
Vol.16 No.3 J. Comput. Sci. & Technol. May 2001

A Formal Software Development Approach

Using Re�nement Calculus

WANG Yunfeng (��)1;2, PANG Jun (� �)1,

ZHA Ming (� �)1, YANG Zhaohui (
�
)1 and ZHENG Guoliang (���)1

1State Key Laboratory for Novel Software Technology, Nanjing University

Nanjing 210093, P.R. China

2Meteorology College, PLA University of Science and Technology, Nanjing 211101, P.R. China

E-mail: zhenggl@nju.edu.cn

Received July 26, 1999; revised April 14, 2000.

Abstract The advantage of COOZ (Complete Object-Oriented Z) is to specify

large scale software, but it does not support re�nement calculus. Thus its applica-

tion is con�ned for software development. Including re�nement calculus into COOZ

overcomes its disadvantage during design and implementation. The separation be-

tween the design and implementation for structure and notation is removed as well.

Then the software can be developed smoothly in the same frame. The combina-

tion of COOZ and re�nement calculus can build object-oriented frame, in which the

speci�cation in COOZ is re�ned stepwise to code by calculus. In this paper, the

development model is established, which is based on COOZ and re�nement calculus.

Data re�nement is harder to deal with in a re�nement tool than ordinary algorithmic

re�nement, since data re�nement usually has to be done on a large program compo-

nent at once. As to the implementation technology of re�nement calculus, the data

re�nement calculator is constructed and an approach for data re�nement which is

based on data re�nement calculus and program window inference is o�ered.

Keywords formal development method, re�nement calculus, formal speci�ca-

tion, object-oriented

1 Introduction

The con�dence in a program's correctness can be obtained by describing its intended

task in a formal notation. Such speci�cation can then be used as a basis for a provably cor-

rected development of the program. The development can be conducted in small steps, thus

allowing the unavoidable complexity of the �nal program to be introduced in manageable

pieces.

The process, called re�nement, by which speci�cations are transformed into program has

been extensively studied. (see [1] for an overview of the current work). In particular [2, 3]

have laid down much of the theory and have recognized two forms of re�nement. The �rst is

algorithmic re�nement, by which a program operates more explicitly, usually introducing an

algorithm to replace the statement of desired result. The second is data re�nement, where

one changes the structure for storing information, usually replacing some abstract structure

that is easily understood by some more concrete and eÆcient structure.

The extension from Dijkstra's language to the re�nement calculus was made by Back[4],

then redeveloped independently by Morris[5], Morgan[6] and by Back and von Wright[7].

Gardiner and Morgan[8] argued a style of data re�nements which are calculated directly

without proof obligation. It is advantageous over the methods of Spivey[9] and Stepenny et

al.
[10]

, which need obligation to prove data re�nement.

The work is supported by the National Natural Science Foundation of China (No.69673006) and the

National Ninth Five-Year Project (98-780-01-07-06) of China.

252 WANG Yunfeng, PANG Jun et al. Vol.16

Previous attempts to address formal development fall into two categories. In the �rst

one, a specialized calculus is developed within Z or COOZ (Complete Object-Oriented Z) to

allow algorithm re�nement. An example of this approach can be found in [1]. The second

approach involves a translation stage in which the Z speci�cation is transformed into another

notation, which is more amenable to re�nement. For example, King[12] gave the rules for

translating Z speci�cation into Morgan's re�nement calculus. Then the re�nement calculus

law can be used to develop the speci�cation to code.

Both of above approaches seem somewhat wasteful. On one hand, because the translation

stage needs much e�ort but not contributes directly to development, and on the other hand,

because so much work has gone into the development of various
avors of re�nement calculus

which already exist. In particular, Morgan's[13] calculus is well developed and its law has

been codi�ed and collected in such a way, which can be used to develop real programs from

abstract speci�cation.

So, for the re�nement of object-oriented speci�cation, we hope to develop an approach

which integrates the Morgan's re�nement calculus seamlessly.

Since Z cannot support implementation of the system directly, how to develop executable

programs from Z speci�cation has been a valuable research �eld.

The advantage of COOZ[14] is to specify a large scale software, but it does not support

re�nement by calculating and it needs proof in re�nement. But the proof is very hard for OO

speci�cation, especially for the large and complex one. Thus its application is con�ned and it

cannot be taken as a whole method for software development. Including re�nement calculus

into COOZ overcomes its disadvantage during design and implementation. The separation

between design and implementation for and notation is removed as well. Then the software

can be developed smoothly in the same frame. There is not correspondent object-oriented

construct in the existing re�nement calculus. The combination of COOZ and re�nement

calculus can build an object-oriented frame, in which the speci�cation in COOZ is re�ned

stepwise to code by calculus. In the paper, a development model is argued, which is based on

COOZ and re�nement calculus. The data re�nement and operation re�nement are analyzed

by example; the two methods of operation re�nement for OO formal speci�cation is discussed

brie
y; the frame transition rule from COOZ to C++ is argued. On the implementation

technology of re�nement calculus, the data re�nement calculator is constructed. Finally

we argue an approach to data re�nement based on data re�nement calculus and program

window inference.

2 Basic Concept

In this section, some basic concepts are introduced, which include re�nement calculus,

window inference, program window inference.

2.1 Re�nement Calculus

The re�nement calculus is based upon the weakest preconditions of Dijkstra, which views

programs as predicate transformers, i.e., functions from postcondition to precondition. The

re�nement calculus extends the guard command of Dijkstra with speci�cation statement. It

is a wide spectrum language and a set of correctness preserving rules for deriving executable

program from speci�cation. The emphasis on re�nement comes from the observation that

it is more e�ective to develop a program and its correctness proof together, as opposed to

attempting to verify a given program retrospectively. It is a calculus because the transfor-

mation rules calculate the re�ned program. It includes a speci�cation statement in addition

to the usual executable constructs. This integration of speci�cation and execution in one

language is the key to a smooth development process, since it allows a program to be de-

No.3 A Formal Software Development Approach Using Re�nement Calculus 253

veloped by a series of transformations within a single language. The initial program is

typically a speci�cation statement, the �nal program contains only executable codes and

the intermediate program is a mixture of the two.

One program statement that is particularly important in the re�nement calculus is the

speci�cation statement, which provides a convenient way of embedding abstract speci�cation

into programs. Instead of writing speci�cation indirectly as `S where Pre)�S�post', we

write it directly as precondition-postcondition pair x : [pre, post]. The frame of this state-

ment (x) is a variable list that can be updated. All other variables must remain unchanged.

The speci�cation statement is de�ned as:

[[x : [pre;post]]]P � pre ^ (8x � post) P)

Following is an example of a speci�cation statement, together with one possible re�nement.

x : [true; x = max(a; b)] v if a � bx := a]]b � ax := b �

2.2 Program Window Inference

The program window inference extends window inference to explicitly deal with program

contexts. The goal is to provide better support for mechanizing re�nement.

In program window inference the programs and predicates are separated and the explicit

mechanisms for handling program context and program logic are argued. This allows one to

reason more directly at the program level, without having to reduce everything to predicates.

Even simple programs can build up signi�cant re�nement context, hence, handling the

context in e�ective way is an essential item for supporting program re�nement. As most

of the development of a program is done by re�ning its components, the program window

inference theory provides good support for re�nement of program component in context.

Following is the way to handle preconditions.

Preconditions

For a (traditional) window:

H j= fPgS v fPgS0 (1)

The equivalence program window is

H; pre P j= S v S0 (2)

where the notation pre is part of the syntax of program window, it represents the label of

precondition.

Consider a selection command:

fPg if g1! S1�g2! S2 � (3)

In the re�nement of S, it needs to make use of the precondition P and guard g1, thus

these preconditions must become explicit, i.e., to replace (3) by

fPg if g1! fP ^ g1gS1�g2! fP ^ g2gS2 � (4)

This leads to the replication of information, which is partly undesirable if P is a large

formula. So a new type window, the program window, is argued, which includes precondition

along with ordinary hypotheses. In program window, the window opened for re�nement of

S1 in (3) is

H; pre P ^ g1 j= S1 v S10 (5)

Here the precondition context of the selection command, pre P, is automatically augmented

by the guard g1 to form the precondition context for re�nement of S1.

254 WANG Yunfeng, PANG Jun et al. Vol.16

� Window opening rules

For a selection command (1), the window opening rule for re�nement of S1 is:

H; pre P ^ g1 j=2S1 v S1'

H j= if g1 !2S1 � g2 ! S2 �
(6)

Pre P v if g1! S10�g2! S2 �

Following are other program window opening rules with precondition context.

� Focus transformation rules

Window opening rules express the transformation of a structure by transforming its

components. It is also required to transform the focus directly, that is achieved by focus

transformation rules. Usually, a focus transformation rule may have premises that establish

the proof obligations to be discharged. The contexts accumulated by the window opening

can be made use of discharging these obligations. For example, on introducing a selection

command with guards g1, g2 for S, there is the rules:

H; pre P j= pre g1 _ g2

H; pre P j= S v if g1 ! S � g2 ! S �
(7)

where (H; pre P � pre g1 _ g2) is the rule premise that must be discharged.

As the premises and conclusion have the same form, (7) can be abbreviated by leaving

the unchanged context of the program window implicit:

pre g1 _ g2

S j= if g1 ! S � g2 ! S �
(8)

When the rule is used, the premises will be discharged with the same hypotheses as those

for window being transformed.

3 Software Development Model

The development starts from the software speci�cation in COOZ. By re�nement calculus

of state schema and operation schema in the class, the abstraction level is reduced stepwise

until enough concrete speci�cation is achieved.

3.1 Development Model

The model is based on COOZ frame (Fig.1). Firstly, to specify the system in COOZ

(for example Fig.2), transform the operation schema into speci�cation statement, then after

the state schema is re�ned, the operation re�ned is calculated by data re�nement calculus.

According to the re�nement law, the data re�ned speci�cation statement is operation re�ned

and the abstract program in COOZ frame is achieved. Finally, the abstract program is

transformed into a programming language code, such as C++.

For example, a class schema ClassStudent is used for modeling the students in an exercise

class. There are two kinds of students: one passed exercise, the other did not. For discussing

simply, the following gives a simple form of the class schema ClassStudent (Fig.2).

Here just the registering method Enroll OK is given, the others are omitted.

No.3 A Formal Software Development Approach Using Re�nement Calculus 255

Fig.1. Development model 1. Fig.2. Class schema ClassStudent.

3.2 Data Re�nement

By data re�nement, abstract class A is re�ned by class C, noted as A�C. But in Z and

COOZ, the process needs to be proved[9].

As the re�nement calculus is included, the operation schema in A can be noted as

speci�cation statement, after state schema is re�ned, the correct operation in C can be

calculated and no more proof.

Morgan[13] extended the program de�nition by taking both speci�cation and code as

program. In the program, inexecutable code which will be re�ned is noted by speci�cation

statement. We extend that by allowing to include mathematical data type into the program,

which is called abstract program.

There is a directed correspondent relation between speci�cation statement and operation

schema in COOZ (Fig.3).

Fig.3. The correspondent relation of speci�cation statement and operation schema.

In operation schema, the changeable variable is noted as �Id-list. For the predicates, the

deference precondition is apart by a line and the precondition and postcondition are apart

by a key word if. So the operation schema can be transformed into speci�cation statement

automatically. The speci�cation statement is modi�ed for di�erent preconditions and the

given postcondition respectively. Then in a speci�cation statement, there are several pairs

[pre, post].

For example, the operation schema in Fig.2, Enroll OK, can be transformed into a spe-

ci�cation statement:

n : [s? =2 y [n; n = n0 [fs?g] (9)

where n0 denotes the reference to pre-state variable n. Next the data re�nement of class

schema in Fig.2 is analyzed.

256 WANG Yunfeng, PANG Jun et al. Vol.16

The concrete representation for the sets given in the speci�cation of Fig.2 will consist of

two arrays, one for students, and the other for Boolean values, and a counter to say how

Fig.4. State schema of ClassStudent.

many arrays is in use. It is intended that the values

in the second array will be true for those who have

done the exercises, and false for those who have

not. The arrays are modeled by total functions

whose domain is the index set (1..max). Then the

class schema ClassStudent is re�ned as ClassStu-

dent 1, in which the state schema is given as Fig.4:

The concrete state invariant says that there will be no duplicates in the �rst num elements

of the array of students.

The retrieve relation, relating the concrete and abstract states, is as follows:

R
^

= (y = fi : 1::numj(ex i) = true � (cl i)g) ^ fi : 1::numj(ex i) = false � (cl i)g)

Following the data re�nement a : [pre, post]� c: [sim pre, sim post], and with R and (9),

the operation on state of Fig.4 can be calculated. Here the simulation sim is de�ned as: sim

Q
^

= 9a �R ^Q.

n : [s? =2 y [n; n = n0 [fs?g] �

cl; ex;num : [9n �R ^ s? =2 y [n;9n �R ^ n = n0 [fs?g]

= cl; ex;num : [(num < max) ^ (s? =2 f1::num � cl ig); (num = num0 + 1)^

(cl = cl0� (num 7! s?)) ^ (ex = ex0 7! (num 7! false))] (10)

From (10), we can get the re�ned operation schema in ClassStudent 1 easily. In Section 4,

we will debate data re�nement in detail.

3.3 Operation Re�nement

For example, the data re�ned operation schema, i.e., the correspondent speci�cation

statement (10) is re�ned into executable code easily by re�nement law of Morgan[13]:

vnum,cl[num+1], ex[num+1] = num+1, s, false

vnum = num+1;

cl[num+1] = s

ex[num+1] = false

4 Data Re�nement Calculus

4.1 Data Re�nement

Data re�nement can be viewed as a special case of program re�nement, in which the

abstract local variables of a program are replaced by the concrete set of variables, while the

structure of the program remains largely unchanged. It is also useful to have a direct data

re�nement relation between components of the abstract program and concrete program.

Early de�nition of data re�nement assumed a functional relationship from the concrete

variables c to the abstract variables a, so that each state of the concrete program could

be mapped into some state of the original abstract program. This allowed several distinct

concrete states to correspond to the same abstract state, which is necessary, since data

re�nement often introduces redundancy to improve the eÆciency of some operations. How-

ever, some useful data re�nements could not be described by a functional relationship, so

data re�nement was later generalized to use a relation between the abstract and concrete

variables.

No.3 A Formal Software Development Approach Using Re�nement Calculus 257

More recently still, the relational approach has been generalized to allow the abstract

and concrete state spaces to be related to an arbitrary program[15]. This program is called

simulation if it converts from the abstract state space to the concrete, or co-simulation if

it converts from the concrete state space to the abstract.

In the following discussion we assume that the state space of program S is variable to be

re�ned (a) with some global variables (g), and the state space of program S0 is the concrete

variables (c) with g, where a, c and g are all disjoint.

We choose any predicate transformer sim that takes predicate on the variables a, g to

predicates on the variables c, g. For programs P and P0, P is data re�ned by P0, written as

P � P0.

Data Re�nement De�nition 1 : P � P0 i� sim; P v P0; sim (11)

where the operator `;' is functional compositional (of predicate transformers). In fact the

above sim is a co-simulation.

If the sim is a simulation, noted as sim�, then the data re�nement is de�ned as:

Data Re�nement De�nition 2 : P � P0 i� P; sim�
v sim�; P

0
(12)

Given the abstraction relation AI between abstract and concrete data structures, for any

predicate ' over abstract variables, the semantics of sim and sim� can be de�ned in the

weakest precondition as follows:

[[sim]]'
^

= 9 a � AI ^ ' (13)

[[sim�]]'
^

= 8 a �AI) ' (14)

In practice, it is useful to place some restrictions on sim to ensure that data re�nement

is distributed through various program constructors and thus leaves the structure of the

abstract program unchanged. For example, if the co-simulation sim is disjunctive and strict,

then the data re�nement relation � satis�es the following rule:

(S1 � S10) ^ (S2 � S20)) S1; S2 � S10; S20 (15)

4.2 Calculation of Data Re�nement

4.2.1 Program Block

Since the scope of the local variable is a block statement, data re�nement is modeled as

a transformation of the whole block. In this way, data re�nement becomes a special case of

algorithm re�nement: the re�nement is just on the whole block.

The block is noted as:

j[var a j Init � P]j (16)

which is the target of data re�nement. var a is a local variable added into the program and

is initialized according to the initialization predicate Init.

The semantics of the block is given in weakest precondition: for any predicate ' not

containing free a,

[[j[var a j Init � P]j]]'
^

= 8a � Init) [[P]]' (17)

4.2.2 Data Re�nement Calculator

For data re�nement of the block, we assume that the abstract and the concrete variables

are related by abstract relation AI. The data re�nement calculator DAI for predicates and

DAI for program statements are introduced, such that

j[var a j Init � P]j v j[var c jDAI(Init) � DAI(P)]j (18)

258 WANG Yunfeng, PANG Jun et al. Vol.16

For a predicate ', DAI and its dual calculator D�

AI are de�ned as:

DAI(')
^

= 9 a �AI ^ ' (19)

D�

AI(')
^

= 8 a �AI) ' (20)

From Subsection 3.1 and following the concept of dual and adjoint of the predicate trans-

former in data re�nement[16], we have:

P � P0 i� sim;P; sim�
v P0 (21)

Thus, (sim; P; sim�) is de�ned as the least (most abstract) data re�nement for statement P

such that:

sim;P; sim�
v DAI(P) (22)

4.3 Application of Data Re�nement Calculator

For di�erent program structures, the calculator for statements can be de�ned recursively

over the structure of program notation and re
ects data re�nement theorems for the corre-

sponding program statement. According to Ruksenas et al.[17], following gives some feature

of data re�nement calculator.

� Speci�cation statement

For speci�cation statement P = a; g : [pre, post], we can get the following formula from

(22):

DAI(a; g : [pre;post]) v c; g : [sim pre; sim post] (23)

Thus we get the data re�nement for P:

a; g : [pre;post] � c; g : [sim pre; sim post] (24)

For predicate ', sim ' can be taken as the same as DAI('), so are sim
�
' and D�

AI('). Thus,

(24) can be written as

a; g : [pre;post] � c; g : [DAI(pre);DAI(post)] (25)

This rule is particularly useful, since it allows the correct speci�cation statement to be

calculated from the abstract speci�cation statement. In fact, (24) is the same as the result

of Morgan et al.
[15].

� Assignment and context statement

For a non-deterministic assignment post[a; gna0; g0], its data re�nement is calculated as:

DAI(post[a; gna
0
; g

0

]) = 8a � AI) (9a 0 � AI[a; gna 0; g
0

] ^ post[a; gna 0; g
0

])

Th context includes assertion f'g and assumption [']. An assertion f'g in a program

asserts that condition ' holds at that point in the program. An assumption ['] represents

our anticipation that ' holds at that point. (However, the validity of the anticipation needs

to be demonstrated at some point). For above context, DAI is de�ned as:

DAI(f'g)
^

= fDAI(')g

DAI(['])
^

= [DAI(')]

� Sequential composition

The data re�nement calculator distributes on sequential composition:

DAI(S1;S2) = DAI(S1);DAI(S2)

No.3 A Formal Software Development Approach Using Re�nement Calculus 259

It is the same as (15).

� Condition, alternative, and loop statements

The data re�nement calculator can distribute into a condition statement, but in this

case an assumption statement must be added to one branch of concrete condition. A guard

command g ! S is data re�ned as:

DAI(g! S) = DAI(g)! [D�

AI(g)];DAI(S)

The assumption [D�

AI(g)] is also needed for distribution of data re�nement over alternative

and loop statements.

Thus for condition statement:

DAI(if g then S1 else S2 �) = if DAI (g) then [D�

AI(g)];DAI(S1) else DAI(S2) �

For alternative statement:

DAI(if (g1! S1)� � � ��(gn ! Sn)�)

= if DAI(g)![D�

AI(g)];DAI(S)� � � ��DAI(g)! [D�

AI(g)];DAI(S) �:

For loop statement:

DAI(do(g1! S1)� � � ��(gn ! Sn)od)

= doDAI(g)! [D�

AI(g)];DAI(S)� � � ��DAI(g)! [D�

AI(g)];DAI(S) od

� Block

For a block the data re�nement calculator distributes over inner block as follows:

DAI(j[var b j Init �Q]j) = j[var b j D�

AI(Init) �DAI(Q)]j

5 Program Window Inference with Data Re�nement

In performing re�nement of a component of a program, the context of the component is

important. Window inference and program window inference introduced above provide an

excellent approach to handling such contextual information. But the data re�nement is not

included in the approach. Data re�nement is harder to deal with in a re�nement tool than

ordinary algorithmic re�nement, since data re�nement usually has to be done on a large

program component at once.

Since the scope of the local variable is a block statement, data re�nement is modeled as

a transformation of the whole block. In this way, data re�nement becomes a special case of

algorithm re�nement: the re�nement is just on the whole block.

In this section, we present an approach to handling data re�nement with program window

inference, which is based on data re�nement calculator introduced in Subsection 3.2.

5.1 Window Opening Rule

The data re�nement is just on the block, thus only one window opening rule is required

for the block. As the program cannot operate on both the abstract and the concrete states

at the same time, hence a data re�nement transformation must replace all occurrences of

the abstract variable in one step.

For data re�nement on the block (18), we have the rule:

H; pre P[cnc0] ^ DAI (Init); lval L[cnc
0]^ c2Var; inv Inv[cnc0]^ c2T0^ AI `2P � DAI (P)

H; pre P; lval L; inv Inv ` j[var a : T j Init �2P]j v j[var c : T0 j DAI (Init) � DAI (P)]j
(26)

260 WANG Yunfeng, PANG Jun et al. Vol.16

Here AI is the abstract invariant representing the relation between the abstract and concrete

variables. With this rule, the block transformation focuses on calculation of the concrete

commands, while the other complex predicates are collected into the pre and inv contexts,

such as initialization for concrete variable DAI(Init) and AI.

The symbol � represents data re�nement relation between abstract and concrete com-

mands (see Subsection 3.1), and it is re
ective and transitive. For getting the same relation

in subwindow, (2P � DAI(P)) can be written as DAI(2P) v P0, and (26) is written as:

H; pre P[cnc0] ^DAI (Init); lval L[cnc
0] ^ c 2 Var; inv Inv[cnc0] ^ c 2 T0^ AI ` DAI(2P) v P0

H; pre P; lval L; inv Inv ` j[var a: T j nit �2P]j v j[var c: T0 j DAI (Init) � P
0]j

(27)

This rule's form is the same as the algorithm re�nement rule.

5.2 Focus Transformation Rules

For di�erent program structures, the calculator for statements can be de�ned and re
ects

data re�nement theorems for the corresponding program statement. The performance of

data re�nement calculator can be modeled with focus transformation rule by using the inv

context information as the obligation to be discharged.
For example, on sequence composition structure S1; S2, the rule is written as:

H; pre P[cnc0] ^ DAI(Init); lval L[cnc
0] ^ c 2 Var ` inv Inv[cnc0] ^ c 2 T0^ AI

S1; S2 � DAI(S1); DAI(S2)
(28)

Using program window inference, some calculation can be simpli�ed. For example, for guard

command

DAI(fPg; g ! S) = fDAI(P)g; DAI(g)! ([D�

AI(g)];DAI(S))

in program window inference, it can be written as:

DAI(pre P ^ g ` S) = DAI(pre P ^ g) ` DAI(S)

5.3 Comparison with Algorithm Re�nement Rule

In this paper, data re�nement is handled as a special algorithm. But it is di�erent from

window opening and focus transformation rules.

� Window opening rule

For data re�nement there is just one window opening rule that is on the variable dec-

laration block. The focus is on all commands in the block, not their component, since the

program cannot operate on both the abstract and the concrete states at the same time,

hence a data re�nement transformation must replace all occurrences of the abstract variable

in one step.

When focussing inside the block, the abstract invariant AI (noting the relation of the

abstract and concrete variables) and the predicates transformed such as DAI(Init) are aug-

mented into the context of the new window.

� Focus transformation rule

For algorithm re�nement, the focus transformation follows the re�nement calculus rule

of Morgan[13], which re�nes the statement into di�erent constructs (such as iteration, alter-

ation, loop).

For data re�nement, the focus transformation does not change the structure of the com-

mand. It just calculates the concrete command from the abstract command by the data

re�nement calculator.

No.3 A Formal Software Development Approach Using Re�nement Calculus 261

6 Conclusion and Future Work

In the formal speci�cation of each class, the data are described with abstract data struc-

ture of COOZ, and the operations are de�ned with pre and post conditions. During re�ne-

ment, we �rst replace the abstract data structure with concrete data structure in program-

ming language. This is called data re�nement. Then, we select the appropriate algorithm

satisfying corresponding pre and post conditions to implement each operation. This is called

operation re�nement. Complex operations may need stepwise re�nements. Sometimes, new

operations must be added to decrease the complexity. The new operations are the internal

operations of class. The re�nement process is stepwise, and every re�nement generates a

new, more detailed speci�cation.

In fact, here just the frame and the theory basis of the development models are researched.

Many concrete technologies need to be studied. We have argued an approach for data

re�nement, which is based on data re�nement calculus and program window inference. The

approach supports the calculation style of data re�nement: a concrete program can be

automatically constructed from the abstract one. The program window inference is an

e�ective way to manage complexity during re�nement. Managing and providing access to

program context can lead to simpler re�nement with less replication.

One of the advantages of formal method is that it promotes the degree of software

automation. The re�nement of data can be automatically done. In the re�nement of op-

erations, the algorithm must be designed or selected. So, the operation re�nement cannot

be done automatically. However, it can be done with semiautomatic strategy. The research

and application of automation technique are worthy of further enhancing.

The model presented here requires the support of tools, which include prototyping tools,

management tools for class library, and re�nement tools for formal speci�cation. In fact, it

is diÆcult for any software methods to be of practical use without the support of integrated

CASE. The further work is to provide necessary tools and appropriate environment. The

work is being done now.

References

[1] de Bakker J W et al. (eds.) In Proc. REX Workshop on Stepwise Re�nement on Distributed Systems,

Lecture Notes in Computer Science 430, Springer-Verlag, 1989.

[2] Hoare C A R, He J. The Weakest Prespeci�cation. Fund. Inform. IX 1986, pp.51{84.

[3] Jones C B, Shaw R C, Denvir T (eds.). In 5th Re�nement Workshop in Computing, Springer-Verlag,

1992.

[4] Back R J R. On the correctness of re�nement in program development [dissertation]. Report A-1978-4.

Department of Computer Science, University of Helsinki, 1978.

[5] Morris J M. A theoretical basis of stepwise re�nement and programming calculus. Science of Computer

Programming, 1987, 9(2): 287{306.

[6] Morgan C C. The speci�cation statement. ACM Transaction on Programming Language and Systems,

July 1988, 10(3): 403{419.

[7] Back R J R, von Wright J. Re�nement calculus, Part I: Sequential programs. In REX Workshop for

Re�nement of Distributed Systems, Lecture Notes in Computer Science 430, Nijmegen, The Netherlands,

Springer-Verlag, 1989.

[8] Gardiner P H B, Morgan C. A single complete rule for data re�nement. Formal Aspects of Computing,

1993, 5(4): 367{382.

[9] Spivey J M. The Z Notation: A Reference Manual. Prentice-Hall, International Series in Computer

Science, 2nd Edition, 1992.

[10] Stepeney S et al. More powerful Z data re�nement. In ZUM'98: The Z Formal Speci�cation Notation,

11th International Conference of Z Users, Bowen J P, Hinchey M G (eds.), September 1998, Proceedings,

Lecture Notes in Computer Science 1493, Springer-Verlag, 1998.

[11] Nellson D S. From Z to C: Illustration of a rigorous development method [dissertation]. PRG-79, Oxford

University, Computing Laboratory, February, 1990.

[12] King S. Z and the re�nement calculus. In VDM and Z { Formal Methods in Software Development,

Bj�rner D et al. (eds.), Lecture Notes in Computer Science 428, VDM-Europe, Springer-Verlag, 1990,

262 WANG Yunfeng, PANG Jun et al. Vol.16

pp.164{188. Also published as a Technical Monograph PRG-79, Oxford University, Computing Labora-

tory, February, 1990.

[13] Morgan C C. Programming from Speci�cations. Prentice-Hall, International Series in Computer Science,

2nd Edition, 1994.

[14] Yuan Xiaodong, Hu Deqiang, Xu Hao et al. COOZ: A complete object-oriented extension to Z. ACM

Software Engineering Notes, 1998, 23(4): 78{81.

[15] Gardiner P H B, Morgan C. Data re�nement of predicate transformers. Theoretical Computer Science,

1991, 87: 143{162.

[16] J. von Wright. A lattice-theoretical base for program re�nement [dissertation]. Abo Akademi University,

SF-20500 Turku, Finland, Sept., 1990.

[17] Rimvydas Ruksenas. A tool for data re�nement. Technical Report, TUCS| Turku Centre for Computer

Science, Number TUCS-TR-119, August, 1997.

WANG Yunfeng received his Ph.D. degree from Department of Computer Science and Tech-

nology, Nanjing UIniversity in 2000. He is now working in Meteorology College, PLA University

of Science and Technology. His research interests include formal methods and object-oriented tech-

nology.

PANG Jun received his M.S. degree from Department of Computer Science and Technology,

Nanjing University in 2000. He is now a Ph.D. candidate in Department of Software Engineering,

National Center for Mathematics and Computer Science (CWI), Netherlands. His interests include

process algebra, protocol veri�cation, Z & re�nement calculus and object-oriented technology.

YANG Zhaohui received his B.S. degree from Department of Computer Science and Tech-

nology at Nanjing University in 2000. He is now an M.S. candidate of Department of Computer

Science and Technology, Nanjing University.

ZHENG Guoliang is a professor in Department of Computer Science and Technology, Nanjing

University. He received his B.S. degree in computer science from Nanjing University in 1961. His

main research area is software engineering.

