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Abstract

Social networking sites have sprung up and become a hot issue of current soci-
ety. In spite of the fact that these sites provide users with a variety of attractive
features, much to users’ dismay, however, they are prone to expose users’ private
information. In this paper, we propose an approach which addresses the prob-
lem of collaboratively deciding privacy policies for, but not limited to, shared
photos. Our approach utilizes trust relations in social networks and combines
them with Condorcet’s preferential voting scheme. We study properties of our
trust-augmented voting scheme and develop two approximations to improve its
efficiency. Our algorithms are compared and justified by experimental results,
which support the usability of our trust-augmented voting scheme.
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1. Introduction

Social networking is one of the most influential inventions on the Internet
during the past ten years. Social network sites provide users platforms to social-
ize both in the digital world and in the real world, for making friends, informa-
tion exchange and retrieval, and entertainment. Some of the largest ones, such
as Facebook [13], Google+ [17], Twitter [33], Kaixin001 [23] and Ren-
Ren [28] (the latter two mainly for Chinese users), provide services to hundreds
of millions users world wide. However, partly due to the intention to attract
as many users as possible for their commercial success, social networking sites
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tend to intentionally or unintentionally expose private information of existing
users. User privacy has become an important and crucial research topic in so-
cial networks. A number of scholars have studied it from different viewpoints,
e.g. [19, 11, 29, 5, 20, 30]. Moreover, the excessively expanded number of users
also bring difficulties into the management of these sites, so that designing ef-
fective mechanisms to coordinate users’ opinions over their privacy becomes an
emerging issue.

As a shared platform, resources in a social network may be co-owned by
a number of users. For instance, documents can be co-authored and several
users may appear in the same photo. Determining the co-owners requires some
content recognition or manual tagging mechanisms. The latter are supported
by several popular social networking sites (e.g., Facebook, Kaixin001 and
RenRen). Such co-ownership might cause a breach of privacy. For example,
suppose user Alice wishes to publish on her personal page a picture which con-
tains Bob’s image, this action may cause exposure of Bob’s privacy, regardless
of Bob’s personal will. In response to this issue, most of the social networking
sites choose to place the burden of privacy setting solely on the owners of re-
sources, to which we hold a different stance. Firstly, it is rather ineffective to
make the owner solely responsible for the privacy setting of a picture. Secondly,
co-owners of a picture may have different, or sometimes even conflicting, pri-
vacy concerns or preferences. Therefore, we believe it is more reasonable to let
all co-owners participate in the privacy setting. In this paper, we mainly focus
on the particular problem of how to merge privacy opinions from co-owners of
shared resources.

Voting schemes are natural candidates for aggregating individual preferences
into a joint decision that reflects the “general will” (or a social choice) of a group
of people who share the piece of data. Siquicciarini et al. [31] propose a game
theoretical method based on the Clarke-Tax mechanism [6], which can maxi-
mize the social utility function by encouraging truthfulness among people in
the group. This induces a nice property that the final decision cannot be ma-
nipulated by individuals, as users express their true opinions about the privacy
preference. However, their method is not as simple as it is claimed to be, as
it requires each user to compute a value for each different preference and the
user-input values are essential for their method to derive a joint decision. We
argue that this requirement is not realistic and it makes users less interested in
participating collaborative privacy control.

Instead, in this paper we propose a different but novel solution, by combining
trust in social networks with the well-known Condorcet’s preferential voting
scheme. The trust relations are inherent in social networks and can be easily
derived among users, for example, by comparing user profiles or computing the
distance of users in a social networking site. We believe that trust should play an
important role especially when users cooperate to decide the privacy policy on
a shared resource. This also indicates that our solution to collaborative privacy
control in social networks is applicable and effective when a trust relation on
people in a friendship circle is established. Exploring trust helps to identify
malicious users (co-owners with low trust values) when merging privacy opinions
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from a group of people.1 To exclude malicious users, one possible way is to set
a threshold to filter out co-owners with low trust values. In a preferential voting
scheme a user is required to provide a ranking — a linear order on the available
privacy preferences, rather than only select a single choice. This allows users
to express their opinions on different privacy policies in a more comprehensive
way. The method of calculating a final ranking from a collection of rankings
follows the consensus rule that was proposed at a conceptual level by Condorcet
in the late eighteenth century, and rediscovered by Kemeney [24] and Young
et al. [35, 34]. According to the rule (known as Kemeney’s rule), the proposed
method computes a final ranking that has the minimal sum of distances to all
users’ choices [24]. Our application enriches the method by associating a weight
to each individual user’s ranking, reflecting the degree of trust of that user as
considered by the owner of the resource.

Comparing to the method of Siquicciarini et al. [31], ours is simple to use, in
that our method only requires users to tick a ranking, and there are no values as-
sociated to each preference. The above discussion reflects two design rationales,
expressiveness and simplicity of use, in our mind, and these considerations lead
us to a method for collaborative privacy control which is as simple as possible
without losing its expressive power.

Structure of the paper. The rest of the paper is organized as follows. Sect. 2
introduces notions of trust in social networks and Condorcet’s preferential vot-
ing scheme. In Sect. 3 we propose a new algorithm that enhances Condorcet’s
voting scheme by taking trust relations in social networks into account, and
discuss the properties of this trust-augmented voting scheme. In Sect. 4 we de-
velop two approximations – one based on Borda’s counting method and the other
heuristic-based – to improve the efficiency of the proposed trust-augmented vot-
ing scheme, when the number of privacy policies is getting large. Sect. 5 presents
experimental results on comparing the algorithms previously introduced, which
also justify the correctness and efficiency of our approximations. We conclude
the paper in Sect. 6.

This article is a revised and extended version of [32] that appears in the pro-
ceedings of the 6th International Workshop on Security and Trust Management
(STM’10). In this version we have included a new discussion on the properties
that are satisfied by our trust-augmented voting scheme and a new algorithm
to approximate the scheme based on Borda count. We have also conducted new
experiments to test all the proposed algorithms.

2. Preliminaries

2.1. Trust in social networks

Literature shows that social life is simply not possible without trust [16, 26].
In particular, trust relations are central to cooperation, i.e., the social process

1Trust is also shown useful to deal with malicious routers in anonymous communication [21].
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aiming at the increase or preservation of the partners’ power, wealth, etc. Online
social networks reflect human social relations in the Internet, allowing users to
connect to people they know, to share data (e.g., video, photos, text), and to
have group activities (e.g., games, events). A number of social structures have
been introduced in social networking sites, such as friendship, group membership
and virtual family. The notion of trust is naturally present in social networks,
and moreover, in contrast to real life, it can be quantified and made explicit.

Trust has been defined in several different ways. The definition of trust
adopted here, first formulated by Gambetta [15], is often referred to as “relia-
bility trust”. Thus, we define trust as the belief or subjective probability of the
trustor that the trustee will adequately perform a certain action on which the
trustor’s welfare depends. Trust is hence a quantifiable relation between two
agents. There are mainly two approaches to trust quantification, namely by the
evaluation of the similarity, and by an analysis of relevant past events (stored
in a history) between two entities.

The similarity between two entities is a distance function that can take
various attributes into account, such as social (e.g., gender, location, company,
etc.), and behavioral (e.g., the way one ranks or buys) attributes. Intuitively,
the closer the two entities are w.r.t. an attribute (i.e., the distance is small), the
more likely the trust relation will be strong. In practice, a social networking site
like Facebook implements a social similarity mechanism in order to suggest to
the user people that she might consider as friends. For instance, if Alice and
Bob both have Clare and Danny in their friend list but Bob also has Elisabeth
as a friend, then Elisabeth might be suggested to Alice.

In the second approach, a sequence of past events concerning a specific ac-
tion2 can be analyzed to predict the likelihood that the same action will be
correctly performed if requested. This analysis can consist in checking a prop-
erty over the history [25, 10], or the computation of a probability (e.g., Hidden
Markov Models [12]). In the context of a social network, this requires to check
the history of events or games that a given user has been participating in or play-
ing during a certain time window. Based on this mechanism, a social networking
site can suggest friends who have similar interests to the user. Moreover, trust
transitivity can be used when an entity wants to evaluate the trust in an un-
acquainted entity, e.g., when the trustor does not have access to the trustee’s
profile, or has never interacted with her before. Trust transitivity is defined
as the possibility for the trustor to use trust information from other entities in
order to infer a trust evaluation towards the trustee, i.e., derive a trust value
from a trust graph. In social networks, we can use the trust over friendship re-
lations as transitive relations. Computational models for trust transitivity can
be found in the literature [18, 22, 8, 2], and can be applied to social networks.

Our main motivation to incorporating trust in collective privacy management
is that people’s opinion in a social networking site can be evaluated by taking
trust relations into account. For instance, when Alice rates a video that is

2In our setting, the action can be the collaborative decision making on privacy settings.

4



made by Bob, Clare evaluates this data item through the trust she has assigned
to Alice (as a referee) and Bob (as a film-maker). Similarly, combining users’
opinions is usually required to decide privacy policies of shared contents, which
leads us to a trust-augmented voting scheme. In the following sections, we define
trust as a function that assigns a value in [0, 1] to every (ordered) pair of users,
and assume that trust values among users can be efficiently computed in social
networks by using the approaches as discussed above. The meaning of a value 0
is that a trustor fully distrusts a trustee such that his opinion will be completely
disregarded, while 1 means that a trustor fully trusts a trustee.

A useful approach to derive such a trust value for a given trust network is
Jøsang’s Subjective Logic (SL) [22]. In this logic, a trust value is represented by
a triplet (b, d, u), where b ∈ [0, 1] denotes belief, d ∈ [0, 1] denotes disbelief, and
u ∈ [0, 1] denotes uncertainty. It is required that the sum of these values equals
1, b + d + u = 1. The value (1, 0, 0), for instance, represents full belief, while
(0.2, 0.2, 0.6) denotes an equal amount of belief and disbelief, with a relatively
high uncertainty of 0.6.

Following this approach, a number r of positive experiences and a number s
of negative experiences, which describe the experiences of agent A with respect
to agent B, can be transformed into the SL triplet ( r

r+s+2 ,
s

r+s+2 ,
2

r+s+2 ). This
triplet describes the direct trust of agent A in agent B. The value 2 originates
from the required correspondence between the Subjective Logic and beta distri-
butions, where two pseudo-experiments are defined (one success and one failure
experiment). Composition of such trust values then allows for the calculation
of the indirect trust relations in a trust network. The two most relevant com-
position operators are consensus (notation ⊕) and conjunction (notation ⊗).
Consensus is used for the fusion of two opinions concerning the same trustor
and trustee. Conjunction is used to express the transitivity of trust, i.e. to cal-
culate the trust of agent A in agent C, while knowing the trust of A in B and
the trust of B in C. These two operators are defined as follows:

(b, d, u)⊕ (b′, d′, u′) =

(
bu′ + b′u

u + u′ − uu′
,

du′ + d′u

u + u′ − uu′
,

uu′

u + u′ − uu′

)
,

(b, d, u)⊗ (b′, d′, u′) = (bb′, bd′, d + u + bu′) .

Finally, once the indirect trust relations in a trust network have been calcu-
lated, the relevant trust triplet (b, d, u) can be transformed into a one dimen-
sional value b + 1

2u ∈ [0, 1], which is the probability expectation value of the
opinion.

Example 1. Suppose that Alice (A) takes part in a social networking site where
she has two friends, Bob (B) and Clare (C). She knows Danny (D) who is a
friend of both Bob and Clare. The resulting trust network is illustrated in Fig. 1,
where straight lines refer to a direct trust relation and dashed lines to transitive
trust relations. The double dashed line is the overall aggregated trust relation.

Assume that Alice had 8 interactions with Bob, 5 of which she consid-
ers successful, then the trust of Alice in Bob can be calculated as the triplet
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Figure 1: Example of a trust network with derived transitive trust.

( 5
10 ,

3
10 ,

2
10 ). If we assume that Bob had 6 successful interactions out of 8 with

Danny, then the trust of Bob in Danny is ( 6
10 ,

2
10 ,

2
10 ). Applying the rules for

conjunction, we can calculate the transitive trust of Alice in Danny via Bob by
( 5
10 ,

3
10 ,

2
10 )⊗( 6

10 ,
2
10 ,

2
10 ) = ( 3

10 ,
1
10 ,

6
10 ). Likewise, we can calculate the transitive

trust of Alice in Danny via Clare. We assume 16 out of 18 successful interac-
tions between Alice and Clare, which gives ( 8

10 ,
1
10 ,

1
10 ) and 1 successful interac-

tion out of 2 between Clare and Danny, which gives ( 1
4 ,

1
4 ,

2
4 ). Then the transi-

tive trust of Alice in Danny via Clare is ( 8
10 ,

1
10 ,

1
10 ) ⊗ ( 1

4 ,
1
4 ,

2
4 ) = ( 2

10 ,
2
10 ,

6
10 ).

This allows us to calculate the consensus of the two transitive trust relations,
( 3
10 ,

1
10 ,

6
10 )⊕ ( 2

10 ,
2
10 ,

6
10 ) = ( 5

14 ,
3
14 ,

6
14 ). Finally, after having calculated all rel-

evant trust relations in the network, we obtain the one-dimensional trust values
that A has in B ( 6

10 ), C ( 8.5
10 ), and D ( 8

14 ). Such calculated trust values will be
used for subsequent calculations in our voting schemes.

2.2. Privacy policies

Relationships among people are complex. Users may have family members,
relatives, colleagues, classmates, good friends, and so forth. To accommodate
this diversity, most social networking sites have implemented the option to give
users the ability to segregate their friends into abstract and self-defined groups.
For example, the social networking site RenRen provides the user with pre-
defined groups, while Facebook allows users to create their own groups and
to place a friend into one or several groups. Typically, privacy control in these
sites is made easy with groups, which enables a user to have certain information
(or data items such as pictures) exposed to specific groups of other users. One
example is that Facebook allows users to associate privacy control with groups,
so that a user can manage access rights by associating his resources with existing
groups. Once a data item is assigned to a group by the user with the ‘visibility’
right, all his friends in that group can see the item. Tab. 1 summarizes the
allowed privacy control options in several popular social networking sites (i.e.,
Facebook, RenRen and Kaixin001). In practice, a user can select the options
for his data item depending on his personal will.

In this paper, we simply refer to privacy policies as the set of users who are
allowed read access to shared resources. For instance, for a co-owned picture,
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Sites Privacy Control Options
Facebook everyone, friends of friends, friends, customized
RenRen everyone, subnetworks, friends, myself
Kaixin001 everyone, friends, myself

Table 1: The privacy control options of three social networking sites.

the available policies are (i) visible only to the owner (P1), (ii) visible only to
those tagged, also called co-owners, in the picture (P2), (iii) visible to friends
of the tagged users (P3) and (iv) available to everyone (P4). Throughout the
paper, we use P1, P2, . . . , Pn to range over such policies.

2.3. Condorcet’s preferential voting scheme

There exist a number of voting systems in the literature. In single candi-
date systems each vote refers to a single choice (or candidate), which sometimes
may not allow voters to express more comprehensive opinions. For example,
a voter cannot express that he is initially willing to vote for C1, but in case
that C1 fails to be elected, he will vote for C2 among the rest of the candi-
dates. In such a situation preferential systems can be applied to express more
precise and more comprehensive ideas from the voters. In this paper we present
a preferential voting scheme which is extended from a system that is originally
proposed by Condorcet in late eighteenth century, and is rediscovered and ad-
vocated by Kemeny [24] and Young et al. [34]. For a complete description of
Condorcet’s voting system we refer to [34], which also explains why in a certain
sense Condorcet’s scheme may be regarded as ‘optimal’.

In a preferential voting system, a ballot consists of a (preferential) list of
all candidates.3 For every pair of candidates appearing in the list, say C1 and
C2, their relative positions reflect the voter’s preference, e.g., the case that C1

precedes C2 in the list indicates that the voter prefers C1 to C2. Such a list
implies a total order on the set of candidates expressing the complete opinion
from a particular voter. A voting profile is a collection (or a multi-set) of all the
cast ballots.

A voting profile may also be described as a weighted matrix of size |C|× |C|,
where C is the set of candidates. A cell in a weighted matrix with row C1

and column C2 is filled with w(C1, C2), which is the number of votes that
prefer C1 to C2. We further define a Condorcet directed graph G = (V,E,W )
such that V = C is the set of vertices, and E is the set of edges, which is
defined as the set {(C1, C2) ∈ V × V : w(C1, C2) ≥ w(C2, C1)}. The function
W : E → N, determines the labelings of the edges and is defined by W (C1, C2) =
w(C1, C2)−w(C2, C1), i.e., the difference between the votes preferring C1 to C2

and the votes that prefer C2 to C1. At the end of a voting procedure, a voting

3This is in contrast to so called single candidate voting systems where each vote only refers
to a single choice.
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P1 P2 P3 P4

A 1 2 3 4
B 2 3 1 4
C 3 1 2 4

P1 P2 P3 P4

P1 − 2 1 3
P2 1 − 2 3
P3 2 1 − 3
P4 0 0 0 −

p1

p3

p2 p41

1

1

3

3

3

Figure 2: A Condorcet voting example: the voting profile (left), the weighted matrix (middle),
and the Condorcet directed graph (right).

profile (or equivalently, a weighted matrix) needs to be evaluated in a certain
way, in order to get a final result. There is a famous criterion applied in the
calculation of a final winner as originally advocated by Condorcet.

Principle 1. (Condorcet Winner) If there is a candidate that beats every other
candidate in one-to-one comparison, that candidate should be the winner.

Plainly, a Condorcet winner is a vertex in the Condorcet directed graph with
out-degree |C| − 1. We illustrate Condorcet’s method in the following example.

Example 2. Suppose there are three users Alice (A), Bob (B) and Clare (C)
tagged in a picture owned by Alice. Alice wants to publish the picture on her
personal page in the network, therefore she needs to negotiate with Bob and
Clare to reach an agreement on the privacy policy associated to the picture.
Suppose the available policies are defined in Sect. 2.2. A (preferential) voting
form is made for Alice, Bob and Clare in which they fill in a total ranking on
the available policies, as shown in the voting profile on the left of Fig. 2.

The weighted matrix and the Condorcet directed graph are also sketched in
Fig. 2. As one can see, P4 is the least preferred by all users. However, there
exists a general tie between policies P1, P2 and P3. This situation is referred
to as the Condorcet paradox, meaning that the generated Condorcet directed
graph is cyclic on its top level vertices, and unfortunately, as we will show, the
traditional method of Condorcet is unable to break such a tie in this example.

The interpretation of Young and Levenglick [35] on Condorcet’s method
adopts what is known as maximum likelihood estimation. A philosophical as-
sumption is that there exists an invisible total ranking, reflecting the true ca-
pabilities of all the candidates in an election. In this paper we adopt such a
mechanism on selecting optimal privacy policies. For every pair of policies P1

and P2, such that P1 precedes P2 on the (invisible) ranking list, a user is more
likely to vote for P1 than P2. As Condorcet assumes, each user will choose a
better option (P1 in this case) with some fixed probability p, where 1

2 < p < 1.
Taking Example 2, the likelihood of the total order P1P2P3P4 to be the same
as the true invisible ranking order, denoted by L(P1P2P3P4), is calculated by
combining the likelihood of every Pi beating Pj with i < j (note that there
are six preferential pairs in this case). If “P1P2P3P4” is the true ordering on
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the candidates, then the chance that we get the current voting profile can be
calculated as

L(P1P2P3P4) = L(P1P2) · L(P2P3) · L(P1P3) · L(P1P4) · L(P2P4) · L(P3P4)
=

(
3
2

) (
p2(1− p)1

)
·
(
3
2

) (
p2(1− p)1

)
·
(
3
1

) (
p1(1− p)2

)
·(

3
3

) (
p3(1− p)0

)
·
(
3
3

) (
p3(1− p)0

)
·
(
3
3

) (
p3(1− p)0

)
where

(
m
n

)
= m!

n!(m−n)! for non-negative m ≥ n. The expression for L(P1P2), for

example, follows from the fact that 2 out of 3 voters ranked policy P1 higher
than P2, and thus voted in accordance with the hypothetical true ranking order
L(P1P2P3P4). The above method of calculating a final ranking was originally
proposed by Condorcet, and rediscovered by Kemeney [24] and Young et al. [35,
34]. Nowadays, it is known as Kemeney’s rule.

It has been pointed out that in practice when comparing the likelihood of
two possible orderings, the combinatoric coefficients can be safely ignored [34],
given the same voting profile. The only part that needs to be taken into ac-
count consists of the exponents over p (note that 1

2 < p < 1). In the case
of L(P1P2P3P4), the power over p is 14. One may also find that the power
over p for L(P4P3P2P1) is 4, thus P1P2P3P4 is more likely to be the true or-
dering over the privacy policies than P4P3P2P1 by Condorcet’s method. As
we have mentioned above, in this example we can compute the likelihood for
every sequence that is a permutation of the set {P1, P2, P3, P4}. In fact, we
have L(P1P2P3P4) = L(P2P3P1P4) = L(P3P1P2P4) and it is larger than the
likelihood of any other sequence. This means that Condorcet’s method might
select multiple winners, as P1, P2 and P3 are all selected in Example 2.

2.4. Condorcet voting algorithm

The Condorcet voting algorithm is detailed as in Alg. 1. The algorithm
takes a voting profile (votingprofile) as input and produces a set of winners as
output (stored in winners). Function getCondorcetWeightedMatrix translates a
voting profile into a weighted matrix, and then in the next step function get-
CondorcetDirectedGraph converts the weighted matrix into a Condorcet directed
graph.4 For example, as shown in Fig. 2, the algorithm translates the voting
profile on the left part into the weighted matrix in the middle, and then into the
Condorcet directed graph on the right. The rest of the algorithm focuses on how
to select a set of top vertices in the Condorcet directed graph. By definition, the
set of Condorcet winners are vertices that have an outgoing edge to every other
vertex, although in the real world such sets are singletons in most cases. Such
set will be returned by function getWinners. If getWinners returns an empty set,
i.e., no Condorcet winners exist, the algorithm will compute the likelihood of all
possible sequences and maintain the set of those with the maximal likelihood,
and return their first elements as winners.

4We represent directed graphs as two-dimensional arrays. For example, if there is a directed
edge from i to j with weight n ≥ 0, then cdg[i][j] has value n, and cdg[j][k] = −1 means that
there is no edge from j to k.
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Algorithm 1 The Condorcet voting algorithm.

input: votingprofile : VotingProfile;
output: winners : set 〈string〉;
var cwm: int[ ][ ] init null

cdg: int[ ][ ] init null
tlv: int[ ] init null
sql: int init 0
ml: int init 0
ms: set 〈string〉 init ∅

begin
cwm := getCondorcetWeightedMatrix(votingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
if winners = ∅ then

tlv := findTopLevelVertices(cdg);
for each sequence sq which is a permutation of tlv do

sql := computeSequenceLikelihood(sq, cwm);
if sql > ml then

ml := sql;
ms := {sq};

else if sql = ml then
ms := ms ∪ {sq};

end if
end for
winners := getFirstElements(ms);

end if
end

In the above algorithm, not all sequences are required to be involved in the
comparison of likelihoods. As a Condorcet directed graph imposes a topological
order, the top level vertices compose a subgraph which is a strongly connected
component (SCC) in the original graph. Function findTopLevelSCC returns the
set of vertices that form the SCC. One may easily find that the set of win-
ners can only come from the top-level SCC, thus we only need to compute the
sequences initialized by permutations of vertices in the top-level SCC.5 As in
Example 2, only six three-element sequences need to be taken into account:
P1P2P3, P1P3P2, P2P1P3, P2P3P1, P3P1P2 and P3P2P1, as P4 can only be the
least preferred. The algorithm will pick up three (total) sequences, P1P2P3P4,
P2P3P1P4 and P3P1P2P4, which are with the most likelihood, and produce the

5There is no need to compute a whole sequence containing elements not in the SCC, as
Condorcet’s methods is locally stable [34], the particular order of less preferred candidates
would not influence the final voting result.
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winner set {P1, P2, P3} by taking the first elements (using function getFirstEle-
ments). The restriction to the top-level SCC effectively narrows the range of
winners we need to consider, which greatly improves the performance of the
selection procedure. It is easy to see that the running time of the algorithm
has an upper bound in O(|V |!), due to checking the likelihood of all possible
sequences of nodes in the SCC.

3. A Trust-Augmented Voting Scheme

In this section, we describe our idea of combining trust in social networks
with Condorcet’s preferential voting scheme to merge privacy opinions from co-
owners of shared resources. In Sect. 3.1, we motivate our idea of incorporating
trust as weighted votes and explain its impact by examples. A few properties
of our trust-augmented Condorcet voting scheme are discussed in Sect. 3.2,
followed by a detailed algorithm in Sect. 3.3.

3.1. Incorporating trust as weighted votes

In some situations not all voters are equal. Typical examples include decision-
makings in a shareholder’s meeting where the weight of each voter corresponds
to his volume of share. Likewise, in social networking sites users’ opinions on
deciding a privacy policy do not necessarily carry the same weight. For exam-
ple, Alice has a picture in which there are Bob, Clare, Danny and Elisabeth,
and she wants to publish that picture in her album. Before publishing it, Alice
is willing to give right to the co-owners of the picture, i.e. Bob, Clare, Danny
and Elisabeth, on deciding whether the privacy level of that picture is P1 or P2

(see their definitions in Sect. 2.2). We suppose that Bob is a friend of Alice and
Clare is a friend of Bob but not a direct friend of Alice, i.e., Clare is a friend of
a friend of Alice. Similarly, Danny is a friend of Alice and Elisabeth is a friend
of a friend of Alice. In this case it seems more reasonable to give Bob’s and
Danny’s opinion more weight than Clare’s and Elisabeth’s. We assume that the
trust values of Alice in the other agents are as given in Fig. 3.

In this section we propose an extension of Condorcet’s voting system for
weighted votes. The weight of each vote reflects the trust level of the owner of
the shared resource having on the co-owners in their votes for setting a privacy
policy for publishing the resource.

We sketch the voting results from this scenario in Fig. 3, and it is easy to find
that P1 is the winner according to the left table, as it receives three votes while
P2 only receives two. However, if weights (interpreted as the trust level of Alice
in the co-owners to make the right decision on privacy preferences) are associated
to votes, then P2 is the winner, as it is supported by 1.7 weighted votes while
P1 is supported only by 1.5. This example clearly shows that trust relations in
social networks, if carefully incorporated into decision making procedures, can
affect the results in collaborative privacy management.

In the original Condorcet voting system all votes carry the same weight,
and the preferential orders can be compared by only looking at the (integer)
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Voter \ Policy P1 P2

A 1 2
B 2 1
C 1 2
D 2 1
E 1 2

vote count 3 2

Voter(trust) \ Policy P1 P2

A (1.0) 1 2
B (0.8) 2 1
C (0.2) 1 2
D (0.9) 2 1
E (0.3) 1 2

vote count 1.5 1.7

Figure 3: An example showing the effect of adding trust levels to voters.

exponents of p regarding to their likelihoods. In this paper we measure the
likelihoods of these orders by allowing discounted votes to reflect the degree of
trust of a user by the owner of a resource, so that each vote carries a real valued
weight in [0, 1] instead of always being an integer 1.

3.2. Properties of the trust-augmented Condorcet voting scheme

It has been discussed in [35, 34] that Condorcet’s voting scheme satisfies
most of the existing desirable properties for voting systems. In this section,
we list a few properties which are satisfied by our trust-augmented Condorcet
voting scheme.

Majority. This property says that if there exists a majority that ranks a can-
didate (privacy policy) higher than all the others then this candidate will be
elected. This simply follows Condorcet’s principle.

Reinforcement. This property, which is also known as monotonicity, says that
if a ranking is approved by two groups of voters then it must also be approved
by the union of the two.

Local stability. This property states that leaving out votes for less favored can-
didates does not change results on final winners.

Pareto. The Pareto property expresses that if there exist two candidates Pi and
Pj such that no voter prefers Pj to Pi, and at least one voter prefers Pi to Pj ,
then Pj can never become the winner.

Condorcet’s voting scheme suffers from the no show paradox [27] when there
are at least four candidates and 25 voters [14]. This means that in some cases
a voter is better off by not voting than by casting a sincere ballot, as this
would lead to the election of a candidate whom he prefers. This effect applies
in a similar way to our scheme, because the original Condorcet scheme can be
considered as a special case of our trust-augmented scheme where all trust values
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are taken to be 1.6 However, there exist ways to circumvent this problem. For
example, if a user does not explicitly vote, we let the system cast a “default vote”
which can be calculated from the decision history of the user as an estimation of
how a user is likely to behave in similar situations. In this way we can avoid in
our application the negative effect inherited from the original Condorcet scheme.

3.3. The trust-augmented Condorcet voting algorithm

The trust-augmented Condorcet voting algorithm is detailed as in Alg. 2.
The whole procedure of calculation is mostly the same as that of Alg. 1, except
that now the sequence likelihood (sql) and maximal likelihood (ml) are of real
valued type instead of integer type. A trust-based voting profile, which includes
the preference lists and trust level for each participant, is taken as input by the
algorithm (e.g., left part of Fig. 4), while the output, a set of winners, remains
unchanged.

Algorithm 2 The trust-augmented Condorcet voting algorithm.

input: trustvotingprofile : VotingProfile;
output: winners : set 〈string〉;
var cwm: double[ ][ ] init null

cdg: int[ ][ ] init null
tlv: int[ ] init null
sql: double init 0.0
ml: double init 0.0
ms: set 〈string〉 init ∅

begin
cwm := getCondorcetWeightedMatrix(trustvotingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
(* the rest is the same as Alg. 1 *)
end

The example in Fig. 4 illustrates our algorithm. Here we assume that A, as
the owner of the picture, fully trusts himself, i.e., his trust value is 1.0. The trust
of A in other participants (0.8 for B and 0.6 for C) is also shown in the table.
From the trust-based voting profile, the revised Condorcet weighted matrix is
obtained (the middle part of Fig. 4) by function getCondorcetWeightedMatrix.
The weighted matrix is slightly different from that in Example 2 in the way
that simply counted (integer) votes are replaced by accumulated trust values
throughout the table. From the Condorcet directed graph (obtained by function
getCondorcetDirectedGraph) in the right part of Fig. 4, we can find a unique
winner P1, after computing the likelihood of all sequences of nodes in the top

6That is, a defect in a system is also a defect in a more general system which may take
this special form.
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P1 P2 P3 P4

A (1.0) 1 2 3 4
B (0.8) 2 3 1 4
C (0.6) 3 1 2 4

P1 P2 P3 P4

P1 − 1.8 1.0 2.4
P2 0.6 − 1.6 2.4
P3 1.4 0.8 − 2.4
P4 0.0 0.0 0.0 −

p1

p3

p2 p40.4

1.2

0.8

2.4

2.4

2.4

Figure 4: A trust-augmented Condorcet voting example: the voting profile (left), the weighted
matrix (middle), and the Condorcet directed graph (right).

level SCC (containing P1, P2 and P3). This can be easily verified since the
likelihood of the sequence P1P2P3P4, as calculated as follows, is greater than
the likelihood of every other sequence. Note that here we replace the number
of votes as integer exponents over “p” and “1− p” by their corresponding sums
of trust values.

L(P1P2P3P4) = L(P1P2) · L(P2P3) · L(P1P3) · L(P1P4) · L(P2P4) · L(P3P4)
=

(
3
2

) (
p1.8(1− p)0.6

)
·
(
3
2

) (
p1.6(1− p)0.8

)
·
(
3
1

) (
p1.0(1− p)1.4

)
·(

3
3

) (
p2.4(1− p)0

)
·
(
3
3

) (
p2.4(1− p)0

)
·
(
3
3

) (
p2.4(1− p)0

)
It is easy to see that this algorithm has the same time complexity upper bound
O(|V |!) as Alg. 1.

As we have seen so far, the trust level indeed has an impact on collabora-
tive privacy management. Moreover, adding trust makes the algorithm better
adopted in social networks, since in the real life, advices from different friends
affect one’s decision differently, depending on the social relationship between the
person and his friends. Introducing a trust relation also expands the value space
to avoid clashes, as we are going to show experimentally later. In Alg. 2 it is
less likely to have unsolved cases as well as multiple winner cases than in Alg. 1.
Similar to Alg. 1, the algorithm always selects Condorcet winners whenever they
exist. However, in order to decide winners, both Alg. 1 and Alg. 2 may require
a calculation of likelihoods for all permutations from the top-level SCC, which
potentially takes running time exponential to the number of policies. This fact
leads us to the search of more applicable algorithms.

4. Approximation Algorithms

It is clear from Sect. 2.4 that in order to resolve a general tie among policies
(represented at the top-level SCC), all possible sequences of nodes in the SCC
have to be checked. This gives rise to high complexity for Alg. 2, especially
when the number of privacy policies gets large. This problem has been tack-
led in the literature as (nontrust-based) solutions to compute a final ranking
satisfying Kemeny’s rule in preferential voting schemes, and it has been shown
as NP-hard even with four voters [3, 9]. Basically, Kemeny’s rule is to mini-
mize the number of pairwise disagreements with the given preferences on the
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candidates. Numerous solutions are postulated for getting an approximation,
which proximately minimize the number of pairwise disagreements. Ailon et
al. [1] proposed a method to find Kemeny rankings in polynomial time which
is approximately optimal. Later, Coppersmith et al. [7] presented a better ap-
proximation based on Borda’s well-known counting rule. In this section, we
introduce two approximation algorithms to improve the efficiency of Alg. 2: the
first is based on Borda’s counting method (an idea of Coppersmith et al. [7]
which we enrich with weights), and the second is heuristic-based. Normally,
good approximations should guarantee the quality of produced solutions and
produce such solutions within reasonable run time bounds. A comparison be-
tween all the algorithms with respect to speed and precision is conducted in
Sect. 5. which also justifies the precision and efficiency of our approximations.

4.1. An approximation based on Borda count

We adopt our idea of incorporating trust as weighted votes to Borda’s count-
ing rule following the work of Coppersmith et al. [7] and use it to resolve general
ties in top SCC as produced from the trust-augmented Condorcet voting algo-
rithm (Alg. 2).

In essence, Borda’s counting method is a scoring system. Given a particular
candidate, the system calculates a subjective value of how much a voter is in
favor of that candidate. Then, the final score of the candidate is the sum of the
scores from all the voters. To be precise, suppose there are n candidates. Given
a vote that is a linear order on the voters, the least preferred candidate receives
a score of zero from this vote, and the second least preferred receives one, etc.
The top candidate receives n− 1. By summing up the scores from all the votes,
the one that receives the highest score gets elected.

We generalise this procedure to a weighted Borda count. The score that each
security policy receives from a vote needs to be adjusted by a weight, which is
essentially the trust value of the user who casts the vote. A score for each policy
is thus the weighted sum of the scores from all the votes.

Example 3. Consider the example given in Fig. 4, where policies P1, P2 and
P3 form a general tie (thus we do not consider P4 as it is always least preferred).
We apply weighted Borda count on each policy as follows.

• P1 receives score 2 from A, 1 from B, and 0 from C, which gives 2 ×
(1.0) + 1× (0.8) + 0× (0.6) = 2.8.

• P2 receives score 1 from A, 0 from B, and 2 from C, which gives 1 ×
(1.0) + 0× (0.8) + 2× (0.6) = 2.2.

• P3 receives score 0 from A, 2 from B, and 1 from C, which gives 0 ×
(1.0) + 2× (0.8) + 1× (0.6) = 2.2.

The final scores produce two results: P1P2P3P4 and P1P3P2P4, as the final
rankings. In both cases we have P1 as the unique winner, the same as what is
produced by Alg. 2.
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We develop an approximation based on Borda count as Alg. 3, which has
a structure similar to Alg. 1. The main procedure is applied to the top-level
SCC when a Condorect winner cannot be found. For each node in the SCC, a
(weighted) count is calculated using function getWeightedBC as discussed above,
and the result is stored in weightedBC. The final winners are determined by the
highest score by applying function getMax.

Algorithm 3 An approximation based on Borda count.

input: trustvotingprofile: VotingProfile;
output: winners : set 〈string〉;
var cwm: int[ ][ ] init null

cdg: int[ ][ ] init null
tlv: int[ ][ ] init null
count: double init 0.0
weightedBC: map 〈string, float〉 init ∅

begin
cwm := getCondorcetWeightedMmatrix(trustvotingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
if winners = ∅ then

tlv := getTopLevelVertices(cdg);
for all n ∈ tlv do

count := getWeightedBC(n, tlv, trustvotingprofile);
weightedBC := weightedBC + 〈n, count〉;

end for
winners := getMax(weightedBC);
return

end if
end

Remark. It can be noticed that we could have used Borda count, or even other
voting systems, as a basis to develop our trust-augmented voting scheme. This
is certainly true, but we want to emphasize that the main reason we have chosen
Condorcet’s method is due to Condorcet’s principle, i.e, the Condorcet winner
has the nice property that when compared with every other candidate it is
preferred by more voters and it would win a two-candidate election against the
other candidates. It is known that Borda count sometimes produces a solution
that does not satisfy Condorcet’s principle, hence we adopt it solely as a tie-
breaker in Alg. 3.

4.2. A heuristic-based approximation

The algorithm presented in this section provides another way to resolve
general ties in the top-level SCC, as well as to reduce the computation time.
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Taking a Condorcet directed graph, we start from the following observa-
tions. Suppose w(Pi, Pj) is close to 0, then it is very likely that the voters
are relatively indifferent with respect to the two policies Pi and Pj . Therefore,
regarding to Condorcet’s assumption, Pi does not have a significant chance to
precede Pj in the underlying invisible order. This motivates and justifies our
choice in the following algorithm to weaken such difference by adding another
(reversing) edge in the graph from Pj to Pi. By doing this, we equalize the votes
between policies Pi and Pj . Note that this is also consistent with the idea of
proximately minimizing the number of pairwise disagreements when developing
approximations. Technically, we only apply this operation within the top-level
SCC, gradually by starting from the pairs (Pi, Pj) with least w(Pi, Pj), then
the pairs with second least weight, and so on. Each time we add new edges it
is required to check whether a set of Condorcet winners have been generated
in the new graph. The running time of the algorithm has an upper bound of
O(|V |2), where V is the set of vertices of the Condorcet directed graph, which
is much faster than Alg. 2. Nevertheless, the experimental results in Sect. 5
reveal strong similarity with respect to the results of Alg. 4 and Alg. 2, which
provides a concrete support to the applicability of Alg. 4.

Algorithm 4 A heuristic based approximation.

input: trustvotingprofile: VotingProfile;
output: winners : set 〈string〉;
var cwm: int[ ][ ] init null

cdg: int[ ][ ] init null
tls: int[ ][ ] init null
lwes: set 〈string〉 init ∅

begin
cwm := getCondorcetWeightedMmatrix(trustvotingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
if winners = ∅ then

tls := getTopLevelSCC(cdg);
while true do

lwes := findLowestWeightEdges(tls);
cdg := addReverseEdges(lwes, cdg);
winners := getWinners(cdg);
if winners ! = ∅ then

return
end if

end while
end if
end

Similar to Alg. 2, Alg. 4 takes a voting profile as input and produces a set of
winning privacy policies. The first part of the algorithm is exactly the same as in
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Figure 5: An example: adding a reverse edge.

the above two algorithms. However, if Alg. 4 cannot find Condorcet winners, it
will extract the whole top-level SCC by function getTopLevelSCC into a subgraph
tls. Then by starting from the lowest weighted edges, it adds reverse edges into
the original Condorcet directed graph cdg using function addReverseEdges, and
then searches for Condorcet winners in the modified graph. This will repeat
until Condorcet winners are found in cdg. The algorithm is guaranteed to
terminate before every pair of vertices in the top-level SCC has two connecting
edges pointing to each other. Therefore it is bounded by O(|V |2) where V is the
set of vertices in cdg. An application of Alg. 4 on Example 2 with additional
trust values (as data shown in Fig. 4) has been depicted in Fig. 5.

5. Experimental Results

We have implemented a program to test the four algorithms: the original
Condorcet voting algorithm (Alg. 1), the trust-augmented Condorcet voting
algorithm (Alg. 2), the approximation algorithm based on Borda count (Alg. 3)
and the heuristic-based approximation (Alg. 4).

In our test, the voting profiles and the trust levels are randomly generated.7

The experimental results are obtained from 10,000 cases. We set the policy
number in the range of [3, 10], while the number of voters ranges in [3, 100]. We
verify that the approximation algorithms (Alg. 3 and Alg. 4) have reasonably
well performances, even in cases of large numbers of policies.

From Fig. 6, we can find that the number of cases where we cannot find
a Condorcet winner in Alg. 2, Alg. 3 and Alg. 4 is much less (14%) than in
Alg. 1. This is due to the incorporation of trust. Based on this we can conclude
that trust can have a big impact on the voting results. It is also clear that the
cases with multiple winners as output is on a steady decrease (about 13.7 ∼
13.95%), which means that the adoption of a trust relation, to a large extent,
can effectively increase the possibility of having a unique winner. Moreover, we
only see a slight increase in the number of cases with multiple winners for Alg. 4
compared to Alg. 2, while Alg. 3 has similar outputs as Alg. 2.

7Alg. 1 does not take the trust levels into account.
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Figure 6: Case analysis on outputs of the algorithms.

Alg./#Policy 4 5 6 7 8 9
Alg. 2 5, 300 8, 366 15, 874 75, 864 713, 358 101, 141, 105
Alg. 3 4, 703 6, 715 8, 541 11, 286 12, 958 16, 031
Alg. 4 6, 083 9, 407 12, 486 18, 521 21, 992 29, 217

Table 2: Total CPU time consumption (ms) w.r.t. policy numbers.

Besides, we measured the similarity among the outputs of Alg. 3, Alg. 4
and the outputs of Alg. 2. In 8,137 out of 10,000 cases (i.e., > 81%) Alg. 2
and Alg. 3 produce the same results, while in 9,511 out of 10,000 cases (i.e.,
> 95%) Alg. 2 and Alg. 4 produce the same results.8 Since theoretically Alg. 2
always generates the best privacy policy, we can conclude that our heuristic
based approximation (Alg. 4) can also produce the best privacy policy for most
cases in practice. Moreover, in terms of producing the best privacy policy, Alg. 4
is better than Alg. 3 (about 14%). This shows that our approximations, and
Alg. 4 in particular, can guarantee the quality of produced solutions.

Next, we have built a different set of experiments to compare the performance
of Alg. 2, Alg. 3 and Alg. 4. For each number of policies [4, . . . , 9], we tested the
three algorithms on 1,000 randomly generated voting profiles. We calculated the
total CPU time for each algorithm to produce the outputs. From Tab. 2, it is
clear that our approximation algorithms greatly improve the efficiency of Alg. 2 –
the performance of Alg. 2 degrades largely when the number of policies increases.
Hence, we can conclude that our approximations can produce solutions within
reasonable run time bounds. We also observe that Alg. 3 performs even better
than Alg. 4, while Alg. 4 has better precision in terms of similarity in outputs
with Alg. 2. All experiments are conducted on a Lenovo laptop with Intel(R)
Core(TM) 2 Duo CPU P8700 (2.53GHz) and 2.00GB of RAM.

8Alg. 3 and Alg. 4 produce 81,53 (out of 10,000 cases) similar results.
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6. Discussion and Conclusion

Privacy in social networking sites is a rather complicated issue [4], from which
many research questions have emerged in different areas such as economics,
social science, computer science, and law. In this paper, we have proposed
a trust-augmented voting scheme to solve the particular problem of collective
privacy management for shared contents in social networking sites. Our main
idea is to incorporate trust relations among users in social networks as vote
weights in Condorcet’s preferential voting algorithm. The motivation comes
from the facts that trust is inherent in social networks and that a preferential
voting scheme is an expressive and simple way for users to formulate their
privacy concerns on shared contents. To make the algorithm both efficient and
effective, we have developed two approximations for the algorithm to deal with
situations where the number of privacy policies is large.

The algorithms in this paper have been developed mainly from a technical
point of view and one may reasonably argue that voting is not the ideal ap-
proach to collective privacy management. Some people believe that the owner
of a picture should have the right to decide whether and how the picture is to
be published while taking into account the interests of concerned people. For
example, a different approach proposed by Sarrouh et al. [30] gives a single user
complete control over the picture that she owns. In our voting scheme, occasion-
ally a group decision overrides an owner’s decision. In this case, we believe that
democracy should be a good solution in many situations, if not in all situations.
(Note the owner does not have control over her trust in the other co-owners
which is supposed to be computed automatically by the social networking site.)
Our solution provides all co-owners of a shared resource a reasonable way to
produce a group decision, which practically simulates real world decision mak-
ing processes in the virtual world. If the owner does not feel comfortable with
the outcome of the voting, in reality she may appeal to a trusted third party or
the social networking site, which will then decide whether or not to refute the
previous decision. In any case, a reasonable social decision is only required to
be ‘fair’ with a certain degree of confidence. We believe that heuristic and algo-
rithmic support to this process will result in a more transparent and hopefully
more fair decision process.

We have advocated in the introduction that our solution to collaborative
privacy management is more useful and effective when trust relations among
users have been established. This helps to rule out extreme scenarios when a
group of users act together to break a particular user’s privacy, since malicious
users are likely to be accrued with low trust values as time passes. One may
further exclude malicious users by setting a threshold that filters out co-owners
of low trust when deciding privacy policies. We leave assessment of the impact of
such a threshold on the outcomes of our algorithms for the future. In this paper,
we assume that privacy policies are independent from each other. Modeling and
capturing dependencies among policies is not considered in the paper, but it is
indeed an interesting topic to study for the future. As discussed in Sect. 3.2
our trust-augmented voting scheme implies the no show paradox, it is also an
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interesting challenge to establish a bound following the results in [14].
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