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Abstract

We present a powerful and flexible method for automatically checking the secrecy of
values inside components. In our framework an attacker may monitor the external
communication of a component, interact with it and monitor the components re-
source usage. We use an automata model of components in which each transition is
tagged with resource usage information. We extend these automata to pass values
and say that a value is kept secret if the observable behaviour of the automata is
the same for all possible instantiations of that value. If a component leaks some,
but not all of the information about its secret we use a notion of secrecy degree to
quantify the worst-case leakage. We show how this secrecy degree can be automat-
ically calculated, for values from a finite domain, using the µCRL process algebraic
verification toolset.

Key words: Secrecy, Q-Automata, automatic checking,
component-based systems, quality of service, µCRL

1 Introduction

Component-based software development allows programs to be reused, inter-
changed and even downloaded onto a running system. Sometimes the maker or
user of a component would like to keep some of the data inside the component
secret from other components on the same system. This goal is complicated
as the potential attackers may be running on the same computer as the target
component and so can monitor its resource usage. We develop a framework
for automatically checking how well values inside a component are kept secret
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from an attacker that can communicate with the component and monitor its
resource usage.

Resource usage or Quality of Service (QoS) aspects of components con-
cern non-functional properties such as availability, response time, memory us-
age, etc. Following work on constraint semirings [4,13], we propose a general
framework for a range of trust and quality values, which we call a Q-algebra.
These algebras define a framework for quality values that could be combined
with many kinds of automata or calculi. With the aim of making our system
suitable for the kinds of applications we expect to model and of making our
system more easily understandable, we have chosen to base our work on au-
tomata. These provide a concrete, intuitively clear, model of computation,
and a structural approach to the analysis of the behaviour of components and
their composition.

Components will be represented by Q-automata [10]. These automata have
an additional cost label on each transition to indicate the impact of taking
that transition on the quality attributes of the system. Most automata models
do not distinguish between the interleaving of two actions and their possible
concurrent occurrence, however in the model proposed here it is possible that
concurrent components can perform their actions simultaneously without hav-
ing to synchronise (e.g., in a communication). Therefore, the resource usage of
an application can be quite different depending on whether the smallest units
of abstraction happen at the same time or one after the other. For instance,
given two transitions, both of which “cost” a certain amount of bandwidth,
measured in Kbit/s, running both at the same time will require the sum of the
two individual costs, whereas running them one after the other will only cost
the maximum of the two individual costs. Time costs on the other hand will
sum sequentially, but not concurrently and we may choose to model memory
allocation costs by summing them both concurrently and sequentially.

We extend Q-automata to pass names from a finite domain of values in a
similar way as non-value passing process calculi are often extended to value
passing versions, c.f. [20]. We also define strong bisimulation as an equivalence
relation for the (extended) Q-automata model that requires matching costs on
transitions.

We define Component Secrecy Degree and Variable Secrecy Degree to mea-
sure how well a model of a component keeps its secrets from any attacker who
can interact with the component and monitor its resource usages. We do not
consider an attacker that can examine the source code of a component, we are
interested in modelling attackers that are other components running on the
same computer as the target and so they can only use the standard communi-
cation channels and monitor the resource usage of other components. A com-
ponent has prefect secrecy if any two instances of that component, observed
by the attacker, are bisimilar for any possible secret values. The degrees of se-
crecy give a measure of how much information about the components secrets
are leaked. This is similar to the approach of [11] in measuring anonymity
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degrees. We use the µCRL toolset [5] for performing state space reduction
modulo bisimulation [6], which we use along with some purpose-built scripts
to generate all possible cases of the model and to calculate degrees of secrecy.

Main contributions.

The contributions of this work include

• a resource aware automata model of components with secrets,

• a corresponding definition of secrecy and a method of checking it via bisim-
ulation,

• a tool to automatically check our measures of secrecy (based on µCRL).

Related work.

Weighted automata have a simple weight or cost on each transition and
have been extensively studied since the early days of computer science [14,22].
Our automata model differs from weighted automata by using a Q-algebra to
provide the costs; this allows us to define a truly compositional model of the
resource usage of components. Timed automata models label transitions with
costs representing the time they take [1]. Priced or weighted timed automata
[2,3] model time using clocks and have costs on states and transitions. The
cost of each transition is paid each time the transition is made whereas the
costs of each state is paid once for each time unit the automata spends in that
state. This provides an expressive model of costs and time that is, in many
cases, undecidable [8]. Our model is also similar to some process calculi, such
as CCS [19], one of the main differences, apart from the automata setting, is
that we allow multisets of actions to happen at the same time.

In the context of computer security, there are several papers on modelling
resource consumptions of different execution scenarios, [9,17]. A conceptual
difference between our work and these papers is that they mainly focus on
measuring the resources consumed by the attacker in an attack, whereas we
allow the attacker to measure the resources consumed by the target system,
and possibly use it to launch an attack. In this respect, our work is close to
the body of research on side channel and timing attacks [15,18,21].

Structure of the paper.

In the next section we introduce our automata model and cost algebra. In
Section 3 we extend these automata to pass values and define secrecy degrees
for these values. Section 4 introduces our automatic tool to check secrecy.
Finally Section 5 concludes the paper.

2 Q-Automata: Modelling Resource Usage

Our model of resource aware components uses values from a Q-algebra to label
the transitions of an automaton.
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2.1 Q-algebra

To compute and analyse QoS values in a standard way, we develop a general
framework as in the approach of De Nicola et al. [13]. First we recall the
concept of a constraint semiring:

Definition 2.1 A constraint semiring is a structure R = (C,⊕,⊗, 0, 1) where
C is a set, 0, 1 ∈ C, and ⊕ and ⊗ are binary operations on C such that:
— ⊕ is commutative, associative, idempotent and has identity 0

— ⊗ is associative and has identity 1

— ⊗ distributes over ⊕ and has 0 as an absorbing (zero) element

Note that for a constraint semiring (or c-semiring, for short) as above, the
operation ⊕ induces a partial order ≤ on C defined by a ≤ b if and only if
a ⊕ b = b. Moreover, two elements are comparable with respect to ≤ if and
only if application of ⊕ to these elements yields one (the larger w.r.t. ≤) of
the two. Actually, ⊕ always yields the least upper bound of the elements to
which it is applied.

Constraint semirings can be used to compose QoS values with “addition”
⊕ to select among values and “multiplication” ⊗ to combine them. Given an
action of cost c1 and another action with cost c2 then the cost of both actions
together is c1 ⊗ c2, whereas ⊕ returns the least upper bound of c1 and c2.
The 0 element, as the identity of ⊕, is the least possible cost value and the 1

element, as the identity of ⊗, is the neutral cost value.

A few examples:
— (shortest) time: (R+ ∪ {∞}, min, +,∞, 0)
— bandwidth: (N ∪ {∞}, min, max,∞, 0)
— data encrypted: ({true, false},∨,∧, false, true)
— access control: (2U ,∪,∩, ∅, U), where U is the set of all users and 2U is the
powerset of U .

Constraint semirings work well when there is just one way to combine
quality values. We may use these values to represent the cost of a method
call, a sequence of reduction steps or the cost to execute an entire program.
When dealing with a number of concurrent processes these steps may take
place sequentially or in parallel and these two ways of combining actions might
have very different overall results on the resource usage of the system. For
instance, two processes that both require a certain number of CPU cycles per
second will require a higher number of cycles per second when run at the same
time than when run one after the other. We can model these different ways
of combining values by adding a new multiplicative operator:

Definition 2.2 A Q-algebra is a structure R = (C,⊕,⊗, ȅ, 0, 1) such that
R⊗ = (C,⊕,⊗, 0, 1) and Rȅ = (C,⊕, ȅ, 0, 1) are c-semirings. C is called the
domain of R.

The ȅ operator is used to combine two values concurrently: c1 ȅ c2 is the
cost of c1 and c2 at the same time. The ⊗ operator combines values sequen-
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tially: c1 ⊗ c2 is the cost of c1 followed by c2. Combining costs concurrently
or sequentially will not affect the least or neutral cost elements so the two op-
erations share their identities. As before, ⊕ is used to select between values.
For example:
— (shortest) time: (R+ ∪ {∞}, min, +, max,∞, 0)
— bandwidth: (N ∪ {∞}, min, max, +,∞, 0)

2.2 Q-Automata

In this section we introduce Q-automata. These consist of an initialised la-
belled transition system together with a (labelled) Q-algebra to specify the cost
of each transition. Note that each transition is labelled with a multiset of ac-
tions as a representation of simultaneous and multiple occurrences of actions.
A multiset over a set X is a function m : X → N and the set of all multisets
over X is denoted by M(X). For two multisets m1 and m2 over X, their sum
m1 + m2 is the multiset over X defined by (m1 + m2)(x) = m1(x) + m2(x).

Definition 2.3 A Q-automaton is a structure P = 〈S, t, A, R, T 〉 where:
— S is a finite set of states,
— t ∈ S is its initial state,
— A is a (finite) set of action names,
— R = (C,⊕,⊗, ȅ, 0, 1) is a labelled QoS algebra with domain C of costs,
— and T ⊆ S × M(Act) × C × S is the set of transitions.
The set of actions of P , written Act, is derived from the set of action names A

in the following way: each name a ∈ A can occur as an input action (denoted
a?), an output action (denoted a!) or as an internal action (also denoted by
a). We thus obtain AO = {a! : a ∈ A}, the set of output actions of P ,
AI = {a? : a ∈ A}, the set of input actions of P , and Aτ = A the set of
internal actions of P . The sets AO, AI , and Aτ are assumed to be pairwise
disjoint. Finally, we let Act = AO ∪ AI ∪ Aτ .

The (finite) computations of Q-automata are defined in the standard way.

Definition 2.4 Let P be a Q-automaton specified as in Definition 2.3. A
computation (of length n ≥ 0) starting from a state s0 ∈ S is a sequence
(s0, m1, c1, s1), . . . , (sn−1, mn, cn, sn) with (si, mi, ci, si+1) ∈ T for all 0 ≤ i ≤
n − 1. If n = 0, then the computation is the empty sequence.

Based on the Q-algebra and the costs of the transitions, we can compute
the cost for each computation.

Definition 2.5 Let γ = (s0, m1, c1, s1), . . . , (sn−1, mn, cn, sn) be a computa-
tion as specified in Definition 2.4. Then the cost of γ is 1, if n = 0 and
c1 ⊗ . . . ⊗ cn if n ≥ 1.

So, the cost of a computation (a sequence of transitions) is computed using
the “sequential multiplication” operator ⊗. Note that to compare the costs
of different computations, the additive (selection) operation ⊕ can be used
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since it yields the least upper bound of the given values. “Concurrent multi-
plication” ȅ is used when Q-automata collaborate in a composite automaton
(their product). This product automaton has as its Q-algebra the product of
the Q-algebras of its components. Its state space is the Cartesian product of
the state spaces of its components and its transitions are combinations of the
components’ transitions, as defined below.

In the formal definition of product automata, we use an auxiliary function
sync, which in turn uses a relation ⇒ over pairs of multisets of actions such
that the pair on the left equals the pair on right except one input on a name
in one multiset and one output on the same name in the other multiset have
been removed and a communication on that name has been added.

Definition 2.6 Let A be a set of action names, Act be its associated set of
actions as defined in Definition 2.3 and m1 and m2 be two multisets over Act.
Then (m1, m2) ⇒ (m′

1, m
′

2) if either there exists an a ∈ A such that:
— m1(a?) ≥ 1 and m2(a!) ≥ 1
— m′

1(a) = m1(a) + 1 and m′

1(a?) = m1(a?) − 1,
— m′

2(a!) = m2(a!) − 1,
— and m′

1(b) = m1(b) and m′

2(b) = m2(b) for all other actions b ∈ Act.
or if (m2, m1) ⇒ (m′

2, m
′

1) as above.

Let ⇒∗ be the reflexive, transitive closure of ⇒. Then
sync(m1, m2) = {m′

1 + m′

2 : for all m′

1, m
′

2 such that (m1, m2) ⇒
∗ (m′

1, m
′

2)}.

Thus sync(m, m′) is the set of all multisets that can be obtained by adding
m and m′ with any possible combination of communications between them.
Note that ⇒∗ in particular allows the multisets not to communicate at all.

Definition 2.7 Let P1 = 〈S1, t1, A1, R, T1〉 and P2 = 〈S2, t2, A2, R, T2〉 be two
Q-automata. Then their product, denoted by P1 ⊠ P2, is the Q-automaton
defined as P1 ⊠ P2 = 〈S, t, A, R, T 〉 with
— S = S1 × S2,
— t = (t1, t2),
— A = A1 ∪ A2,
— T = T new

1 ∪ T new
2 ∪ T joint where:

• T new
1 = {((s, t), m, c, (s′, t)) : (s, m, c, s′) ∈ T1 and t ∈ S2},

• T new
2 = {((s, t), m, c, (s, t′)) : s ∈ S1 and (t, m, c, t′) ∈ T2}, and

• T joint = {((s, t), m, c, (s′, t′)) : ∃(s, m1, c1, s
′) ∈ T1, (t, m2, c2, t

′) ∈ T2 such
that m ∈ sync(m1, m2) and c = c1 ȅ c2}.

In some cases we may want to impose a more restrictive model of commu-
nication on our automata, for instance we might want to require that only a
single automaton can receive on a given channel or we might want to test our
automata in the knowledge that no other automaton will ever be listening on
some channel. We can do this by blocking all transitions that involve a given
(internal, input, or output) action.
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Definition 2.8 Let P = 〈S, t, A, R, T 〉 be a Q-automaton and let α ∈ AO ∪
AI ∪ Aτ be an action of P . Then P\α, the restriction of P with respect to
α, is the Q-automaton 〈S, t, A, R, T ′

P 〉 with T ′

P = {(s, m, c, s′) : (s, m, c, s′) ∈
TP and m(α) = 0}. We define P \ ∅ = P and P \ ({α} ∪ Y ) = (P \ α) \ Y .

3 Secret Values

3.1 Value Passing Q-automata

This subsection provides the additional machinery that we need to define and
test secret values. We extend Q-automata to pass names from an ordered,
finite data domain of values. We add a finite set of variables V and a finite
domain of values D to the definition of Q-automata. Our definitions can
naturally be extended to cover cases where different variables have separate,
yet finite, data domains. However, to keep the presentation simple, we confine
to the single value domain case in this paper. Below, we use x, y, . . . to refer
to variables, d1, d2, . . . are elements of the data domain and n1, n2, . . . refer to
either a variables or an element of the domain.

Definition 3.1 An extended Q-automata is a structure Pe = 〈S, t, A, R, D, T 〉
where:
— S is a finite set of states,
— t ∈ S is its initial state,
— A is a (finite) set of action names,
— R = (C,⊕,⊗, ȅ, 0, 1) is a labelled QoS algebra with domain C of costs,
— D a finite domain of data values,
— and T ⊆ S × M(Act) × C × S is the set of transitions.
The set of actions of P , written Act , contains four types of actions: Input on a
name from a segment of the domain a?(x)[d1, . . . , d2], output on a name a!(n1),
internal action on a name a(n1), and conditionals on data values if (n1 = n2)
as well as if (n1 6= n2).

1

The input action a?(x) “binds” the variable x. We say that a variable is
“free” in a multiset of actions if it is used in an output or in a conditional but
is not bound by an input. Furthermore, we say that a variable is free from a
given state if there exists a trace, starting at that state, in which the variable
appears free before it is bound.

Below we define well-formed extended Q-automata.

Definition 3.2 An extended Q-automata P is well-formed if

• None of the multisets of actions, on the transitions, bind the same variable
more than once.

• There are no free names from the start state.

1 This can in principle be easily extended to any Boolean function as conditionals.
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From now on, we only consider well-formed extended Q-automata. We
define the semantics of value passing automata by mapping them back into
the non-value passing automata. We do this by mapping each combination
of name and data value to a single name. For instance, the input action
a?(x)[1,. . . ,4] would be mapped to four different input actions a 1?, · · · , a 4?,
where each of these is a variable-free action in the basic system. To translate
the “if ” condition, we test the values and if the condition holds then we replace
it with an empty transition otherwise we remove it.

We record the mappings from variables to values using a partial function
σ : V → D. An action a?(x)[d1, · · · , dn] and a partial function σ are compatible
if σ(x) ∈ {d1, · · · , dn}, we write a σ(x)? for [a?(x)[d1, · · · , dn]]σ, when σ is
compatible with the action. For example if σ = {(x, 4)}, then [a?(x)[1, · · · , 5]]σ
is written as a 4?. We note that given a partial function σ that does not map
x to a value, the smallest extensions of σ that are compatible with the action
a?(x)[d1, · · · , dn] are σ ∪ {x 7→ d1}, . . . , σ ∪ {x 7→ dn}.

For output actions [a]σ is obtained by simultaneously substituting all vari-
ables for their values and forming the matching single output name. For
instance, given a!(x) and σ = {(x, 3)}, we have [a!(x)]σ = a 3!. We extend
these definitions to multisets of actions in a natural way. Note that the well-
formedness conditions mean that there is no conflict between variable names.

Definition 3.3 Given an extended Q-automaton Pe = 〈Se, te, Ae, Re, De, Te〉
we define its mapping to a basic Q-automata [[Pe]] = 〈S, (te, ∅), Ae, Re, T 〉 as
follows: Each state in S is a pair (se, σ), where se ∈ Se and σ : V → D is a
partial function that assigns concrete values to members of V . We define S

and T to be the smallest sets such that:

• (te, ∅) ∈ S

• For all (s, σ) ∈ S and for all (s, m, c, s′) ∈ Te:
· either there exists an “if” condition in m which is false using σ

· or we remove the names bound by m from σ and define S to be the set of
the smallest extensions of that substitution that are compatible with m,
then for all σ′ ∈ S:

((s, σ), [m]σ′ , c, (s′, σ′′)) ∈ T and (s′, σ′′) ∈ S

where σ′′ equals σ′ with all names that are not free from state s′ removed.

The removal of the names from σ′ ensures that irrelevant extensions to the
substitution mapping do not lead to more states than are necessary.

A parameterised Q-automata Pe(x1, . . . , xn) is an extended Q-automata
that has free variables in its computations, hence it is not well-formed. How-
ever, an instantiated Pe(x1, . . . , xn) with a mapping σ0 = {(x1, d1), · · · , (xn, dn)}
is well-formed and can be translated to a basic Q-automata [[Pe(d1, . . . , dn)]]
with starting the procedure introduced in Definition 3.3 with the initial state
(t, σ0), instead of (t, ∅).
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3.2 Hiding and Bisimulation

We do not want the attacker to be able to observe the internal actions of
any automaton, therefore we define a hiding operator that removes the names
from the internal actions but leaves the transition and its costs.

Definition 3.4 Given a Q-automata P (~x) = 〈S, t, A, R, T 〉 and a set of inter-
nal names I, the automata that results from hiding these names is P (~x){I} =
〈S, t, (A\I), R, T ′〉 where:

T ′ = {(s, m′, c, s′) : (s, m, c, s′) ∈ T and for all
a ∈ I. m′(a) = m′(a!) = m(a?) = 0 and m(b) = m′(b) for all b 6= a }

We define strong bisimulation for automata with costs as follows:

Definition 3.5 We say two Q-automata P1 = 〈S1, t1, A1, R1, T1〉 and P2 =
〈S2, t2, A2, R2, T2〉 are bisimilar, denoted by P1 ∼ P2, iff

• for all (t1, m, c, s1) ∈ T1, then there exists (t2, m, c, s2) ∈ T2 such that
〈S1, s1, A1, R1, T1〉 and 〈S2, s2, A2, R2, T2〉 are bisimilar.

• for all (t2, m, c, s2) ∈ T2, then there exists (t1, m, c, s1) ∈ T1 such that
〈S2, s2, A2, R2, T2〉 and 〈S1, s1, A1, R1, T1〉 are bisimilar.

Two extended automata are bisimilar if their mappings into the basic au-
tomata are also bisimilar. We note that this definition requires the names and
the costs on an action to match, therefore if two automata perform the same
actions at different costs they are not bisimilar.

The equivalence used in the verification of secrecy models the observation
power of the intruder. We use bisimulation to equate processes; this is in
contrast to some previous work that used trace equivalence for secrecy, e.g.
see [12]. While it is often possible, in an asynchronous setting, to implement
processes in such a way that an intruder cannot tell the difference between
two processes that are trace equivalent but not bisimilar, there also exist
reasonable implementations in which the intruder can tell the difference. For
instance, the two processes a.(b+ c) and a.b+ a.c are trace equivalent but not
bisimilar. A reasonable implementation of these processes might use sockets
for communication, in which case the first process would listen on port “a”
for a message and then listen on ports “b” and “c” and accept only the first
message that arrives. The second process could be implemented by either
listening on port “a” and then port “b” or listening on port “a” and then port
“c”. All an intruder has to do to tell these processes apart is to send on port
“a” and then on port “b”. If the intruder can connect on port “b” they learn
nothing, however if they find that port “b” is not open then they know that
they are dealing with the second process. In this sense, using bisimulation
rather than trace equivalence is a conservative decision; while it is possible for
processes that are trace equivalent, but not bisimilar, to be safe, we cannot
guarantee that they do not reveal information to the intruder.

A second advantage of using bisimulation is that it can be much more
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efficient to check. The added restrictions on bisimilar processes mean that we
can reject certain paths as not bisimilar long before we could detect that they
are not trace equivalent. In the most extreme cases checking a particular pair
of processes for trace equivalence can take exponential time while checking the
same processes for bisimulation being linear time, e.g. see [16].

3.3 Secrecy Degree

We say that a variable x in the automata P (x) is kept secret if for any two
possible values d1 and d2 for x it holds that P (d1){I} is bisimilar to P (d2){I}
where I is the set of the internal names.

Different instantiations of an automaton are split into different equivalence
classes whose members are all bisimilar. The Component Secrecy Degree mea-
sures the smallest of these classes. This represents the most that an attacker
could deduce about the automata’s secret (input) based on its communication
and resource usage. Below, ~z denotes a vector of z values.

Definition 3.6 [Component Secrecy Degree]

The component secrecy degree (csd) of an automata P (~z) with respect to
a set of internal names I is:

csd = min
~d1

| {~d2 : [[P (~d1)]]{I} ∼ [[P (~d2)]]{I} } |

The best possible Component Secrecy Degree would be |D|n where n is
the size of ~z and |D| is the size of the domain. So we will sometimes write the
component secrecy degree as csd : |D|n.

In the case that only one of our inputs needs to be kept secret we use
Variable Secrecy Degree:

Definition 3.7 [Variable Secrecy Degree]

The variable secrecy degree (vsd) for the ith variable of automata P (~z)
with respect to a set of internal names I is:

vsd(i) = min
~d

| {di : ∃d1, . . . , dn [[P (d1, . . . , di, . . . , dn)]]{I} ∼ [[P (~d)]]{I} } |

The Variable Secrecy Degree quantifies the secrecy of just one input value.
The best possible Variable Secrecy Degree would be |D|. So we for the value
secrecy degree will sometimes write vsd : |D|. Note that csd is in fact an
upper bound on vsd values, i.e. ∀i. vsd(i) ≤ csd . This is because csd is the
size of the smallest equivalence class whose members are indistinguishable for
the attacker. Clearly, the number of different values that the ith variable may
take in this class cannot be larger than the size of the class.

We may use restriction to test conditions on automata. For instance if we
have a booking agent component that may make purchases on our behalf, then
we could check that it does not leak our credit card number without making
a purchase by checking the variable secrecy degree for the credit card number
in the automata restricted on the purchase action.
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p1 p2 pn

P(p1) P(p2) P(pn)

. . . . pnp1 p2

. . . . . 

. . . . .

Fig. 1. Checking Secrecy Using State Space Reduction

We conjecture that the secrecy degrees are fully compositional properties,
i.e. for any automata P (~x){I} and PA, the secrecy degrees of P (~x){I} × PA

are not less than the corresponding secrecy degrees of P (~x). Similarly, the
secrecy degrees of P (~x){I} \Aα, where Aα denotes a set of restricted actions,
is not less than those of P (~x){I}. This means that we can quickly build up
quite complex models and check combinations of systems. We leave a formal
treatment of this conjecture as future work.

4 Automatically Checking Secrecy in µCRL

Our definitions of secrecy require us to check bisimulations between every
possible pair of automata inputs. Doing this by hand would not be easy,
therefore we develop a tool to do this for us.

The user specifies an extended Q-automata, the finite domain of its vari-
ables, and the names that need to be restricted and the internal names. Our
scripts generate all possible basic Q-automata for all possible variable values,
and also hide and restrict the names. We then test all the possible bisimula-
tions in one go via “state space reduction modulo bisimulation”, see [7].

We illustrate our method in Figure 1. We make use of this to test an
automaton P (~x) by generating one large automaton that has one transition
from the start state for each possible input value, and these transitions go to
a sub automata that behave as P would on that input. More formally:

Given an extended automata P (~x), a domain of variables {d1, . . . , dn} and
a set of internal names I, we generate all corresponding basic Q-automata
for all possible inputs: [[P (d1)]]{I} = 〈S1, t1, A1, R, T1〉, · · · , [[P (dn)]]{I} =
〈Sn, tn, An, R, Tn〉. We then generate an automaton that branches to each
of these automata from a start state: P = 〈S, t′, A, R, T 〉 where:

• S = S1 ∪ . . . ∪ Sn ∪ {t′}

• A = A1 ∪ . . . ∪ An ∪ {i : 1 ≤ i ≤ n}

• T = T1 ∪ . . . ∪ Tn ∪ {(t′, i, 1, ti) : 1 ≤ i ≤ n}

This automaton is illustrated on the left of Figure 1. We perform state
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Fig. 2. An Example Extended Q-Automaton

space reduction modulo bisimulation on this large automaton. 2 If a number
of values the P (x) automata are bisimilar then the state space reduction will
produce an automaton that takes the initial transition with the value labels to
the same state. If the result is a system in which all of the initial transitions
go to the same state, as illustrated on the right of Figure 1, we know that P (x)
is bisimilar for all values of x, i.e. we have perfect secrecy. If the transitions
go to a number of distinct states then the attacker can learn something about
the input.

We can measure how much the attacker learns using our secrecy degree,
which we can read off from the simplified automaton. If we look at the set
of labels on the transitions that go to the same state after simplification as
equivalence classes then the component secrecy degree is the size of the small-
est class. To find the variable secrecy degree it is necessary to look at each of
the equivalence classes in turn and find the one that has the smallest number
of possible values for the given variable. This smallest number of possible
different values is the variable secrecy degree.

4.1 Example

We illustrate the details of our method with a simple example. Figure 2 shows
an extended Q-automaton that two “choices” parameters (numbers between
1 and 3, which are different) and a credit card number parameter (either cc1
or cc2). It then inputs a number on the channel ch that represents what the
environment is offering. If this number matches one of the two choices, the
component reports the offer back to its owner on a private channel (this is an

2 State space reduction modulo bisimulation reduces an automaton to a smaller automaton
that is bisimilar.
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internal action) and if the owner confirms, it releases the credit card number.
In order to automatically check our extended Q-automata we write them in
Aldebaran like format:

(0,"ch?(x)[1,2,3]",16,1) (1,"if (x=1stchoice)",-16,2)

(1,"if (x=/=1stchoice)",-16,3) (3,"if (x=2ndchoice)",-8,2)

(3,"if (x=/=2ndchoice)",-8,4) (4,"fail",0,0)

(2,"offer",2,5) (5,"comfirm",-2,6)

(6,"ch!<cc>",0,0)

The first thing we can check is that the credit card number is kept secret
unless the owner confirms its release. So we test the automata restricted
on the confirm action hoping to find that the credit card number does not
then affect the behaviour of the automaton. To test this secrecy we need to
translate the restricted automata into a basic Q-automaton, this is done for
the inputs cc1,1,2 in Figure 3.

By replacing the multiset of actions with an ordered list of actions and
appending the costs to this list we can write down these basic automata in
the Aldebaran like format. For instance, the automata in Figure 3 would
be written as:

(0,"ch_1_16k?",1) (0,"ch_2_16k?",2)

(0,"ch_3_16k?",3) (1,"-16k",4)

(2,"-8k",5) (3,"-8k",6)

(4,"offer_2k",7) (5,"-8k",8)

(6,"-8k",9) (8,"offer_2k",10)

(9,"fail_0k",0)

We have written a Perl script that, given a value passing Q-automaton and
information on the domains of its variables, generates the large automaton
that includes all possible inputs, as described in Section 4, we then use µCRL
toolset to perform state space reduction modulo strong bisimulation. Finally
another script reads off our secrecy values by looking at all the transitions
from the start state in the reduced version of the automaton.

When analysing the example in Figure 2 we find that, as expected, the
credit card value is kept secret (vsd(1) = 2 : 2) however we also find that the
choices are not secret at all (vsd(2) = vsd(3) = 1 : 3). On closer inspection
we can see that the first and second choices can be distinguished by the way
in which memory is deallocated. If the environment provides the component’s
first choice then the component will stop its search and deallocate 16k in one
go, whereas if the environment offers the 2nd choice value then the component
will deallocate 8k followed by another 8k.

It is up to the user of our tools to decide if leaking information about a
particular variable is a problem or not. In this case we may restore some
secrecy to the choices by deallocating the memory in the same way for each
choice, as done in Figure 4. For this automata our tools tell us that vsd(1) =
2 : 2, vsd(2) = 2 : 3 and vsd(3) = 2 : 3. While this is not perfect secrecy, these
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{offer }
−8k −8k

−8k−8k
0k

[[ P(cc1,1,2) ]]/{comfirm}= 
{ch_1?}
16k {ch_2?}

16k

{ch_3?}
16k

−16k
{}{}

2k

{}

{offer }
2k

{}

{}
{fail}

Fig. 3. An Basic Q-Automaton Example

Fig. 4. An Example Extended Q-Automaton That Hides the Choices

increased secrecy degrees show that the attacker cannot learn which value was
the first choice and which was the second.

5 Conclusion

We have presented a method for automatically checking the secrecy of values
inside components, even when the attacker can monitor resource usage. We
base our framework on Q-automata and Q-algebras to provide a simple model
of components and a wide range of possible costs. We use scripts and µCRL
to automatically calculate our measures of secrecy degree from an automaton.
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This work forms part of the analysis methods developed within the Trust4All
project. This is an ITEA project aimed at developing a programming envi-
ronment for “trusted” components that will come with information on their
resource usage. The methods and tools presented here will be used to check
real components developed as part of this project.

We are currently developing an Eclipse based graphical user interface to
make building the automata models easier. Figures 2 and 4 are in fact screen
shots of our editor. We will integrate our scripts for running µCRL and calcu-
lating the security values into this framework and make it publicly available.
We are also interested in looking at more flexible ways of matching costed
transitions. One possibility might be to use an approximate bisimulation to
allow a margin of error when matching transitions. Another direction might
be to define a bisimulation that allows a number of transitions in one sys-
tem to be matched by another number of transitions in the other system.
For instance, when modelling time we could allow two sequential five-second
transitions to look the same as one ten-second transition.
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