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Abstract With the popularity of mobile devices and various sensors, the local geographical
activities of human beings can be easily accessed than ever. Yet due to the privacy concern, it
is difficult to acquire the social connections among people possessed by services providers,
which can benefit applications such as identifying terrorists and recommender systems. In
this paper, we propose the location-aware acquaintance inference (LAI) problem, which
aims at finding the acquaintances for any given query individual based on solely people’s
local geographical activities, such as geo-tagged posts in Instagram and meeting events in
Meetup, within a targeted geo-spatial area. We propose to leverage the concept of active
learning to tackle the LAI problem. We develop a novel semi-supervised model, active
learning-enhanced random walk (ARW), which imposes the idea of active learning into
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the technique of random walk with restart (RWR) in an activity graph. Specifically, we
devise a series of candidate selection strategies to select unlabeled individuals for labeling
and perform the different graph refinement mechanisms that reflect the labeling feedback to
guide the RWR random surfer. Experiments conducted on Instagram and Meetup datasets
exhibit the promising performance, compared with a set of state-of-the-art methods. With a
series of empirical settings, ARW is demonstrated to derive satisfying results of acquaintance
inference in different real scenarios.

Keywords Active learning · Acquaintance inference · Location-based social network ·
Check-in data

1 Introduction

With the maturity of information and communication technology, mobile devices have
become popular and diverse kinds of sensors have been deployed ubiquitously. Mobile
devices, such as smartphone anddigital camera, allowpeople to recordwhere theyhavevisited
in the form of geographical locations in online social platforms. For example, users can share
geo-tagged postings, check-ins, and photographs on Twitter and Instagram. Similarly, the
deployed sensors in the context of the Internet of Things (IoT), such as surveillance systems
and various kinds of smart cards, can also depict the geographical activities of human beings
in the physical world. Such geo-spatial footprints provide researchers an unprecedented
opportunity to study human mobility and in particular the interaction between mobility and
social relations.

This paper aims at actively inferring the acquaintances of any given person solely based
on her geographical activities and interactions with other people within a certain physical
area. Let us use two real scenarios to elaborate the motivation of this work and the proposed
approach.

Homeland Security Analyzing the occurrence of suspected individuals in the geography
space has been reported to be effective in discovering terrorist networks [27]. With partially
identified interactions between terrorists, it is possible to construct the terrorist network
through the geo-spatial analysis by human investigators [26,37]. The human investigation is
interactive: when a person is suspected, the agency will further inspect in the corresponding
local area to examine whether it is positively or negatively identified [27]. The positive
identification will lead to a progressive construction of the terrorist network, while negative
cases can also prevent the investigation from false alarms and a waste of effort. However,
such a process is normally tedious and requires a tremendous amount of resources.

Geo-Social Recommendation It is evident that social relationships can help to improve the
performance of location-aware recommendation systems [17]. In the literature, researchers
have integrated social relation into collaborative filtering-based approaches [15,49] to gain
effective recommendation. Most of these studies presume that the social information is avail-
able in online platforms, while due to the privacy concern, the recommenders normally
have no access to the social relations among users, which are only possessed by the ser-
vice providers. Hence, the real-world location recommenders can either solely exploit users’
visiting histories as input or simultaneously infer friendships and use it in recommending
locations [33]. In practice, users can provide feedback to the recommenders by implicitly
returning which of the recommended users are true friends so that the satisfaction can get
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improved. With the inference of social acquaintances with users’ interactive feedback in this
work, we have a better location-aware recommender when social information is unavailable.

Given the geographical activities of the population of a targeted geo-spatial area, and
a given individual u, our goal is to find u’s acquaintances in an interactive manner. We
term such a task as location-aware acquaintance inference (LAI) problem. In this paper,
the geographical activities refer to where, who and when people co-locate and meet. For
example, as evaluated in this work, the geo-tagged posts in Instagram and the meeting events
inMeetup are considered as the so-called geographical activities. In addition, both individuals
and geographical activities may be associated with a set of attributes, referred to be as profile
attributes and activity attributes. In this paper, profile attributes are users’ interests, attributes
or tags, and activity attributes are the tags or the categories of the encountering locations.

In the literature, the most relevant problems are link prediction [1,20,23] and social tie
inference [6,34,43]. Essentially, the prediction of future connections in the link prediction
task is derived solely based on the provided partial graph, but in our work, the model is
considered without any social link given beforehand. In addition, social tie inference is
proposed to infer the strong connection which is not tagged in the given network. Similarly,
methodologies of social tie inference also assume that there are a collection of observed social
ties. Few recent studies [31,44] started exploring the inference of social ties without existing
link observations based on check-in data. However, they need the entire global geo-spatial
footprints of people, which is impractical in real scenarios as aforementioned. Besides, they
do not allow interactive/active inference, which are the goals of this paper.

It is challenging to infer the acquaintances of a given individual using solely the geograph-
ical activities of users within a local geo-spatial area. The reasons are threefold. The first is
the encountering uncertainty issue. Non-friends could meet, while friends may not encounter
geographically. Suppose that Alice and Bob are not friends, but they have similar location
visiting histories, how canwe avoid treating them as acquaintances? On the contrary, if Claire
and David are friends, but they never share geo-spatial records together, how can we find
evidence to show their social connection? Second, the assumption of no social tie observa-
tion makes supervised learning inference model infeasible. On the other hand, unsupervised
learning approaches based on solely geo-spatial footprints of users lead to unsatisfying per-
formance [31,44]. Third, the global geo-spatial footprints of users (i.e., around the world)
have shown to be promising on acquaintance inference [44], but what we have are the col-
lection of local footprints, i.e., users’ geographical activities of a certain area (e.g., within a
city). Using purely local footprints makes it difficult to differentiate acquaintance and non-
acquaintance user pairs. We provide the observations on real data in Fig. 1, which depicts
the cumulative distribution functions (CDF) of the global-local score proposed by PGT [44]
for all the acquaintance and non-acquaintance user pairs of three cities in the Instagram
dataset. (The detail data description is discussed in Sect. 5.) The nearly overlapping between
two curves indicates the difficulty in separating the acquaintance and non-acquaintance user
pairs. Without discriminative information from global footprints, the extension of previous
models for acquaintance inference will clearly suffer from the insufficient quality.

To address these challenges, in this paper, we propose a semi-supervised learning method,
namely active learning-enhanced random walk (ARW), for location-aware acquaintance
inference. ARW consists of three parts. First, ARW is based on the technique of random
walk with restart (RWR). We exploit RWR to realize the intuitions about the correlation
between social acquaintances and geographical activities: two persons tend to be acquainted
with each other if they involve in more common activities, possess more common profile
attributes and activity attributes and visit more common locations. We propose to construct
an activity graph to represent the interactions between individuals and geographical activities
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(a) (b) (c)

Fig. 1 Relationship differentiation observed in Instagram. a San Francisco, b London, c New York

so that RWR can be performed to realize aforementioned intuitions. Second, we leverage the
concept of active learning to tackle these discussed challenges and to enable the interactive
acquaintance inference. In active learning, investigators or domain experts are allowed to
provide labels for a small set of selected instances. Motivated by this concept, we propose
a series of methods to select individuals to be labeled round by round. The labeling will
answer whether or not the selected individual is acquainted with the queried individual
based on some external investigations. Third, while the labeling feedback is returned at each
round, we propose to iteratively adjust the RWR mechanism so that the new acquaintance
(positive feedback) or non-acquaintance (negative feedback) information canbe incorporated.
The adjustment is designed to boost the possibility that the random surfer reaches the true
acquaintance, and to prevent the random surfer from arriving at more non-acquaintances.
We propose the mechanisms of graph refinement to incorporate the positive and negative
feedback, respectively.

It is worthwhile noticing that onemay question how can an acquaintance inferencemethod
distinguish the terrorists a target is connected to from the guys who sell coffee to the target
terrorist every day. In fact, everyone has a chance to be the acquaintance of another person,
and thus, we do not explicitly make such a distinction in this work. Nevertheless, if the
goal is to identify the acquainted terrorists of a given target, the labeling feedback via active
learning will help lower down the possibility the coffee salesclerk being inferred as the
acquaintance. The guy who sells coffee to the terrorist every day may be the bridge for
terrorists’ communication, and can be captured by the activity graph to boost the performance.
In short, with active learning, we can prevent the investigation from false alarms and a waste
of effort.

We summarize the contributions of this work as the following.

– While it is practical and challenging to infer social acquaintances without observed social
ties based on solely geographical activities, this work is the first attempt to perform
acquaintance inference with active learning.

– We formulate the location-aware acquaintance inference (LAI) problem. The LAI prob-
lem is technically re-formulated as how to select a small set of individuals such that their
labeling can lead to the best inference performance in the setting of active learning.

– We develop the ARW model, which seamlessly integrates random walk with active
learning. While a heterogeneous information graph is designed as the fundamental of
ARW, ARW can be regarded as a generalized framework for link recommendation tasks
in various applications.

– The experimental studies show that the proposed ARW model can deliver promising
results in terms of accuracy as compared with several state-of-the-art methods. A robust
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set of empirical settings are examined, and the results demonstrate the usefulness of
ARW.

The remainder of this paper is organized as follows. We first review the relevant studies in
Sect. 2 and then give the problem formulation in Sect. 3. In Sect. 4, we present the proposed
ARW framework. The experimental results are exhibited and discussed in Sect. 5. Last, we
conclude this paper in Sect. 6.

2 Related work

Some existing studies are related to our work such as inference and analysis of social ties,
link prediction, and relationship between social ties and mobility. We create Table 1 to
summarize the past relevant studies, and to distinguish our work from them in the research
line of acquaintance inference. It can be observed that our work is the first attempt to perform
acquaintance inference based on geo-activities with active learning. The relevant studies are
briefly described as follows.

Inference and Analysis of Social Ties Existing studies have investigated how to construct and
infer the link structures of social networks based on a variety of data sources, including users’
self-reports [45], email communication [8], call data records [11] and contagion spread [29].
Recent studies attempt to characterize and uncover the hidden connections between social
ties and various kinds of spatial footprints of users, including spatiotemporal co-occurrence
events [9], group events [42], check-in records [7,44] and location histories of users [46],
in which various supervised learning methods are proposed for the inference of social ties.
Some papers have also explored how friends in online social networks affect users’ offline
geographical activities [22,47] and their offline check-ins [7]. However, the acquaintance
inference using purely geographical activities of users under an interactive setting has not
been investigated yet. We aim to exploit the concept of active learning, together with an
unsupervised mechanism, to fulfill the task of interactive acquaintance inference.

Link Prediction is to predict social ties in the future, given the current snapshot of a social net-
work [20]. There are numerous studies that propose various kinds of social network features
and supervised learning methods (e.g., please refer to the survey paper [23]) to predict future
social links. Some recent works further leverage the geographical information of users to
boost the performance of link prediction, including co-location [34,43] and call data records
[28]. Our problem setting is different from the conventional link prediction problem in two
aspects. First, we aim to infer the acquaintance links for a given user without any observed
social ties. Specifically, what we have for the inference is the set of local geographical activi-
ties for each user. Such setting makes supervised learning infeasible. Second, what we aim to
present is an interactive inference mechanism, in which the third parties or the investigators
can involve in the inference process by providing feedback. Although the technique of active
learning has been used for link prediction [5] and link-type inference [50], their proposed
methods highly rely on sufficient volume of training instances to build effective supervised
learning models.

Relationship between Social Ties andMobilityAnumber of existing studies have investigated
the relationships between social connections and their visited locations [6,10,14,31,44].
Cheng et al. predict whether two individuals are friends based on their mobility informa-
tion [6]. They simultaneously consider the co-occurrences and their visiting time intervals.
Cranshaw [10] et al. introduce a set of location-based features such as location entropy for
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Table 1 Comparison with relevant studies

Geo-activities Labeled data Approach Active learning

[1]
√

Supervised

[50]
√

Supervised
√

[6,34,43]
√ √

Supervised

[23]
√

Supervised
√

[4]
√

Supervised

[46]
√ √

Supervised

[31,44]
√

Unsupervised

Ours
√

Semi-supervised
√

analyzing the social context of a geographical region and devise amodel to predict friendships
between users using their location trails. EBM [31] not only infers social connections but
also estimates the strength of social connections by analyzing people’s co-occurrences using
check-in data. PGT [44] is a unified framework that combines personal, global and temporal
factors tomeasure themobility-based social relationships between users. In addition, Hsieh et
al. [14] further develop a two-stage feature engineering by identifying the direct and indirect
linkages between users according to a devised check-in co-location graph.

Random Walk-based Recommendation Random walk-based mechanisms had been widely
used for various recommendation tasks, such as user recommendation [2,18], activity rec-
ommendation [21] and location recommendation [3,48]. For user recommendation, Bagci [2]
et al. consider social relations, personal preferences and visited locations of users to provide
the personalized friend recommendation by executing randomwalks in a hybrid graph. Li [18]
et al. modify the random walk algorithm to jointly learn how co-authorships and temporal
factors affect collaborator recommendation. On the other hand, Liu [21] et al. construct a
hybrid network to represent multiple types of entities in an event-based social network and
run a modified random walk method for event recommendation. In addition, Ying [48] et al.
and CLoRW [3] further devise the extended random walk algorithms to model social ties,
user preferences, check-in historical data and location popularity for POI recommendation.

It is worthwhile to mention that research on acquaintance inference is similar to research
on user recommendation. Both tasks are to predict or to find the potential individuals who
have the highest probabilities to connect with a given user in the context of social networks.
However, their purposes are orthogonal. The acquaintance inference aims at inferring the
acquaintances of any given person based on her historical data and interactions with other
people. Hence, the historical records of users are used to infer which two users are acquainted
with each other. In empirical studies, researchers generally exploit social relationships in
the current time stamp to validate the inferring results [31,44]. On the other hand, user
recommendation, which is also termed “link prediction” [1,23,34], aims at exploiting the
historical data to predict whether two users will be connected with each other in the future.
As such, in the empirical studies, the recommendation results are generally validated by the
testbed consisting of future social links [2,18].

Last, it is also important to emphasize that we aim at estimating the structural “proximity”
between two users, instead of estimating the “similarity” of two users, in a heterogeneous
information network. Users possessing higher relational structural similarity (e.g., measured
by PathSim [39] and SimRank [16]) to one another tends to reflect that they play similar roles
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in the network, rather than exhibiting the potential connections between them. In other words,
similarity measure based on the network cannot quantify the degree of being acquainted with
each other. The pathways via direct and indirect visited locations, attributes and users can
depict the possibility that two users are friends. If two users with more, shorter and denser
pathways toward one another, they have higher potential to be friends (and thus derive higher
proximity score). The random walk with restart (RWR) [41] had been validated to be an
effective measure to estimate the proximity between nodes in a network [20,30,38,40].

3 Problem statement

Here, we formally describe geographical activities, user profile and social acquaintances.
We use U = {u1, . . . , un} to represent the entire collection of users where n is the number
of users. The geographical activities of a user ui are defined as Ai = 〈ai,1, ai,2, . . . , ai,m〉
where ai, j denotes user ui ’s j-th geographical activity. Each activity ai, j is a tuple in the
form of ai, j = (place, event, time), where place can be either a geographical position or
the name of the place, event indicates the action that ui performs, and time is the time stamp
that ui participates in the activity. Each place and each event can be associated with a set of
attributes that depict its semantics, in which place attributes can be venue categories, while
event attributes can be the set of associated tags. The implementation of activities depends on
our datasets. For example, in Instagram, “ui visits Time Square at 2 pm, August 1st, 2016”
can be represented as (“Time Square,” check-in, 2016-08-01 14:00), along with the place
attribute {Plaza, Landmark}. In Meetup, “ui attends a data-mining study group at Starbucks
(750 7th Ave) at 8 pm, August 15th, 2016” is represented as (“Starbucks (750 7th Ave),”
Meetup, 2016-08-15 20:00), together with the set of attributes {coffee shop, data-mining
study}. A = {Ai | ui ∈ U } is used to represent all users’ activities.

The user profile of user ui is defined by a tuple in the form:Di = (uid,C), where uid is the
identity of ui (e.g., name), and C is the set of personal attributes or tags, such as gender, age,
interests and hometown. For example, the user profile of ui can be (”Tom,” {male, 20, movie,
music, basketball}). D contains all users’ profiles in the dataset. Finally, the social acquain-
tance of user ui is defined as: Fi = �G(ui ), where G is users’ underlying social network
that is supposed to be unobserved, and �G(ui ) returns the set of neighbors of user ui in G.

Definition 1 Location-aware acquaintance inference problem (LAI). Given a query user
uq ∈ U , and the entire collection of users U , along with their geographical activities A and
user profiles D, the LAI problem is to find the set of social acquaintances Fq from U for
user uq . Here all of the geographical activities are presumed to be observed within a certain
geo-spatial region.

Motivated by the real scenarios of Homeland Security and Geo-social Recommendation
in Sect. 1, we propose to take advantage of the concept of active learning for dealing with
these challenges so that the LAI problem can be successfully solved. Recall that the idea
of active learning is to allow some external investigation to provide labeling feedback on a
small set of selected instances. Under the setting of supervised learning, different kinds of
methods are proposed to pick a few instances so that the predictor can be better trained. Here
we formally apply the concept of active learning to solve the LAI problem under a semi-
supervised setting. The labeling feedback returned by the external investigation is whether a
picked user is acquainted (positive feedback) or unacquainted (negative feedback) with the
query user. Given an unsupervised learning model M to tackle LAI, the problem can be
alternatively formulated as follows.

123

Author's personal copy



B.-H. Chen et al.
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Fig. 2 The ARW approach overview

Definition 2 Active location-aware acquaintance inference (A-LAI). Given a query user uq ,
the entire collection of users U , along with their geographical activities A in a local geo-
spatial region and user profiles D, an unsupervised learning model M and a number b of
labeling budget, the A-LAI problem is to select a set of b users (from U ) to be labeled such
that the set of inferred social acquaintances Fi by M can get better performance.

4 Methodology

In this section, we present the proposed ARW framework to tackle LAI problem, as shown
in Fig. 2. ARW consists of two major components: (a) activity graph construction, (b) active
learning-enhanced random walk. We first give an overview of the components and then
discuss the technical details in the following sections. In the first component, user profile,
place information and geographical activity are exploited to construct a heterogeneous graph.
The relationships amongpeople, attributes, activities and places are represented by a proposed
activity graph, as shown in left side of Fig. 2. In the second component, as presented in the
right side of Fig. 2, equipped with the activity graph, the random walk mechanism can be
used for acquaintance inference. The query user has higher potential to acquaint with the user
who has higher score obtained from the randomwalkmechanism. In addition, we propose the
active learning-enhanced random walk to enable the interactive acquaintance inference. The
active learning-enhanced random walk is designed to select one candidate user for labeling
at each time. According to the labeling feedback, linkage creation and vertex removal will
be performed in the process of graph refinement so that the positive feedback and negative
feedbacks can be incorporated into the activity graph and the random walk can reflect the
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Activity

LocationAttribute

User
participate/
participate-1

contain/
contain-1

take place/
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acquainted/
acquainted-1

contain/
contain-1

contain/
contain-1

contain/
contain-1

Fig. 3 The generalized activity schema

labeling outcomes. In linkage creation, the red dotted line will be added to the graph for
linking two black nodes. Then, two black nodes will be the starting node in the random walk
mechanism. In vertex removal, the red dotted circle and red dotted line will be removed.
When the graph refinement is completed, the scores are re-calculated by the random walk
mechanism. The user possessing the highest score is considered as an inferred acquaintance
for the query user.

4.1 Activity graph construction

Definition 3 Activity Graph An activity graph H = (V, E) is an undirected graph, where V
and E are sets of nodes and edges, respectively. There are two mapping functions in light of
activity schema, whose construction is based on dataset. One is node-type mapping function
η : V → T . The other is edge-type mapping function ξ : E → R. Each node v ∈ V belongs
to one particular node type η(v) ∈ T , and each edge e ∈ E belongs to a particular relation
ξ(e) ∈ R. On top of that, due to the types of nodes |T | > 1 and the types of relations |R| > 1,
activity graph can be referred as heterogeneous information network as well.

Definition 4 Activity Schema The activity schema SH(T ,R) is a meta-template for an activ-
ity graphH = (V, E), alongwith a node-typemapping function η : V → T , and an edge-type
mapping function ξ : E → R, where T is the set of node types and R is the set of relations
between node types.

The activity schema represents the relationships between different types of nodes. An
activity graphH is constructed based on the corresponding activity schema SH. A generalized
activity schema is shown in Fig. 3, inwhich there are four kinds of entities representingUser,
Activity, Location and Attribute. In addition, seven different relations depict
how four entities interact with one another: User participates in Activity, Activity
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User ActivityLocation

Node type

User Meetup

Tag Group

Location

(a)

User Location

Gender

Age

Race Location
Category

Check-in

(b)

Fig. 4 Two different activity schemas. a Meetup, b Instagram

takes place in Location, User, Activity and Location contain Attribute, and
Attribute also can contain Attribute. Note that the real activity schema depends on
the dataset, that says, various datasets may have the different subsets of such seven relations
in their schemas. In the schema, the solid lines represent that these relations would exist
in each of specific activity schema. The dashed lines represent that the existence of these
relations depends on the dataset. Moreover, the relations between User nodes will be added
when the labeling feedback is positive in the process of active learning-enhanced random
walk, which is discussed in Sect. 4.3.

We give two examples of the activity schemas using Instagram and Meetup datasets, as
shown in Figure 4. A Meetup schema is shown in Figure 4(a), which contains five enti-
ties. The correspondence is User: “User,” Attribute: {“Tag,” “Group”}, Activity:
“Meetup” and Location: “Location.” Since a group can contain a set of tags, there is a rela-
tion between “Tag” and “Group.” An Instagram schema is presented in Fig. 4b, in which
there are seven entities. The correspondence is User: “User,” Attribute: {“Gender,”
“Age,” “Race,” “Location Category”}, Activity: “Check-in,” and Location: “Loca-
tion.”

Note that the activity graph is an unweighted graph. It is true that we can consider weights
for edges in the heterogeneous information network. The reason we use unweighted edges
is threefold. First, we aim at concentrating our technical contribution on designing the active
learning process via heterogeneous network structure, instead of accurately estimating how
different entity types interact with one another. Second, it is difficult to define a general
but suitable edge weighting mechanism for every pair of entity types and have them well
normalized, because the definition of edge weighting is usually data-dependent. Third, even
a certain edge weighting method is applied, it will be quite time-consuming to re-calculate
all edge weights in each round of active learning.

4.2 RWR-based acquaintance inference

Equipped with the activity graph, we propose to exploit one of the well-known graph-based
node ranking algorithms, random walk with restart (RWR) [41], to be the fundamental of
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acquaintance inference. Given an activity graph H = (V, E) and a query user node uq ∈ V ,
RWR will produce an proximity score pvi for every node ui ∈ V . The proximity score
estimates the probability that a random surfer reaches ui starting from uq inH. We consider
that the higher proximity score ui obtains, the higher potential that ui is acquainted with uq .
User ui can get higher proximity score pvi if ui and uq (a) have more common neighbors, (b)
have shorter graph distance to reach each other and (c) havemore shorter paths connecting one
another in the graph. These facts correspondingly reflect the acquaintanceship between two
users in the activity graph: involving in more common activities, possessing more common
profile attributes and activity attributes and visiting more common locations. Hence, RWR
is employed as the basis of our approach.

Given an activity graph H = (V, E) and a query user node uq ∈ V , the computation
of proximity scores for nodes can be formulated by �pvi = (1 − α)M̃ �pvi + α�evi , where
M̃ ∈ R

n×n is the transition matrix of H. Each element in M̃ , denoted by mi, j , is defined
by mi, j = 1

d(vi )
, where d(vi ) be the degree of vi if there is an edge connecting ui and u j ;

otherwise, mi, j = 0. In addition, �evq is a unit vector of the starting indicator of node vq , and
α ∈ [0, 1] is the restart probability in RWR (generally, α = 0.15).

Algorithm 1 RWR-based Acquaintance Inference
Require: H = (V,E): the activity graph; uq : the query user node; α: the restart probability; N : the number

of acquaintances to be returned
Ensure: Fq : the acquaintance set of uq
1: Construct the transition matrix M̃H;
2: Initialize �puq ← �euq ;
3: while �puq has not converged do

4: �puq ← (1 − α)M̃H �puq + α�euq ;
5: for i=1 to N do
6: u�

i ← argmax(i)
ui∈U\{uq }∧ui∈U �puq (ui );

7: Fq ← Fq ∪ {u�
i };

8: return Fq ;

We present the RWR-based acquaintance inference method in Algorithm 1. First, we
initialize the proximity vector and transitionmatrix (lines 1–2). Then RWR iteratively derives
the proximity score of every node ui (lines 3–4) with respect to the query user uq . Since we
are finding uq ’s acquaintances, we examine the proximity scores of all the User nodes and
return the top-N users who possess highest proximity scores (lines 5–7).

4.3 Active learning-enhanced random walk

Inspired by the interactive exploration of social acquaintances in the realworld, inwhich some
external investigation can provide feedback during the exploration, we aim at implementing
this idea in our framework using the concept of active learning. In active learning [35], a
supervised learning model usually employs a certain query strategy to select a small set of
instances, which are sent to some external investigation for labeling. The external agency
can provide feedback by answering the label of each picked instance. The key point lies in
how to select the most effective data instances to be labeled such that the performance of the
supervised model can be significantly boosted.

To impose active learning into the RWR-based acquaintance inference, we consider all the
user nodes ui ∈ U (ui �= uq ) as the candidate acquaintances of the query user uq . The active
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learning-enhanced random walk is designed to be an iterative process. Each iteration will
output an inferred acquaintance. During each iteration, there are three phases: (1) proximity
calculation, (2) candidate selection and (3) graph refinement, which are elaborated in the
following.

Proximity Calculation measures the potential of users being the acquaintance of uq by
performing the RWR procedure, as aforementioned. The proximity scores for all the nodes,
i.e., �pvq , can be derived. The second and the third phases are proposed due to the adoption
of active learning.

Candidate Selection corresponds to selecting instances for labeling in the setting of active
learning. We are given a budget b of candidates, which are selected from the set of unlabeled
users for labeling. Each iteration consumes one unit of budgets, i.e., selecting one candidate
for labeling. LAI can be regarded as a kind of binary inference since we aim at classifying
whether or not a user ui and the query user uq are acquainted with each other. Therefore,
we have two labeling outcomes: positive feedback indicates that the selected candidate ui
is acquainted with uq , and negative feedback refers to that the ui is unacquainted with uq .
Consequently, at this phase, we need to develop strategies to select effective candidates such
that their labeling can significantly benefit the inference performance.

Graph Refinement aims at adjusting the structure of activity graph so that both positive
and negative labeling feedback can be incorporated and reflected in the next iteration of
inference. Specifically, the adjustment is designed to boost the possibility that the RWR
random surfer reaches more acquaintances, and to prevent the random surfer from arriving at
more non-acquaintances. Selected candidate users with positive feedback are the references
to access more acquaintances, while those with negative feedback are used to avoid further
exploring irrelevant neighborhoods in the activity graph. Note that the conventional active
learning automatically re-trains the learningmodel under the supervised setting and thus does
not need the phase of graph refinement. Graph refinement is necessary since our approach is
based on the RWR graph-based unsupervised approach.

Note that for each query, a general activity graph is constructed, rather than a local graph.
In the active learning phase, the general graph will be adjusted according to the feedback.
If the feedback is positive, the new link will be created to connect the selected candidate uc
with the query user uq in the activity graph. On the contrary, if the feedback is negative, the
selected candidate uc can be turned off in the activity graph, i.e., uc and its incident edges
will not be considered in the randomwalk. In short, the graph construction is done in the level
of entire network because we never know which nodes will be selected for active learning
and which edges will be affected based on the feedback.

4.3.1 Candidate selection

The active learning-enhanced random walk is designed to select one candidate user for
labeling in each of its iterations. We are allowed to select only b candidates in total, where b
is supposed to be small (e.g., b = 10) due to the constraints of resources and manpower in
the real world. We propose to develop the selection strategies based on two general criteria,
informativeness and uncertainty. If a user uc whose labeling can bring more information
about the acquaintances or non-acquaintances of the query user, uc can be treated as a good
candidate. If the labeling of uc can lower down the uncertainty of more users, uc can be a
good choice as well. We first present three heuristic methods and baselines for candidate
selection in the following.

Random We randomly pick one unlabeled user node for feedback. Each user has the same
probability of being chosen in each iteration. Such random strategy is served as the baseline.
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Proximity Intuitively, a user ui with the highest RWR proximity score possesses the highest
potential to be the acquaintance of the query user. If ui has the positive feedback, we acquire
the concrete knowledge about uq ’s acquaintanceship with others. If the labeling feedback
of ui is negative, we can immediately exclude ui and its neighborhood so that it will not be
ranked at top positions in the follow-up iterations. Therefore, in each iteration, we select the
unlabeled user with the highest proximity score to be the labeling candidate, formulated by:
u�
c = arg maxuc �puq (uc).

Uncertainty The RWR proximity scores reflect the potential of acquaintanceship. While
users with lower proximity scores are less possible to be acquainted with uq , those with
medium proximity scores are supposed to be uncertain ones. We believe that labeling the
most uncertain user can reduce the uncertainty and boost the confidence of inferred acquain-
tances. Hence, in each iteration, we select the user with the median value of proximity as the
candidate. The uncertainty strategy can be represented by {u�

c|median( �puq ) = �puq (u�
c)}.

In addition to the three heuristic methods, we propose to measure the Informativeness
Reward of each unlabeled user uc, denoted by I Ruq (uc) based on the derived RWRproximity
scores with respect to the query user uq . The basic idea is to estimate how much information
can a candidate uc bring if it gets labeled. The user u�

c whose labeling can lead to higher
information reward will be selected to perform labeling by external investigation. This can
be generally represented by: u�

c = arg maxuc I Ruq (uc).
Since our LAI task is to find a proportion of acquaintances for the query user, we measure

the information reward by concerning only the top k unlabeled users. Let κ(S) be the set of
users whose RWR proximity scores (restarting from a given user set S) locate at the top k
positions among U \ S, given by

κ(S) =
{
arg max(1,...,k)

ui∈U\S �pS(ui )
}

, (1)

where �pS(ui ) is the proximity score of user ui restarting from a user set S in RWR. Recall that
the labeling feedback can be positive or negative, which can lead to increment or decrement
of the top k proximity scores. In other words, including a candidate uc mightmake some users
be removed from κ(S) and add more other users into κ(S ∪ {uc}). Besides, if the labeling
feedback of uc is positive, we expect including uc into the set of inferred acquaintances can
lead to more increment of the top k proximity scores, which refers to boost the confidence
of inference. On the contrary, if uc’s labeling feedback is negative, adding uc should lead
to more decrement of the top k proximity scores, which lowers down the potential that non-
acquaintances are reported. Consequently, we propose to define the Informativeness Reward
of positive and negative cases separately, which lead to two different strategies of candidate
selection.

Positive Reward Let the labeling feedback of user uc be positive, i.e., uc is acquainted with
uq . Based on the concept of homophily [25], i.e., those acquainted with each other tend to
connect with one another in a social network, the topology structure among the query user
uq and her acquaintances are supposed to be dense. Densely connected nodes can get higher
RWR proximity scores than those with a loosely connected structure [41]. Therefore, we
expect that including uc into uq ’s acquaintance set Fq can boost the top k RWR proximity
scores and raise the potential acquaintances up to top positions. Let S be the current set of
inferred acquaintances. We exploit such idea to define the Positive Informativeness Reward
I R+

uq (uc) as:
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I R+
uq (uc) =

∑
ui∈κ(S)∩κ(S∪{uc})

( �pS∪{uc}(ui ) − �pS(ui )
)

+
∑

ui∈κ(S∪{uc})\κ(S)

�pS∪{uc}(ui ).
(2)

The first summation calculates the increment of the overlapping users with top k proximity
scores, and the second summation estimates the proximity scores of userswho are newcomers
at the top k positions.

Negative Reward The other case is if the labeling feedback of user uc be negative. (uc
is unacquainted with uq .) The homophily theory [25] indicates that the friends of non-
acquaintances of a user are less likely to be the acquaintances of her. Such idea can be
reflected in the structure of the social network, i.e., it is loosely connected between non-
acquaintances and uq . That says, the random surfer may need more steps via few paths to
reach non-acquaintances from uq . Consequently, the top k RWR proximity scores could
be lowered down, and some acquaintances may be removed from the top positions, if we
consider that uc is non-acquaintance. Let S be the current set of inferred acquaintances. After
removing uc and its neighboring nodes, we assume κ ′(S) be the set of users whose RWR
proximity scores locate at the top k positions among U \ S and �p′

S(ui ) be the proximity
score of user ui restarting from a user set S in RWR.We define the Negative Informativeness
Reward I R−

uq (uc) as:

I R−
uq (uc) =

∑
ui∈κ(S)∩κ ′(S)

(
�pS(ui ) − �p′

S(ui )
)

+
∑

ui∈κ(S)\κ ′(S)

�pS(ui ).
(3)

The first summation calculates the decrement of the overlapping userswith top k proximity
scores, and the second summation estimates the proximity scores of users who are removed
from the top k positions.

4.3.2 Graph refinement

When a selected candidate user gets labeled by external investigation, we need to make the
most of such precious and informative user so that the performance of inference can be
improved as much as possible. Since the fundamental of our approach is RWR, which is a
graph-based unsupervised method, we propose to adjust the activity graph. The goal is to
refine the graph structure such that the random surfer can be guided to reach acquaintances
with higher proximity scores and prevent from arriving at non-acquaintances. We elaborate
how to refine the structure of activity graph based on the results of labeling feedback. If the
selected candidate uc gets positive feedback, we refine the graph by linkage creation. If uc
gets negative feedback, the graph will be refined by vertex removal. We elaborate the details
in the following.

Linkage Creation We create a link to connect the query user uq and the candidate uc if uc
gets positive labeling feedback. The new linkage leads the RWR random surfer to arrive uc
directly. Thus, the proximity scores of uc’s neighbors can be significantly increased. Then
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based on the concept of homophily [25], in the follow-up iterations, more acquaintances of
uq can be reached with their proximity scores getting boosted.

Vertex Removal If uc gets negative labeling feedback, we remove uc and all of its incident
edges from the activity graph. Such removal will prohibit the RWR random surfer from
reaching the neighbors of uc. The homophily effect “people with different interests tend
to be unacquainted with each other” [25] is implemented by removing edges connecting
uc and its neighboring nodes of labels and activities. As a result, the proximity scores of
non-acquaintances can be decreased in the follow-up iterations.

Algorithm 2 Active Learning-enhanced Random Walk
Require: H = (V,E): the activity graph; uq : the query user node; α: the restart probability; N : the number

of acquaintances to be returned; b: number of budgets for labeling
Ensure: Fq : the acquaintance set of user node vq
1: Fq ← {uq };
2: �pFq ← RW RFq (H);
3: for i ter = 1 to b do
4: u�

c ← argmaxui∈U\Fq SelectionCritionFq (ui ); // select labeling candidate

5: luc ← GetLabel(uq , u�
c);

6: if luc = “positive” then
7: H.AddEdge((uc, uq )); // refinement

8: if luc = “negative” then
9: H.RemoveV ertex(uc); // refinement
10: �pFq ← RW RFq (H);
11: u�

a ← argmaxui∈U\Fq∧ui∈U �pFq (ui );

12: Fq ← Fq ∪ {u�
a};

13: return Fq \ {uq }

The complete procedure of active learning-enhanced random walk is shown in Algo-
rithm 2. We first compute the RWR proximity scores with respect to the query user uq for
all the nodes in the activity graph H (lines 1–2), where RW RFq (H) returns the proximity
scores of nodes by considering the node set Fq as the RWR restarting nodes in the activity
graphH. Then we iteratively perform the active learning up to b times, in which one inferred
acquaintance is reported in each iteration (lines 3–12). Each iteration consists of three phases.
The first phase is candidate selection (line 4), in which SelectionCriterionFq (ui ) can be
implemented by Random, Proximity, Uncertainty, Positive Reward and Negative Reward.
After deriving the label of u�

c (line 5), the second phase is to perform graph refinement based
on its label values (“positive” or “negative”) (lines 6–9). The last phase re-calculates the
RWR proximity scores, and consider the user u�

a possessing the highest proximity score as
a new inferred acquaintance (lines 10–12).

4.4 Time complexity analysis of ARW

In this section, we analyze the time complexity of ARW. ARW consists of two major com-
ponents: activity graph construction and active learning-enhanced random walk. For the first
component, we take advantage of user profiles and users’ geographical activity to construct
the activity graph. Assume that there are vertex set V and E edge set to construct the activity
graph. The time complexity of activity graph construction is O(|V| + |E|). For the second
component, the complexity of random walk depends on the number of edges in the graph. In
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the extreme case, nodes are fully connected to each other. The maximum number of edges is
C |V|
2 . Hence, the complexity of random walk is O(|V|2). After executing the random walk

with restart, we sort “user” vertices by their proximity scores. Let the user node set beU , the
sorting complexity is O(|U | logU ), where U is much less than V . In the process of active
learning, we assume that the budget for labeling is b. In each round of active learning, we
need to execute the random walk after graph refinement, leading to the time cost O(b · |V|2)
of active learning-enhanced random walk. The complexity of graph construction is much
less than the complexity of active learning-enhanced random walk. Therefore, the overall
complexity is O(b · |V|2).

5 Evaluation

Our algorithms are implemented in Python. All of the experiments are conducted on a Linux
machine with a 3.40GHz Intel i7 Core and 16-GB RAM.

5.1 Datasets

Instagram Dataset Instagram is a photograph-sharing social network with a fast-growing
user number. Currently, it has 400M monthly active users and generates 75M photographs
every day. Similar to other social network services such as Facebook and Twitter, Instagram
allows users to share their locations when publishing photographs. Unlike Twitter where only
a small amount of tweets are geo-tagged, a past study [24] has shown that Instagram users
are much more willing to share their locations (31 times more than Twitter users), which
makes Instagram data suitable for our experiments.

We exploit Instagram’s public API to collect the geo-tagged posts, which are treated as the
geographical activities of users, from three major cities worldwide including San Francisco,
London andNewYork.We first resort to Foursquare, a popular location-based social network
with resourceful information about locations and their categories, to extract all locations
with their IDs in each city. Since Instagram’s location service is linked with Foursquare1,
we then use the obtained Foursquare’s location IDs to extract the corresponding Instagram’s
location IDs. We query Instagram’s API with such location IDs to derive all geo-tagged
posts in three targeted cities. In addition, we collect all users who share geo-tagged posts in
Instagram. The followships between users are also crawled. Two users are considered as being
acquainted with one another if they follow each other. Besides, we obtain user demographics
as the attributes and tags by resorting to Face++,2 state-of-the-art deep learning-based facial
recognition service, to analyze each user’s profile. The output of Face++ includes a user’s
age, gender and race (White, Asian and Black). It is worth noticing that Face++ has been
widely used to extract demographics from social media photographs [32,36]. The statistics
of the obtained Instagram data is shown in Table 2.

Meetup Dataset The Meetup dataset compiled by in an existing study [22] is used for
our experiments. Meetup is a social networking portal that facilitates offline meeting events,
which are considered as the geographical activities of users, in various localities around the
world. In addition, Meetup users can participate in online groups, in which each group is
associated with a set of tags depicting its semantics. Over four millions of users and eight

1 The connection is aborted on April 20, 2016 (https://www.instagram.com/developer/changelog/).
2 http://www.faceplusplus.com/.
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millions of user-group pairs are collected in this dataset. Such data were crawled during
October 2011 and January 2012.

There are no explicit friendships between users in Meetup [12,19,22]. We follow existing
studies [12,19,22] to construct the social links for the ground truth. They follow three princi-
ples to construct the friendships between users: (a) users are connected if they join the same
social groups, (b) users involving in smaller groups tend to closely connected than those in
larger groups, and (c) friends tend to be close to each other in geography and around 70%
of Meetup online friends live within 10 miles. Here we use the same method and settings to
define the friendship score f (ui , u j ) of users ui and u j , given by:

f (ui , u j ) =
∑

∀gk ,ui∈gk∧u j∈gk∧dist (ui ,u j )≤10 miles

1

|gk | , (4)

where gk is an online group in Meetup, and dist (ui , u j ) returns the geographical distance
between ui and u j ’s home locations. User pairs whose f (ui , u j ) scores locate at the highest τ
percentage are considered as friends. We empirically set τ = 10% in this work. The statistics
of Meetup data is also shown in Table 2.

5.2 Competitors and evaluation metric

We compare the proposed ARW with the following eight competitive methods.

– RWR [41]: This is the random walk with restart approach without active learning.
– LD [31]: Location diversity (LD) is a referring value for social strength between users.

It captures the intuition that two users who meet at more different places tend to possess
a higher probability of friendship than those meeting at fewer places.

– WF [31]: Weighted frequency (WF) is based on the assumption that users who meet at
popular places (such as train station and city center) are less likely to be friends since
these meeting events can be coincidences. The popularity of a location in WF is defined
by location entropy [10].

– EBM [31]: The EBM model combines LD and WF together with a linear regression
model. The output value is considered as the predicted social strength between users and
then treated as a measure for friendship prediction.

– EBM_AL: While the original EBM cannot consider active learning to adjust the acquain-
tance score, to have a fair comparison, we extend the EBMmodel to incorporate with the
concept of active learning, denoted by EBM_AL.We select the user pair with the highest
EBM score for labeling in active learning. Then, we adjust location entropy according
to the labeling feedback. The location entropy is the value between 0 and 1. Let Li, j be
the co-occurrence location list between query user i and user j selected by active learn-
ing. The location entropy of location l ∈ Li, j will be adjusted according to the labeling
feedback as follows:

Hl =
{
Hl

1
s , if user i is acquainted with j

Hl
s, if user i is not acquainted with j

(5)

The location entropy values of locations that acquaintances co-occur will be raised. On
the contrary, the location entropy of location co-occurred by non-acquaintances will be
lowered down.WF score will also be adjusted according to the update of location entropy
Hl . The updated range of location entropy can be changed by adjusting parameter s. We
set s = 2 in all experiments by default.
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– PGT [44]: Similar to EBM, the PGT model, which is the state-of-the-art method, also an
unsupervised method to estimate the acquaintance based on two users’ meeting events.
PGT models how two users correlate with each other from personal, global and temporal
perspectives, and outputs a score of friendship inference. Higher scores indicate higher
potential that two users are acquainted with one another.

– PGT_AL: We also extend PGT to have an active learning-based PGT, denoted by
PGT_AL. Similar to EBM_AL, the user pair with the highest PGT score will be selected
for labeling. After the selected node was labeled, the personal and global scores in PGT
will be updated to reflect the spatiosocial interactions between users. Let Li, j be the
co-occurrence location list between query user i and user j selected by active learning.
We adjust the probability for users i and j to visit location lk ∈ Li, j . The adjustment for
personal mobility is as follows:

ρ(i, lk) =
{

ρ(i, lk)
1
s , if user i is acquainted with j

ρ(i, lk)s, if user i is not acquainted with j
(6)

In addition, we also adjust the global mobility. The global mobility of PGT is location
entropy. Hence, we adjust the location entropy of location lk ∈ Li, j according to the
labeling feedback as follows:

g(lk) =
{
g(lk)

1
s , if user i is acquainted with j

g(lk)s, if user i is not acquainted with j
(7)

The concept of adjustment is like EBM_AL. The personal mobility and global mobility
will be raised when the labeling feedback is positive. On the contrary, the personal
mobility and global mobility will be lower down when the labeling feedback is negative.
The updated range of location entropy can be changed by adjusting parameter s. We set
s = 2 by default in all experiments.

– SRW [1]: Supervised random walk (SRW) is one of the state-of-the-art random walk-
based methods for link prediction. SRW combines the information from the network
structure with node-level and edge-level attributes. These attributes are used to guide the
random walker starting from a source node to surfer in the graph. Nodes with higher
probabilities to be reached are considered as the potential friends for the source node.
To implement SRW in our experiment, for each pair of users i and j , we consider five
essential features for the supervised learning part in SRW: (1) number of their meeting
events, (2) LD score, (3) WF score, (4) EBM score and (5) PGT score. Since SRW is
a supervised method, it needs labeled data for training. Therefore, we consider all of
the labeling outcomes (by active learning) as the training set. It can be noticed that the
training size is extremely small.

The evaluation metric used in our experiments is Precision@N, which estimates the
percentage of relevant instances among the top-N ones. Here we consider N is a small
number since investigators might concern more about those early reported. We empirically
set N = 10 at most in this work. Let Fi (N ) be the set of the top-N inferred acquaintances
for user i by a certain method, and F̂i be the set of user i’s ground-truth friends. The score

of Precision@N is defined as |Fi (N )∩F̂i |
N .
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Fig. 5 Performance comparison of different methods in Instagram data. a San Francisco, b London, c New
York

5.3 Experimental results

5.3.1 Comparison of inference methods

Wefirst present the performance of ourARW framework, comparing to the eight competitors.
The experiments are conducted in three cities on Instagram and twelve cities onMeetup. The
number of reported acquaintances N is varied from 1 to 10. Note that the candidate selection
strategy of our ARW in this experiment is Positive Informativeness Reward (IR+) by default.
We will discuss the effectiveness of different candidate selection strategies later.

Figure 5 presents the results in Instagram data. Figures 6 and 7 exhibit the results in
small-scale cities and large-scale cities, respectively, in Meetup data. Such results deliver the
following findings. First, it can be apparently observed that ARW significantly outperforms
all competitors. Though the precision score slowly decreases as N increases, ARW always
maintains a significant advantage over the competitors. Second, the conventional inference
approaches, i.e., PGT, EBM, LD, WF and RWR, result in worse performance, especially
in cities with large amounts of data (as shown in Fig. 7 and the sizes of cities are listed in
Table 2). It is reasonable since big cities possess much denser area in terms of people and
locations, which causes conventional social measures cannot well separate the acquaintances
from non-acquaintances based on their meeting events and geographical check-in activities.
When facing such challenge, by imposing the active learning strategy with only few labeling
actions, ARW can surprisingly lead to outstanding performance. This finding informs us that
the intervention by manual investigators can effectively bring social clues to guide the ARW
acquaintance search in the constructed heterogeneous graph.
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Fig. 6 Performance comparison of different methods in Meetup data. a Oxford, b Roma, c Melbourne, d
Paris

Third, to further understand whether active learning can work well on state-of-the-art
unsupervised acquaintance estimation methods (i.e., EBM and PGT), our evaluation also
reports the results of active learning-based EBM and PGT (i.e., EBM_AL and PGT_AL).
It can be found that the performance of EBM_AL and PGT_AL is truly better than EBM
and PGT, but the gaps are minor, comparing with the gaps between ARW and RWR. Such
result proves the effectiveness of the proposed techniques of candidate selection and graph
refinement in Sect. 4.3.

Fourth, we can see the performance of SRW is the worst one, even it produces the inferred
acquaintances in a supervised manner. The reason is supposed to that SRW needs sufficient
training data so that the random walks can be well guided in the graph. As active learning
essentially allows the only very limited number of labeling feedback, the worse training
destroys the performance. Moreover, we present the time efficiency (in s) of LD, WF, EBM,
PGT, EBM_AL, PGT_AL, SRW, RWR and our ARW. The results are shown in Fig. 8. Note
that the method of active learning version executes 20 rounds of active learning. We can find
that the running time of all methods except for SRW is less than 5s in Meetup data. In Insta-
gram data, the running time of ARW and SRW is larger than other methods. Due to the active
learning process, ARWneeds more time to execute the randomwalk mechanism. SRWneeds
much more time to train and execute random walks. As the city scale increases, however, the
running time of SRW grows exponentially. With worst performance and inefficient running
time, SRW can be considered as the most ineffective method. Therefore, we do not show the
results of SRW in Figs. 5 and 7, and the following experiments.

In addition, we not only hopeARWcan lead to the best performance, but also the execution
time per query must be acceptable. Therefore, we further report the execution time per query
(in s), alongwith Precision@10. The results are as shown in Fig. 9. Though the execution time
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Fig. 7 Performance comparison of different methods in Meetup data. a New Orleans, b Sydney, cMiami, d
Berkeley, e Cambridge, f London, g San Francisco, h New York

of RWR is about 13 times faster than that of ARW, the time cost of ARW is still acceptable.
As depicted in Fig. 9b, all execution time of ARW in Meetup data is less than 10s. However,
the execution time depends on the graph size. Larger graphs take much time. We can see that
the time of ARW in New York is around 17min in Instagram data, as shown in Fig. 9a.
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Fig. 8 The running time per query for all of the competitors. a Instagram, b Meetup
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Fig. 9 The execution time per query versus Precision@10. a Instagram, b Meetup
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Fig. 10 Performance of candidate selection strategies. a Instagram, bMeetup

5.3.2 Comparison of candidate selection strategies

In this section, we compare the performance of different candidate selection strategies
using our ARWmethod, i.e., Random (R), Uncertainty (U), Proximity (P), Positive Informa-
tiveness Reward (IR+) and Negative Informativeness Reward (IR−). We vary the number
of iterations in active learning (i.e., the labeling budget) from 1 to 20 and report the score
of the Precision@10, and the results are shown in Fig. 10. Note that the resulting precision
scores are obtained by averaging the scores over different cities in each dataset.
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(a) (b)

Fig. 11 Effect on different levels of acquaintance numbers by fixing Precision@N and N = 10. a Instagram,
b Meetup

It can be apparently found that the proposed IR+ and IR− strategies lead to the better
performance in both datasets as the active learning iteration increases. Detailed speaking,
IR+ works better on Instagram data, while IR− outperforms others in Meetup data. We
think such performance difference between IR+ and IR− results from the density (i.e.,
#Edges
#Nodes ) of the constructed heterogeneous graph. According to Table 2, the graph density
values of Instagram cities are much higher than those of Meetup cities. For graphs with
lower density (i.e., higher sparsity), ARW needs to be advised with more positive responses
so that the random surfer can have more knowledge about the positions of acquaintances in
graphs among the huge amount of non-acquaintances. If graphs are relatively dense, on the
contrary, negative responses are more useful since they can avoid ARWwalking toward non-
acquaintances, while acquaintances have higher proximity from the query node in essence.

5.3.3 Effects on the number of acquaintances

We evaluate how does the number of query user’s acquaintances affects the performance of
active learning-basedmethods, i.e.,ARW, PGT_AL andEBM_AL.By quantizing the number
of acquaintances of the query user into several levels, i.e., (≤ 26−1) and (≥ 26) in Instagram
data, while (≤ 25 − 1), (25 ∼ 27 − 1), (27 ∼ 29 − 1), and (≥ 29), we report the experimental
results in Fig. 11. The Precision@N (N = 10) for different levels of acquaintance numbers
is shown. For example, “29 ∼” in x-axis means all users whose numbers of acquaintances
are greater than 29 − 1. It is different from Figs. 5, 6 and 7. Their Precision@N scores are
calculated by all users in that city with different N values. Note that the resulting precision
scores are obtained by averaging the scores over different cities in each dataset.

Three findings can be learned from the results. First, the performance gets better as the
number of acquaintances increases. It is natural that users possessing more friends tend to
result in higher accuracy since more friends bring more evidences of acquaintance behaviors
for the query user. Second, no matter how the number of acquaintances is varied, our ARW
can outperform PGT_AL and EBM_AL. The advantage gap of ARW over the other methods
gets significant for the least acquaintance level. Such results demonstrate not only the stability
of ARW, but also its strength in discovering acquaintances even though the query user has
few friends. Being able to find acquaintances with less social clues would be very useful in
identifying the companions of a known terrorist in Homeland Security. Last, by comparing
the precision scores in Fig. 11a, b, we can find the performance on Instagram is worse than
that onMeetup. By taking ARW as an example, the former ranges from 0.1 to 0.45, while the
latter ranges from 0.35 to 0.95. We think such differences result from the fact that Meetup
has a stronger setting of acquaintance, while the acquaintances in Instagram are relatively
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Fig. 12 Effect of #user queried by active learning in Instagram data. a San Francisco, b London
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Fig. 13 Effect of #user queried by active learning in Meetup data. a Berkeley, b New Orleans

weak. In Instagram, two users with mutual followship are regarded as an acquaintance. But
in Meetup, two users are acquainted with each other only if they co-participate in a sufficient
number of online groups. Co-participation provides more evidences on acquaintances than
mutual followship since co-participation implies two users share common traits or attributes
in online groups, whilemutual followship deliver less potential in ensuring common interests.

5.3.4 Effects on different parameter settings

Effects on the Number of Users per Active Learning Round We also evaluate how does the
number of peoples asked by active learning affect the performance of ARW. The number of
total asked peoples is 20. Then, we set 1, 2, 5, 10 and 20 peoples to ask per each active learning
round. That is to say, active learning will execute (#total asked peoples / #peoples asked
per active learning round) times. The experimental results are shown in Figs. 12 and 13. The
experimental results exhibit that more times of active learning lead to the better performance.
ARW that inquires the label of one user per active learning round can generate the best
precision scores in different cities of both datasets. Such results reflect more fine-grained
active learning process can better learn the labels of acquaintances.

Effects of Restart Probability α We compare the performance of different values of restart
probability α under our ARW method. We set α = 0.15, 0.3, 0.45, 0.6, 0.75 and 0.9. The
experimental results are shown as in Figs. 14 and 15. We can find that there is no significant
difference between different α values. Though the proximity will be different when the restart
probability is different, the proximity-based ranking results of nodes will not be affected.
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Fig. 14 Effect of α in Instagram data. a San Francisco, b London
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Fig. 15 Effect of α in Meetup data. a Berkeley, b New Orleans

5.3.5 Analysis of labeling feedback

In general, one may think obtaining positive feedback can better benefit the active learning
so that the accuracy of a prediction task would get higher. To understand whether it is true in
acquaintance inference, we conduct the analysis of labeling feedback. We aim to report the
percentages of positive and negative labeling feedback acquired from our ARW. We choose to
present the results of Oxford, Paris andMiami inMeetup Data, and NewYork, San Francisco
and London in Instagram, while other cities exhibit similar trends.

Figure 16 shows the percentages of positive and negative labeling feedback. We can find
that the percentages of negative feedback are significantly less than positive ones, while
the results in Meetup tend to draw an opposite consequence (except for in Miami). Such
results correspond to the empirical studies of the effects of the acquaintance number and the
candidate selection strategies in previous two subsections. Specifically, first, the Instagram
data exhibit lower graph density. A large amount of non-acquaintances result in a higher
probability of labeling negative users get higher, comparing to Meetup data that possess a
relatively high graph density. Second, the formation of social acquaintance is weaker for
Instagram due to mutual followship than for Meetup resulting from co-participation. Weak
acquaintance would introduce more noises for the random walk mechanism and thus guide
ARW to arrive at nodes with negative feedback.
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Fig. 16 Percentage of positive and negative feedback. a Instagram, bMeetup

6 Conclusions and discussion

This paper proposed and solved the location-aware acquaintance inference (LAI) problem.
Wedevelop a semi-supervised inference frameworkARWto deliver three contributions. First,
it seamlessly integrates random walk with restart with active learning. Second, while ARW
is based on the heterogeneous information network, it can be applied to unsupervised node
ranking tasks by constructing the corresponding graphs. Finally, to implement the concept
of active learning, we devise five strategies to select the candidates to be labeled and two
refinement mechanisms that incorporate positive and negative labeling feedback. Empirical
studies conducted on Instagram and Meetup datasets show that ARW can significantly out-
perform state-of-the-art methods. The results also reveal that only a small number of budgets
for labeling can lead to a satisfying boost of performance.

Future extensions of ARW could involve incremental updating of RWR proximity scores
when some nodes and edges are removed from and added into a large-scale graph. In addition,
ARW can also be extended to the discovery of top-k nodes, instead of computing the scores
of all nodes, for the purpose of boosting the time efficiency. Some efficient algorithms can be
exploited to reduce the complexity to O(|V| + |E|) without sacrificing the accuracy, e.g., K-
dash [13]. Also, it would be interesting to select users whose labeling can directly maximize
the proximity scores of top users. Moreover, the performance of ARW can be boosted if we
can effectively learn the edge weights in the activity graph.
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