach to other software engineering
tasks, such as program classification, to further improve the under-
standing and interpretability of code intelligence models.
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