NOTICE: This is the technical report:
Towards a Toolkit for Flexible and Efficient Verification wndrairness

The technical report titled:

Model Checking Linearizability via Refinement
has been re-located to http://www.comp.nus.edu.sgrfgpetrt. pdf

Towards a Toolkit for Flexible and Efficient Verification
under Fairness

Jun Sud, Yang Liu', Jin Song Dong, and Jun Parfg

1 School of Computing, National University of Singapore,
{sunj, i uyang, dongj s}@onp. nus. edu. sg
2 Computer Science and Communications, University of Luxaumd,
jun. pang@mni .l u

Abstract. Recent development on distributed systems has shown tratetyw
of fairness constraints (some of which are only recentlyngefj play vital roles in
designing self-stabilizing population protocols. Cutrpractice of system anal-
ysis is, however, deficient under fairness constraintshis work, we present
a Process Analysis Toolk{PAT) for flexible and efficient system analysis under
fairness constraints. A unified algorithm is proposed to ehotleck systems with
different fairness (e.g., weak fairness, strong locahfesss, strong global fairness)
effectively. Partial order reduction which is effective listributed system verifi-
cation is extended to fair systems whenever possible. We girough empirical
evaluation (on recent population protocols as well as beack systems) that
PAT significantly outperforms the current practice of veation with fairness.
We report that previously unknown bugs have been revealied) (AT against
systems functioning under strong global fairness.

1 Introduction

In the area of distributed system/software verificatiorediess means something good
must eventually happen. For instance, a typical requirérfmerieader election pro-
tocols is that one and only one leader must be elected evbninahe network. A
counterexample to a liveness property (against a finite statem) is typically a loop
(or a deadlock state, which can be viewed as a trivial loopndwvhich the good thing
never occurs. For instance, the network nodes may repgaechange a sequence of
messages and never elect a leader.

Fairness, which is concerned with a fair resolution of netedminism, is often
necessary and important to prove liveness propertiesmaéssris an abstraction of the
fair schedulet in a multi-threaded programming environment or the retasipeed of
the processors in distributed systems. Without fairnessfisation of liveness prop-
erties often produces unrealistic loops during which oree@ss or event is infinitely
ignored by the scheduler or one processor is infinitely fabtn others. It is important
to rule out those counterexamples and utilize the compmurtatresource to identify the
real bugs. However, systematically ruling out countergxasdue to lack of fairness
is highly non-trivial. It requires flexible specification édirness as well as efficient
verification with fairness.

% e.g., the random scheduler which is a strongly fair schedule

In this work, we focus on formal system analysis under fasn@ssumptions. The
objective is to deliver a toolkit which checks linear temgdogic (LTL) properties
against distributed systems which function under a varigtfairness. Fairness and
model checking with fairness have attracted much theailatiterests for decades [14,
24, 34]. Their practical implications in system/softwamesigin and verification have
been discussed extensively. Recent development on distdlsystems showed that
there are a family of fairness notions which are crucial fesigning self-stabilizing
distributed algorithms [2, 3,11, 5]. Some of the fairnessams are only recently for-
mulated [11]. In order to verify (implementations of) th@dgorithms, model checking
techniques must take fairness into account. However, supractice of formal verifi-
cation is deficient with respect to the variety of fairness.

Recently, the population protocol model has emerged asegael computation
paradigm for describing mobile ad hoc networks [2]. Suclvoets consist of multiple
mobile nodes which interact with each other to carry out apatation. Application do-
main of the protocols include wireless sensor networks anlddical computers. The
interactions among the nodes are subject to fairness aimtstrOne essential property
of population protocols is that all nodes must eventuallgyvesge to the correct out-
put values (or configurations). A number of population pcote have been proposed
and studied [2, 3,11, 5]. Fairness plays an important roteérprotocols. For instance,
in [11] it was shown that with the help of an eventual leadded®r (see details in
Section 2), self-stabilizing algorithms can be developgetiandle two natural classes
of network graphs: complete graphs and rings. The algorfdmthe complete graph
works understrong local fairnesswhereas the algorithm for rings, only works under
strong global fairnesslt has further been proved that with only strong local fags
or weaker, uniform self-stabilizing leader election ing#nis impossible [11]. Verify-
ing (implementations of) the algorithms thus must be cdroet under the respective
fairness constraints.

Existing verification algorithms/tools are ineffectivetiwirespect to fairness. One
way to apply existing model checkers for verification undémfess constraints is to re-
formulate the property so that fairness constraints bequemises of the property. A
liveness property is thus verified by showing the truth value of the followingrfala.

fairness assumptions = ¢ -F1

This practice is, though flexible, deficient for two reasorisstly, model checking
is PSPACE-complete in the size of the formula. In partigudatomata-based model
checking relies on constructing a Biichi automaton fromLifle formula. The size of
the Buchi automaton is exponential to the size the formulasis, it is infeasible to
handle large formulas, whereas a typical system may haveégaieuflairness constraints.
For example, SPIN is a popular LTL model checker [18]. Th@atgm it uses for gen-
erating Buchi automata handles only a limited number ahfss constraints. Table 1
shows experiments on the time and space needed for SPIN évajerthe automaton
from standard notion of fairness, in particular, justicel @ompassion conditions [21]
as explained later. The experiments are made on a 3.0GHmPeiM CPU and 1 GB
memory executing SPIN 4.3. The results show that it takesarigal amount of time
to handle 5 fairness constraints.

Prop. n| Time (Sec.) Memory |#BUchi States
AL, OCp) = 0O¢ 1 0.08 466Kb 74
same above 2 0.19 2Mb 286
same above 3 4.44 27MB 1052
same above 4 128.16 283Mb 3686
same above 5/more than 3600nore than 1Gp -
A, (OCpi = 00q) = O0s|1 0.13 487.268 134
same above 2 1.58 10123.484 1238
same above 3 30.04 55521.708 4850
same above 4 4689.24 |more than 1Gp -

Table 1. Experiments on LTL to Bichi Automata Conversion

Secondly, partial order reduction which is one of the mosteasful reduction tech-
niques for model checking distributed systems becomeseictefe. Partial order re-
duction ignores/postpones invisible actions, whereasrghil all actions/propositions
presented irfairness constraintbecome visible and therefore cannot be ignored or
postponed. In [30], Pangt alapplied the SPIN model checker [18] to establish the cor-
rectness of a family of population protocols. Only prot@calying on a weak notion
of fairness operating on very small networks were verifiechlnse of the problem dis-
cussed above. Protocols relying on stronger notion oféasre.g., strong local/global
fairness) are beyond the capability of SPIN even for the estahetwork (e.g., with
2 nodes). It is important to develop an alternative approslsith handle larger net-
works because real counterexamples may only be presemgar laectworks, as shown
in Section 5.

An alternative method is to design specialized verificatgorithms which take
fairness into account while performing model checking. dlbeless, the focus of ex-
isting model checkers has been on process-level faitpebich, informally speaking,
states that every process shall make infinite progress ficgrftly possible (refer to
detailed explanation later). For instance, SPIN has implged a model checking al-
gorithm which handles process-level weak fairness. Theigl copy the global reach-
ability graphK + 2 times (for K processes) so as to give each process a fair chance to
progress. Process-level strong fairness is not suppoetealise of its complexity. It has
been shown that process-level weak fairness may not beisaffie.g., for population
protocols.

In this work, we present rocess Analysis Toolk{iPAT)®> which is designed to
verify system with fairness efficiently and flexibly. PAT quts different ways of
applying fairness. An ordinary user may choose one of thadas constraints (e.g.,
process-level fairness, weak fairness, strong local&jlérness) and apply it to the
whole system. Or an advanced user may manually annotagatifffairness with the
relevant actions/events. The latter approach is motivayegopulation protocols and
open system verification. It can be used to benefit the cumenel checking practice

4 Or weak/strong fairness on top of CTL properties.
5 Publicly available at http://pat.comp.nus.edu.sg.

in multiple ways. It is as flexible as encoding fairness in pneperty, only more effi-
cient. In particular, we show that partial order reductiwhich is proved in-feasible for
verification under some fairness constraints, is feasiblich an approach. A unified
on-the-fly model checking algorithm which handles a varatfairness constraints is
then applied to verify the fair system efficiently. The altfun extends previous work
on model checking based on finding strongly connected coemienUsing PAT, we
identifiedpreviously unknown bugs the implementation of population protocols [11,
19]. For experiments, we compare the two different apprese@mnd SPIN over recent
distributed algorithms as well as benchmark systems. We ¢iat our approach han-
dles fairness more flexibly and efficiently.

This work is related to research on categorizing and verifyfairness in gen-
eral [14,24,11]. A rich set of fairness notions have beemtified during the last
decades, e.g., weak or strong fairness by Lamport [24]icpistr compassion condi-
tions by Pnueli [27] and strong global or local fairness relyeby Fischer [11]. In this
paper, we examine various kinds of fairness and propose ial#eserification frame-
work which can be used to handle most of the fairness notionautomata theory,
fairness/liveness is often captured using the notion oépiicg states. For instance, at
least one accepting state must be visited infinitely ofteBiinhi automata. Our model
checking algorithm is related to previous works on empsraeecking for Bichi au-
tomata (i.e., automata with justice conditions) and Stigibmata (i.e., automata with
compassion conditions) [21, 13, 26, 16]. In this work, we diarfairness constraints
which not only concerns with states but also actions/evénta way, our algorithm
integrates the two algorithms presented in [21, 13] and avgs them in a number of
aspects to suit our purpose. For instance, our unified algoiis very flexible with re-
spect to different fairness. It is designed for automatsedaexplicit on-the-fly model
checking with partial order reduction in mind. In additi®ection 4 is related to our
previous work [34]. In [34], we annotate event-based preadgebras with two kinds of
fairness, namely weak/strong event fairness. In this wweksignificantly extend [34].
Instead of process algebras under event-based fairnedsamede general programs
under a variety of fairness constraints. For instancengttocal/global fairness which
are very important for population protocols have been fdated and supported. The
main contribution of this work is the new flexible verificatialgorithm and the toolkit
which are designed to handle fairness efficiently. For mstastrong global fairness is
handled much more efficiently in this work. This work is alstated to previous work
on CTL model checking with fairness, which too relies on iifging a fair strongly
connected component. For instance, the basic fixed-pompatation algorithm for
the identification of fair executions was presented in [28] mdependently developed
in [10] for fair CTL. Nonetheless, our algorithm is desigrfed automata-based on-
the-fly model checking, with a variety of fairness includthg recently emerged strong
global fairness. Different than the previous works [15,@2kymbolic model checking
with fairness, our approach is designed for LTL model chegkirhis work is also re-
lated to the recent work on designing a strong fair schedateconcurrent programs
testing presented [29]. The fair scheduler presented [@0¢rates only partial fair ex-
ecutions, which works for testing but not formal verificatiarhis work is remotely
related to our previous works on verifying concurrent syst¢9, 8, 33].

The remainder of the article is organized as follows. Secgeviews a concrete
motivating example and our computational model, togeth#r @& family of different
fairness. Section 3 presents our first contribution, ike,unified algorithm for verifi-
cation under fairness. Section 4 discusses our secondlmaiun, i.e., an alternative
way for specifying and verifying action-based systems fatmess. Section 5 presents
our third contribution, i.e., the PAT model checking systemd experiment results.
Section 6 concludes the paper.

2 Background

In this section, we start with introducing the PAT’s modglilanguage by modeling

a concrete motivating example and then present our conipoghimodel as well as

formal definitions of fairness. PAT supports a modeling laage which mixes high-

level specification language features (e.g., determintstinondeterministic choice,

alphabetized parallel, interleaving, interrupt, etc.yhmiow-level programming lan-

guage features (arrays, while, if-then-else, etc.), sothieausers are offered with great
expressiveness as well as flexibility. Compared to SPIN awthBla, PAT supports

more high-level compositional operators from classic pescalgebras [17] and sim-
ilar programming-level constructs. Refer to the PAT wele $ir details on its input

language.

2.1 Motivating Examples

Leader election is a fundamental problem in distributedesys. The problem is easily
solved with the help of a central coordinator. Nonetheldss,e may not be a central
coordinator in domains like wireless sensor networks -Stlbilizing algorithms do not
require initialization in order to operate correctly and ecacover from transient faults
that obliterate all state information in the system. In ,11], a number of algorithms
have been proposed for self-stabilizing leader electiomarticular, a self-stabilizing
algorithm for ring networks is proposed [11]. This algonittyuarantees that one and
only one leader will be eventually elected, given any ihiti@nfiguration. The algo-
rithm, however, only works under two assumptions. One i$ tha system satisfies
a rather strong fairness constraint called strong globaidas [11]. The other is that
there exists a leader detector whigbentuallydetects whether or not there is a leader
in the system. The detector is a diagnostic device whick testivork nodes for certain
information. The detectoeventually(which is weaker thaimmediately detects the
presence/absence of a leader. Figure 1 presents the PAT ofdble algorithm. Line

1 defines a global constait of value 3. It models the network size, i.e., number of
nodes. At line 2, a proposition namedist is defined, which is the synonymy of the
Boolean formula. The proposition may be used in the modehermssertions. Line 3
to 4 defines the global variables. In particularyrect is an indicator which is of value
1 if and only if the leader detector has started detectingectly. guess is a Boolean
flag representing the current diagnostic result of the deteice.,true for presence of a
leader andalsefor absence. Arrayeader, bullet andshield model the status of each
node. For instance, thiebit of leader|N] tells whether the-th node is a leader or not.
Note that PAT has a weak type system.

1. #defineN 3;

2. #defineexist (correct == 0 && guess) || (correct! = 0 && leader[0] + leader[1] + leader[2] > 0);

3. var correct = 0; var guess = false;

4. var leader|N]; var bullet[N]; var shield[NJ;

5. Node(i) = case{

6. lezist : rulel.i.(i + 1)%N{bullet[i] = 1; leader[i] = 1; shield[i] = 1; } — Node(%)

7. leader[i] == 0&&shield[i] == 1&&exist : rule2.i.(i + 1)%N{

8. leader[i] = 0; shield[i] = 0; bullet[(i + 1)%N] = 0; shield[(i + 1)%N] = 1;

9. } — Node(i)

10. leader[i] == 1 && shield[i] == 1 && ewist : rule3.i.(i + 1)%N{

11. bullet[i] = 1; leader[i] = 1; shield[i] = 0; bullet[(i + 1)%N] = 0; shield[(i + 1)%N] = 1;

12. } — Node(1)

13. leader[i] == 1 && shield[i] == 0 && bullet[(i + 1)%N] == 0 && ezist :

14. ruled.i.(i + 1)%N {bullet[i] = 1; leader[i] = 1; shield[i] = 0; bullet[(i +1)%N] =0; } — Node(i)
15. shield[i] == 0 && bullet[(i + 1)%N] == 1 && ezist :

16. rule5.i.(1 + 1)% N{bullet[i] = 1; leader[i] = 0; shield[i] = 0; bullet[(i + 1)%N] = 0; } — Node(i)
17. };

18. Detector() = oracle{correct = 1; } — Detector() ||

19. guess1{guess = false; } — Detector() [| guess2{guess = true; } — Detector();

20. LeaderElection() = Init(); (Detector() ||| (||| z : 0..N — 1@Process(z)));

21. #defineoneLeader (leader[0] + leader([1] + leader[2] == 1);
22. #assertLeaderElection() |= <> [JoneLeader;

Fig. 1. Leader Election Protocol for Rings

Next, line 5 to 20 defines processes in the form of equatiohézhwcapture the
essence of the algorithm. In particular, line 5 to 17 defimesg@ssNVode (i) which mod-
els the behaviors of a network node. Every time there is arawtion in the network,
the initiator and responder must update themselves acaptdia set of 5 pre-defined
rules, e.g., to become a leader if there is no leader (acuptdi the leader detector),
to stop being a leader if both the initiator and the respoadeteaders, etc. The rules
are specified using@aseconstruct. Intuitively, a rule is applicable only if the gdang
condition is satisfied. We skip the details of the rules arfierrine readers to [11]. Line
18 and 19 define the leadéretector, where[] is the choice operator borrowed from
the classic CSP [17]. The detector has three choices. It rmagnbghtened (line 18)
through the actiomracle and then detects correctly ever-after. Or, it may take agues
randomly stating that there is a leader or there is not (li@e Motice thatoracle is
the action name and the assignmemtrect = 1 is executed together with the action.
In general, an action may be attached with a sequential @gno@with loops, branches,
etc.). The program executes atomically. Equivalentlycle can be viewed as a label
of the program (for easy referencing). We remark that threnmiguarantee that the de-
tector will eventually detect correctly (e.g., the actioacle may never happen) unless
fairness is applied.

Line 20 models the leader election algorithm as prodesgerFlection. The algo-
rithm firstly invoked processnit, which initializes the system in every possible con-
figuration, e.g., each element in the arrays may be eithégraSsor 1. We omit the
details of Init as it can be constructed straightforwardly using the choperator(].
After initialization, the system is the interleaving (mdelbby operatotf||) of the leader
detector and all the network nodes.

The property of particular interest to all leader electityoathms is¢> JoneLeader
(defined as an assertion at line 22), whéreand[] are modal operators which read as
“eventually” and “always” respectivelyneLeader (defined as line 21) is a proposition
which states that there is one and only one leader in the metWwoPAT, we support
the state/event LTL [6]. The assertion is false under nméss, process-level fairness,
weak fairness or strong local fairness. Counterexamplebe@enerated efficiently for
each of the cases using PAT. The assertion is true undegsgtobal fairness, as proved
by PAT for bounded networks. However, verifying the oridialgorithm is only as use-
ful as confirming the theorem proved. In order to show thataplémentation of the
algorithm (like the one in [19]) satisfies the property, itshbe verified under strong
global fairness. To the best of our knowledge, PAT is the ¢mdy which is capable of
finding bugs in such a setting.

2.2 Models and Definitions

We present the approaches in the setting of labeled transjistems (LTS). Models in
PAT are interpreted as LTSs impliciflyLet a be an action, which could be either an
abstract event (e.g., a synchronization barrier if shayembltiple processes) or a data
operation (e.g., a named sequential program)JLée the set of all actions.

8 by defining a complete set of operational semantics.

Definition 1 (LTS). A Labeled Transition System is a 3-tule init, —) whereS is
a set of statesinit € S is an initial state and—C S x X x S is a labeled transition
relation.

For simplicity, we writes % s’ to denote thats, a, s’) is a transition in— ands — s’
to denote that there exists somesuch thats % s’. enabled(s) is the set of enabled
actions ats, i.e., a is in enabled(s) if and only if there exist’ such thats % s’. We
write a(s) to denote the set of states reachable froby engaging inu. Let#a(s) be
the size of the set. Notice th#ta(s) may be larger than 1 because of non-determinism.
Because our targets are nonterminating distributed systama fairness affects infi-
nite not finite system behaviors, we focus on infinite systeetetions in the following.
Finite behaviors are extended to infinite ones by appendiigte idling actions at the
rear. Given an LTS, = (S, init, —), an execution is an infinite sequence of alternat-
ing states and actions = (s, ao, s1, a1, - - -) wheresy = init and for alli such that
5 = si+1- An LTS is feasible if and only if it has at least one executifithout fair-
ness constraints, a system may behave freely as long agstwtth an initial state and
conforms to the transition relation. A fairness constradstricts the set of system be-
haviors to only those fair ones. In the following, we revievaaiety of different fairness
constraints and illustrates their differences using eXamp

Definition 2 (Weak Fairness).Let an executiorEl be (sy, ag, s1, a1, - -). E satisfies
weak fairness, or is weak fair, if and only if for every actignf a eventually becomes
enabled forever inF, thena = q; for infinitely manyi, i.e., &0 a is enabled =
0 a is engaged.

Weak fairness is initially suggested by Lamport in [24].tHtes that if an action be-
comes enabled forever after some steps, then it must be etgafinitely often. An
equivalent formulation is that every computation shouldtam infinitely many po-
sitions at whicha is disabled or has just been taken. The latter is known aggust
condition, suggested by Lehmann, Pnueli, and Stavi in |2jitively, it means that an
enabled action shall not be ignored infinitely or equivdiesdme state must be visited
infinitely often (e.g., accepting states in Buchi autorpha®dven a propertys, verifica-
tion under weak fairness is to verify whether all weak faieextions satisfy). Weak
fairness or justice conditions has been well studied anification under weak fairness
has been supported to some extent [18].

Given the LTS in Figure 2(a), the propenty> a is true under weak fairness as-
sumption, whereas it is false under no fairness. Actias always enabled and, hence,
by definition it must be infinitely often engaged. Differehaih the related but differ-
ent process-level weak fairness (supported in SPIN), waiakefss is not related to the
system structure. Process-level weak fairness means ghatass which is always en-
abled (to engage in some action) must eventually make a ritaygarantees that each
process is only finitely faster than the others. Assuming din@ LTS corresponds to
one process (in Promela), verifying the same property ag#ie LTS in Figure 2(a)
in SPIN using its fairness option, however, returns faldee fieason is that the process
may make progress infinitely (by repeatedly engaging)imithout ever engaging in
actiona. Given the two LTSs in Figure 2(b;1< a is true under SPIN's fairness be-
cause both processes must make infinite progress and treebeftha and b must be

Low G0 O

(@)

Fig. 2. weak fair vs. process-level fair

b

30

Fig. 3. weak fair vs. strong local fair

engaged infinitely. This example reveals that SPIN’s faisnie associated with system
structure whereas the ones we focused on are not. In this werkoncentrate on fair-

ness notions which are structure independent. It can berstiwat our approach can
handle process-level weak/strong fairness straightfiatiyaFurthermore, by a simple

argument, it can be shown that weak fairness implies preesstweak fairness.

Definition 3 (Strong Local Fairness).Let an executiort be (so, ag, s1, a1,). E
satisfies strong local fairness or is strong local fair if aoily if, for every actioru, if a
is infinitely often enabled, them = q; for infinitely manyi, i.e., (1< a is enabled =
O a is engaged.

This notion of fairness has been identified by different aecleers. In [25], it is named
strong fairnesdy Lamport (by contrast to weak fairness defined above). 14, [iL is
named strong local fairness by Fischer (in comparison tmgtglobal fairness defined
below). It is also known asompassiorcondition, suggested by Pnueli [32]. Strong
local fairness states that if an action is infinitely oftealglled, it must be infinitely often
engaged. This type of fairness is particularly useful inahalysis of systems that use
semaphores, synchronous communication, and other spe@adination primitives.
The process-level correspondence is process-level staimngss which means that if a
process is repeatedly enabled, it must eventually make pooggess.

Strong local fairness is stronger than weak fairness (S{pcea is enabled implies
< a is enabled). Given the LTS in Figure 3, the propenty<$> b is false under weak
fairness but true under strong local fairness. The reasthai® is not always enabled
(i.e., it is disabled at the left state) and thus the systeaill@sved to always take the
¢ branch under weak fairness. It is infinitely often enableud thus, the system must
engage in infinitely under strong local fairness by definition. Verétmon under strong
local fairness or compassion conditions has been discysseiusly, e.g., in the set-
ting of Streett automata [13, 16], fair discrete system$ 2 programming codes [29].
Nonetheless, there are few established tool support fardbverification under strong
local fairness to the best of our knowledge [14].

Definition 4 (Strong Global Fairness).Let an executiorE be (sy, ag, $1, a1,). F
satisfies strong global fairness or is strong global fair ifdaonly if, for everys, a, s’

such thats % s, if s = s, for infinite manyi, thens; = s anda; = e ands;; = s’
for infinitely manys.

Strong global fairness was suggested by Fischer and Jidag]Jirit states that if atep
(from s to s’ by engaging in action) can be taken infinitely often, then it must actually
be taken infinitely ofteh Different than the above notions of fairness, strong dloba
fairness concerns about both actions and states, insteatiafis only. It can be shown
by a simple argument that strong global fairness is strotigar strong local fairness.

Strong global fairness requires that an infinitely enablettba must be taken in-
finitely often inall contexts, whereas strong local fairness only requires tiabled
action to be taken imne context. Figure 4 illustrates the difference with two exam-
ples. Under strong local fairness, state 2 in Figure 4(a) never be visited because
all actions are engaged infinitely often if the left loop i&da infinitely. As a result,
property[1< state 2 is false. Under strong global fairness, all states in Figl(ad
must be visited infinitely often and therefdrg> state 2 is true. Figure 4(b) illustrates
their difference when there are non-determinism. Bothsitamms labeled: must be
taken infinitely under strong global fairness, which is net@ssary under strong local
fairness or weak fairness. Thus, property> b is true under strong global fairness but
not weak fairness or strong local fairness. A number of pafah protocols reply on
strong global fairness, e.g., self-stabilizing leadeci® in ring networks [11] and
token circulation in rings [2]. As far as the authors knoverhare no previous works
on verification under strong global fairness.

A number of other fairness notions have been discussed musnesearchers, e.g.,
unconditional event fairness [23] which will be discusse®ection 4, hyper-fairness
which is of only theatrical interests as stated in [25] anakviocal/global fairness
in [11]. We skip their definitions and remark that our appioaan be extended to
handle other kinds of fairness.

3 Verification under Fairness

Verification under fairness is to examine only fair execusi@f a given system and
to decide whether certain property is true. Note that vargywhether a system is
fair or not is relatively straightforward. For instance, @terify whether a system is
weak fair with respect ta, we only need to verify the propertg O a is enabled =
O<C a is engaged.

Given a propertyy, model checking is all about searching for a counterexample
In automata-based model checking, the negatiop @ translated to an equivalent
Buichi automaton, which is then composed with the LTS reprtsg the system for
analysis. There is a counterexample if and only if theretexas infinite execution
which is accepting to the Biichi automaton. Model checkitittp fairness is to search
for an infinite execution which is accepting to the Buchicamaton and at the same
time satisfies the fairness constraints. In the following,present a unified algorithm
to verify whether a system is feasible under different fags constraints. A system

" This definition is slightly changed from [11] as so to suit fegting of LTS. Nonetheless, both
capture the same intuition.

@) (®)
Fig. 4. strong local vs. strong global fair

is feasible if and only if there exists at least one infinite@xion which satisfies the
fairness constraints. Applied to the product of the systaththe Biichi automaton, the
algorithm can be easily extended to do model checking withdas.

3.1 Feasibility Checking as Loop Searching

Without loss of generality, we assume that the systems contdy finite states. An
LTS L = (S, init,—) contains a loop if and only if there exists a partial rBn=
(S0, G0, 81, Q15+, Siy Giy -5 8—1, Gj—1, ;) such thatsy = indgt and for allk which
satisfies) < k < j such thats, 2% s, ands; = sj. By a simple argument, it
can be shown that the system contains an infinite executemdfonly if there exists a
loop. To be feasible under certain fairness, the loopingeten must satisfy additional
constraints. The proof of the following propositions amaigthtforward.

Proposition 1. AnLTSL = (S, init, —) is feasible under weak fairness assumption, if
and only if, there exists a loop = (sy, ao, $1, a1, -, Si; @iy -+ -, Sj—1, G;—1, §;) Which
satisfies the following: if actiom is enabled akverystates, wherei < k < j, then
there existsy,,, = a wherei < m < j.

The condition states that if an actianis enabled agéverystate during the loop, then it
must be engaged during the loop. The proposition is easilygat by contradiction.

Proposition 2. An LTSL = (., init, —) is feasible under strong local fairness if and
only if there exists a loof = (so, ag, s1, a1, -, Si, @i, - -, Sj—1, aj—1, 5;) Which sat-
isfies the following: if actior is enabled asomestates;, wherei < k < j, then there
existsa,, = a wherei < m < j.

The condition states that if is enabled asomestate during the loop, then it must be
engaged during the loop. Otherwisgeis infinitely often enabled but never engaged.

Proposition 3. An LTSL = (S, init, —) is feasible under strong global fairness, if
and only if, there exists aloop = (s, ao, s1, a1, - -, Si, @i, -, Sj—1, @j—1, 5;) Which
satisfies the following: if the step = s’ is enabled for somé such thati < k < j,
then there exist& which satisfies,,, = sk, a,, = a and ands,,.1 = s'.

The condition states that if a step is enabled during the,|top same step must be
taken during the loop.

In addition, a loop is fair with respect to process-level Wwkarness (process-level
strong fairness) if and only if every process makes somerpssgiuring the loop if it

is always (sometimes) possible. Because of the propositibove, a system is feasi-
ble (with respect to certain fairness) if and only if theréséxa loop which satisfies
the fairness. Feasibility checking is hence reduced to kegyching. By a simple ar-
gument, it can be shown that a system is feasible if and ortheife exists at least one
strongly connected subgraph the state graph which satisfies the respective fairness
assumption. A strongly connected subgraph satisfies sefegroonstraint if and only if
the loop which traverses through all states and transitifiise subgraph satisfies the
fairness assumption.

3.2 Feasibility Checking Algorithm

There are two groups of methods for loop searching. One isthas nested depth-
first-search (DFS) and the other is based on identifyingigiyoconnected components
(SCC). Nested DFS has been implemented in SPIN. The basiddde perform one
DFS first to reach a target state (i.e., an accepting stateisdtting of Buchi automata)
and then perform second DFS from that state to check whetseeachable from itself.
It has been shown the nested DFS works efficiently for modetkimg [18]. Nonethe-
less, it is not suitable for verification under fairness agstions [18], as whether an
execution is fair depends on the whole path instead of one. $terecent years, model
checking based on SCC has been re-investigated and it hasheen that it yields
comparable performance [13]. In this work, we extend thetgg SCC-based model
checking algorithms [13] to cope with fairness.

Figure 5 presents our generic algorithm for feasibilityaltieg under fairness con-
straints. It is based on Tarjan’s algorithm for identifyiB@€Cs in linear time (in the
number of graph edges). It searches for fair strongly comaesubgraph on-the-fly.
The basic idea is to identify one SCC at a time and then cheakheh it is fair or
not. If it is, the search is over. Otherwise, the SCC is gartéd into multiple smaller
strongly connected subgraphs, which are then checkedsieelyrone by one.

Assume for now, we have a set of statesind a set of transitiong'. At line 1, a
setwisited, which stores the set of visited states, is initialized taeb#pty. Inside the
main loop from line 1 to 13, at line 2 Tarjan’s algorithm (inoped and implemented
as methodindSCC (S, T)) is used to identify one SCC withifi and T'. Identifying S
and T for compositional systems or softwares requires reacityahihalysis. In order
to perform on-the-fly verificationindSCC is designed in such a way that if fband
T are given, it will explore states and transitions on-theaififil one SCC is identified.
We skip the details ofindSCC as it largely resembles the algorithm presented in [13].

For instance, given the LTS presented in Figure 6, thereveneSCCs, i.e., one
composed of state 1 only and the other composed of state Od 3.afhe order in
which SCCs are found is irrelevant to the correctness of therighm. If state 2 is
explored before state 1, at line &¢_states is the set of states in the SCC (i.e., state 0,
2 and 3).

At line 4, we markscc_states as visited so that the SCC is not examined again.
The methodprune (at line 5) is used to prunkad statesfrom the SCC. Bad states
are the reasons why the SCC is not fair. For instance, givei Ti$ in Figure 6 and
the SCC composed of state 0, 2 and 3, state 0 (where the aciso@nabled) is a bad
state under strong local fairness because actigiever engaged in the SCC (i.e., no

procedure feasible(S, T')
0. wsited = @;

1. while there are states not insited —while there are still un-explored states
2. let scc_states = findSCC(S, T); — identify one SCC at a time

3 size = #sce_states;

4 visited = wvisited U scc_states; — mark all states in the SCC visited

5. prune(scc_states, T'); — prune bad states

6. if size == #scc_states; —if no state in the SCC is pruned

7 generate a feasible path;

8 return true; —aloop is found; the system is feasible
9. endif

10. if feasible(scc_states, T') —recursively check

11. return true; —afair SCCis found in the remaining
12. endif

13. endwhile

14. return false;

Fig. 5. feasibility checking algorithm

Fig. 6. feasibility checking example

a-transition in the SCC). State 3 is a bad state under strastzagjfairness because the
step from state 3 to state 1 wds not part of the SCC. The intuition behind the pruning
is that there may be a fair strongly connected subgraph ingimaining states after
eliminating the bad states. We highlight that by simply nfigidg the prune method,

the algorithm can be used to handles different fairnessinstance, Figure 7, 8 and 9
present the respectiyeune method for weak fairness, strong local fairness and strong
global fairness.

At line 1 in Figure 7, the set of actions which label some titzors between two
states in the SCC is collected into s@lyaged. Line 2 to 5 collects all actions which are
enabled at every state in the SCC into skiaysEnabled. If alwaysEnabled is not a
subset ofengaged (line 7), there exists some action which is always enablédhéver
engaged and hence the SCC is not weak fair. If the SCC doeatigfyaveak fairness,
its subgraphs do not either because the action is alwaydezhiatany of its subgraphs.
All states are then pruned at line 7 if the SCC is not weak @itinerwise, no state is.
The pruning works differently for strong local fairness.lise 4 of Figure 8, a state is
pruned if and only if there is an action enabled at this statenkver engaged in the
SCC. By pruning the state, the action may be never enabldtiS€C and therefore

not required to be engaged. The pruning method for strorfgadfairness is presented
in Figure 9. At line 4 of Figure 9, all states are pruned if thisra transition from a state
in the SCC to a state notin the SCC. It can be shown that if aniS@Gt strong global
fair, then its subgraphs are not either (since the subgrays contain a step to a pruned
state and therefore can not be strong global fair). Follgwire idea, grune method
for process-level weak/strong fairness can be easily d&fifige time complexity of the
prune methods are linear in the number of edges.

If the SCC does satisfy the fairness assumption, no stateiied and thus the size
of the SCC remains the same (line 6 of Figure 5). For instatheemaximum SCC
containing state 1 in Figure 6 is fair (with respects to amdkef fairness). In such a
case, a fair loop (which traverses all states/transitioriié SCC) is generated at line 7
and then we conclude true at line 8. We skip the details onrgéing the path in this
paper and remark that it could be a non-trivial task (refd2fq). If some states have
been pruned, a recursive call is made to check whether tharfair strongly connected
subgraph within the remaining states. The recursive aatliteates in two ways. One is
that a fair subgraph is found (at line 8) and the other is atestare pruned (at line 14).
If the recursive call returns false, there is no fair subbrapd we continue with another
SCC until there is no state left.

Given the LTS in Figure 5, the path containing only state kiamed as a feasible
path. As discussed above, under strong local fairnesg, 8tet pruned from the SCC
containing state 0, 2, and 3. After that the only remainimgrajly connected subgraph
contains state 2 and 3, now state 3 wheris enabled is considered as a bad state
because: is not engaged in the subgraph. State 2 is then pruned fog lzeinivial
strongly connected subgraph.

In the worst case (i.e., the whole system is strongly comukeghd only one state is
pruned every time), a node may be visited at mpsttimes, where# S is the number
of system states. Thus, the time complexity is boundedtSyx # T where# T is
the number of transitions. We remark that the time compjeft verification with
no fairness, weak fairness and strong global fairness amgasj i.e., both linear in
#T since all states in one SCC are discarded all together irmatc SPIN’s model
checking algorithm under process-level weak fairnesseses the run-time expense
of a verification run by a factor that is linear in the numberwfining processes. In
comparison, our algorithm is less expensive. Verificatindar strong local fairness is
in general expensive. However, our experience suggedtshhavorse case scenario
is rare in practice. Instead of the detailed complexity wsigl, we show its efficiency
using real systems in Section 5.

The algorithm is terminating because the number of visitatés and pruned states
are monotonically increasing. It can be shown that methage is sound, i.e., if there
is a fair strongly connected subgraph in the given set oéstattremains in the pruned
set of states. This can be established by Proposition 1, 3 éadj., by contradiction).
The following theorem then proves the soundness of the idthgor

Theorem 1. Given a fairness assumption, a finite-state system is fieasitder the
fairness ifffeasiblereturns true.

8 One way is to build a tree where each node is an SCC in the sygigph and then give a
tighter bound in the height of the tree.

procedure prune(scc_states, T')
let engaged = GetEngagedActs(scc_state, T');
alwaysEnabled = X,
foreach s € scc_states
alwaysEnabled = alwaysEnabled N enabled(s)
endeach
if alwaysEnabled € engaged
scc_states = J;
endif

®© N ook W=

Fig. 7. prune for weak fairness

procedure prune(scc_states, T')
1. let engaged = GetEngagedActs(scc_state, T');
2. foreach s € scc_states

3. if enabled(s) € engaged

4. removes from scc_states
5. endif

6. endeach

Fig. 8. prune for strong local fairness

Proof: As discussed above, the system is feasible if and only iete&ists a

loop which satisfies the fairness assumption. Equivaletitbre exists such a
loop if and only if there exists a strongly connected subrapich satisfies

the fairness assumption. If there is such a graph and itseti SCC, it must be
found (by the correctness of Tarjan’s algorithm and theeaxiness of method
prune) and the algorithm returns true and, the theorem holdsidfdbntained

in one (and only one) SCC, by the correctness of methache, its states

are never pruned. As a result, it is identified when all oth&tes in the SCC

are pruned or a fair strongly connected subgraph contaialings states is

identified. In either case, the algorithm returns true amdttieorem holds. It
is straightforward to show that the algorithm only retumtwhen a strongly
connected subgraph which satisfies the fairness assunipfiomnd. Thus, the

theorem is true. O

Based on the above theorem, the existing automata-basie €ty-model checking
algorithm [18] can be extended straightforwardly to parfanodel checking under
fairness. Given an LTL formula, we negate it and translaiet@ an equivalent Bichi
automaton using existing approaches[12]. We then computke-fly the synchronous
product of the Biichi automaton and the system (in whichylstesn and the automaton
must make a move simultaneously). The algorithm presentEdjure 5 is then used to
identify one fair strongly connected subgraph at a time.fHiasubgraph is accepting

procedure prune(scc_states, T')
1. foreach s € scc_states
2. foreach (s, a, s") such thats % s’

3 if (s, a, s") is not a transition irkcc
4. scc_states = O

5. return;

6 endif

7 endeach

8. endeach

Fig. 9. prune for strong global fairness

to the Biichi automaton (by checking whether the subgraptadims an Biichi accepting
state), it means that the subgraph satisfies the fairnessraons and yet fails the LTL
property. Thus, we generate the feasible path as a couateg@. If no fair subgraph
is accepting, the property is true. We remarkfair loops which represents unrealistic
system executions are eliminated before checking wheltiegrare accepting or not.

4 Action Annotated Fairness

In this section, we present an alternative (and more flekigbgroach, which allows
users to associate fairness to only part of the systems ociass different parts with
different fairness constraints. The motivation is twofold

Firstly, previous approaches treat every action or statelg i.e., fairness is ap-
plied to every action/state. In verification practice, ityri@ that only certain actions
are meant to be fair. For instance, when verifying open systdairness/liveness as-
sumptions are often associated with input events from tivir@mment as a way to
capture assumptions on the environment. Given the leadectde presented in Sec-
tion 2.1, if no fairness is applied, the actiorucle may never happen and thus violate
the requirement (i.e., eventually the detector detectecty). If weak fairness or even
stronger fairness is appliedyacle, guessl and guess2 all must occur infinitely often
since they are always enabled. This is clearly overwhelmihg remedy is to allow
users to associate fairness constraints with individuédbas. For instance, the even-
tual leader detector can be modeled as in Figure 10. Thenagtiele is annotated as
wf (oracle), which stands for weak fairness. It is used to capture theireayent that
oracle (if always enabled) must eventually occur. We remark thats1 and guess2
are not annotated because there are no such requiremeP4d., la number of different
fairness constraints may be used to annotate actions. foltbeing, we examine three
of them.

— Unconditional action fairness is written Aéa). An execution of the system is fair
if and only if occurs infinitely often.

— Weak action fairness is written ag (a). An execution of the system is fair if and
only if a occurs infinitely often given it is always enabled from somépon.

Detector() = wf(oracle){correct = 1; } — Detector()
[| guess1{guess = true; } — Detector()
[| guess2{guess = false; } — Detector()

Fig. 10.annotated leader detector

— Strong action fairness is written ag(a). An execution of the system is fair if and
only if a occurs infinitely often given it is enabled infinitely often.

Unconditional action fairness does not depend on whetlgeadtion is enabled or not,
and therefore, is stronger than weak/strong action fastriesnay be used to annotate
actions which are known to be periodically engaged. Foaimst, the following process
models a natural clock.

Clock() = f(tick){z =z +1; } — Clock();

wherez is a discrete clock variable. By annotatitigk with unconditional fairness,
we require that the clock must progress infinitely and theéesygin which the clock
and other components execute in parallel) disallows uisteaimelock i.e., execution
of infinite actions which takes finite time. Unconditionairfeess (like other actions
annotations) can be used to mechanically reduce the site @iroperty. For instance,
given the property1$ ¢ = OJ< b. We may mechanically annotatein the model
with unconditional fairness and verify b instead. The semantics of weak (strong)
action fairness is similar to weak (strong local) fairnesfirted in Section 2.2 except
it is associated with individual actions (by contrast toadtionsy. Action annotated
fairness may be viewed as the dual image of accepting statastdmata theory, e.g.,
same as only selected states are marked accepting, ontyeskéetions are annotated.

The other motivation of action annotated fairness is thatdkes partial order re-
duction possible (to some extent) for model checking witbrgg local/global fairness.
The feasibility algorithm in Figure 5, an SCC-based exptizddel checking algorithm,
undoubtedly suffers from state space explosion, espgacidlen the whole system is
strongly connected. Partial order reduction is one of thetreffective techniques to
tackle the problem, which sometimes works surprisinglyl el distributed systems.
The idea behind partial order reduction is that actions nesiptlependent of each other
and the ordering of their occurrences in an execution ifeveat to the truth of certain
property. As a result, it might not be necessary to consitlezreabled actions at a
given state, but only a certain subset which are indeperadéiné rest. Thus, instead of
working with the full state graph, a reduced state graph istacted.

For instance, assume that acti@andb are independent and the property to verify
is deadlock-freeness, it is sufficient to explore only ondhaf two outgoing transi-
tions at state 0 in the LTS of Figure 4(a). For classic modetking, a set of conditions
which the subset of enabled actions has to fulfill have beepgsed to guarantee sound

% Because strong global fairness concerns with both actiotsttes. No corresponding action
annotation is defined.

verification against ‘X’-free LTL formulas. Efficient hewgtic algorithms which calcu-
lates an (over-)approximation of the subset are exploredei§7]. One such heuristic
algorithm has been implemented in PAT.

However, the conditions and algorithms may not work for figation under fair-
ness. Following results proved in [4], it can be shown thatiglaorder reduction is
applicable to verification under weak fairness. Howeveruth every strong-local-fair
execution in the full state graph has an equivalent execiftip to re-ordering of in-
dependent actions) in the reduced state graph, it may ndtdrggslocal-fair and thus
verification result over the reduced state graph may not hid. W&lorse, with strong
global fairness the reduced state graph may not be feasibteitthe full state graph
is. For instance, let the system be the LTS in Figure 4(a) aadraes andb are inde-
pendent. The reduced graph may only contain state 0 and thughnot feasible under
strong global fairness. In [31], it was suggested that bysitering actions dependentto
each other if they can enable or disable each other, partial ceduction can be applied
to some extent for verification under fairness. Nonethelagsrevious approaches, be-
cause all actions must be considered, virtually all eveatoime inter-dependent and
therefore no reduction is possible. In PAT, partial ordeluction is disabled for model
checking under strong local/global fairness. Nonethefessystems with action anno-
tated fairness, it remains possible to apply partial ordduction to actions which are
irrelevant to the fairness annotations.

The algorithm presented in Figure 5 can be applied to chestesys with action
annotated fairness with slight modification. The basic idgaains, i.e., finding a loop
which satisfies the fairness constraints. Only actions fgittmess annotations are con-
sidered this time (by contrast to all actions). We remark éimmotating all actions with
weak (strong) fairness is equivalent to associate weaén(gttocal) fairness with the
whole system. The methqgthdSCC is modified to cope with partial order reduction,
following the heuristic function in [7]. In addition, we deé an action to béirness
visibleif it enables or disables an action annotated with fairnessraquire that if the
chosen set of actions are a strict subset of enabled acti@subset must not contain
fairness visible actions. The intuition is that indepert@getions which are irrelevant to
the fairness constraints are subject to partial order iemlud\Notice that this checking
has time complexity linear in the number of enabled actidi® soundness follows
from the discussion in [4, 31].

Algorithm prune is also modified to examine only the annotated actions. Eiddr
shows the modified algorithm. An SCC is fair with respect @ dletion annotated fair-
ness if and only if: all actions which are annotated with urditional action fairness
are contained in the sehgaged; if an action is annotated with weak action fairness
and is enabled averystate in the SCC, then the action is containedrinaged; and
if an action is annotated with strong action fairness anchébéed asomestate in the
SCC, then the action is containeddngaged. If an SCC does not satisfy unconditional
or weak action fairness, it is abandoned all together (libe If a state enables an ac-
tion annotated with strong action fairness which is neveyagied in the SCC, then it
is pruned (line 6 to 8). For instance, given the LTS in Figuri &ction a is annotated
with strong local fairness, then state O is a bad state. Ibtdfrit is annotated with

procedure prune(scc_states, T')
. let engaged = GetEngagedActs(scc_states, T');
. let unconditional = {e | existsf(e)};
. let weak = X;
. foreach s € scc_states
weak = weak N {e | wf(e) € enabled(s)};
if {e] sf(e) € enabled(s)} Z engaged
removes from sccstates
endif
endeach
10. if unconditional € engaged or weak € engaged

© 0N T A e

11. scc_states = J;
12. endif

Fig. 11. prune for action annotated fairness

no or weak fairness. By a similar argument (to the proof ofdrken 1), we show the
soundness of the algorithm.

5 Implementation and Experiments

PAT is designed for systematic validation of distributesteyns using state-of-art model
checking techniques. It has three main components. Itsfmaationalities include sim-
ulation, explicit on-the-fly model checking, and verificatiwith fairness. The editor
features all standard text editing functionalities. Thaidator allows users to interac-
tively drive the system execution. The model checker comboomplementary model
checking techniques for system verification. Figure 12 shthe user interface of the
editor and the model checker.

5.1 Experiments on Population Protocols

In the following, we show its performance over both bencHasgstems as well as re-
cently developed systems where fairness is required. Aliibdels (with configurable
parameters) are embedded in the PAT package and availalibe @t our web site
http://pat.comp.nus.edu.sg. Table 2 summarizes the cagidh statistics over recently
developed population protocols. Notice thameans either out of memory or more than
4 hours. The protocols include leader election for comptesevorks CF_C) [11],
for rooted trees {LE_T) [5], for odd sized rings LE_OR) [19], for network rings
(LE_R) [11] and token circulation for network rings'C_R) [2]. Correctness of all
these algorithms relies on fairness. Notice that fairnesgpplied to the whole system
for simplicity. For soundness reasons, partial order rédndgs applied for verification
under no or weak fairness, but not strong local fairnessrongtglobal fairness.

As discussed in Section 2.2, process-level weak fairnegpsted in SPIN) is dif-
ferent than weak fairness. In order to compare PAT with SBHVé&rification with weak

Ele Edit View samples

Help

0-u

RSB EI o ver

=5 [

Specification (] Check Grammar (F5)

#define N 4;

Assertons

® 1 TokenGroulation(i= [
@2 TokenGreuation() = <»] aneToken
@3 TokenCreuation) =

tokenDa4! oke.

T

q| setected pssetion

TokenCroviation() = <[] oneToken

Optons

[T] Verbose

@ Information
Viewthe Buchi Automta of the negation of the selected LTL property

Verfy | [VewBuchiAuomata | | Smulate Counter Bxample

‘ System Faimess Selting No Faimess () Wesk Faimess @ Sirong Local Faimsss () Strong Global Faimess ‘

‘ State Compression Techmigues : @ Hash Teble) Tree ‘

Output
Verfication Result
~The Assettion iz NOT valid. ™

Verfication Setting;
method: SCC based Model Checking
patial orderreducton: Fakse:

Verification Completed

Lni1 Cok0 INS

Fig. 12. process analysis toolkit

fairness, we twist the models so that each action in pofulatiotocols is modeled as
a SPIN process. By a simple argument, it can be shown thatfdr miodels, weak
fairness is equivalent to process-level weak fairness.é¥ew checking under process-
level weak fairness in SPIN increases the verification tipa lfactor that is linear in
the number of processes. By modeling each action as a pregesirease the number
of processes and therefore un-avoidably increase the Sgtification time by a factor
that is constant (in the number of actions per process fovarktrings) or linear (in the
number of network nodes for complete network). SPIN has ppatt for strong local
or global fairness. Thus, the only way to do verification urgteong local/global fair-
ness in SPIN is to encode the fairness constraints as pug pfoperty. However, even
for the smallest network (with 3 nodes), SPIN needs signifieanount of time con-
structing (very large) Buichi automata from the propertyefiefore, we conclude that it
is infeasible to use SPIN for such a purpose and omit the arpat results from the ta-
ble. We remark that in theory, strong local fairness can#estfiormed to weak fairness
by paying the price of one Boolean variable [21]. Nonetheltee property again needs
to be augmented with additional clauses after the transiatvhich is again infeasible.
We remark that fairness does play an important in these gotstoAll of the algo-
rithms fail to satisfy the property without fairness. Thgaithm for complete networks
(LE_C) or trees {LE_T) requires at least weak fairness, whereas the rest of tioe alg
rithms require strong global fairness. It is thus importanbe able to verify systems
under strong local/global fairness. Notice that the tokiecutation algorithm for net-
work rings (I'C_R) functions correctly for a network of size 3 under weak fags.
Nonetheless, weak fairness is not sufficient for a netwotkware nodes, as shown in
the table. The reason is that a particular sequence of messapange which satisfies

Model Property |Size Weak Fair Strong Local Fairl Strong Global Fai
Result PAT | SPIN|Result PAT |SPINResult PAT |SPIN
LE_C |&Ooneleader| 3 | Yes | 0.1 | 04 | Yes| 0.1 | — | Yes| 0.2 -
LE_C |&COoneleader| 4 | Yes | 08 | 43 | Yes | 09 | — | Yes | 0.7 -
LE_C |&Ooneleader| 5 | Yes | 5.2 [35.7| Yes | 6.1 | — | Yes | 4.9 —
LE_C |OOoneleader| 6 | Yes |31.6] 229 | Yes 382 — | Yes | 29.7 | —
LE_C |&Ooneleader| 7 | Yes [167.8/1190| Yes [199.5| — | Yes | 158.3 | —
LE_C |&Ooneleader| 8 | Yes |819.6|5720| Yes (863.4] — Yes | 785.3 | —
LE_T |&Ooneleader| 3 | Yes | 0.1 [< 0.1 Yes| 0.1 | — | Yes| 0.1 —
LE_T |&Ooneleader| 5 | Yes | 03 | 0.7 | Yes | 03 | — | Yes| 0.3 -
LE_T |OOoneleader| 7 | Yes | 1.9 | 7.6 | Yes | 1.9 | — | Yes | 1.8 —
LE_T |&Ooneleader| 9 | Yes |13.3(162.3| Yes |13.5| — | Yes | 13.0 | —
LE_T |&Ooneleader| 11| Yes [91.1 440 | Yes |93.1| — | Yes | 88.7 | —
LE_T |&Ooneleader| 13| Yes |688.113200| Yes [738.7] — Yes | 671.4| —
LE_OR|&oneleader| 3 | No | 0.2 | 03 | No [0.2 | — | Yes | 17.7 | —
LE_OR|Coneleader| 5 | No | 1.9 | 87 | No | 24 | — - - -
LE_OR|COoneleader| 7 | No [38.3| 95 | No |27.9| — — — —
LE_R |&Ooneleader| 3 | No | 0.2 [<0.1) No | 0.2 | — | Yes| 3.2 —
LE_R [Ooneleader| 4 | No | 0.5 [<0.1] No | 1.1 | — | Yes | 514 | —
LE_R [Ooneleader| 5 | No | 1.3 [<0.1] No | 4.6 | — | Yes |1359.0] —
LE_R |$OOoneleader| 6 | No | 05 | 0.2 | No | 2.2 | — — — —
LE_R [Ooneleader| 7 | No | 1.3 | 0.6 | No | 6.6 | — - - -
LE_R [Ooneleader| 8 | No | 3.3 | 1.7 | No |19.2| — - - -
TC_R |OOonetoken| 3 | Yes | 0.1 |<0.1] Yes| 0.1 | — | Yes | 0.1 —
TC_R | O Oonetoken| 5 | No | 0.1 [<0.1] No | 0.1 | — | Yes| 0.7 —
TC_R | O Oonetoken| 7 | No | 02 | 0.1 | No | 03| — | Yes| 189 | —
TC_R | OOonetoken | 9 No | 0.5 | 0.2 No | 0.5 — Yes | 982.7| —
TC_R | Oonetoken | 11| No | 09 | 0.8 | No | 1.1 | — - - -
TC_R | Oonetoken | 13| No | 1.7 | 1.6 | No | 2.2 | — - - -

Table 2. population protocols experiments: with Core 2 CPU 660048GHz and 2GB RAM

the weak fairness constraint only needs the participatfaat teast 4 network nodes.
This suggests that our improvement in terms of the perfoomamd ability to handle
different forms of fairness has its practical values. Wehhggt that previously un-
known bugs in implementation of the leader election along for odd-sized ring [19]
have been revealed using PAT (see next section).

A few conclusions can be drawn from the results in the tabtstl, in the presence
of counterexamples, PAT usually finds one quickly (eLgr, R and TC_R under weak
fairness or strong local fairness). It takes longer to findanterexample foL E_OR
mainly because there are too many possible initial conftguraof the system (exactly
25+N whereN is network size) and a counterexample is only present fdrquear ini-
tial configurations. Secondly, verification with strongdbéairness is more expensive
than verification with no fair, weak fairness or strong glidla&cness. This conforms to
theoretical time complexity analysis. The worse case s@eigmabsent from these ex-
amples (e.g., there are easily millions of transitiongéstan many of the experiments).

Lastly, PAT outperforms the current practice of verificatilnder fairness. PAT offers
comparably better performance on verification with weakniess (e.g.LE_C and
LE_T) and makes it feasible to verify with strong local/gloakitfi@ss. This allowed
us to discover bugs in systems functioning with strong 881 Experiments chE_C
and LE_T (for which the property is true under any fairness) show mc@wmputa-
tional overhead for handling a stronger fairness.

5.2 Bug Report

In this section, we study the leader election protocol iemted odd rings in detail and
report the bug that has been discovered for the first time.fdl@wving description
is taken from [19, 2]. Supposing each node hdslteel bit, a maximal sequence of
alternating labels is called a segment. According to thentation of the ring, the head
and tail of a segment can be defined in a natural way. One edte d6rm (0, 0) or
(1,1) connecting the tail of one segment to the head of another esegi® called a
barrier edge. For a node in a ring, it has four state componentsader|u] states
whether the node is a leadédupel[u] is its label, probe[u] is 1 if « holds a probe
token, andvhase[u] alternates between 0 and 1 to make each barrier alternate dret
firing a probe and moving forward. The protocol consists oEsal parts. In the basic
part, the barriers move clockwise around the ring. Eachigraadvances by flipping
the label bit of the second node on the barrier (the head ohéixé segment). When
two barriers collide, they cancel out each other. Becauseitty size is odd, there
is always at least one barrier. In the rest of the protocd,|l#ader bullet and probe
marks are manipulated. Probes are sent out by the barrieclotkwise direction and
absorbed by any leader they run into. If a probe meets théebam its way back, it
is converted to leader. Leaders flyallets counter-clockwise around the ring. Bullets
are absorbed by the barrier, but they kill any leaders theypanter along the way.
More detailed discussion of the protocol is referred to P]9The description of an
interaction between an initiatar and a responder in the protocol (taken from [19],
p.66) is presented as follows:

Leader election protocol for odd rings.

if label[u] = label[v] then
if probe[u] = 1 then leader|[u] < 1; probe[u] < 0 endif
bullet[v] — 0
if phase[u] = 0 then phase[u] < 1; probe[v] « 1
elseif probe[v] = 0 then
label[v] = —label[v]; phase[v] — 0
endif
elseif leader[v] = 1 then
if bullet[v] = 1 then leader[v] < 0
else bullet[u] — 1 endif
else
if bullet[v] = 1 then bullet[v] < 0; bullet[u] « 1 endif
if probe[u] = 1 then probe[u] < 0; probe[v] — 1 endif
endif

The protocol is modeled in PAT. We have totally eleveni(.u.v up toact11.u.v)
case splits according to the protocol description. For g@tanthe condition of the ac-
tion act1.u.v collects the conditions at the first, second and fourth lirtaé description
and the updates of variables at the second, third, and ftinethcorrespondingly. The
initialization of the model is taken care of atline 17, it taes any possible evaluations
of the variables. Line 9 defines how nodes interact in an tetering. Line 20 defines
a predicate that there is one leader in the network. Line aimgl that the protocol
eventually self-stabilize to a unique leader existing ia tietwork.

CounterexampleWe have analyzed this protocol in PAT, and found one couréene
ple. We consider a ring of size three, nodes are numberedlaar® 2. The counterex-
ample found by PAT can be described as follows: it is an irdieiecution containing
a loop,u is the node for the initiator and for the responder of one interaction accord-
ing to the protocol description. The execution can starhwitconfiguratiorbullet =
[1,1,1], label = [1,1,1],leader = [1,1,0], phase = [1,1, 1], probe = [1,1,0].

1. sincelabel[2] = label[0], probe[2] = 0, phase[2] = 1 andprobe[0] = 1, we have
bullet[0] < 0. (v = 2 andv = 0)

2. sincelabel[0] = label[1], probe[0] = 1, phase[0] = 1 andprobe[l] = 1, we have
leader|0] « 1, probe[0] < 0, andbullet[1] — 0. (v = 0 andv = 1)

3. sincelabel[2] = label]0], probe[2] = 0, phase[2] = 1 andprobe[0] = 0, we have
bullet]0] < 0, label[0] «— 1 — label[0], andphase[0] < 0. (v = 2 andv = 0)

4. sincelabel[l] = label[2], probe[l] = 1, phase[l] = 1 andprobe[2] = 0, we
haveleader[l] < 1, probe[l] « 0, bullet[2] «— 0, label[2] «— 1 — label[2] and
phase[2] — 0. (u = 1 andv = 2)

5. sincelabel[2] = label[0], probe[2] = 0 andphase[2] = 0, we havebullet[0] — 0,
phase[2] < 1 andprobe[0] < 1. (v = 2 andv = 0)

Now, we have reached a configuration witkilet = [0, 0, 0], label = [0, 1, 0], leader =
[1,1,0], phase = [0,1,1], probe = [1,0,0].2% From here, we have a loop. Within this
loop, all actions enabled at reachable configurations oloihye are executed. But these
configurations contain more than two leaders. Hence, tliisite execution is global
fair but not self-stabilizing for leader election. The losmiven below.

1. sincelabel[2] = label[0], probe[2] = 0, phase[2] = 1 andprobe[0] = 1, we have
bullet[0] < 0. (v = 2 andv = 0)

2. sincelabel[0]! = label[1], leader[1] = 1 andbullet[1] = 0, we havebullet[0] «— 1.
(u=0andv =1)

3. sincelabel[0]! = label[1], leader[1] = 1 andbullet[1] = 0, we havebullet[0] =—
1.(u =0andv =1)

4. sincelabel[2] = label[0], probe[2] = 0, phase[2] = 1 andprobe[0] = 1, we have
bullet]0] =— 0. (v = 2 andv = 0)

10 As the protocol is self-stabilizing, the counterexampla start directly from here. We keep
the first part just to faithly represent the infinite tracerfdy PAT.

Model Property |Resul Fairness PAT | SPIN

dp(10) O eat0 No no <0.1<01
dp(13) O eat0 No no 0.1 |<0.1
dp(15) O eat0 No no 0.1|<0.1

dp(10) O eat0 No |strong global fairness (whole syster)0.1] —
dp(13) O eat0 No |strong global fairness (whole systenf).1 | —
dp(15) O eat0 No |strong global fairness (whole systenf).1 | —
ms(10) | OO work0 | Yes | strong local fairness (whole system}1.4| —
ms(12) | O<Owork0 | Yes | strong local fairness (whole systemi32.2 —
ms(100) | O work0 | Yes | strong local fairness (annotationg) 5.5 | —
ms(200) | O<Owork0 | Yes | strong local fairness (annotationg)27.4| —
peterson(3pounded bypassYes weak fairness (whole system) | 0.1 | 1.25
peterson(4pounded bypassYes weak fairness (whole system) | 2.4 |> 67
peterson(§pounded bypassYes weak fairness (whole system) {112.§ —

Table 3. experiment results on benchmarks

The last step in the loop leads us back to the starting corafigurof the loop. We have
communicated this counterexample to the author of [19§,¢binfirmed as a valid coun-
terexample which has escaped simulations of the proto6dl The reason to the coun-
terexample is the following [20]. In the explanation of threfocol, it says that “probes
are sent out by the barrier in a clockwise direction and diebby any leader they run
into”. The second half of the sentence is missing from theigseode description. The
protocol also requires consistent ordering of the posiiciokens within each node (in
the order of leader, bullet, and probe clockwise). A baregge should only generate
a probe at the responder if the responder is not a leadern@tiee the probe would
be able to pass the leader token. In the description, thisgptp is not preserved ei-
ther. Modifications of the description have been made inf&.also model the revised
version of the protocol, and find no counterexample. By thisecstudy, we emphasize
that without the newly developed model checking algoritlanédfficient verification
under (global) fairness, it is impossible to find such anreirr@ pseudo code descrip-
tion of a population protocol, especially when a protocabto be intuitively more
complicated.

5.3 Experiments on Benchmark Systems

Table 3 shows verification statistics of benchmark systesmshbw other aspects of
PAT. Because of the deadlock state, the dining philosopherdel (dp(N) for N
philosophers and forks) does not guarantee that a philesatvays eventually eats
(O eat0) whether with no fairness or strong global fairness. Thiseziment shows
PAT takes little extra time for handling the fairness asstiomp We remark that PAT
may spend more time than SPIN identifying a counterexandie.reason is both due
to the particular order of exploration and the differencenveen model checking based
on nested depth-first-search and model checking based otifyileg SCCs. PAT's al-
gorithm relies on identifying SCCs. If a large portion of tegstem is strongly con-

nected, it takes time to construct the SCC before testinghvenet is fair or not. In
this example, the whole system contains one large SCC anwdt@iyél ones including
the deadlock state. If PAT happens to start with the large thieeverification may take
considerably more time. Milner’s cyclic scheduler aldomit (s (N) for N processes)
is a showcase for the effectiveness of partial order redncte apply fairness in two
differentways, i.e., one applying strong local fairnesthwhole system and the other
applying only to inter-process communications. In theclatiase, partial order reduc-
tion allows us to prove the property over a much larger nurabprocesses (e.g., 200 vs
12). Peterson’s mutual exclusive algorithpaterson(N)) requires process-level weak
fairness to guarantee bounded by-pass [1], i.e., if a pso@Eguests to enter the criti-
cal section, it eventually will. The property is verified w@ndveak fairness in PAT and
process-level weak fairness in SPIN, with modifying the gloBAT outperforms SPIN
in this setting as well.

6 Conclusion

The contribution of the paper is threefold. Firstly, we imped and unified SCC-based
model checking algorithms to handle a variety of fairnessst@ints. In particular, we
studied how to perform model checking effectively with sigaylobal fairness, which
has never been studied in the model checking communityrsiégdwo different ways
of applying fairness have been investigated and suppartedely, one applying fair-
ness to the whole system and the other applying fairnesslyotios relevant actions.
Both approaches have been motivated by practical reastmsllyl we significantly
extend PAT (started as a testbed for [34]) to be a reliableieffi environment for
verification with or without fairness. PAT has been applieditvariety of distributed
systems and previously-unknown flaws have been identified.

We are actively developing PAT. One future work of particutderest is to inves-
tigate refinement with fairness constraints. The motivettiare that refinement under
a fair scheduler or in a distributed system is rather difie@nd interesting. For in-
stance, trace refinement with weak fairness prevents remgawitransition which is
always enabled and trace refinement under strong globakfsrprevents removing a
nondeterministic choice. The consequence of a fair sckedukr program refinement
is worth investigating. Another future work is to identifgwelop efficient algorithms
for refinement checking with fairness. Other possible fitorks include investigating
how to handle infinite data states, migrating the algorittoresgeneral software model
checker, etc.

Acknowledgements

We thank Michael Fischer and Jiang Hong for the discussiofamness and leader
election protocols, and Deng Yu Xin for his comments on alyegrsion of the article.
This work is partially supported by the research projectiste Networks Specification
and Validation” (R-252-000-320-112) funded by Ministryeducation, Singapore.

References

10.

11.

12.

13.

14.

15.

16.

17.

. K. Alagarsamy. Some Myths About Famous Mutual Exclusidgofithms. SIGACT News

34(3):94-103, 2003.

. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Selbisizing Population Protocols.

In Proceedings of the 9th International Conference on Prilespof Distributed Systems
(OPODIS 2005)volume 3974 of ecture Notes in Computer Scienpages 103-117, 2005.

. D. Angluin, M. J. Fischer, and H. Jiang. Stabilizing Carses in Mobile Networks. I®ro-

ceedings of the 2006 International Conference on Distedu€omputing in Sensor Systems
(DCOSS'06)volume 4026 ot ecture Notes in Computer Scienpages 37-50, 2006.

. L. Brim, I. Cerna, P. Moravec, and J. Simsa. On Combiniagi& Order Reduction with

Fairness Assumptions. Proceedings of the 11th International Workshop Formal Mdth
Applications and Technology (FMICS 200&plume 4346 ofLecture Notes in Computer
Sciencepages 84-99, 2006.

. D. Canepa and M. Potop-Butucaru. Stabilizing Token Sesefar Population Protocols.

Computing Research Repository (CoR&)s/0806.3471, 2008.

. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and Nh&i State/Event-Based Soft-

ware Model Checking. IProceedings of the 4th International Conference on Integga
Formal Methods (IFM 2004)pages 128-147, 2004.

. E. M. Clarke, O. Grumberg, and D. A. Pelédodel Checking The MIT Press, 2000.
. J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning Methrod@irhed CSP Based on

Constraint Solving. IrProceedings of the 8th International Conference on FormagiE
neering Methods (ICFEM 2006Yyolume 4260 ot ecture Notes in Computer Scienpages
342-359. Springer, 2006.

. J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification of Camtapion Orchestration Via

Timed Automata. IfProceedings of the 8th International Conference on FornmajiBeering
Methods (ICFEM 2006)volume 4260 of_ecture Notes in Computer Sciengages 226—
245. Springer, 2006.

E. A. Emerson and C.-L. Lei. Modalities for Model CheakiBranching Time Logic Strikes
back. Science of Computer Programmirg(3):275-306, 1987.

M. J. Fischer and H. Jiang. Self-stabilizing Leader fidecin Networks of Finite-state
Anonymous Agents. IfProceedings of the 10th International Conference on Pples of
Distributed Systems (OPODIS 2006plume 4305 of_ecture Notes in Computer Science
pages 395-409. Springer, 2006.

P. Gastin and D. Oddoux. Fast LTL to Biuichi Automata Tiatien. In Proc. of the 13th
Inter. Conf. on Computer Aided Verification (CAV 200d3ges 53—-65. Springer, 2001.

J. Geldenhuys and A. Valmari. More efficient on-the-fly_Werification with Tarjan’s algo-
rithm. Theoritical Computer Scienc845(1):60-82, 2005.

D. Giannakopoulou, J. Magee, and J. Kramer. CheckingrBss with Action Priority: Is it
Fair? InProceedings of the 7th ACM SIGSOFT Symposium on the Foondatf Software
Engineering (FSE 1999)olume 1687 ol ecture Notes in Computer Sciengages 511—
527, 1999.

R. H. Hardin, R. P. Kurshan, S. K. Shukla, and M. Y. VardiNéw Heuristic for Bad Cycle
Detection Using BDDsFormal Methods in System Desjdgt8(2):131-140, 2001.

M. R. Henzinger and J. A. Telle. Faster Algorithms forfttmmemptiness of Streett Automata
and for Communication Protocol Pruning.Pmoceedings of the 5th Scandinavian Workshop
on Algorithm Theory (SWAT 1996)ages 16-27, 1996.

C. A. R. Hoare.Communicating Sequential Processédsternational Series on Computer
Science. Prentice-Hall, 1985.

18.

19.

20.
21.
22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

G. J. HolzmannThe SPIN Model Checker: Primer and Reference ManAdbison Wesley,
2003.

H. Jiang. Distributed Systems of Simple Interacting Ager@hD thesis, Yale University,
2007.

H. Jiang. Personal communications, 2008.

Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model Clireglkvith Strong Fairnesgormal
Methods and System Desj@8(1):57-84, 2006.

N. Klarlund. An n log n Algorithm for Online BDD Refinementn Proceedings of the
9th International Conference on Computer Aided Verifiaat{€AV'97) pages 107-118.
Springer-Verlag, 1997.

M. Z. Kwiatkowska. Event Fairness and Non-interleav@ancurrency.Formal Aspects of
Computing 1(3):213-228, 1989.

L. Lamport. Proving the Correctness of MultiprocessgPams. IEEE Transactions on
Software Engineering3(2):125-143, 1977.

L. Lamport. Fairness and HyperfairneBsstributed Computing13(4):239-245, 2000.

T. Latvala and K. Heljanko. Coping with Strong Fairndssndamenta Informaticael3(1—
4):175-193, 2000.

D. J. Lehmann, A. Pnueli, and J. Stavi. Impartiality,tibésand Fairness: The Ethics of
Concurrent Termination. IfProceedings of the 8th Colloquium on Automata, Languages
and Programming (ICALP 1981yolume 115 ofLecture Notes in Computer Sciengages
264-277, 1981.

O. Lichtenstein and A. Pnueli. Checking That Finite &t@bncurrent Programs Satisfy
Their Linear Specification. IRroceedings of the 12th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL'8dages 97-107. ACM, 1985.

M. Musuvathi and S. Qadeer. Fair Stateless Model ChgcHimProceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Desigrirapmentation (PLDI
2008) pages 362—-371. ACM, 2008.

J. Pang, Z. Q. Luo, and Y. X. Deng. On Automatic Verificatdd Self-stabilizing Popula-
tion Protocols. IrProceedings of the Second IEEE International Symposiurmrhenr€tical
Aspects of Software Engineering (TASE 20@&pes 185-192. IEEE, 2008.

D. Peled. All from One, One for All: on Model Checking UgiRepresentatives. IRro-
ceedings of the 5th International Conference on Computdediverification (CAV 1993)
volume 697 ofLecture Notes in Computer Scienpages 409-423, 1993.

A. Pnueli and Y. Sa’ar. All You Need Is Compassion. Piroceedings of the Ninth Inter-
national Conference on Verification, Model Checking andtéslas Interpretation (VMCAI
2008) volume 4905 of_ecture Notes in Computer Scienpages 233—-247, 2008.

J. Sun, Y. Liu, and J. S. Dong. Model checking csp redsitetroducing a process analysis
toolkit. In Proceedings of the Third International Symposium on LayieApplications of
Formal Methods, Verification and Validation (ISoLA 2008)lume 17 ofCommunications
in Computer and Information Sciengeages 307—322. Springer, 2008.

J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Specifying amifyiag event-based fairness
enhanced systems. Proceedings of the 10th International Conference on ForErad)i-
neering Methods (ICFEM 2008Yyolume 5256 of ecture Notes in Computer Scienpages
318-337. Springer, Oct 2008.

