
NOTICE: This is the technical report:
Towards a Toolkit for Flexible and Efficient Verification under Fairness

The technical report titled:
Model Checking Linearizability via Refinement

has been re-located to http://www.comp.nus.edu.sg/˜pat/report.pdf

Towards a Toolkit for Flexible and Efficient Verification
under Fairness

Jun Sun1, Yang Liu1, Jin Song Dong1, and Jun Pang2

1 School of Computing, National University of Singapore,
{sunj,liuyang,dongjs}@comp.nus.edu.sg

2 Computer Science and Communications, University of Luxembourg,
jun.pang@uni.lu

Abstract. Recent development on distributed systems has shown that a variety
of fairness constraints (some of which are only recently defined) play vital roles in
designing self-stabilizing population protocols. Current practice of system anal-
ysis is, however, deficient under fairness constraints. In this work, we present
a Process Analysis Toolkit(PAT) for flexible and efficient system analysis under
fairness constraints. A unified algorithm is proposed to model check systems with
different fairness (e.g., weak fairness, strong local fairness, strong global fairness)
effectively. Partial order reduction which is effective for distributed system verifi-
cation is extended to fair systems whenever possible. We show through empirical
evaluation (on recent population protocols as well as benchmark systems) that
PAT significantly outperforms the current practice of verification with fairness.
We report that previously unknown bugs have been revealed using PAT against
systems functioning under strong global fairness.

1 Introduction

In the area of distributed system/software verification, liveness means something good
must eventually happen. For instance, a typical requirement for leader election pro-
tocols is that one and only one leader must be elected eventually in the network. A
counterexample to a liveness property (against a finite state system) is typically a loop
(or a deadlock state, which can be viewed as a trivial loop) during which the good thing
never occurs. For instance, the network nodes may repeatedly exchange a sequence of
messages and never elect a leader.

Fairness, which is concerned with a fair resolution of non-determinism, is often
necessary and important to prove liveness properties. Fairness is an abstraction of the
fair scheduler3 in a multi-threaded programming environment or the relative speed of
the processors in distributed systems. Without fairness, verification of liveness prop-
erties often produces unrealistic loops during which one process or event is infinitely
ignored by the scheduler or one processor is infinitely faster than others. It is important
to rule out those counterexamples and utilize the computational resource to identify the
real bugs. However, systematically ruling out counterexamples due to lack of fairness
is highly non-trivial. It requires flexible specification offairness as well as efficient
verification with fairness.

3 e.g., the random scheduler which is a strongly fair scheduler.

In this work, we focus on formal system analysis under fairness assumptions. The
objective is to deliver a toolkit which checks linear temporal logic (LTL) properties
against distributed systems which function under a varietyof fairness. Fairness and
model checking with fairness have attracted much theoretical interests for decades [14,
24, 34]. Their practical implications in system/software design and verification have
been discussed extensively. Recent development on distributed systems showed that
there are a family of fairness notions which are crucial for designing self-stabilizing
distributed algorithms [2, 3, 11, 5]. Some of the fairness notions are only recently for-
mulated [11]. In order to verify (implementations of) thosealgorithms, model checking
techniques must take fairness into account. However, current practice of formal verifi-
cation is deficient with respect to the variety of fairness.

Recently, the population protocol model has emerged as an elegant computation
paradigm for describing mobile ad hoc networks [2]. Such networks consist of multiple
mobile nodes which interact with each other to carry out a computation. Application do-
main of the protocols include wireless sensor networks and biological computers. The
interactions among the nodes are subject to fairness constraints. One essential property
of population protocols is that all nodes must eventually converge to the correct out-
put values (or configurations). A number of population protocols have been proposed
and studied [2, 3, 11, 5]. Fairness plays an important role inthe protocols. For instance,
in [11] it was shown that with the help of an eventual leader detector (see details in
Section 2), self-stabilizing algorithms can be developed to handle two natural classes
of network graphs: complete graphs and rings. The algorithmfor the complete graph
works understrong local fairness, whereas the algorithm for rings, only works under
strong global fairness. It has further been proved that with only strong local fairness
or weaker, uniform self-stabilizing leader election in rings is impossible [11]. Verify-
ing (implementations of) the algorithms thus must be carried out under the respective
fairness constraints.

Existing verification algorithms/tools are ineffective with respect to fairness. One
way to apply existing model checkers for verification under fairness constraints is to re-
formulate the property so that fairness constraints becomepremises of the property. A
liveness propertyφ is thus verified by showing the truth value of the following formula.

fairness assumptions ⇒ φ – F1

This practice is, though flexible, deficient for two reasons.Firstly, model checking
is PSPACE-complete in the size of the formula. In particular, automata-based model
checking relies on constructing a Büchi automaton from theLTL formula. The size of
the Büchi automaton is exponential to the size the formulas. Thus, it is infeasible to
handle large formulas, whereas a typical system may have multiple fairness constraints.
For example, SPIN is a popular LTL model checker [18]. The algorithm it uses for gen-
erating Büchi automata handles only a limited number of fairness constraints. Table 1
shows experiments on the time and space needed for SPIN to generate the automaton
from standard notion of fairness, in particular, justice and compassion conditions [21]
as explained later. The experiments are made on a 3.0GHz Pentium IV CPU and 1 GB
memory executing SPIN 4.3. The results show that it takes a non-trivial amount of time
to handle 5 fairness constraints.

Prop. n Time (Sec.) Memory #Büchi States
(
∧n

i=1 23pi)⇒23q 1 0.08 466Kb 74
same above 2 0.19 2Mb 286
same above 3 4.44 27MB 1052
same above 4 128.16 283Mb 3686
same above 5 more than 3600more than 1Gb −

(
∧n

i=1
(23pi ⇒23qi))⇒23s 1 0.13 487.268 134

same above 2 1.58 10123.484 1238
same above 3 30.04 55521.708 4850
same above 4 4689.24 more than 1Gb −

Table 1.Experiments on LTL to Büchi Automata Conversion

Secondly, partial order reduction which is one of the most successful reduction tech-
niques for model checking distributed systems becomes ineffective. Partial order re-
duction ignores/postpones invisible actions, whereas givenF1 all actions/propositions
presented infairness constraintsbecome visible and therefore cannot be ignored or
postponed. In [30], Panget alapplied the SPIN model checker [18] to establish the cor-
rectness of a family of population protocols. Only protocols relying on a weak notion
of fairness operating on very small networks were verified because of the problem dis-
cussed above. Protocols relying on stronger notion of fairness (e.g., strong local/global
fairness) are beyond the capability of SPIN even for the smallest network (e.g., with
2 nodes). It is important to develop an alternative approachwhich handle larger net-
works because real counterexamples may only be present in larger networks, as shown
in Section 5.

An alternative method is to design specialized verificationalgorithms which take
fairness into account while performing model checking. Nonetheless, the focus of ex-
isting model checkers has been on process-level fairness4, which, informally speaking,
states that every process shall make infinite progress if sufficiently possible (refer to
detailed explanation later). For instance, SPIN has implemented a model checking al-
gorithm which handles process-level weak fairness. The idea is to copy the global reach-
ability graphK + 2 times (forK processes) so as to give each process a fair chance to
progress. Process-level strong fairness is not supported because of its complexity. It has
been shown that process-level weak fairness may not be sufficient, e.g., for population
protocols.

In this work, we present aProcess Analysis Toolkit(PAT)5 which is designed to
verify system with fairness efficiently and flexibly. PAT supports different ways of
applying fairness. An ordinary user may choose one of the fairness constraints (e.g.,
process-level fairness, weak fairness, strong local/global fairness) and apply it to the
whole system. Or an advanced user may manually annotate different fairness with the
relevant actions/events. The latter approach is motivatedby population protocols and
open system verification. It can be used to benefit the currentmodel checking practice

4 Or weak/strong fairness on top of CTL properties.
5 Publicly available at http://pat.comp.nus.edu.sg.

in multiple ways. It is as flexible as encoding fairness in theproperty, only more effi-
cient. In particular, we show that partial order reduction,which is proved in-feasible for
verification under some fairness constraints, is feasible in such an approach. A unified
on-the-fly model checking algorithm which handles a varietyof fairness constraints is
then applied to verify the fair system efficiently. The algorithm extends previous work
on model checking based on finding strongly connected components. Using PAT, we
identifiedpreviously unknown bugsin the implementation of population protocols [11,
19]. For experiments, we compare the two different approaches and SPIN over recent
distributed algorithms as well as benchmark systems. We show that our approach han-
dles fairness more flexibly and efficiently.

This work is related to research on categorizing and verifying fairness in gen-
eral [14, 24, 11]. A rich set of fairness notions have been identified during the last
decades, e.g., weak or strong fairness by Lamport [24], justice or compassion condi-
tions by Pnueli [27] and strong global or local fairness recently by Fischer [11]. In this
paper, we examine various kinds of fairness and propose a flexible verification frame-
work which can be used to handle most of the fairness notions.In automata theory,
fairness/liveness is often captured using the notion of accepting states. For instance, at
least one accepting state must be visited infinitely often inBüchi automata. Our model
checking algorithm is related to previous works on emptiness checking for Büchi au-
tomata (i.e., automata with justice conditions) and Streett automata (i.e., automata with
compassion conditions) [21, 13, 26, 16]. In this work, we handle fairness constraints
which not only concerns with states but also actions/events. In a way, our algorithm
integrates the two algorithms presented in [21, 13] and improves them in a number of
aspects to suit our purpose. For instance, our unified algorithm is very flexible with re-
spect to different fairness. It is designed for automata-based explicit on-the-fly model
checking with partial order reduction in mind. In addition,Section 4 is related to our
previous work [34]. In [34], we annotate event-based process algebras with two kinds of
fairness, namely weak/strong event fairness. In this work,we significantly extend [34].
Instead of process algebras under event-based fairness, wehandle general programs
under a variety of fairness constraints. For instance, strong local/global fairness which
are very important for population protocols have been formulated and supported. The
main contribution of this work is the new flexible verification algorithm and the toolkit
which are designed to handle fairness efficiently. For instance, strong global fairness is
handled much more efficiently in this work. This work is also related to previous work
on CTL model checking with fairness, which too relies on identifying a fair strongly
connected component. For instance, the basic fixed-point computation algorithm for
the identification of fair executions was presented in [28] and independently developed
in [10] for fair CTL. Nonetheless, our algorithm is designedfor automata-based on-
the-fly model checking, with a variety of fairness includingthe recently emerged strong
global fairness. Different than the previous works [15, 22]on symbolic model checking
with fairness, our approach is designed for LTL model checking. This work is also re-
lated to the recent work on designing a strong fair schedulerfor concurrent programs
testing presented [29]. The fair scheduler presented [29] generates only partial fair ex-
ecutions, which works for testing but not formal verification. This work is remotely
related to our previous works on verifying concurrent systems [9, 8, 33].

The remainder of the article is organized as follows. Section 2 reviews a concrete
motivating example and our computational model, together with a family of different
fairness. Section 3 presents our first contribution, i.e., the unified algorithm for verifi-
cation under fairness. Section 4 discusses our second contribution, i.e., an alternative
way for specifying and verifying action-based systems withfairness. Section 5 presents
our third contribution, i.e., the PAT model checking system, and experiment results.
Section 6 concludes the paper.

2 Background

In this section, we start with introducing the PAT’s modeling language by modeling
a concrete motivating example and then present our computational model as well as
formal definitions of fairness. PAT supports a modeling language which mixes high-
level specification language features (e.g., deterministic or nondeterministic choice,
alphabetized parallel, interleaving, interrupt, etc.) with low-level programming lan-
guage features (arrays, while, if-then-else, etc.), so that the users are offered with great
expressiveness as well as flexibility. Compared to SPIN and Promela, PAT supports
more high-level compositional operators from classic process algebras [17] and sim-
ilar programming-level constructs. Refer to the PAT web site for details on its input
language.

2.1 Motivating Examples

Leader election is a fundamental problem in distributed systems. The problem is easily
solved with the help of a central coordinator. Nonetheless,there may not be a central
coordinator in domains like wireless sensor networks. Self-stabilizing algorithms do not
require initialization in order to operate correctly and can recover from transient faults
that obliterate all state information in the system. In [2, 19, 11], a number of algorithms
have been proposed for self-stabilizing leader election. In particular, a self-stabilizing
algorithm for ring networks is proposed [11]. This algorithm guarantees that one and
only one leader will be eventually elected, given any initial configuration. The algo-
rithm, however, only works under two assumptions. One is that the system satisfies
a rather strong fairness constraint called strong global fairness [11]. The other is that
there exists a leader detector whicheventuallydetects whether or not there is a leader
in the system. The detector is a diagnostic device which tests network nodes for certain
information. The detectoreventually(which is weaker thanimmediately) detects the
presence/absence of a leader. Figure 1 presents the PAT model of the algorithm. Line
1 defines a global constantN of value 3. It models the network size, i.e., number of
nodes. At line 2, a proposition namedexist is defined, which is the synonymy of the
Boolean formula. The proposition may be used in the model or the assertions. Line 3
to 4 defines the global variables. In particular,correct is an indicator which is of value
1 if and only if the leader detector has started detecting correctly. guess is a Boolean
flag representing the current diagnostic result of the detector, i.e.,true for presence of a
leader andfalsefor absence. Arrayleader , bullet andshield model the status of each
node. For instance, thei bit of leader [N] tells whether thei-th node is a leader or not.
Note that PAT has a weak type system.

1. #defineN 3;

2. #defineexist (correct == 0 && guess) || (correct ! = 0 && leader [0] + leader [1] + leader [2] > 0);

3. var correct = 0; var guess = false;

4. var leader [N]; var bullet [N]; var shield [N];

5. Node(i) = case{
6. !exist : rule1.i .(i + 1)%N {bullet [i] = 1; leader [i] = 1; shield [i] = 1; } → Node(i)

7. leader [i] == 0&&shield [i] == 1&&exist : rule2.i .(i + 1)%N {

8. leader [i] = 0; shield [i] = 0; bullet [(i + 1)%N] = 0; shield [(i + 1)%N] = 1;

9. } → Node(i)

10. leader [i] == 1 && shield [i] == 1 && exist : rule3.i .(i + 1)%N {

11. bullet [i] = 1; leader [i] = 1; shield [i] = 0; bullet [(i + 1)%N] = 0; shield [(i + 1)%N] = 1;

12. } → Node(i)

13. leader [i] == 1 && shield [i] == 0 && bullet [(i + 1)%N] == 0 && exist :

14. rule4.i .(i + 1)%N {bullet [i] = 1; leader [i] = 1; shield [i] = 0; bullet [(i + 1)%N] = 0; } → Node(i)

15. shield [i] == 0 && bullet [(i + 1)%N] == 1 && exist :

16. rule5.i .(i + 1)%N {bullet [i] = 1; leader [i] = 0; shield [i] = 0; bullet [(i + 1)%N] = 0; } → Node(i)

17. };

18. Detector() = oracle{correct = 1; } → Detector() []

19. guess1{guess = false; } → Detector() [] guess2{guess = true; } → Detector();

20. LeaderElection() = Init(); (Detector() ||| (||| x : 0..N − 1@Process(x)));

21. #defineoneLeader (leader [0] + leader [1] + leader [2] == 1);

22. #assertLeaderElection() |= <> []oneLeader ;

Fig. 1. Leader Election Protocol for Rings

Next, line 5 to 20 defines processes in the form of equations, which capture the
essence of the algorithm. In particular, line 5 to 17 defines processNode(i) which mod-
els the behaviors of a network node. Every time there is an interaction in the network,
the initiator and responder must update themselves according to a set of 5 pre-defined
rules, e.g., to become a leader if there is no leader (according to the leader detector),
to stop being a leader if both the initiator and the responderare leaders, etc. The rules
are specified using acaseconstruct. Intuitively, a rule is applicable only if the guarding
condition is satisfied. We skip the details of the rules and refer the readers to [11]. Line
18 and 19 define the leaderDetector , where[] is the choice operator borrowed from
the classic CSP [17]. The detector has three choices. It may be enlightened (line 18)
through the actionoracle and then detects correctly ever-after. Or, it may take a guess,
randomly stating that there is a leader or there is not (line 19). Notice thatoracle is
the action name and the assignmentcorrect = 1 is executed together with the action.
In general, an action may be attached with a sequential program (with loops, branches,
etc.). The program executes atomically. Equivalently,oracle can be viewed as a label
of the program (for easy referencing). We remark that there is no guarantee that the de-
tector will eventually detect correctly (e.g., the actionoracle may never happen) unless
fairness is applied.

Line 20 models the leader election algorithm as processLeaderElection. The algo-
rithm firstly invoked processInit , which initializes the system in every possible con-
figuration, e.g., each element in the arrays may be either assign 0 or 1. We omit the
details ofInit as it can be constructed straightforwardly using the choiceoperator[].
After initialization, the system is the interleaving (modeled by operator|||) of the leader
detector and all the network nodes.

The property of particular interest to all leader election algorithms is32oneLeader

(defined as an assertion at line 22), where3 and2 are modal operators which read as
“eventually” and “always” respectively.oneLeader (defined as line 21) is a proposition
which states that there is one and only one leader in the network. In PAT, we support
the state/event LTL [6]. The assertion is false under no fairness, process-level fairness,
weak fairness or strong local fairness. Counterexamples can be generated efficiently for
each of the cases using PAT. The assertion is true under strong global fairness, as proved
by PAT for bounded networks. However, verifying the original algorithm is only as use-
ful as confirming the theorem proved. In order to show that an implementation of the
algorithm (like the one in [19]) satisfies the property, it must be verified under strong
global fairness. To the best of our knowledge, PAT is the onlytool which is capable of
finding bugs in such a setting.

2.2 Models and Definitions

We present the approaches in the setting of labeled transition systems (LTS). Models in
PAT are interpreted as LTSs implicitly6. Let a be an action, which could be either an
abstract event (e.g., a synchronization barrier if shared by multiple processes) or a data
operation (e.g., a named sequential program). LetΣ be the set of all actions.

6 by defining a complete set of operational semantics.

Definition 1 (LTS). A Labeled Transition System is a 3-tuple(S , init ,→) whereS is
a set of states,init ∈ S is an initial state and→⊆ S × Σ × S is a labeled transition
relation.

For simplicity, we writes
a
→ s ′ to denote that(s , a, s ′) is a transition in→ ands → s ′

to denote that there exists somea such thats
a
→ s ′. enabled(s) is the set of enabled

actions ats , i.e.,a is in enabled(s) if and only if there exists ′ such thats
a
→ s ′. We

write a(s) to denote the set of states reachable froms by engaging ina. Let #a(s) be
the size of the set. Notice that#a(s) may be larger than 1 because of non-determinism.

Because our targets are nonterminating distributed systems, and fairness affects infi-
nite not finite system behaviors, we focus on infinite system executions in the following.
Finite behaviors are extended to infinite ones by appending infinite idling actions at the
rear. Given an LTSL = (S , init ,→), an execution is an infinite sequence of alternat-
ing states and actionsE = 〈s0, a0, s1, a1, · · ·〉 wheres0 = init and for alli such that
si

ai→ si+1. An LTS is feasible if and only if it has at least one execution. Without fair-
ness constraints, a system may behave freely as long as it starts with an initial state and
conforms to the transition relation. A fairness constraintrestricts the set of system be-
haviors to only those fair ones. In the following, we review avariety of different fairness
constraints and illustrates their differences using examples.

Definition 2 (Weak Fairness).Let an executionE be 〈s0, a0, s1, a1, · · ·〉. E satisfies
weak fairness, or is weak fair, if and only if for every actiona, if a eventually becomes
enabled forever inE , thena = ai for infinitely manyi , i.e., 32 a is enabled ⇒

23 a is engaged .

Weak fairness is initially suggested by Lamport in [24]. It states that if an action be-
comes enabled forever after some steps, then it must be engaged infinitely often. An
equivalent formulation is that every computation should contain infinitely many po-
sitions at whicha is disabled or has just been taken. The latter is known as justice
condition, suggested by Lehmann, Pnueli, and Stavi in [27].Intuitively, it means that an
enabled action shall not be ignored infinitely or equivalently some state must be visited
infinitely often (e.g., accepting states in Büchi automata). Given a propertyφ, verifica-
tion under weak fairness is to verify whether all weak fair executions satisfyφ. Weak
fairness or justice conditions has been well studied and verification under weak fairness
has been supported to some extent [18].

Given the LTS in Figure 2(a), the property23 a is true under weak fairness as-
sumption, whereas it is false under no fairness. Actiona is always enabled and, hence,
by definition it must be infinitely often engaged. Different than the related but differ-
ent process-level weak fairness (supported in SPIN), weak fairness is not related to the
system structure. Process-level weak fairness means that aprocess which is always en-
abled (to engage in some action) must eventually make a move.It guarantees that each
process is only finitely faster than the others. Assuming that one LTS corresponds to
one process (in Promela), verifying the same property against the LTS in Figure 2(a)
in SPIN using its fairness option, however, returns false. The reason is that the process
may make progress infinitely (by repeatedly engaging inb) without ever engaging in
actiona. Given the two LTSs in Figure 2(b),23 a is true under SPIN’s fairness be-
cause both processes must make infinite progress and therefore botha andb must be

(a) (b)

a b a b

Fig. 2. weak fair vs. process-level fair

b

a
c

Fig. 3. weak fair vs. strong local fair

engaged infinitely. This example reveals that SPIN’s fairness is associated with system
structure whereas the ones we focused on are not. In this work, we concentrate on fair-
ness notions which are structure independent. It can be shown that our approach can
handle process-level weak/strong fairness straightforwardly. Furthermore, by a simple
argument, it can be shown that weak fairness implies process-level weak fairness.

Definition 3 (Strong Local Fairness).Let an executionE be 〈s0, a0, s1, a1, · · ·〉. E

satisfies strong local fairness or is strong local fair if andonly if, for every actiona, if a

is infinitely often enabled, thena = ai for infinitely manyi , i.e.,23 a is enabled ⇒

23 a is engaged .

This notion of fairness has been identified by different researchers. In [25], it is named
strong fairnessby Lamport (by contrast to weak fairness defined above). In [11], it is
named strong local fairness by Fischer (in comparison to strong global fairness defined
below). It is also known ascompassioncondition, suggested by Pnueli [32]. Strong
local fairness states that if an action is infinitely often enabled, it must be infinitely often
engaged. This type of fairness is particularly useful in theanalysis of systems that use
semaphores, synchronous communication, and other specialcoordination primitives.
The process-level correspondence is process-level strongfairness which means that if a
process is repeatedly enabled, it must eventually make someprogress.

Strong local fairness is stronger than weak fairness (since32 a is enabled implies
23 a is enabled). Given the LTS in Figure 3, the property23 b is false under weak
fairness but true under strong local fairness. The reason isthatb is not always enabled
(i.e., it is disabled at the left state) and thus the system isallowed to always take the
c branch under weak fairness. It is infinitely often enabled, and thus, the system must
engage inb infinitely under strong local fairness by definition. Verification under strong
local fairness or compassion conditions has been discussedpreviously, e.g., in the set-
ting of Streett automata [13, 16], fair discrete systems [21] or programming codes [29].
Nonetheless, there are few established tool support for formal verification under strong
local fairness to the best of our knowledge [14].

Definition 4 (Strong Global Fairness).Let an executionE be 〈s0, a0, s1, a1, · · ·〉. E

satisfies strong global fairness or is strong global fair if and only if, for everys , a, s ′

such thats
a
→ s ′, if s = si for infinite manyi , thensi = s andai = a andsi+1 = s ′

for infinitely manyi .

Strong global fairness was suggested by Fischer and Jiang in[11]. It states that if astep
(from s to s ′ by engaging in actiona) can be taken infinitely often, then it must actually
be taken infinitely often7. Different than the above notions of fairness, strong global
fairness concerns about both actions and states, instead ofactions only. It can be shown
by a simple argument that strong global fairness is strongerthan strong local fairness.

Strong global fairness requires that an infinitely enabled action must be taken in-
finitely often in all contexts, whereas strong local fairness only requires the enabled
action to be taken inonecontext. Figure 4 illustrates the difference with two exam-
ples. Under strong local fairness, state 2 in Figure 4(a) maynever be visited because
all actions are engaged infinitely often if the left loop is taken infinitely. As a result,
property23 state 2 is false. Under strong global fairness, all states in Figure4(a)
must be visited infinitely often and therefore23 state 2 is true. Figure 4(b) illustrates
their difference when there are non-determinism. Both transitions labeleda must be
taken infinitely under strong global fairness, which is not necessary under strong local
fairness or weak fairness. Thus, property23 b is true under strong global fairness but
not weak fairness or strong local fairness. A number of population protocols reply on
strong global fairness, e.g., self-stabilizing leader election in ring networks [11] and
token circulation in rings [2]. As far as the authors know, there are no previous works
on verification under strong global fairness.

A number of other fairness notions have been discussed by various researchers, e.g.,
unconditional event fairness [23] which will be discussed in Section 4, hyper-fairness
which is of only theatrical interests as stated in [25] and weak local/global fairness
in [11]. We skip their definitions and remark that our approach can be extended to
handle other kinds of fairness.

3 Verification under Fairness

Verification under fairness is to examine only fair executions of a given system and
to decide whether certain property is true. Note that verifying whether a system is
fair or not is relatively straightforward. For instance, toverify whether a system is
weak fair with respect toa, we only need to verify the property32 a is enabled ⇒

23 a is engaged .
Given a propertyφ, model checking is all about searching for a counterexample.

In automata-based model checking, the negation ofφ is translated to an equivalent
Büchi automaton, which is then composed with the LTS representing the system for
analysis. There is a counterexample if and only if there exists an infinite execution
which is accepting to the Büchi automaton. Model checking with fairness is to search
for an infinite execution which is accepting to the Büchi automaton and at the same
time satisfies the fairness constraints. In the following, we present a unified algorithm
to verify whether a system is feasible under different fairness constraints. A system

7 This definition is slightly changed from [11] as so to suit thesetting of LTS. Nonetheless, both
capture the same intuition.

(a)

a

b

a

b
01 2

a

b
01 2

c

a
(b)

Fig. 4. strong local vs. strong global fair

is feasible if and only if there exists at least one infinite execution which satisfies the
fairness constraints. Applied to the product of the system and the Büchi automaton, the
algorithm can be easily extended to do model checking with fairness.

3.1 Feasibility Checking as Loop Searching

Without loss of generality, we assume that the systems contain only finite states. An
LTS L = (S , init ,→) contains a loop if and only if there exists a partial runE =
〈s0, a0, s1, a1, · · · , si , ai , · · · , sj−1, aj−1, sj 〉 such thats0 = init and for allk which
satisfies0 ≤ k < j such thatsk

ak→ sk+1 and si = sj . By a simple argument, it
can be shown that the system contains an infinite execution ifand only if there exists a
loop. To be feasible under certain fairness, the looping execution must satisfy additional
constraints. The proof of the following propositions are straightforward.

Proposition 1. An LTSL = (S , init ,→) is feasible under weak fairness assumption, if
and only if, there exists a loopE = 〈s0, a0, s1, a1, · · · , si , ai , · · · , sj−1, aj−1, sj 〉 which
satisfies the following: if actiona is enabled ateverystatesk wherei ≤ k < j , then
there existsam = a wherei < m < j .

The condition states that if an actiona is enabled ateverystate during the loop, then it
must be engaged during the loop. The proposition is easily proved by contradiction.

Proposition 2. An LTSL = (S , init ,→) is feasible under strong local fairness if and
only if there exists a loopE = 〈s0, a0, s1, a1, · · · , si , ai , · · · , sj−1, aj−1, sj 〉 which sat-
isfies the following: if actiona is enabled atsomestatesk wherei ≤ k < j , then there
existsam = a wherei < m < j .

The condition states that ifa is enabled atsomestate during the loop, then it must be
engaged during the loop. Otherwise,a is infinitely often enabled but never engaged.

Proposition 3. An LTSL = (S , init ,→) is feasible under strong global fairness, if
and only if, there exists a loopE = 〈s0, a0, s1, a1, · · · , si , ai , · · · , sj−1, aj−1, sj 〉 which
satisfies the following: if the stepsk

a
→ s ′ is enabled for somek such thati ≤ k < j ,

then there existsm which satisfiessm = sk , am = a and andsm+1 = s ′.

The condition states that if a step is enabled during the loop, the same step must be
taken during the loop.

In addition, a loop is fair with respect to process-level weak fairness (process-level
strong fairness) if and only if every process makes some progress during the loop if it

is always (sometimes) possible. Because of the propositions above, a system is feasi-
ble (with respect to certain fairness) if and only if there exists a loop which satisfies
the fairness. Feasibility checking is hence reduced to loopsearching. By a simple ar-
gument, it can be shown that a system is feasible if and only ifthere exists at least one
strongly connected subgraphin the state graph which satisfies the respective fairness
assumption. A strongly connected subgraph satisfies a fairness constraint if and only if
the loop which traverses through all states and transitionsof the subgraph satisfies the
fairness assumption.

3.2 Feasibility Checking Algorithm

There are two groups of methods for loop searching. One is based on nested depth-
first-search (DFS) and the other is based on identifying strongly connected components
(SCC). Nested DFS has been implemented in SPIN. The basic idea is to perform one
DFS first to reach a target state (i.e., an accepting state in the setting of Büchi automata)
and then perform second DFS from that state to check whether it is reachable from itself.
It has been shown the nested DFS works efficiently for model checking [18]. Nonethe-
less, it is not suitable for verification under fairness assumptions [18], as whether an
execution is fair depends on the whole path instead of one state. In recent years, model
checking based on SCC has been re-investigated and it has been shown that it yields
comparable performance [13]. In this work, we extend the existing SCC-based model
checking algorithms [13] to cope with fairness.

Figure 5 presents our generic algorithm for feasibility checking under fairness con-
straints. It is based on Tarjan’s algorithm for identifyingSCCs in linear time (in the
number of graph edges). It searches for fair strongly connected subgraph on-the-fly.
The basic idea is to identify one SCC at a time and then check whether it is fair or
not. If it is, the search is over. Otherwise, the SCC is partitioned into multiple smaller
strongly connected subgraphs, which are then checked recursively one by one.

Assume for now, we have a set of statesS and a set of transitionsT . At line 1, a
setvisited , which stores the set of visited states, is initialized to beempty. Inside the
main loop from line 1 to 13, at line 2 Tarjan’s algorithm (improved and implemented
as methodfindSCC (S ,T)) is used to identify one SCC withinS andT . IdentifyingS

andT for compositional systems or softwares requires reachability analysis. In order
to perform on-the-fly verification,findSCC is designed in such a way that if noS and
T are given, it will explore states and transitions on-the-flyuntil one SCC is identified.
We skip the details offindSCC as it largely resembles the algorithm presented in [13].

For instance, given the LTS presented in Figure 6, there are two SCCs, i.e., one
composed of state 1 only and the other composed of state 0, 2 and 3. The order in
which SCCs are found is irrelevant to the correctness of the algorithm. If state 2 is
explored before state 1, at line 2,scc states is the set of states in the SCC (i.e., state 0,
2 and 3).

At line 4, we markscc states as visited so that the SCC is not examined again.
The methodprune (at line 5) is used to prunebad statesfrom the SCC. Bad states
are the reasons why the SCC is not fair. For instance, given the LTS in Figure 6 and
the SCC composed of state 0, 2 and 3, state 0 (where the actiona is enabled) is a bad
state under strong local fairness because actiona is never engaged in the SCC (i.e., no

procedure feasible(S ,T)

0. visited = ∅;

1. while there are states not invisited – while there are still un-explored states
2. let scc states = findSCC (S ,T); – identify one SCC at a time
3. size = #scc states;

4. visited = visited ∪ scc states; – mark all states in the SCC visited
5. prune(scc states, T); – prune bad states
6. if size == #scc states; – if no state in the SCC is pruned
7. generate a feasible path;
8. return true; – a loop is found; the system is feasible
9. endif
10. if feasible(scc states, T) – recursively check
11. return true; – a fair SCC is found in the remaining
12. endif
13. endwhile
14. return false;

Fig. 5. feasibility checking algorithm

01 2 3
a

b c d
e f

c

Fig. 6. feasibility checking example

a-transition in the SCC). State 3 is a bad state under strong global fairness because the
step from state 3 to state 1 viac is not part of the SCC. The intuition behind the pruning
is that there may be a fair strongly connected subgraph in theremaining states after
eliminating the bad states. We highlight that by simply modifying theprune method,
the algorithm can be used to handles different fairness. Forinstance, Figure 7, 8 and 9
present the respectiveprune method for weak fairness, strong local fairness and strong
global fairness.

At line 1 in Figure 7, the set of actions which label some transition between two
states in the SCC is collected into setengaged . Line 2 to 5 collects all actions which are
enabled at every state in the SCC into setalwaysEnabled . If alwaysEnabled is not a
subset ofengaged (line 7), there exists some action which is always enabled but never
engaged and hence the SCC is not weak fair. If the SCC does not satisfy weak fairness,
its subgraphs do not either because the action is always enabled in any of its subgraphs.
All states are then pruned at line 7 if the SCC is not weak fair.Otherwise, no state is.
The pruning works differently for strong local fairness. Atline 4 of Figure 8, a state is
pruned if and only if there is an action enabled at this state but never engaged in the
SCC. By pruning the state, the action may be never enabled in the SCC and therefore

not required to be engaged. The pruning method for strong global fairness is presented
in Figure 9. At line 4 of Figure 9, all states are pruned if there is a transition from a state
in the SCC to a state not in the SCC. It can be shown that if an SCCis not strong global
fair, then its subgraphs are not either (since the subgraph must contain a step to a pruned
state and therefore can not be strong global fair). Following the idea, aprune method
for process-level weak/strong fairness can be easily defined. The time complexity of the
prune methods are linear in the number of edges.

If the SCC does satisfy the fairness assumption, no state is pruned and thus the size
of the SCC remains the same (line 6 of Figure 5). For instance,the maximum SCC
containing state 1 in Figure 6 is fair (with respects to any kind of fairness). In such a
case, a fair loop (which traverses all states/transitions in the SCC) is generated at line 7
and then we conclude true at line 8. We skip the details on generating the path in this
paper and remark that it could be a non-trivial task (refer to[21]). If some states have
been pruned, a recursive call is made to check whether there is a fair strongly connected
subgraph within the remaining states. The recursive call terminates in two ways. One is
that a fair subgraph is found (at line 8) and the other is all states are pruned (at line 14).
If the recursive call returns false, there is no fair subgraph and we continue with another
SCC until there is no state left.

Given the LTS in Figure 5, the path containing only state 1 is returned as a feasible
path. As discussed above, under strong local fairness, state 0 is pruned from the SCC
containing state 0, 2, and 3. After that the only remaining strongly connected subgraph
contains state 2 and 3, now state 3 wherec is enabled is considered as a bad state
becausec is not engaged in the subgraph. State 2 is then pruned for being a trivial
strongly connected subgraph.

In the worst case (i.e., the whole system is strongly connected and only one state is
pruned every time), a node may be visited at most#S times, where#S is the number
of system states. Thus, the time complexity is bounded by#S × #T where#T is
the number of transitions. We remark that the time complexity for verification with
no fairness, weak fairness and strong global fairness are similar, i.e., both linear in
#T since all states in one SCC are discarded all together in all cases. SPIN’s model
checking algorithm under process-level weak fairness increases the run-time expense
of a verification run by a factor that is linear in the number ofrunning processes. In
comparison, our algorithm is less expensive. Verification under strong local fairness is
in general expensive. However, our experience suggests that the worse case scenario
is rare in practice. Instead of the detailed complexity analysis8, we show its efficiency
using real systems in Section 5.

The algorithm is terminating because the number of visited states and pruned states
are monotonically increasing. It can be shown that methodprune is sound, i.e., if there
is a fair strongly connected subgraph in the given set of states, it remains in the pruned
set of states. This can be established by Proposition 1, 2 and3 (e.g., by contradiction).
The following theorem then proves the soundness of the algorithm.

Theorem 1. Given a fairness assumption, a finite-state system is feasible under the
fairness iff feasiblereturns true.

8 One way is to build a tree where each node is an SCC in the systemgraph and then give a
tighter bound in the height of the tree.

procedureprune(scc states, T)

1. let engaged = GetEngagedActs(scc state, T);

2. alwaysEnabled = Σ;

3. foreach s ∈ scc states

4. alwaysEnabled = alwaysEnabled ∩ enabled(s)

5. endeach
6. if alwaysEnabled 6⊆ engaged

7. scc states = ∅;

8. endif

Fig. 7.prune for weak fairness

procedureprune(scc states, T)

1. let engaged = GetEngagedActs(scc state, T);

2. foreach s ∈ scc states

3. if enabled(s) 6⊆ engaged

4. removes from scc states

5. endif
6. endeach

Fig. 8.prune for strong local fairness

Proof: As discussed above, the system is feasible if and only if there exists a
loop which satisfies the fairness assumption. Equivalently, there exists such a
loop if and only if there exists a strongly connected subgraph which satisfies
the fairness assumption. If there is such a graph and itself is an SCC, it must be
found (by the correctness of Tarjan’s algorithm and the correctness of method
prune) and the algorithm returns true and, the theorem holds. If itis contained
in one (and only one) SCC, by the correctness of methodprune, its states
are never pruned. As a result, it is identified when all other states in the SCC
are pruned or a fair strongly connected subgraph containingall its states is
identified. In either case, the algorithm returns true and the theorem holds. It
is straightforward to show that the algorithm only returns true when a strongly
connected subgraph which satisfies the fairness assumptionis found. Thus, the
theorem is true. 2

Based on the above theorem, the existing automata-based on-the-fly model checking
algorithm [18] can be extended straightforwardly to perform model checking under
fairness. Given an LTL formula, we negate it and translate itinto an equivalent Büchi
automaton using existing approaches [12]. We then compute on-the-fly the synchronous
product of the Büchi automaton and the system (in which the system and the automaton
must make a move simultaneously). The algorithm presented in Figure 5 is then used to
identify one fair strongly connected subgraph at a time. If afair subgraph is accepting

procedureprune(scc states, T)

1. foreach s ∈ scc states

2. foreach (s, a, s ′) such thats
a
→ s ′

3. if (s, a, s ′) is not a transition inscc
4. scc states = ∅;

5. return ;

6. endif
7. endeach
8. endeach

Fig. 9.prune for strong global fairness

to the Büchi automaton (by checking whether the subgraph contains an Büchi accepting
state), it means that the subgraph satisfies the fairness constraints and yet fails the LTL
property. Thus, we generate the feasible path as a counterexample. If no fair subgraph
is accepting, the property is true. We remarkun-fair loops which represents unrealistic
system executions are eliminated before checking whether they are accepting or not.

4 Action Annotated Fairness

In this section, we present an alternative (and more flexible) approach, which allows
users to associate fairness to only part of the systems or associate different parts with
different fairness constraints. The motivation is twofold.

Firstly, previous approaches treat every action or state equally, i.e., fairness is ap-
plied to every action/state. In verification practice, it may be that only certain actions
are meant to be fair. For instance, when verifying open systems, fairness/liveness as-
sumptions are often associated with input events from the environment as a way to
capture assumptions on the environment. Given the leader detector presented in Sec-
tion 2.1, if no fairness is applied, the actionoracle may never happen and thus violate
the requirement (i.e., eventually the detector detects correctly). If weak fairness or even
stronger fairness is applied,oracle, guess1 andguess2 all must occur infinitely often
since they are always enabled. This is clearly overwhelming. Our remedy is to allow
users to associate fairness constraints with individual actions. For instance, the even-
tual leader detector can be modeled as in Figure 10. The action oracle is annotated as
wf (oracle), which stands for weak fairness. It is used to capture the requirement that
oracle (if always enabled) must eventually occur. We remark thatguess1 andguess2
are not annotated because there are no such requirements. InPAT, a number of different
fairness constraints may be used to annotate actions. In thefollowing, we examine three
of them.

– Unconditional action fairness is written asf (a). An execution of the system is fair
if and only if a occurs infinitely often.

– Weak action fairness is written aswf (a). An execution of the system is fair if and
only if a occurs infinitely often given it is always enabled from some point on.

Detector() = wf(oracle){correct = 1; } → Detector()

[] guess1{guess = true; } → Detector()

[] guess2{guess = false; } → Detector()

Fig. 10.annotated leader detector

– Strong action fairness is written assf (a). An execution of the system is fair if and
only if a occurs infinitely often given it is enabled infinitely often.

Unconditional action fairness does not depend on whether the action is enabled or not,
and therefore, is stronger than weak/strong action fairness. It may be used to annotate
actions which are known to be periodically engaged. For instance, the following process
models a natural clock.

Clock() = f (tick){x = x + 1; } → Clock();

wherex is a discrete clock variable. By annotatingtick with unconditional fairness,
we require that the clock must progress infinitely and the system (in which the clock
and other components execute in parallel) disallows unrealistic timelock, i.e., execution
of infinite actions which takes finite time. Unconditional fairness (like other actions
annotations) can be used to mechanically reduce the size of the property. For instance,
given the property23 a ⇒ 23 b. We may mechanically annotatea in the model
with unconditional fairness and verify23 b instead. The semantics of weak (strong)
action fairness is similar to weak (strong local) fairness defined in Section 2.2 except
it is associated with individual actions (by contrast to allactions)9. Action annotated
fairness may be viewed as the dual image of accepting states in automata theory, e.g.,
same as only selected states are marked accepting, only selected actions are annotated.

The other motivation of action annotated fairness is that itmakes partial order re-
duction possible (to some extent) for model checking with strong local/global fairness.
The feasibility algorithm in Figure 5, an SCC-based explicit model checking algorithm,
undoubtedly suffers from state space explosion, especially when the whole system is
strongly connected. Partial order reduction is one of the most effective techniques to
tackle the problem, which sometimes works surprisingly well for distributed systems.
The idea behind partial order reduction is that actions may be independent of each other
and the ordering of their occurrences in an execution is irrelevant to the truth of certain
property. As a result, it might not be necessary to consider all enabled actions at a
given state, but only a certain subset which are independentof the rest. Thus, instead of
working with the full state graph, a reduced state graph is constructed.

For instance, assume that actiona andb are independent and the property to verify
is deadlock-freeness, it is sufficient to explore only one ofthe two outgoing transi-
tions at state 0 in the LTS of Figure 4(a). For classic model checking, a set of conditions
which the subset of enabled actions has to fulfill have been proposed to guarantee sound

9 Because strong global fairness concerns with both actions and states. No corresponding action
annotation is defined.

verification against ‘X’-free LTL formulas. Efficient heuristic algorithms which calcu-
lates an (over-)approximation of the subset are explored aswell [7]. One such heuristic
algorithm has been implemented in PAT.

However, the conditions and algorithms may not work for verification under fair-
ness. Following results proved in [4], it can be shown that partial order reduction is
applicable to verification under weak fairness. However, though every strong-local-fair
execution in the full state graph has an equivalent execution (up to re-ordering of in-
dependent actions) in the reduced state graph, it may not be strong-local-fair and thus
verification result over the reduced state graph may not be valid. Worse, with strong
global fairness the reduced state graph may not be feasible even if the full state graph
is. For instance, let the system be the LTS in Figure 4(a) and assumea andb are inde-
pendent. The reduced graph may only contain state 0 and 1, which is not feasible under
strong global fairness. In [31], it was suggested that by considering actions dependent to
each other if they can enable or disable each other, partial order reduction can be applied
to some extent for verification under fairness. Nonetheless, in previous approaches, be-
cause all actions must be considered, virtually all events become inter-dependent and
therefore no reduction is possible. In PAT, partial order reduction is disabled for model
checking under strong local/global fairness. Nonetheless, for systems with action anno-
tated fairness, it remains possible to apply partial order reduction to actions which are
irrelevant to the fairness annotations.

The algorithm presented in Figure 5 can be applied to check systems with action
annotated fairness with slight modification. The basic idearemains, i.e., finding a loop
which satisfies the fairness constraints. Only actions withfairness annotations are con-
sidered this time (by contrast to all actions). We remark that annotating all actions with
weak (strong) fairness is equivalent to associate weak (strong local) fairness with the
whole system. The methodfindSCC is modified to cope with partial order reduction,
following the heuristic function in [7]. In addition, we define an action to befairness
visible if it enables or disables an action annotated with fairness and require that if the
chosen set of actions are a strict subset of enabled actions,the subset must not contain
fairness visible actions. The intuition is that independent actions which are irrelevant to
the fairness constraints are subject to partial order reduction. Notice that this checking
has time complexity linear in the number of enabled actions.The soundness follows
from the discussion in [4, 31].

Algorithm prune is also modified to examine only the annotated actions. Figure 11
shows the modified algorithm. An SCC is fair with respect to the action annotated fair-
ness if and only if: all actions which are annotated with unconditional action fairness
are contained in the setengaged ; if an action is annotated with weak action fairness
and is enabled ateverystate in the SCC, then the action is contained inengaged ; and
if an action is annotated with strong action fairness and is enabled atsomestate in the
SCC, then the action is contained inengaged . If an SCC does not satisfy unconditional
or weak action fairness, it is abandoned all together (line 11). If a state enables an ac-
tion annotated with strong action fairness which is never engaged in the SCC, then it
is pruned (line 6 to 8). For instance, given the LTS in Figure 6, if actiona is annotated
with strong local fairness, then state 0 is a bad state. It is not if it is annotated with

procedureprune(scc states, T)

1. let engaged = GetEngagedActs(scc states, T);

2. let unconditional = {e | existsf (e)};

3. let weak = Σ;

4. foreach s ∈ scc states

5. weak = weak ∩ {e | wf (e) ∈ enabled(s)};

6. if {e | sf (e) ∈ enabled(s)} 6⊆ engaged

7. removes from sccstates;
8. endif
9. endeach
10. if unconditional 6⊆ engaged or weak 6⊆ engaged

11. scc states = ∅;

12. endif

Fig. 11.prune for action annotated fairness

no or weak fairness. By a similar argument (to the proof of Theorem 1), we show the
soundness of the algorithm.

5 Implementation and Experiments

PAT is designed for systematic validation of distributed systems using state-of-art model
checking techniques. It has three main components. Its mainfunctionalities include sim-
ulation, explicit on-the-fly model checking, and verification with fairness. The editor
features all standard text editing functionalities. The simulator allows users to interac-
tively drive the system execution. The model checker combines complementary model
checking techniques for system verification. Figure 12 shows the user interface of the
editor and the model checker.

5.1 Experiments on Population Protocols

In the following, we show its performance over both benchmark systems as well as re-
cently developed systems where fairness is required. All the models (with configurable
parameters) are embedded in the PAT package and available online at our web site
http://pat.comp.nus.edu.sg. Table 2 summarizes the verification statistics over recently
developed population protocols. Notice that−means either out of memory or more than
4 hours. The protocols include leader election for completenetworks (LE C) [11],
for rooted trees (LE T) [5], for odd sized rings (LE OR) [19], for network rings
(LE R) [11] and token circulation for network rings (TC R) [2]. Correctness of all
these algorithms relies on fairness. Notice that fairness is applied to the whole system
for simplicity. For soundness reasons, partial order reduction is applied for verification
under no or weak fairness, but not strong local fairness or strong global fairness.

As discussed in Section 2.2, process-level weak fairness (supported in SPIN) is dif-
ferent than weak fairness. In order to compare PAT with SPIN for verification with weak

Fig. 12.process analysis toolkit

fairness, we twist the models so that each action in population protocols is modeled as
a SPIN process. By a simple argument, it can be shown that for such models, weak
fairness is equivalent to process-level weak fairness. However, checking under process-
level weak fairness in SPIN increases the verification time by a factor that is linear in
the number of processes. By modeling each action as a process, we increase the number
of processes and therefore un-avoidably increase the SPIN verification time by a factor
that is constant (in the number of actions per process for network rings) or linear (in the
number of network nodes for complete network). SPIN has no support for strong local
or global fairness. Thus, the only way to do verification under strong local/global fair-
ness in SPIN is to encode the fairness constraints as part of the property. However, even
for the smallest network (with 3 nodes), SPIN needs significant amount of time con-
structing (very large) Büchi automata from the property. Therefore, we conclude that it
is infeasible to use SPIN for such a purpose and omit the experiment results from the ta-
ble. We remark that in theory, strong local fairness can be transformed to weak fairness
by paying the price of one Boolean variable [21]. Nonetheless, the property again needs
to be augmented with additional clauses after the translation, which is again infeasible.

We remark that fairness does play an important in these protocols. All of the algo-
rithms fail to satisfy the property without fairness. The algorithm for complete networks
(LE C) or trees (LE T) requires at least weak fairness, whereas the rest of the algo-
rithms require strong global fairness. It is thus importantto be able to verify systems
under strong local/global fairness. Notice that the token circulation algorithm for net-
work rings (TC R) functions correctly for a network of size 3 under weak fairness.
Nonetheless, weak fairness is not sufficient for a network wit more nodes, as shown in
the table. The reason is that a particular sequence of message exchange which satisfies

Model Property Size Weak Fair Strong Local Fair Strong Global Fair
Result PAT SPIN Result PAT SPINResult PAT SPIN

LE C 32oneleader 3 Yes 0.1 0.4 Yes 0.1 − Yes 0.2 −

LE C 32oneleader 4 Yes 0.8 4.3 Yes 0.9 − Yes 0.7 −

LE C 32oneleader 5 Yes 5.2 35.7 Yes 6.1 − Yes 4.9 −

LE C 32oneleader 6 Yes 31.6 229 Yes 38.2 − Yes 29.7 −

LE C 32oneleader 7 Yes 167.8 1190 Yes 199.5 − Yes 158.3 −

LE C 32oneleader 8 Yes 819.6 5720 Yes 863.4 − Yes 785.3 −

LE T 32oneleader 3 Yes 0.1 < 0.1 Yes 0.1 − Yes 0.1 −

LE T 32oneleader 5 Yes 0.3 0.7 Yes 0.3 − Yes 0.3 −

LE T 32oneleader 7 Yes 1.9 7.6 Yes 1.9 − Yes 1.8 −

LE T 32oneleader 9 Yes 13.3 62.3 Yes 13.5 − Yes 13.0 −

LE T 32oneleader 11 Yes 91.1 440 Yes 93.1 − Yes 88.7 −

LE T 32oneleader 13 Yes 688.1 3200 Yes 738.7 − Yes 671.4 −

LE OR 32oneleader 3 No 0.2 0.3 No 0.2 − Yes 17.7 −

LE OR 32oneleader 5 No 1.9 8.7 No 2.4 − − − −

LE OR 32oneleader 7 No 38.3 95 No 27.9 − − − −

LE R 32oneleader 3 No 0.2 < 0.1 No 0.2 − Yes 3.2 −

LE R 32oneleader 4 No 0.5 < 0.1 No 1.1 − Yes 51.4 −

LE R 32oneleader 5 No 1.3 < 0.1 No 4.6 − Yes 1359.0 −

LE R 32oneleader 6 No 0.5 0.2 No 2.2 − − − −

LE R 32oneleader 7 No 1.3 0.6 No 6.6 − − − −

LE R 32oneleader 8 No 3.3 1.7 No 19.2 − − − −

TC R 32onetoken 3 Yes 0.1 < 0.1 Yes 0.1 − Yes 0.1 −

TC R 32onetoken 5 No 0.1 < 0.1 No 0.1 − Yes 0.7 −

TC R 32onetoken 7 No 0.2 0.1 No 0.3 − Yes 18.9 −

TC R 32onetoken 9 No 0.5 0.2 No 0.5 − Yes 982.7 −

TC R 32onetoken 11 No 0.9 0.8 No 1.1 − − − −

TC R 32onetoken 13 No 1.7 1.6 No 2.2 − − − −

Table 2.population protocols experiments: with Core 2 CPU 6600 at 2.40GHz and 2GB RAM

the weak fairness constraint only needs the participation of at least 4 network nodes.
This suggests that our improvement in terms of the performance and ability to handle
different forms of fairness has its practical values. We highlight that previously un-
known bugs in implementation of the leader election algorithms for odd-sized ring [19]
have been revealed using PAT (see next section).

A few conclusions can be drawn from the results in the table. Firstly, in the presence
of counterexamples, PAT usually finds one quickly (e.g.,LE R andTC R under weak
fairness or strong local fairness). It takes longer to find a counterexample forLE OR

mainly because there are too many possible initial configurations of the system (exactly
25∗N whereN is network size) and a counterexample is only present for particular ini-
tial configurations. Secondly, verification with strong local fairness is more expensive
than verification with no fair, weak fairness or strong global fairness. This conforms to
theoretical time complexity analysis. The worse case scenario is absent from these ex-
amples (e.g., there are easily millions of transitions/states in many of the experiments).

Lastly, PAT outperforms the current practice of verification under fairness. PAT offers
comparably better performance on verification with weak fairness (e.g.,LE C and
LE T) and makes it feasible to verify with strong local/gloabl fairness. This allowed
us to discover bugs in systems functioning with strong fairness. Experiments onLE C

andLE T (for which the property is true under any fairness) show minor computa-
tional overhead for handling a stronger fairness.

5.2 Bug Report

In this section, we study the leader election protocol in oriented odd rings in detail and
report the bug that has been discovered for the first time. Thefollowing description
is taken from [19, 2]. Supposing each node has alabel bit, a maximal sequence of
alternating labels is called a segment. According to the orientation of the ring, the head
and tail of a segment can be defined in a natural way. One edge ofthe form(0, 0) or
(1, 1) connecting the tail of one segment to the head of another segment is called a
barrier edge. For a nodeu in a ring, it has four state components:leader [u] states
whether the node is a leader,label [u] is its label,probe[u] is 1 if u holds a probe
token, andphase[u] alternates between 0 and 1 to make each barrier alternate between
firing a probe and moving forward. The protocol consists of several parts. In the basic
part, the barriers move clockwise around the ring. Each barrier advances by flipping
the label bit of the second node on the barrier (the head of thenext segment). When
two barriers collide, they cancel out each other. Because the ring size is odd, there
is always at least one barrier. In the rest of the protocol, the leader bullet and probe
marks are manipulated. Probes are sent out by the barrier in aclockwise direction and
absorbed by any leader they run into. If a probe meets the barrier on its way back, it
is converted to leader. Leaders firebulletscounter-clockwise around the ring. Bullets
are absorbed by the barrier, but they kill any leaders they encounter along the way.
More detailed discussion of the protocol is referred to [19,2]. The description of an
interaction between an initiatoru and a responderv in the protocol (taken from [19],
p.66) is presented as follows:

Leader election protocol for odd rings.

if label [u] = label [v] then
if probe[u] = 1 then leader [u]← 1; probe[u] ← 0 endif
bullet [v]← 0
if phase[u] = 0 then phase[u]← 1; probe[v]← 1
elseif probe[v] = 0 then

label [v] = ¬label [v]; phase[v]← 0
endif

elseif leader [v] = 1 then
if bullet [v] = 1 then leader [v]← 0
else bullet [u]← 1 endif

else
if bullet [v] = 1 then bullet [v]← 0; bullet [u]← 1 endif
if probe[u] = 1 then probe[u]← 0; probe[v] ← 1 endif

endif

The protocol is modeled in PAT. We have totally eleven (act1.u.v up toact11.u.v)
case splits according to the protocol description. For example, the condition of the ac-
tionact1.u.v collects the conditions at the first, second and fourth line in the description
and the updates of variables at the second, third, and fourthline, correspondingly. The
initialization of the model is taken care of at line 17, it captures any possible evaluations
of the variables. Line 9 defines how nodes interact in an oriented ring. Line 20 defines
a predicate that there is one leader in the network. Line 21 claims that the protocol
eventually self-stabilize to a unique leader existing in the network.

Counterexample.We have analyzed this protocol in PAT, and found one counterexam-
ple. We consider a ring of size three, nodes are numbered as 0,1 and 2. The counterex-
ample found by PAT can be described as follows: it is an infinite execution containing
a loop,u is the node for the initiator andv for the responder of one interaction accord-
ing to the protocol description. The execution can start with a configurationbullet =
[1, 1, 1], label = [1, 1, 1], leader = [1, 1, 0], phase = [1, 1, 1], probe = [1, 1, 0].

1. sincelabel [2] = label [0], probe[2] = 0, phase[2] = 1 andprobe[0] = 1, we have
bullet [0]← 0. (u = 2 andv = 0)

2. sincelabel [0] = label [1], probe[0] = 1, phase[0] = 1 andprobe[1] = 1, we have
leader [0]← 1, probe[0]← 0, andbullet [1]← 0. (u = 0 andv = 1)

3. sincelabel [2] = label [0], probe[2] = 0, phase[2] = 1 andprobe[0] = 0, we have
bullet [0]← 0, label [0]← 1− label [0], andphase[0]← 0. (u = 2 andv = 0)

4. sincelabel [1] = label [2], probe[1] = 1, phase[1] = 1 and probe[2] = 0, we
haveleader [1] ← 1, probe[1] ← 0, bullet [2] ← 0, label [2] ← 1 − label [2] and
phase[2]← 0. (u = 1 andv = 2)

5. sincelabel [2] = label [0], probe[2] = 0 andphase[2] = 0, we havebullet [0] ← 0,
phase[2]← 1 andprobe[0]← 1. (u = 2 andv = 0)

Now, we have reached a configuration withbullet = [0, 0, 0], label = [0, 1, 0], leader =
[1, 1, 0], phase = [0, 1, 1], probe = [1, 0, 0].10 From here, we have a loop. Within this
loop, all actions enabled at reachable configurations of theloop are executed. But these
configurations contain more than two leaders. Hence, this infinite execution is global
fair but not self-stabilizing for leader election. The loopis given below.

1. sincelabel [2] = label [0], probe[2] = 0, phase[2] = 1 andprobe[0] = 1, we have
bullet [0]← 0. (u = 2 andv = 0)

2. sincelabel [0]! = label [1], leader [1] = 1 andbullet [1] = 0, we havebullet [0]← 1.
(u = 0 andv = 1)

3. sincelabel [0]! = label [1], leader [1] = 1 andbullet [1] = 0, we havebullet [0] =←
1. (u = 0 andv = 1)

4. sincelabel [2] = label [0], probe[2] = 0, phase[2] = 1 andprobe[0] = 1, we have
bullet [0] =← 0. (u = 2 andv = 0)

10 As the protocol is self-stabilizing, the counterexample can start directly from here. We keep
the first part just to faithly represent the infinite trace found by PAT.

Model Property Result Fairness PAT SPIN
dp(10) 23eat0 No no < 0.1 < 0.1
dp(13) 23eat0 No no 0.1 < 0.1
dp(15) 23eat0 No no 0.1 < 0.1
dp(10) 23eat0 No strong global fairness (whole system)< 0.1 −

dp(13) 23eat0 No strong global fairness (whole system)0.1 −

dp(15) 23eat0 No strong global fairness (whole system)0.1 −

ms(10) 23work0 Yes strong local fairness (whole system)11.4 −

ms(12) 23work0 Yes strong local fairness (whole system)132.2 −

ms(100) 23work0 Yes strong local fairness (annotations) 5.5 −

ms(200) 23work0 Yes strong local fairness (annotations)27.4 −

peterson(3)bounded bypassYes weak fairness (whole system) 0.1 1.25
peterson(4)bounded bypassYes weak fairness (whole system) 2.4 > 671
peterson(5)bounded bypassYes weak fairness (whole system) 112.6 −

Table 3.experiment results on benchmarks

The last step in the loop leads us back to the starting configuration of the loop. We have
communicated this counterexample to the author of [19], it is confirmed as a valid coun-
terexample which has escaped simulations of the protocol [20]. The reason to the coun-
terexample is the following [20]. In the explanation of the protocol, it says that “probes
are sent out by the barrier in a clockwise direction and absorbed by any leader they run
into”. The second half of the sentence is missing from the pseudo code description. The
protocol also requires consistent ordering of the positionof tokens within each node (in
the order of leader, bullet, and probe clockwise). A barrieredge should only generate
a probe at the responder if the responder is not a leader. Otherwise, the probe would
be able to pass the leader token. In the description, this property is not preserved ei-
ther. Modifications of the description have been made in [2].We also model the revised
version of the protocol, and find no counterexample. By this case study, we emphasize
that without the newly developed model checking algorithm for efficient verification
under (global) fairness, it is impossible to find such an error in a pseudo code descrip-
tion of a population protocol, especially when a protocol tends to be intuitively more
complicated.

5.3 Experiments on Benchmark Systems

Table 3 shows verification statistics of benchmark systems to show other aspects of
PAT. Because of the deadlock state, the dining philosophersmodel (dp(N) for N

philosophers and forks) does not guarantee that a philosopher always eventually eats
(23eat0) whether with no fairness or strong global fairness. This experiment shows
PAT takes little extra time for handling the fairness assumption. We remark that PAT
may spend more time than SPIN identifying a counterexample.The reason is both due
to the particular order of exploration and the difference between model checking based
on nested depth-first-search and model checking based on identifying SCCs. PAT’s al-
gorithm relies on identifying SCCs. If a large portion of thesystem is strongly con-

nected, it takes time to construct the SCC before testing whether it is fair or not. In
this example, the whole system contains one large SCC and a few trivial ones including
the deadlock state. If PAT happens to start with the large one, the verification may take
considerably more time. Milner’s cyclic scheduler algorithm (ms(N) for N processes)
is a showcase for the effectiveness of partial order reduction. We apply fairness in two
different ways, i.e., one applying strong local fairness tothe whole system and the other
applying only to inter-process communications. In the latter case, partial order reduc-
tion allows us to prove the property over a much larger numberof processes (e.g., 200 vs
12). Peterson’s mutual exclusive algorithm (peterson(N)) requires process-level weak
fairness to guarantee bounded by-pass [1], i.e., if a process requests to enter the criti-
cal section, it eventually will. The property is verified under weak fairness in PAT and
process-level weak fairness in SPIN, with modifying the model. PAT outperforms SPIN
in this setting as well.

6 Conclusion

The contribution of the paper is threefold. Firstly, we improved and unified SCC-based
model checking algorithms to handle a variety of fairness constraints. In particular, we
studied how to perform model checking effectively with strong global fairness, which
has never been studied in the model checking community. Secondly, two different ways
of applying fairness have been investigated and supported,namely, one applying fair-
ness to the whole system and the other applying fairness to only the relevant actions.
Both approaches have been motivated by practical reasons. Thirdly, we significantly
extend PAT (started as a testbed for [34]) to be a reliable efficient environment for
verification with or without fairness. PAT has been applied to a variety of distributed
systems and previously-unknown flaws have been identified.

We are actively developing PAT. One future work of particular interest is to inves-
tigate refinement with fairness constraints. The motivations are that refinement under
a fair scheduler or in a distributed system is rather different and interesting. For in-
stance, trace refinement with weak fairness prevents removing a transition which is
always enabled and trace refinement under strong global fairness prevents removing a
nondeterministic choice. The consequence of a fair scheduler over program refinement
is worth investigating. Another future work is to identify develop efficient algorithms
for refinement checking with fairness. Other possible future works include investigating
how to handle infinite data states, migrating the algorithmsto a general software model
checker, etc.

Acknowledgements

We thank Michael Fischer and Jiang Hong for the discussion onfairness and leader
election protocols, and Deng Yu Xin for his comments on an early version of the article.
This work is partially supported by the research project “Sensor Networks Specification
and Validation” (R-252-000-320-112) funded by Ministry ofEducation, Singapore.

References

1. K. Alagarsamy. Some Myths About Famous Mutual Exclusion Algorithms. SIGACT News,
34(3):94–103, 2003.

2. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing Population Protocols.
In Proceedings of the 9th International Conference on Principles of Distributed Systems
(OPODIS 2005), volume 3974 ofLecture Notes in Computer Science, pages 103–117, 2005.

3. D. Angluin, M. J. Fischer, and H. Jiang. Stabilizing Consensus in Mobile Networks. InPro-
ceedings of the 2006 International Conference on Distributed Computing in Sensor Systems
(DCOSS’06), volume 4026 ofLecture Notes in Computer Science, pages 37–50, 2006.

4. L. Brim, I. Cerná, P. Moravec, and J. Simsa. On Combining Partial Order Reduction with
Fairness Assumptions. InProceedings of the 11th International Workshop Formal Methods:
Applications and Technology (FMICS 2006), volume 4346 ofLecture Notes in Computer
Science, pages 84–99, 2006.

5. D. Canepa and M. Potop-Butucaru. Stabilizing Token Schemes for Population Protocols.
Computing Research Repository (CoRR), abs/0806.3471, 2008.

6. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-Based Soft-
ware Model Checking. InProceedings of the 4th International Conference on Integrated
Formal Methods (IFM 2004), pages 128–147, 2004.

7. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, 2000.
8. J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning Method for Timed CSP Based on

Constraint Solving. InProceedings of the 8th International Conference on Formal Engi-
neering Methods (ICFEM 2006), volume 4260 ofLecture Notes in Computer Science, pages
342–359. Springer, 2006.

9. J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification of Computation Orchestration Via
Timed Automata. InProceedings of the 8th International Conference on Formal Engineering
Methods (ICFEM 2006), volume 4260 ofLecture Notes in Computer Science, pages 226–
245. Springer, 2006.

10. E. A. Emerson and C.-L. Lei. Modalities for Model Checking: Branching Time Logic Strikes
back.Science of Computer Programming, 8(3):275–306, 1987.

11. M. J. Fischer and H. Jiang. Self-stabilizing Leader Election in Networks of Finite-state
Anonymous Agents. InProceedings of the 10th International Conference on Principles of
Distributed Systems (OPODIS 2006), volume 4305 ofLecture Notes in Computer Science,
pages 395–409. Springer, 2006.

12. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In Proc. of the 13th
Inter. Conf. on Computer Aided Verification (CAV 2001), pages 53–65. Springer, 2001.

13. J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification with Tarjan’s algo-
rithm. Theoritical Computer Science, 345(1):60–82, 2005.

14. D. Giannakopoulou, J. Magee, and J. Kramer. Checking Progress with Action Priority: Is it
Fair? InProceedings of the 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE 1999), volume 1687 ofLecture Notes in Computer Science, pages 511–
527, 1999.

15. R. H. Hardin, R. P. Kurshan, S. K. Shukla, and M. Y. Vardi. ANew Heuristic for Bad Cycle
Detection Using BDDs.Formal Methods in System Design, 18(2):131–140, 2001.

16. M. R. Henzinger and J. A. Telle. Faster Algorithms for theNonemptiness of Streett Automata
and for Communication Protocol Pruning. InProceedings of the 5th Scandinavian Workshop
on Algorithm Theory (SWAT 1996), pages 16–27, 1996.

17. C. A. R. Hoare.Communicating Sequential Processes. International Series on Computer
Science. Prentice-Hall, 1985.

18. G. J. Holzmann.The SPIN Model Checker: Primer and Reference Manual. Addison Wesley,
2003.

19. H. Jiang. Distributed Systems of Simple Interacting Agents. PhD thesis, Yale University,
2007.

20. H. Jiang. Personal communications, 2008.
21. Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model Checking with Strong Fairness.Formal

Methods and System Design, 28(1):57–84, 2006.
22. N. Klarlund. An n log n Algorithm for Online BDD Refinement. In Proceedings of the

9th International Conference on Computer Aided Verification (CAV’97), pages 107–118.
Springer-Verlag, 1997.

23. M. Z. Kwiatkowska. Event Fairness and Non-interleavingConcurrency.Formal Aspects of
Computing, 1(3):213–228, 1989.

24. L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE Transactions on
Software Engineering, 3(2):125–143, 1977.

25. L. Lamport. Fairness and Hyperfairness.Distributed Computing, 13(4):239–245, 2000.
26. T. Latvala and K. Heljanko. Coping with Strong Fairness.Fundamenta Informaticae, 43(1–

4):175–193, 2000.
27. D. J. Lehmann, A. Pnueli, and J. Stavi. Impartiality, Justice and Fairness: The Ethics of

Concurrent Termination. InProceedings of the 8th Colloquium on Automata, Languages
and Programming (ICALP 1981), volume 115 ofLecture Notes in Computer Science, pages
264–277, 1981.

28. O. Lichtenstein and A. Pnueli. Checking That Finite State Concurrent Programs Satisfy
Their Linear Specification. InProceedings of the 12th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL’85), pages 97–107. ACM, 1985.

29. M. Musuvathi and S. Qadeer. Fair Stateless Model Checking. In Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design andImplementation (PLDI
2008), pages 362–371. ACM, 2008.

30. J. Pang, Z. Q. Luo, and Y. X. Deng. On Automatic Verification of Self-stabilizing Popula-
tion Protocols. InProceedings of the Second IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE 2008), pages 185–192. IEEE, 2008.

31. D. Peled. All from One, One for All: on Model Checking Using Representatives. InPro-
ceedings of the 5th International Conference on Computer Aided Verification (CAV 1993),
volume 697 ofLecture Notes in Computer Science, pages 409–423, 1993.

32. A. Pnueli and Y. Sa’ar. All You Need Is Compassion. InProceedings of the Ninth Inter-
national Conference on Verification, Model Checking and Abstract Interpretation (VMCAI
2008), volume 4905 ofLecture Notes in Computer Science, pages 233–247, 2008.

33. J. Sun, Y. Liu, and J. S. Dong. Model checking csp revisited: Introducing a process analysis
toolkit. In Proceedings of the Third International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2008), volume 17 ofCommunications
in Computer and Information Science, pages 307–322. Springer, 2008.

34. J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Specifying and verifying event-based fairness
enhanced systems. InProceedings of the 10th International Conference on FormalEngi-
neering Methods (ICFEM 2008), volume 5256 ofLecture Notes in Computer Science, pages
318–337. Springer, Oct 2008.

