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Abstract

Social networks has become an essential part of many people’s everyday lives. A lot
of social networks have deployed location-based services with which friends can share
favorite places or outdoor activities by virtue of the increasingly ubiquitous devices that
are able to acquire locations accurately. Location-based services leads social networks to
a new approach of user recommendation based on the similarity of users’ mobility profiles
which are their frequent movement behavior extracted from their movement history. This
can be done by measuring the extent of proximity between users’ movement trajectories,
or semantically by measuring the extent of closeness between the functionalities of places
often visited by users.

In this thesis, we propose multiple desired principles that user similarity measures
based on mobility profiles should follow, and identify the defects of the existing user
similarity measures in the literature and fail to follow the principles, and further propose
three novel similarity measures, one without semantics and the other two with semantics,
that avoid those defects and follow the principles. The experimental results on real
datasets corroborate that our new similarity measures outperform the existing ones. We
also develop the MinUS software tool that coalesces the mobility profile construction
process and the comparison of user similarity using the existing or our new similarity
measures.
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Chapter 1

Introduction

1.1 Background

In recent years, mobile devices equipped with positioning chips have become very pop-
ular, e.g., smart phones. Especially, due to the free access to navigation systems such
as GPS (Global Positioning System), people can obtain their real-time positions with a
high precision. This leads to a new type of social networks – geosocial networks (GSN)
such as Bikely [3], Foursquare [6]. What is unique in GSNs is that people can attach
their locations to their messages. For example, photos and videos can be tagged with
the shooting place. Even the traditional social networks such as Google+ and facebook
have also been upgraded to support this location sharing service. People’s whereabouts
shared with their friends in GSNs subsequently generate new services such as nearby
friend search and place recommendation based on the visited places of their friends.
With time passing by, the posted locations are accumulated and form a dataset of
people’s mobility histories. This results in a new opportunity for the classic friend rec-
ommendation service of GSNs as people’s historical movements can significantly reveal
their interests. For instance, if Alice often goes to book stores, then we can infer that
she is fond of reading. To implement the new recommendation service, it is necessary to
calculate the similarity between users based on their movement records.

The comparison between users’ mobility has attracted a lot of research in the liter-
ature. One popular and promising method is to make use of user mobility profiles in
the form of trajectory patterns [18]. A trajectory pattern is usually represented as a se-
quence of places which a user frequently visits and the typical transition times between
two successive places. For instance, every morning Pierre, a student in Luxembourg,
spends ten minutes moving from the bus stop Hamilius to the campus Kirchberg, from
which in the afternoon he spends another five minutes on the way to Auchan. His daily
routine can be described as a trajectory pattern:

Hamilius
10 min−−−−→ Campus Kirchberg

5 min−−−−→ Auchan.

The calculation of user similarity is reduced to the comparison between mobility profiles.
The main idea is that two users are more similar once they have more common mobility
patterns.

The semantics of locations are also taken into account in the construction of mobility
profiles. This captures the observation that two users whose movement traces are distant
from each other may also share similar interests. For instance, Bob who also likes reading
lives in another city which is far from Alice’s place and goes to different book stores
from Alice. However, no matter where the book stores are located, they have the same
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semantics and reveal the same information with regard to Bob and Alice’s hobbies.
The semantic mobility profiles allows the comparison between users from a different
perspective.

1.2 Related work

In the literature there have been a number of works about constructing and comparing
user mobility profiles.

Mobility profile construction: Giannotti et al. [18] introduce the concept of trajec-
tory patterns which represents a set of individual trajectories all of which go through
the same sequence of places named regions of interest (RoIs). Trajectory patterns are
derived from the concept of temporally annotated sequences (TASs) [16] by restricting
the elements of TASs to RoIs. TASs in turn are an extension of the concept of frequent
sequential patterns (FSPs) by adding information about the typical transition times be-
tween their elements to sequences. The FSP concept is introduced by Agrawal et al. [13],
which refers to all frequent sequences in a database of sequences D, i.e., the number of
sequences in D that have a sequence as a subsequence reaches a certain percentage.
Many algorithms for extracting frequent sequential patterns have been proposed, like
PrefixSpan [19] and SPADE [23], among which PrefixSpan is the most efficient and
widely used. PrefixSpan is extended by Giannotti et al. [17] to mine frequent trajectory
patterns which compose frequent pattern sets or mobility profiles. Chen et al. [14] im-
prove the mobility profile construction process proposed by Giannotti et al. [17] to find
more precise and meaningful regions-of-interest (ROIs), by removing outliers and using
a clustering procedure other than a region growing procedure.

Comparing user mobility: A personalized friend and location recommender system
is proposed and implemented by Zheng et al [25]. They also collected a dataset whose
source data are GPS point trajectories. GPS points are clustered into stay points which
represent the sites where users stay over a period of time. Stay points are then clustered
into RoIs hierarchically by a density-based algorithm. The longest common subsequences
(LCSs) are extracted for a pair of users and used to measure their similarity after trans-
forming their trajectories into sequences of RoIs. A similar method that takes semantics
into account is proposed by Xiao et al. [20], in which a GPS trajectory is transformed
into a sequence of the functionalities of locations, like schools and hospitals. However,
both methods [25, 20] work on the level of trajectories, which might contain some places
rarely visited. These places do not belong to users’ typical movement behaviour and
might interfere with the process of comparing user similarity. Ying et al. [22] propose
a method to compare user similarity semantically but on the level of frequent patterns.
They use PrefixSpan to mine frequent patterns and develop a similarity measure, called
maximal semantic trajectory pattern similarity (MTP similarity). Maximal trajectory
patterns, or maximal patterns, are those patterns that are not contained in any other
frequent patterns. In the MTP similarity measure, the comparison between users is
based on the comparison between maximal patterns. Chen et al. [14] improve the MTP
similarity measure by remedying a defect which is that when comparing two identical
users using the similarity measure the similarity value is not necessarily one, and ex-
tend it to take temporal information into account. Chen et al. [15] further extend the
improved MTP similarity measure to take semantics into account.
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1.3 Motivation

The concept of similarity have been studied in many domains, such as mathematics and
computer science. There are three principles that a valid similarity metric should follow:

1. Two users are completely different, i.e., the similarity value is 0, if and only if they
have no common patterns in their mobility profiles.

2. Given a user’s behavior, he is more similar to another user compared to others if
they have (i) more common behaviors; (ii) closer preference, or frequencies on the
common behaviors.

3. The similarity value between two users is maximum, i.e., 1, if and only if they are
exactly the same. Specifically, the mobility patterns in the two profiles are the
same and have the same support values.

However, the MTP similarity measure proposed by Ying et al. and the improved MTP
measure proposed by Chen et al. fail to satisfy two principles.

Both of the two measures violate the third principle. Specifically, as we mentioned,
when the MTP similarity measure is used, even two identical users do not necessarily
have the maximum similarity value, while the improved MTP measure ignores the impact
of users’ different preference, i.e., the frequencies of the patterns. In other words, as long
as two users share the same maximal pattern set, then the similarity value will be 1.

Both of the measures violate the second principle. They assign a weight, which is
the average support value, to each pair of mobility patterns being compared. In fact
this is incorrect. This only captures the relative importance of each pair of sequence
patterns to other pairs of patterns. The absolute magnitudes of the frequencies of a pair
of patterns play no role in determining the similarity between two users. Thus it does
not capture the extent of closeness between frequencies of common behavior.

These defects of the improved MTP measure still remain in its semantic version [15].
This thesis precisely addresses the problem of how to devise new similarity measures

(with semantics) using frequent pattern sets, and thus better measure user similarity
based on users’ movement history in order to make the resultant similarity values as
close as possible to the real extent of similarity among them. First we attempt to seek
a new user similarity measure that follows the three basic principles and eradicates the
defects of the (improved) MTP similarity measure. Then we attempt to extend the new
similarity measure to enable it to consider semantic information, and we also attempt
to develop another similarity measure which takes semantics into account from scratch.

Generally, when developing a new similarity measure we use a ”theory-experiment”
methodology, which means that first we give the desired principles that the similarity
measure should follow, then according to the principles we devise the working process
of the new similarity measure, finally we carry out experiments on real datasets to
corroborate that the similarity measure is effective. We also choose the appropriate ones
from a couple of candidate solutions for a specific problem by checking whether they
satisfy the desired principles.

1.4 Our contributions

We propose three novel similarity measures, one without semantics and the other two
with semantics, and carry out experiments on two real datasets. We also develop the
MinUS (Mine User Similarity) software tool which has two major functionalities, mobility
profile construction and user similarity comparison.
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1. Based on the principles mentioned above, we propose a new similarity measure,
called the CPS-based similarity measure, by directly comparing two users’ frequent
pattern sets instead of being based on the comparison of patterns. This measure
eliminates the above-mentioned defects of the (improved) MTP measure.

2. The CPS-based similarity measure does not consider semantics. This is not enough,
because it finds similar users who not only have similar interests, but also have close
geographical trajectories. But we want to find users whose interests are similar
regardless of whether their geographical trajectories are close to each other or not.
To tackle the problem, we propose a method of extending the CPS-based similarity
measure to make it take semantics into account using the same representation of
semantic information as in the improved MTP similarity measure with semantics.
The resultant CPS-based similarity measure with semantics also eliminates the
above-mentioned defects of the improved MTP measure with semantics.

3. The CPS-based similarity measure with semantics removes some infrequent be-
havior, so we propose another new similarity measure with semantics based on the
notion of Hausdorff distance that takes users’ whole behavior into consideration.

4. We conducted experiments on two real datasets, Geolife [24, 7] and Yonsei [12],
using our new similarity measures. The comparison between the results of our
new similarity measures and those of the improved MTP similarity measure (with
semantics) shows that the CPS-based similarity measure has a better performance
than the improved MTP similarity measure, and the CPS-based and the Hausdorff
distance-based similarity measures with semantics also have a better performance
than the improved MTP similarity measure with semantics.

5. We developed the MinUS tool whose major functions are to construct user profile
from source data of geographical trajectories using and to measure user similarity
using the (improved) MTP similarity measure or our new similarity measures. It
also implements the management of datasets.
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Chapter 2

Preliminaries

In this chapter, we briefly introduce Chen et al.’s method of constructing user profile,
the MTP similarity measure and its improved version (with semantics), during which we
elucidate fundamental notions that will also be used in our new user similarity measures
in the following chapters.

2.1 Chen et al.’s method of constructing user profile

In the user profile construction method proposed by Chen et al. [14], first we need to
collect source data which are usually in the form of GPS points. A GPS point is a
position on the earth’s surface and here denoted by (lat, lng) which gives its latitude
and longitude. Users’ movement can be actually represented by a sequence of GPS
points which forms a GPS trajectory.

Definition 1 (GPS trajectory). A GPS trajectory is a sequence of chronologically or-
dered spatio-temporal points, i.e. (p1, . . . , pn) where pi = 〈lati, lngi, ti〉(0 ≤ i ≤ n) with
ti as a time instant and (lati, lngi) as a GPS point.

A stay point stands for a geographic region, where a user stays over a time interval
threshold θt and within a distance threshold θd. Let dis(p, p′) be the distance between
two GPS points p and p′.

Definition 2 (Stay point). A stay point s of a GPS trajectory T = (p1, · · · , pn) cor-
responds to a subsequence T ′ of T . If T ′ = (pj , . . . , pj+m) where ∀mx=0dis(pj , pj+x) ≤
θd, dis(pj , pj+m+1) > θd and tj+m − tj ≥ θt, then we have s = (lat, lng, ta, td) where

lat =
∑m

x=0 latj+x

m+1 , lng =
∑m

x=0 lngj+x

m+1 stand for the average latitude and longitude of the
points in T ′, ta = tj is the arrival time at s and td = tj+m is the departure time.

In reality, there is a good chance that a user starts and ends a trajectory at his
meaningful places, like his home or office. Thus the first point and the last point of a
GPS trajectory are directly regarded as two stay points. If the two stay points are close
to other stay points and the distances are below a threshold θm, we merge them into
one stay point by replacing them with the middle point of the line segment connecting
them.

Multiple stay points are likely to be close to each other and belong to one meaningful
region. For example, a student might linger at several sites on a campus, then the campus
will include several stay points. And one stay point only belongs to one user, so stay
points cannot be directly used to compare two users’ similarity. Thus next we cluster
all the stay points of the users who we want to compare into regions of interest shared
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by these users. An region of interest (RoI) is a geographic region where one user carried
out an activity.

There might exist outlying stay points rarely visited by users. Such points degrade
the quality of generated RoIs, e.g. enlarging their areas or producing improper RoIs.
Thus before generating RoIs, a certain percentage (called deletion percentage) of points
with the greatest LOF values are removed. LOF (local outlier factor) values measure
the extent of isolation of every stay point from others.

A trajectory pattern of one user represents one frequent trace of the user, which
is a sequence of geographic regions that the user often travels through. There is also
temporal information related to trajectory patterns, which is transition times which the
user spends on transferring between consecutive regions. Thus here a trajectory pattern
is denoted by a sequence of RoIs with transition times annotated.

Definition 3 (Trajectory pattern). A trajectory pattern (T-pattern) is a pair (S,A)
where S = (R0, . . . , Rn)(n ≥ 0) is a sequence of RoIs and A = (α1, , . . . , αn) is the

temporal annotation of S. It can be represented by (S,A) = R0
α1−→ R1

α2−→ · · · αn−−→ Rn.

If a user sequentially goes through all the RoIs of a T-pattern in a trajectory T
and spends similar transition times on transferring between RoIs, then we say that this
pattern is spatio-temporally contained in this trajectory.

Definition 4 (Spatio-temporal containment). Given a trajectory T , time tolerance τ and

a T-pattern (S,A) = R0
α1−→ R1

α2−→ · · · αn−−→ Rn, we say that (S,A) is spatio-temporally
contained in T (denoted by (S,A) �τ T ) if and only if there exists a subsequence T ′ =
(〈x′0, y′0, t′0〉, · · · , 〈x′n, y′n, t′n〉) of T such that ∀0 ≤ i ≤ n, 〈x′i, y′i〉 ∈ Ri and | αi − α′i |≤ τ
where α′i = t′i − t′i−1.

When a T-pattern (S,A) is spatio-temporally contained in a trajectory, we say that
the T-pattern has an occurrence. A T-pattern usually has multiple occurrences in a
spatio-temporal dataset. We use support value(supportDτ (S,A)) to represent the per-
centage of trajectories containing (S,A) in the dataset D when the time tolerance is set
to τ . If the support value of a T-pattern is greater than a given minimum support value,
we call the pattern a frequent T-pattern, or frequent pattern for short.

The goal of the process of trajectory pattern mining is to find the set of all frequent
T-patterns, named frequent pattern set, in a spatio-temporal dataset.

Definition 5 (Frequent pattern set). Given a set of trajectories T , time tolerance τ
and a minimum support value σ, the (τ, σ)frequent pattern set of T is:

PSTτ,σ = {(S,A) | suppportTτ (S,A) ≥ σ}

A user’s mobility profile describes his regular movement behavior, i.e. the traces of
places that the user often visits which exactly corresponds to frequent T-patterns when
the places are interpreted as RoIs. So a user’s mobility profile is modeled here as the
frequent pattern set of his collection of trajectories. Let Tu be the trajectories of user u
in a dataset T . We call PSTuτ,σ the mobility profile of u. In the following, we use PSu

to denote u’s mobility profile for short by assuming τ and σ have been defined and T
is clear from the context. Using the same rule the support value suppportTuτ (S,A) is
denoted by suppportu(S,A). And below we use the function len() to acquire the length
of a sequence.
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2.2 The MTP similarity measure [22]

After ignoring transition times, a frequent T-pattern becomes a frequent sequence pat-
tern, and a user u’s frequent pattern set PSu becomes a sequence pattern set PS

u
=

{S|∃(S,A) ∈ PSu}. This measure uses users’ maximal sequence pattern sets instead of
their whole sequence pattern sets to avoid considering repetitive behavior. Given two
sequence patterns P = (R0, R1, · · · , Rn) and Q = (R′0, R

′
1, · · · , R′m), Q is a subsequence

of P (denoted by Q v P ) if and only if there exists j1 < j2 < · · · < jm such that
R′i = Rji(0 ≤ i ≤ m). A maximal sequence pattern set only consists of those sequence
patterns, called maximal sequence patterns or maximal patterns for short, that are not
subsequences of any other patterns. This method also uses the notion of longest common
sequences to represent the longest common part of two sequence patterns.

Definition 6 (Maximal sequence pattern set). Given the sequence pattern set PS of
the user u, his maximal sequence pattern set is:

M(PS
u
) = {P ∈ PSu | @P ′ ∈ PSu(P v P ′)}

Definition 7 (Longest common sequences). Given two sequence patterns P and Q, a
sequence pattern S is a longest common sequence (LCS) of P and Q if and only if the
following condition is satisfied:

S v P ∧ S v Q ∧ len(S) ≥ len(S′),∀S′(S′ v P ∧ S′ v Q)

Using the notion of longest common sequences, this method further defines a way
to measure the similarity between two patterns. The similarity sim(P,Q) between two
patterns P and Q is defined as:

sim(P,Q) =
2 · lenLCS(P,Q)

len(P ) + len(Q)

where lenLCS(P,Q) is the length of the longest common sequences of P and Q and
len(P ) is the length of P .

Given two users u and u′, this method calculates the weighted average of the similar-
ity values of all pairs of maximal sequence patterns in their maximal sequence pattern
sets as the similarity value between them.

sim(u, u′) =

∑
Pi∈M(PS

u
)

∑
Qj∈M(PS

u′
)

w(Pi, Qj) · sim(Pi, Qj)∑
Pi∈M(PS

u
)

∑
Qj∈M(PS

u′
)

w(Pi, Qj)

where w(Pi, Qj) =
supportu(Pi)+support

u′ (Qj)
2 .

2.3 The improved MTP similarity measure [14]

In the MTP similarity measure, the similarity value of two identical users is not always
one. This defect is fixed in the improved MTP similarity measure [14] by making the
following change. In the MTP similarity measure each maximal sequence pattern of
a user is compared with all maximal patterns of another user, while in the improved
version it is only compared with the most similar pattern of another user.
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Given two users u and u′, this measure uses the function ψu,u′ : M(PS
u
)→M(PS

u′
)

to map a maximal pattern of u to the most similar maximal pattern of u′.

ψu,u′(Pi) = arg max

Qj∈M(PS
u′
)

sim(Pi, Qj) · w(Pi, Qj) where Pi ∈M(PS
u
)

Then the measure calculates the similarity values of u and u′ relative to each other.
The relative similarity of u to u′ is defined as:

sim(u | u′) =

∑
Pi∈M(PS

u
) sim(Pi, ψu,u′(Pi)) · w(Pi, ψu,u′(Pi))∑
Pi∈M(PS

u
)w(Pi, ψu,u′(Pi))

The overall similarity value sim(u, u′) between the two users is defined as:

sim(u, u′) =
sim(u | u′) + sim(u′ | u)

2

This measure also introduces a way of taking transition times into account in the
procedure of calculating the similarity value of two maximal patterns.

Assume that two maximal patterns P ∈ M(PS
u
) and Q ∈ M(PS

u′
) have a longest

common sequence S = (R0, R1, · · · , Rn). For any two consecutive RoIs Ri−1 and Ri(0 <
i ≤ n), tranT uS (i) is the typical transition times of the user u between them, which is
the union of all transition times appearing in a frequent pattern that contains S in u’s
profile.

tranT uS (i) = {αi | ∃(S,A) ∈ PSu s.t. A = (α1, α2, · · · , αn)}

tranT uS (i) can be denoted by a union of time intervals, e.g. [x1, y1] ∪ · · · ∪ [xt, yt].
Then we calculate the union of tranT uS (i) and tranT u

′
S (i), e.g. tranT uS (i)∪ tranT u′S (i) =

[x1, y1] ∪ · · · ∪ [xk, yk], and their intersection, e.g. tranT uS (i) ∩ tranT u′S (i) = [x′1, y
′
1] ∪

· · · ∪ [x′m, y
′
m]. Then the ratio of overlapping transition time otu,u

′

S (i) from Ri−1 to Ri

between u and u′ is calculated as
∑m

i=1 y
′
i−x′i∑k

i=1 yi−xi
.

Definition 8 (Time-overlap-fraction). Let P and Q be two maximal frequent patterns
of u and u′, respectively. The time-overlap-fraction of P and Qtof(P,Q) is defined as:

tof(P,Q) =

∑
S∈lcs(P,Q)

∑len(S)−1
i=1 otu,u

′

S (i)

|lcs(P,Q)| · (lenLCS(P,Q)− 1)

where lcs(P,Q) is the set of longest common sequences of P and Q.

The similarity value of P and Q with considering transition times is calculated as:

sim(P,Q) =
2 · lenLCS(P,Q)

len(P ) + len(Q)
· tof(P,Q)

2.4 The improved MTP similarity measure with seman-
tics [15]

The improved MTP similarity measure takes semantic information into account by en-
riching RoIs with location semantics, which is a place’s functionalities. Specifically, RoIs
are labeled with appropriate location semantic tags, like school or hospital. Different
applications have different sets of semantic tags. Ye et al.’s method [21] is used to calcu-
late a probability distribution over the set of semantic tags for a place. The probability
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of a tag represents the likelihood of a user utilizing the functionality denoted by the tag
at the place.

Let AL = {µ1, . . . , µn} be an ordered set of semantic tags in an application. Given
an RoI R, tagR denotes the location semantic tag of R. Furthermore, PrR(µi) is used
to represent the probability that tagR is µi and

∑
µ∈AL PrR(µ) = 1. Thus there is a

vector of probabilities for R, e.g. vR = 〈p1, . . . , pn〉 where pi = PrR(µi). vR is called the
location-semantics vector (LS-vector) of R and its ith element is denoted by vR(i), i.e.
pi.

In the MTP similarity measure, the similarity comparison of two RoIs are based on
the equality of their identities. Now this is achieved by defining a distance measure
between the LS-vectors of two RoIs using the notion of Relative Entropy.

Definition 9 (Distance between two LS-vectors). The distance dist(vR, vR′) between two
location-semantics vectors vR and vR′ is the average of the relative entropy distRE(vR ‖
vR′) from vR to vR′ and the relative entropy distRE(vR′ ‖ vR) from vR′ to vR.

dist(vR, vR′) =
distRE(vR ‖ vR′) + distRE(vR′ ‖ vR)

2

where

distRE(vR ‖ vR′) =
n∑
i=1

vR(i) · log vR(i)

vR′(i)

distRE(vR′ ‖ vR) =
n∑
i=1

vR′(i) · log vR
′(i)

vR(i)

Definition 10 (LS-similar). Two RoIs R and R′ are LS-similar if and only if dist(vR, vR′) ≤
δ where δ is a given threshold.

When seeking the LCSs of two maximal sequence patterns, the length of the LCSs
will increment by 1 if the LS-vectors of two RoIs from the two patterns respectively are
LS-similar rather than the two RoIs are the same. In this way, semantics is taken into
account in the improved MTP similarity measure.
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Chapter 3

The CPS-based similarity
measure

In this chapter, we first introduce several basic principles for similarity measures to
follow, and then introduce our new CPS-based similarity measure, and present experi-
mental results to show the effectiveness of our measure.

3.1 Basic principles

We model a user’s movement behavior by his mobility profile (M), and represent his
mobility profile by his sequence pattern set (PS) with the support values of the sequence
patterns. We commence with the introduction of two concepts on sequence pattern sets.

Definition 11 (Mobility profile containment). If user u’s pattern set is a subset of u′’s
pattern set, and for each sequence pattern of u its support value relative to u is not
greater than its support value relative to u′, we say that u’s mobility profile is contained
in u′’s mobility profile, denoted by Mu 4Mu′.

(PS
u ⊆ PSu

′
) ∧ (∀P ∈ PSusupportu(P ) ≤ supportu′(P ))⇒Mu 4Mu′

We define the notion of the common pattern set which contains all common sequence
patterns of two users’ sequence pattern sets.

Definition 12 (Common pattern set (CPS)). The common pattern set CPS(u, u′) of
two users u and u′ is the intersection of their sequence pattern sets, and the support
value of any pattern in PSuCu

′
is equal to its support value in u’s pattern set.

CPS(u, u′) = PS
u ∩ PSu

′

We useMu/u′ to represent the mobility profile whose sequence pattern set is CPS(u, u′)
and the support value of each sequence pattern is its support value in u’s pattern set.

Example 1. Suppose four users whose mobility profiles are

Mu1 = {A(0.1), C(0.2)};
Mu2 = {A(0.1), C(0.3)};
Mu3 = {A(0.1), B(0.2), C(0.4)};
Mu4 = {A(0.3), B(0.1), D(0.2)}.
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For brevity we put the support value of each pattern in the parentheses following the
pattern. Then Mu1 4Mu2 4Mu3. Furthermore,

Mu3/u4 = {A(0.1), B(0.2)}; Mu4/u3 = {A(0.3), B(0.1)}.

Next we list basic principles that we expect similarity measures based on mobility
profiles to satisfy.

1. sim(Mu,Mu′) ≥ 0

2. sim(Mu,Mu′) ≤ 1

3. sim(Mu,Mu′) = sim(Mu′ ,Mu)

4. sim(Mu,Mu′) = 0⇔ CPS(u, u′) = ∅

5. sim(Mu,Mu′) = 1⇔Mu =Mu′

6. Mu 4Mu′ 4Mu′′ ⇒ sim(Mu′′ ,Mu′) ≥ sim(Mu′′ ,Mu)

7. sim(Mu,Mu′) > sim(Mu,Mu′′) if

(1)sim(Mu,Mu′/u)) > sim(Mu,Mu′′/u)) and

(2)sim(Mu′ ,Mu′/u)) > sim(Mu′′ ,Mu′′/u).

The first two principles regulate the range of the similarity value between two users.
Principle 3 says that user similarity is symmetric and principle 4 states that two users
have the minimum similarity value, i.e., 0 if and only if they have no common frequent
movement behavior. Principle 5 indicates that user similarity should be maximum, i.e.,
1.0, when a user is compared to himself.

The last two principles are about comparing the similarity of a user to different users.
The intuition of principle 6 is that users sharing more frequent movement behaviors with
a user should be more similar to him than users sharing less common behaviors. For
instance, in Example 1 user u2 is more similar to u3 than u1 as u2 travels pattern C more
regularly than u1. Principle 7 says that since users sharing more movement behaviors
and having less different behaviors will be more similar to a user than users sharing less
movement behaviors but having more different behaviors, the similarity values calculated
with a valid similarity measure should be consistent with this reasoning.

The following table summarizes which principles the MTP similarity measure and
the improved version follow, respectively.

Measures Principle 1 2 3 4 5 6 7
Improved MTP

√ √ √ √
× × ×

MTP
√ √ √ √

× × ×

We give an example to elucidate it.

Example 2. Suppose the following five users:

Mu1 = {A (0.4), B (0.4), C (0.4), A→ B (0.1)};
Mu2 = {A (0.4), B (0.4), C (0.4), A→ B (0.2)};
Mu3 = {A (0.4), B (0.4), C (0.4), A→ B (0.3)};
Mu4 = {A (0.4), B (0.4), C (0.4), B → A (0.3)};
Mu5 = {A (0.4), C (0.4), D (0.4), A→ D (0.3)}.
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Figure 3.1: Mobility profiles in Example 2.

Figure 3.1 illustrates the mobility profiles. We use grey circles to stand for RoIs and
arrows between RoIs to represent the transition direction whose thickness implies support
values.

Table 3.1 shows the results given by the two similarity measures when the users are
compared to each other.

MSTP MTP
u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

u1 0.5 0.5 0.5 0.42 0.42 1.0 1.0 1.0 0.83 0.83

u2 0.5 0.5 0.5 0.42 0.42 1.0 1.0 1.0 0.58 0.58

u3 0.5 0.5 0.5 0.39 0.39 1.0 1.0 1.0 0.79 0.79

u4 0.42 0.42 0.39 0.5 0.39 0.83 0.58 0.79 1.0 0.79

u5 0.42 0.42 0.39 0.39 0.5 0.83 0.58 0.79 0.79 1.0

Table 3.1: Pairwise user similarity in Example 2.

Obviously both measures satisfy principles 1, 2, 3 and 4. Principle 5 is violated by
both measures as the similarity value between any user and himself is not 1.0, which
has been pointed out by Chen et al. [14]. Principle 6 is also violated by both of them.
Since Mu1 4 Mu2 4 Mu3 and Mu1 6= Mu2 6= Mu3 , according to principle 6, we
have sim(Mu3 ,Mu1) < sim(Mu3 ,Mu2). However, both measures produce the same
similarity values for them, i.e., 0.5 and 0.1, respectively. Principle 7 does not hold for
both of the measures either. Take the improved MTP measure as an example. According
to its definition,

sim(Mu2 ,Mu4/u2) =0.83; sim(Mu2 ,Mu5/u2) = 0.86

sim(Mu4 ,Mu4/u2) =0.82; sim(Mu5 ,Mu5/u2) = 0.84.

Since sim(Mu2 ,Mu5/u2) > sim(Mu2 ,Mu4/u2) and furthermore sim(Mu5 ,Mu5/u2) >
sim(Mu4 ,Mu4/u2), we should have sim(Mu2 ,Mu5) > sim(Mu2 ,Mu4). However, the
measure cannot distinguish u2’s similarity to u4 and u5 and outputs the same similarity
value (0.58) in both cases.

Neither of the measures can give a precise measurement of similarity for all users. In
the above example, from Figure 3.1 it is clear that the similarity values should decrease
when comparing u1 with the other users (from u2 to u5) – u2 should be the most similar
one to u1 as they share a same set of trajectory patterns while u5 is the least. However,
they cannot distinguish this difference.
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3.2 Fundamentals

The CPS-based similarity measure we propose satisfies all of the above-mentioned prin-
ciples and avoids all of the defects of the (improved) MTP similarity measure. Our main
idea is

1. to calculate the average percentage of the common pattern set of two users ac-
counting for their sequence pattern sets, and

2. to calculate the similarity between the frequencies (support values) of two users’
common patterns relative to the two users.

Intuitively, if a user shares more common patterns with another user and their support
values are also closer, then he is more similar to this user. This idea conforms to the
principles introduced in the previous section.

To measure the percentages that the common pattern set of two users accounts for
either user’s sequence pattern set, we associate a mobility profile with a real number,
called the magnitude, which quantifies the amount of frequent movement behavior con-
tained in the sequence pattern set of the mobility profile. Each sequence pattern in the
pattern set contributes to the set’s magnitude. The longer a frequent sequence pattern
is, the harder it is for a user to have this frequent movement behavior and the more
information the pattern provides about the user’s behavior, and thus the greater the
percentage that the pattern accounts for the user’s whole movement behavior is. So
patterns’ lengths should carry a relatively large weight. Likewise, the greater the sup-
port value of a frequent sequence pattern is, the more frequent this movement behavior
is and thus the greater the percentage that the pattern accounts for the user’s whole
movement behavior is. Thus we define a function f to map the mobility profile of a user
to its magnitude.

f(Mu) =
∑

P∈PSu

len(P ) · supportu(P ) (3.1)

The percentage that the common pattern set of u and u′ accounts for the sequence
pattern set PS

u
of u can be calculated by dividing the magnitude f(Mu/u′) of Mu/u′

by the magnitude f(Mu) of Mu. Then using the notion of the geometric mean, the

average percentage AP (u, u′) which the common pattern set accounts for PS
u

and PS
u′

is calculated as:

AP (u, u′) =

√
f(Mu/u′)

f(Mu)
· f(Mu′/u)

f(Mu′)
(3.2)

Next we explain how to measure the similarity between the two sets of support values
of all common patterns. The support values of all common patterns relative to u can
be regarded as a vector after they are permuted in some order. Likewise, the support
values of all common patterns relative to u′ can also form a vector after being permuted
in the same order. Thus the problem of measuring the similarity between the two sets
of support values of all common patterns is reduced to the problem of measuring the
similarity of two vectors of the same length in terms of the closeness of corresponding
values of the same indexes in the two vectors.

We define a function λ to map the mobility profile Mu/u′ to a vector by permuting
the support values of the common patterns in the mobility profile in a predefined order.
When the function λ is applied toMu′/u produces a vector in the same order. Provided
that users u and u′ have n common sequence patterns, which are P1, P2, . . . , Pn, λ is
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defined as:

λ(Mu/u′) = 〈supportu(P1), support
u(P2), . . . , support

u(Pn)〉 (3.3)

where CPS(u, u′) = {P1, P2, . . . , Pn}.
We hope that the method we choose for measuring the similarity of two vectors of

the same length has the following properties.

• The closer the corresponding values of the same indexes in the two vectors are, the
more similar the two vectors are.

• If the differences between the corresponding values of the same indexes in a pair
of vectors are the same as those in another pair of vectors, the pair of vectors in
which the absolute values are greater is more similar.

• The similarity value between the two vectors is one if and only if all the corre-
sponding values of the same indexes are the same.

• The similarity value between the two vectors is zero if and only if in each pair
of corresponding values of the same index, one value is zero and the other one is
positive.

We use the notion of the Bray-Curtis similarity [4] to measure the similarity between
two vectors of the same length.

Definition 13 (Bray-Curtis similarity). Given two vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) of length n, the Bray-Curtis similarity between them is defined as:

simBC(x, y) = 1−

n∑
i=1
|xi − yi|

n∑
i=1

(xi + yi)

Assume that the common sequence patterns of users u and u′ are P1, P2, . . . , Pn, then
the similarity value between the two sets of support values of the common patterns is
calculated as:

simsup(λ(Mu/u′), λ(Mu′/u)) = 1−

n∑
i=1
|supportu(Pi)− supportu

′
(Pi)|

n∑
i=1

(supportu(Pi) + supportu′(Pi))

(3.4)

The similarity value between two users u and u′ is defined as:

sim(u, u′) = AP (u, u′) · simsup(λ(Mu/u′), λ(Mu′/u)) (3.5)

We apply our similarity measure to Example 2 and show the results in Table .

u1 u2 u3 u4 u5

u1 1.0 0.96 0.93 0.76 0.50

u2 0.96 1.0 0.97 0.71 0.47

u3 0.93 0.97 1.0 0.67 0.44

u4 0.76 0.71 0.67 1.0 0.44

u5 0.50 0.47 0.44 0.44 1.0

Table 3.2: User similarity in Example 2 by our method
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We can see that our measure can give more precise similarity values which reflect
different extents of closeness among users. Especially, the similarity values between u1
and the other users decrease from u1 to u5.

3.3 Experiments

We will present the results obtained after applying the CPS-based similarity measure to
two realistic datasets Geolife and Yonsei, respectively.

The Geolife dataset is made up of 182 users collected in the Geolife project (Microsoft
Research Asia) during a period of over five years (from April 2007 to August 2012). It
contains 17,621 GPS trajectories with a total distance of 1,292,951 kilometers and a
total duration of 50,176 hours. These trajectories have a variety of sampling rates.
91.5 percent of the trajectories are logged in a dense representation, e.g. every 1 − 5
seconds or every 5− 10 meters per point. This dataset recorded a broad range of users
outdoor movements, including not only regular life routines like commuting from homes
to offices, but also some entertainments and sports activities, such as shopping and
hiking. Although this dataset is widely distributed in over 30 cities of China and even
in some cities located in the USA and Europe, the majority of the data was created in
Beijing, China.

The Yonsei dataset directly contains stay point trajectories collected from commercial
mobile phones over two months in Seoul, Korea. It consists of 1,865 daily trajectories
from 12 users, which cover a total length of 32,626 km. It contains location information
(latitude and longitude) with accuracy (error bound), Wi-Fi fingerprints (MAC address
and signal strength of surrounding Wi-Fi APs), user-defined types of places (workplace,
cafeteria, etc.). These trajectories were continuously recorded every 2 to 5 minutes for
everyday location monitoring.

We picked seven users from the Geolife dataset, two of which have relatively larger
numbers of trajectories than other users and therefore are split into more sub-users. So
our Geolife testing dataset consists of 10 users, in which users 113, 151 and 160 are
from one original user, and users 163, 164 are from another original user. Similarly, our
Yonsei testing dataset also consists of 10 users, in which users 081 and 082 are from one
original user, and users 121, 122 are from another original user. The original user from
which users 081 and 082 come had very different movement behavioral patterns during
the first half and second half periods, so the similarity between users 081 and 082 is not
high although they come from one user.

3.3.1 The experiment on the Geolife dataset

We list our result and the result of the improved MTP similarity measure to compare
them.
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003 004 017 030 068 113 151 160 163 164
003 1.00 0.69 0.05 0.28 0.00 0.07 0.07 0.04 0.10 0.12
004 0.69 1.00 0.04 0.24 0.00 0.06 0.06 0.04 0.08 0.10
017 0.05 0.04 1.00 0.05 0.00 0.02 0.02 0.01 0.06 0.08
030 0.28 0.24 0.05 1.00 0.00 0.09 0.08 0.03 0.09 0.11
068 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
113 0.07 0.06 0.02 0.09 0.00 1.00 0.20 0.03 0.08 0.09
151 0.07 0.06 0.02 0.08 0.00 0.02 1.00 0.56 0.37 0.39
160 0.04 0.04 0.01 0.03 0.00 0.03 0.56 1.00 0.32 0.31
163 0.10 0.08 0.06 0.09 0.00 0.08 0.37 0.32 1.00 0.79
164 0.12 0.10 0.08 0.11 0.00 0.09 0.39 0.31 0.79 1.00

Table 3.3: Result of the CPS-based similarity measure

003 004 017 030 068 113 151 160 163 164
003 1.00 0.53 0.10 0.51 0.00 0.14 0.14 0.15 0.12 0.13
004 0.53 1.00 0.17 0.36 0.00 0.23 0.24 0.24 0.21 0.23
017 0.10 0.17 1.00 0.09 0.00 0.13 0.11 0.11 0.14 0.14
030 0.51 0.36 0.09 1.00 0.00 0.27 0.23 0.10 0.12 0.12
068 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
113 0.14 0.23 0.13 0.27 0.00 1.00 0.41 0.35 0.52 0.42
151 0.14 0.24 0.11 0.23 0.00 0.41 1.00 0.74 0.36 0.48
160 0.15 0.24 0.11 0.10 0.00 0.35 0.74 1.00 0.43 0.55
163 0.12 0.21 0.14 0.12 0.00 0.52 0.36 0.43 1.00 0.89
164 0.13 0.23 0.14 0.12 0.00 0.42 0.48 0.55 0.89 1.00

Table 3.4: Result of the improved MTP similarity measure

We see that in general the similarity values given by the CPS-based measure are
smaller than those given by the improved MTP measure.

The results of our measure are more reasonable. We take the example of users 113
and 163 to elucidate it. We plot their trajectories on the map in Figure 3.2. RoIs are
labeled by red rectangles, stay points are labeled by yellow dots, and blue lines represents
stay point trajectories. The number in the lower-left corner of each red rectangle is the
ID number of the RoI.

From Figure 3.2 we can see that the two users have two common RoIs (80 and 24) in
the upper-left corner of the map. The vast majority of user 113’s trajectories pass the
two common RoIs and the three RoIs which are in the lower-right corner of the map,
while most trajectories of user 163 pass the two common RoIs and the RoI (68) which
is in the upper-left corner. Thus we know that the two users are very different, and the
similarity value 0.08 given by our similarity measure is more reasonable than the value
0.52 given by the improved MTP measure.
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(a) 113

(b) 163

Figure 3.2: Trajectories of users 113 and 163

3.3.2 The experiment on the Yonsei dataset

Below we give the results of our similarity measure on the Yonsei dataset. The results
of the improved MTP similarity measure on this dataset are listed as well.
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001 002 003 004 007 009 081 082 121 122
001 1.00 0.11 0.07 0.07 0.10 0.15 0.05 0.07 0.10 0.11
002 0.11 1.00 0.08 0.08 0.14 0.22 0.06 0.08 0.14 0.14
003 0.07 0.08 1.00 0.32 0.07 0.11 0.03 0.05 0.08 0.08
004 0.07 0.08 0.32 1.00 0.07 0.11 0.05 0.07 0.07 0.08
007 0.10 0.14 0.07 0.07 1.00 0.20 0.06 0.07 0.12 0.13
009 0.15 0.22 0.11 0.11 0.20 1.00 0.09 0.11 0.19 0.20
081 0.05 0.06 0.03 0.05 0.06 0.09 1.00 0.15 0.06 0.06
082 0.07 0.08 0.05 0.07 0.07 0.11 0.15 1.00 0.07 0.08
121 0.10 0.14 0.08 0.07 0.12 0.19 0.06 0.07 1.00 0.88
122 0.11 0.14 0.08 0.08 0.13 0.20 0.06 0.08 0.88 1.00

Table 3.5: Result of the CPS-based similarity measure

001 002 003 004 007 009 081 082 121 122
001 1.00 0.34 0.19 0.17 0.29 0.35 0.18 0.27 0.17 0.23
002 0.34 1.00 0.37 0.30 0.44 0.47 0.31 0.36 0.31 0.39
003 0.19 0.37 1.00 0.51 0.32 0.38 0.21 0.29 0.20 0.27
004 0.17 0.30 0.51 1.00 0.26 0.30 0.39 0.35 0.19 0.23
007 0.29 0.44 0.32 0.26 1.00 0.47 0.27 0.36 0.26 0.34
009 0.35 0.47 0.38 0.30 0.47 1.00 0.31 0.38 0.31 0.40
081 0.18 0.31 0.21 0.39 0.27 0.31 1.00 0.69 0.19 0.24
082 0.27 0.36 0.29 0.35 0.36 0.38 0.69 1.00 0.25 0.31
121 0.17 0.31 0.20 0.19 0.26 0.31 0.19 0.25 1.00 0.83
122 0.23 0.39 0.27 0.23 0.34 0.40 0.24 0.31 0.83 1.00

Table 3.6: Result of the improved MTP similarity measure

From the two tables we can see a trend, which is that the similarity values of all
pairs of users given by our similarity measure are way smaller than those given by the
improved MTP measure.

Our results are more reasonable, and we take the example of users 081 and 082 to
explain the reason. We plot their trajectories on the map in the following figure. RoIs
are labeled by red rectangles, stay points are labeled by yellow dots, and blue lines
represents stay point trajectories. The letter near each red rectangle is the identity of
the RoI.
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Figure 3.3: Trajectories of users 081 and 082

From the figure, we see that user 082 has two more RoIs which do not overlap any
RoI of user 081 than user 081. In addition, more than 57% trajectories of user 082 pass
these two RoIs and only about 15% of his trajectories contain RoIs A, B and C, while
about 78% of 08∗’s trajectories contain A, B and C. Therefore, the reasonable similarity
value between 08# and 08∗ should be around 0.20 after considering the small proportion
of common patterns and the large difference between their support values. So we see
that the similarity value 0.15 given by the CPS-based measure is more reasonable than
the value 0.69 given by the improved MTP measure.
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Chapter 4

The CPS-based similarity
measure with semantics

The CPS-based similarity measure introduced in Chapter 3 measures user similarity only
in terms of the extent of geographic proximity between two users’ movement trajectories.

In social networks user recommendation is primarily based on users’ interests. So
we want similarity measures to be able to find users with similar interests no matter
whether their movement trajectories are geographically close. Similar users which are
found using the CPS-based similarity measure not only have similar interests, but also
have geographically close movement trajectories. However, the CPS-based measure is
not able to find similar users whose interests are similar, but movement trajectories are
not close geographically.

For example, two users live in different cities and both of them are fond of movies
and eating. Their movement trajectories will be far away from each other and their
mobility profiles will not have common sequence patterns. Thus although the two users
have similar interests or hobbies, they will not be similar using the CPS-based similarity
measure. However, when places are tagged with their functionalities, e.g. cinema and
restaurant, we will be able to detect their similarity. The functionality of a place indicates
its semantics, called location semantics.

This indicates that it is necessary to take location semantics into account in the
CPS-based similarity measure. In this chapter we will propose a mechanism that can
incorporate semantics into the CPS-based similarity measure.

4.1 Fundamentals

The semantic information we use is in the form of LS-vectors. Recall that the notion of
LS-vectors is introduced in Chapter 2. When each RoI in a frequent sequence pattern
is replaced with its associated LS-vector, we get an LS-vector sequence pattern.

Definition 14 (LS-vector sequence patterns). An LS-vector sequence pattern (or LS-
vector pattern for short) Pv is a sequence of LS-vectors (vR1 , vR2 , . . . , vRn)(n ≥ 0). It
can be represented as Pv = vR1 → vR2 → · · · → vRn.

Usually a user only makes use of one functionality of a place during a stay. If each
RoI in a frequent sequence pattern of a user is replaced with one functionality used by
the user when he visited the region, we obtain a sequence of functionalities used by the
user, which is a sequence of semantic tags. Sequences of semantic tags are also a form
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of representation of the user’s movement behavior, and we call them semantic sequence
patterns.

Definition 15 (Semantic sequence patterns). A semantic sequence pattern (or semantic
pattern for short) Ps is a sequence of semantic tags (µa1 , µa2 , . . . , µan)(n ≥ 0). It can be
represented as Ps = µa1 → µa2 → · · · → µan.

Now we introduce in detail how to take semantics into consideration in the CPS-based
similarity measure.

Step 1: After obtaining the non-repetitive support values of a user’s sequence pat-
terns in the same way as the CPS-based measure in Chapter 3, we convert each sequence
pattern to an LS-vector sequence pattern by replacing each RoI with its associated LS-
vector. We call the set of all the LS-vector sequence patterns of user u his LS-vector
sequence pattern set denoted by PS

u
v . We define a function ζ : PS

u → PS
u
v to map a

sequence pattern P = R1 → R2 → · · · → Rn to an LS-vector sequence pattern Pv.

Pv = ζ(P ) = vR1 → vR2 → · · · → vRn (4.1)

where vRi is the LS-vector associated with the RoI Ri.

Step 2: Further we convert each LS-vector sequence pattern to a set of semantic
sequence patterns. This can be done in two sub-steps.

First, all semantic tags with non-zero probabilities are drawn out and form a set
from each LS-vector of an LS-vector pattern. Suppose that there are h semantic tags in
total in the dataset, we define a function η to map an LS-vector vR = 〈pR1 , pR2 , . . . , pRh 〉
to a set of semantic tags sR.

sR = η(vR) = {µi|pRi 6= 0},∀pRi ∈ vR (4.2)

Second, after obtaining the sets of semantic tags of all the LS-vectors in the pattern,
we calculate their Cartesian product, which is a set of semantic sequence patterns, in
the order that the LS-vectors appear in the pattern. This can be formulated as:

n∏
i=1

sRi = {(µa1 , µa2 , . . . , µan)|µa1 ∈ sR1 ∧ µa2 ∈ sR2 ∧ . . . ∧ µan ∈ sRn} (4.3)

The probability associated with each semantic tag in a semantic pattern means the
likelihood of the user using the functionality represented by the semantic tag at the RoI
from which the tag comes. Recall that each frequent sequence pattern corresponds to a
set of trajectories that spatio-temporally contain it, so the product of the probabilities
of all the semantic tags in a semantic pattern refers to the percentage of trajectories in
which the user goes through the sequence of functionalities represented by the semantic
pattern in the set of trajectories corresponding to the sequence pattern from which the
semantic pattern comes.

So we can calculate the support value of each semantic pattern by multiplying all
the probabilities included in the pattern and the support value of the original sequence
pattern. The support value of a semantic pattern refers to the percentage of trajectories
in which the user goes through the sequence of functionalities represented by the semantic
pattern in all of the user’s trajectories. The support value support(Ps) of a semantic
pattern Ps = (µa1 , µa2 , . . . , µan) of user u is calculated as:

supportu(Ps) = supportu(P ) · pR1
a1 · p

R2
a2 · . . . · p

Rn
an (4.4)

We give an example to clarify Step 2.

24



Example 3. Assume that the ordered set of semantic tags in the dataset is {hotel,
restaurant, school, hospital}, and a user’s sequence pattern set includes one pattern
A→ B with the support value 0.5. The LS-vector of the RoI A is 〈0.1, 0.9, 0.0, 0.0〉, and
the LS-vector of the RoI B is 〈0.0, 0.0, 0.9, 0.1〉.

So we can obtain an LS-vector sequence pattern 〈0.1, 0.9, 0.0, 0.0〉 → 〈0.0, 0.0, 0.9, 0.1〉
with the support value 0.5. After applying the above procedure, the four semantic sequence
patterns are: (We put the probability associated with each semantic tag in the braces
following the tag.)

hotel (0.1)→ school (0.9) hotel (0.1)→ hospital (0.1)

restaurant (0.9)→ school (0.9) restaurant (0.9)→ hospital (0.1)

The support values of the above four semantic tag patterns are 0.045, 0.005, 0.405 and
0.045, respectively.

Step 3:
Note that two different LS-vector patterns can generate two equal semantic patterns.

So the next task we will do is to merge equal semantic patterns generated from a user’s
sequence pattern set by adding up their support values so that the resultant set of
semantic patterns does not contain any two equal semantic patterns. We call the set of
all the semantic patterns of user u his semantic sequence pattern set denoted by PS

u
s .

Step 4: Like the common pattern set, we define the notion of the common semantic
pattern set which contains all common semantic sequence patterns of two users.

Definition 16 (Common semantic pattern set). The common semantic pattern set
CPSs(u, u

′) of two users u and u′ is the intersection of their semantic sequence pat-
terns sets.

CPSs(u, u
′) = PS

u
s ∩ PS

u′

s

We useMu/u′
s to represent the mobility profile whose semantic sequence pattern set

is CPSs(u, u
′) and the support value of each semantic pattern is its support value in u’s

semantic pattern set.
The following procedure remains the same as the CPS-based similarity measure in

Chapter 3, except that the sequence patterns are substituted by semantic sequence
patterns. This means Equations (3.2) and (3.5) are changed.

AP (u, u′) =

√
f(MuCu′

s )

f(Mu
s )
· f(Mu′Cu

s )

f(Mu′
s )

(4.5)

sim(u, u′) = AP (u, u′) · simsup(λ(MuCu′
s ), λ(Mu′Cu

s )) (4.6)

The above four steps consists of the basic algorithm of the CPS-based similarity
measure with semantics. However, there is a problem that we need to deal with.

The semantic patterns with relatively low support values in a user’s semantic pattern
set represent his infrequent or even noisy behavior. When comparing two users’ similarity
using this measure, we should not take infrequent behavior into account, since infrequent
behavior cannot represent users’ typical behavior patterns and will interfere with the
comparison of user similarity. Thus we need to remove the semantic patterns with fairly
low support values from users’ semantic pattern sets. There are two ways that can
achieve this goal.
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• We set a threshold ε on the probabilities associated with semantic tags; that is, in
Step 2 when converting LS-vector patterns to semantic patterns, we do not draw
out those semantic tags with probabilities less than ε.

The idea behind this action is that the fact that the support value of a semantic
pattern is relatively low is attributed to the fact that the probabilities associated
with some semantic tags in the pattern are relatively small. The fact that the
probability associated with a semantic tag is relatively small is either because the
likelihood of a user utilizing the functionality represented by the tag at the place is
indeed small, or because the method of generating LS-vectors is imprecise so that
the functionality which the place does not have is assigned a non-zero probability.
Thus ε should be set to a proper value so that these relatively small probabilities
will be removed.

So this first way of removing infrequent behavior means that Equation (4.2) will
be changed.

sR = η(vR) = {µi|pRi ≥ ε},∀pRi ∈ vR (4.7)

Example 4. In Example 3, if we use 0.2 as the threshold ε, then we will fi-
nally obtain only one semantic pattern of length 2, which is restaurant (0.9) →
school (0.9) with the support value 0.405.

In this first way of removing infrequent behavior, there is also a technique that can
be applied to optimize the procedure of converting LS-vector sequence patterns
to semantic sequence patterns. It is based on the observation that if the support
value of a semantic sequence pattern is below the threshold, the support value
of any longer pattern which has that pattern as a prefix must be less than the
threshold as well. So after obtaining the semantic patterns of length k(k > 0), for
every semantic pattern of length k we can construct semantic patterns of length
k + 1 by checking if each frequent pattern of length k + 1 can generate semantic
patterns prefixed with the specific semantic pattern of length k. In this way we do
not need to generate semantic patterns of length k + 1 from scratch. We give the
algorithm in the following figure.

Algorithm 1: Converting LS-vector patterns to semantic patterns

Input: The LS-vector pattern set PSuv of user u
Output: The semantic pattern set PSus of user u

1 generate semantic patterns of length 1 from frequent patterns of length 1 in PSuv ;
2 foreach semantic pattern Ps of length k(k > 0) do
3 foreach frequent pattern P of length k + 1 in PSuv do
4 if P can generate semantic patterns prefixed with Ps then
5 foreach non-zero probability pi in the last LS-vector of P do
6 add the concatenation of Ps and vi to PSus ;
7 end

8 end

9 end

10 end
11 return PSus

• After performing Step 3 and thus obtaining the semantic pattern set, for the pat-
terns of each length, we set a different threshold and remove those patterns of that
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length whose non-repetitive support values are below the threshold. If there are
h semantic tags and p patterns of length k in a user’s frequent sequence pattern
set, and the support value threshold used when extracting the user’s frequent T-
patterns is t, then the threshold we use for these semantic patterns of length k is
calculated as:

θ(k, h, p, t) =
t

hk
· p (4.8)

When h, p and t are clear from the context, we use θ(k) to denote θ(k, h, p, t)
for short. The threshold θ(k, h, p, t) is the support value of a semantic pattern of

length k when the probability of each semantic tag is the average probability
1

h
of

a tag in an LS-vector.

So this second way of removing infrequent behavior means that after obtaining the
semantic pattern set PS

u
s in Step 3, we add the following step.

PS
u
s,θ = {Ps|nr–support(Ps) ≥ θ(len(Ps))}, ∀Ps ∈ PS

u
s (4.9)

And we will use PS
u
s,θ instead of PS

u
s in Step 4.

Example 5. In Example 3, if the support value threshold used when extracting
the user’s frequent T-patterns is 0.1, according to Equation (4.8) the threshold θ
for semantic patterns of length 2 is 0.00625. Thus there will be three semantic
patterns of length 2, which are:

restaurant (0.9)→ school (0.9)
restaurant (0.9)→ hospital (0.1)

hotel (0.1)→ school (0.9)

4.2 Experiments

We conducted experiments on the same two datasets as those used in Chapter 3. There
are nine semantic tags in total and the probabilities in each RoI’s LS-vector are randomly
generated and normally distributed. This is achieved by randomly choosing nine points
on the normal distribution curve in the range [0,5] of the horizontal axis and then
normalizing their values of vertical axis by dividing each value by the sum of all these
values.

The experiments are conducted on a desktop computer with Intel Pentium Dual-core
CPU of 1.73GHz, 2GB memory and Windows XP Professional SP3. In the following
table we give the running times using the two ways of removing infrequent behavior. The
running time on either dataset using the first way of removing infrequent behavior is the
average of the remaining running times after removing three longest and three shortest
running times from ten tests on the dataset. The running time on either dataset using
the second way of removing infrequent behavior is the average of the remaining running
times after removing one longest and one shortest running time from five tests on the
dataset.

The first way The second way
Geolife 0.33s 97.54s
Yonsei 0.31s 79.45s

From the table we see that the algorithm using the first way of removing infrequent
behavior runs much faster than that using the second way.
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Below we present our results and the results of the improved MTP similarity measure
with semantics.

4.2.1 The experiment on the Geolife dataset

003 004 017 030 068 113 151 160 163 164
003 1.00 0.54 0.16 0.58 0.22 0.12 0.25 0.25 0.20 0.27
004 0.54 1.00 0.13 0.34 0.22 0.09 0.19 0.21 0.13 0.23
017 0.16 0.13 1.00 0.14 0.11 0.21 0.23 0.15 0.17 0.14
030 0.58 0.34 0.14 1.00 0.21 0.16 0.22 0.22 0.16 0.20
068 0.22 0.22 0.11 0.21 1.00 0.24 0.24 0.13 0.11 0.22
113 0.12 0.09 0.21 0.16 0.24 1.00 0.44 0.15 0.10 0.13
151 0.25 0.19 0.23 0.22 0.24 0.44 1.00 0.56 0.57 0.39
160 0.25 0.21 0.15 0.22 0.13 0.15 0.56 1.00 0.47 0.32
163 0.20 0.13 0.17 0.16 0.11 0.10 0.57 0.47 1.00 0.52
164 0.27 0.23 0.14 0.20 0.22 0.13 0.39 0.32 0.52 1.00

Table 4.1: Result using the first way of removing infrequent behavior and ε =
1

9

003 004 017 030 068 113 151 160 163 164
003 1.00 0.50 0.20 0.52 0.23 0.18 0.23 0.25 0.19 0.23
004 0.50 1.00 0.12 0.27 0.20 0.11 0.14 0.18 0.11 0.17
017 0.20 0.12 1.00 0.17 0.13 0.25 0.24 0.19 0.17 0.10
030 0.52 0.27 0.17 1.00 0.18 0.15 0.16 0.16 0.13 0.13
068 0.23 0.20 0.13 0.18 1.00 0.26 0.24 0.16 0.08 0.17
113 0.18 0.11 0.25 0.15 0.26 1.00 0.48 0.37 0.19 0.14
151 0.23 0.14 0.24 0.16 0.24 0.48 1.00 0.62 0.59 0.38
160 0.25 0.18 0.19 0.16 0.16 0.37 0.62 1.00 0.51 0.29
163 0.19 0.11 0.17 0.13 0.08 0.19 0.59 0.51 1.00 0.48
164 0.23 0.17 0.10 0.13 0.17 0.14 0.38 0.29 0.48 1.00

Table 4.2: Result using the second way of removing infrequent behavior

003 004 017 030 068 113 151 160 163 164
003 1.00 0.75 0.27 0.84 0.00 0.00 0.00 0.00 0.00 0.00
004 0.75 1.00 0.32 0.71 0.11 0.00 0.00 0.00 0.00 0.33
017 0.27 0.32 1.00 0.27 0.46 0.25 0.11 0.00 0.45 0.33
030 0.84 0.71 0.27 1.00 0.00 0.27 0.09 0.00 0.00 0.00
068 0.00 0.11 0.46 0.00 1.00 0.00 0.00 0.00 0.00 0.28
113 0.00 0.00 0.25 0.27 0.00 1.00 0.53 0.41 0.45 0.50
151 0.00 0.00 0.11 0.10 0.00 0.53 1.00 0.82 0.56 0.54
160 0.00 0.00 0.00 0.00 0.00 0.41 0.82 1.00 0.86 0.61
163 0.00 0.00 0.45 0.00 0.00 0.45 0.56 0.86 1.00 0.92
164 0.00 0.33 0.33 0.00 0.28 0.50 0.54 0.61 0.92 1.00

Table 4.3: Result of the improved MTP similarity measure with semantics when the
distance threshold is 0.5
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Comparing Table 4.1 / 4.2 with Table 3.3, we see two trends between the CPS-based
measure and its semantic version. First, some pairs of users whose similarity values are
0 when without considering semantics have some degree of similarity after considering
semantics. Second, the similarity values of almost all pairs of users become greater after
considering semantics than without considering semantics.

Comparing Table 4.1 with Table 4.2, for the majority of pairs of users the similarity
values given by the two variations of the CPS-based measure with semantics are very
close.

Comparing Table 4.1 / 4.2 with Table 4.3, we see that other than those pairs of users
whose similarity values given by the improved MTP similarity measure with semantics
are 0, for the majority of the remaining pairs of users the similarity values given by both
variations of our measure are smaller than those given by the improved MTP similarity
measure with semantics.

Our results are more reasonable than those of the improved MTP similarity measure
with semantics. Next we give two corroborating examples.

We take the example of users 003 and 163. The two users’ semantic pattern sets
have some common patterns, so they should have a certain degree of similarity. From
Figure 4.3, we see that the similarity value given by the improved MTP measure with
semantics is 0, which is evidently wrong. The same circumstance occurs to all the pairs
of users whose similarity values given by the improved MTP measure are zero.

We take another example of users 163 and 164. Since they have a large number of
semantic patterns, we do not list all of their semantic patterns in a table. Instead we give
some statistics of their semantic pattern sets. Using the first way of removing infrequent
behavior, users 163 and 164 have 11 and 23 frequent semantic patterns, respectively.
And they have 11 common patterns. Using the second way of removing infrequent
behavior, users 163 and 164 have 33 and 38 frequent semantic patterns, respectively.
And they have 21 common patterns. So we know that the average percentage of the
common patterns accounting for all of their patterns cannot be as high as 0.92 given
by the improved MTP measure with semantics. The similarity value between the two
sets of non-repetitive support values of the common patterns will make the similarity
value between the two users be smaller than the average percentage. So the similarity
value between the two users must be much lower than 0.92 given by the improved MTP
measure with semantics.

4.2.2 The experiment on the Yonsei dataset

001 002 003 004 007 009 081 082 121 122
001 1.00 0.29 0.30 0.28 0.13 0.34 0.13 0.28 0.33 0.29
002 0.29 1.00 0.20 0.24 0.16 0.33 0.12 0.31 0.28 0.24
003 0.30 0.20 1.00 0.40 0.16 0.16 0.02 0.17 0.36 0.26
004 0.28 0.24 0.40 1.00 0.25 0.18 0.04 0.23 0.34 0.29
007 0.13 0.16 0.16 0.25 1.00 0.21 0.06 0.18 0.24 0.31
009 0.34 0.33 0.16 0.18 0.21 1.00 0.19 0.40 0.23 0.17
081 0.13 0.12 0.02 0.04 0.06 0.19 1.00 0.28 0.09 0.08
082 0.28 0.31 0.17 0.23 0.18 0.40 0.28 1.00 0.26 0.21
121 0.33 0.28 0.36 0.34 0.24 0.23 0.09 0.26 1.00 0.76
122 0.29 0.24 0.26 0.29 0.31 0.17 0.08 0.21 0.76 1.00

Table 4.4: Result using the first way of removing infrequent behavior and ε =
1

9
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001 002 003 004 007 009 081 082 121 122
001 1.00 0.35 0.29 0.29 0.17 0.36 0.07 0.18 0.28 0.25
002 0.35 1.00 0.28 0.27 0.16 0.31 0.05 0.19 0.29 0.22
003 0.29 0.28 1.00 0.36 0.20 0.17 0.01 0.12 0.35 0.25
004 0.29 0.27 0.36 1.00 0.27 0.17 0.02 0.15 0.28 0.25
007 0.17 0.16 0.20 0.27 1.00 0.20 0.04 0.14 0.27 0.35
009 0.36 0.31 0.17 0.17 0.20 1.00 0.14 0.33 0.20 0.16
081 0.07 0.05 0.01 0.02 0.04 0.14 1.00 0.23 0.05 0.06
082 0.18 0.19 0.12 0.15 0.14 0.33 0.23 1.00 0.20 0.16
121 0.28 0.29 0.35 0.28 0.27 0.20 0.05 0.20 1.00 0.76
122 0.25 0.22 0.25 0.25 0.35 0.16 0.06 0.16 0.76 1.00

Table 4.5: Result using the second way of removing infrequent behavior

001 002 003 004 007 009 081 082 121 122
001 1.00 0.56 0.36 0.31 0.35 0.44 0.31 0.34 0.33 0.34
002 0.56 1.00 0.45 0.38 0.38 0.39 0.33 0.41 0.38 0.32
003 0.36 0.45 1.00 0.72 0.38 0.48 0.31 0.37 0.36 0.37
004 0.31 0.38 0.72 1.00 0.33 0.33 0.29 0.35 0.33 0.28
007 0.35 0.38 0.38 0.33 1.00 0.64 0.32 0.52 0.54 0.59
009 0.44 0.39 0.48 0.33 0.64 1.00 0.39 0.42 0.45 0.50
081 0.31 0.33 0.31 0.29 0.32 0.39 1.00 0.69 0.29 0.31
082 0.34 0.41 0.37 0.35 0.52 0.42 0.69 1.00 0.38 0.41
121 0.33 0.38 0.36 0.33 0.54 0.45 0.29 0.38 1.00 0.94
122 0.34 0.32 0.37 0.28 0.59 0.50 0.31 0.41 0.94 1.00

Table 4.6: Result of the improved MTP similarity measure with semantics when the
distance threshold is 0.5

Comparing Table 4.4 / 4.5 with Table 4.6, we see that the results of both variations
of our measure are smaller than those of the improved MTP similarity measure with
semantics.

Likewise, our results are more reasonable than the improved MTP similarity measure
with semantics. Next we give two corroborating examples.

We take the example of the users 003 and 081. We will not list their semantic
patterns in a table, since the numbers of those patterns are too large. Using the first way
of removing infrequent behavior, users 003 and 081 have 51 and 252 frequent semantic
patterns, respectively. And they have 10 common patterns. Using the second way of
removing infrequent behavior, users 003 and 081 have 158 and 769 frequent semantic
patterns, respectively. And they have 7 common patterns. So we know that the average
percentage of the common semantic patterns accounting for all of their patterns is rather
small and must be below 0.31 given by the improved MTP similarity measure. After
considering the similarity between the two sets of non-repetitive support values of the
common patterns, the similarity value between the two users will become smaller than
the average percentage. So the similarity value between the two users cannot be as high
as 0.31 given by the improved MTP similarity measure.

Take another example of users 007 and 009. Using the first way of removing infre-
quent behavior, users 007 and 009 have 150 and 36 frequent semantic patterns, respec-
tively. And they have 26 common patterns. Using the second way of removing infrequent
behavior, users 007 and 009 have 228 and 41 frequent semantic patterns, respectively.
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And they have 22 common patterns. So we know that the average percentage of the com-
mon semantic patterns accounting for all of their patterns must be below 0.5. Likewise,
after considering the similarity between the two sets of non-repetitive support values of
the common patterns, the similarity value between the two users will become smaller
than the average percentage. So the similarity value between the two users cannot be
as high as 0.64 given by the improved MTP similarity measure.
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Chapter 5

The Hausdorff distance-based
similarity measure with semantics

The CPS-based similarity measure with semantics removes some infrequent or noisy
behavior and only uses users’ frequent behavior. So if we want to compare users using
their whole behavior, we need to devise another similarity measure. The solution we
come up with is the novel Hausdorff distance-based similarity measure.

In this chapter we introduce the Hausdorff distance-based similarity measure that
takes semantics into account, and present its experimental results to show the effective-
ness of the measure.

5.1 Fundamentals

The basic idea is to measure the distance of two users’ LS-vector sequence pattern sets
based on a variation of Hausdorff distance.

The Hausdorff distance measures how far two subsets of a metric space are from each
other. Informally, two sets are close in the Hausdorff distance if every point of either set
is close to some point of the other set. It is the greatest of all the distances from a point
in one set to the closest point in the other set. [8]

Definition 17 (Hausdorff distance). Let X and Y be two non-empty subsets of a metric
space. Their Hausdorff distance dH(X,Y ) is defined by:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

We modify the original definition of Hausdorff distance by replacing the max opera-
tion with the averaging operation. Either of the two components in the max operation
denotes the distance from one set to the other one, so using the max operation to obtain
the overall distance between the two sets will go to extremes and at most times the
overall distance obtained will be unreasonably greater than our expectation.

Definition 18 (modified Hausdorff distance). Let X and Y be two non-empty subsets
of a metric space. Their modified Hausdorff distance dmH(X,Y ) is defined by:

dmH(X,Y ) = avg{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

The calculation of the modified Hausdorff distance consists of three phases.
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• The first phase is to calculate the distance between every element x in the set X
and the set Y by taking the minimum value of all the distances between x and
every element in Y , and similarly to calculate the distance between every element
y in Y and X.

• The second phase is to calculate the distance from X to Y by taking the maximum
value of all the distances between every element x in X and Y , and similarly to
calculate the distance from Y to X.

• The third phase is to average the distances from X to Y and from Y to X as the
distance between the two sets.

Thus the modified Hausdorff distance between two sets is essentially the average of the
two distances of two pairs of elements.

To calculate the similarity value between two users, first we convert user u’s frequent
T-patterns to LS-vector sequence patterns by performing Step 1 of the CPS-based sim-
ilarity measure with semantics in Chapter 4. Then we merge equal LS-vector patterns
by adding up their support values. In this way we get u’s LS-vector pattern set PS

u
v .

To apply this notion of the modified Hausdorff distance, we need to figure out how
to calculate the distance between two LS-vector patterns, which depends on the way of
calculating the distance between two LS-vectors. There are a couple of methods that can
be used to measure the distance between two probability distributions in the literature
from which we need to find out the appropriate ones.

Definition 19 (Bhattacharyya distance [2]). For discrete probability distributions P =
〈p1, p2, . . . , pn〉 and Q = 〈q1, q2, . . . , qn〉, the Bhattacharyya distance between them is
defined as:

dB(P,Q) = − ln(
n∑
i=1

√
pi · qi)

Definition 20 (Euclidean distance [5]). For discrete probability distributions P = 〈p1, p2,
. . . , pn〉 and Q = 〈q1, q2, . . . , qn〉, the Euclidean distance between them is defined as:

dE(P,Q) =

√√√√ n∑
i=1

(qi − pi)2

Definition 21 (Hellinger distance [9]). For discrete probability distributions P = 〈p1, p2,
. . . , pn〉 and Q = 〈q1, q2, . . . , qn〉, the Hellinger distance between them is defined as:

dHe(P,Q) =
1√
2

√√√√ n∑
i=1

(
√
pi −

√
qi)2 =

√√√√1−
n∑
i=1

√
pi · qi

Definition 22 (Total variation distance [11]). For discrete probability distributions P =
〈p1, p2, . . . , pn〉 and Q = 〈q1, q2, . . . , qn〉, the total variation distance between them is
defined as:

dT (P,Q) =
1

2

n∑
i=1

| pi − qi |

Definition 23 (Relative entropy distance [10]). For discrete probability distributions
P = 〈p1, p2, . . . , pn〉 and Q = 〈q1, q2, . . . , qn〉, the relative entropy distance between them
is defined as:

dR(P,Q) =
n∑
i=1

pi · ln(
pi
qi

)
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The similarity value between two LS-vectors is inversely proportional to their dis-
tance. The two extreme cases are that when their distance is 0 their similarity value
should be 1, and when their distance reach the maximum value their similarity value
should is 0.

There are two properties that we expect the method used for calculating the distance
between two probability distributions to possess. We use them as the criteria for picking
out the appropriate methods.

• The method can produce values within finite bounds, since we need to convert the
distance we obtain finally to a similarity value. If the maximum distance a method
can generate is infinity, we cannot convert a certain distance to an appropriate
similarity value.

• The second property consists of the following two observations.

1. The similarity value sim(v1, v2) between two LS-vectors v1 = 〈p1, . . . , pn〉 and
v2 = 〈q1, . . . , qn〉 should be one if and only if their probability distributions
are identical; that is, two places are considered the same if and only if they
provide the same functionalities, and for each functionality the likelihoods of
a user utilizing it at the two places are the same.

sim(v1, v2) = 1⇔ ∀ni=1pi = qi

2. The similarity value sim(v1, v2) between two LS-vectors v1 = 〈p1, . . . , pn〉 and
v2 = 〈q1, . . . , qn〉 should be zero if and only if v1 assigns zero to every element
to which v2 assigns a positive probability, and vice versa; that is, two places
are considered completely different if and only if they provide no common
functionalities.

sim(v1, v2) = 0⇔ ∀ni=1(pi 6= 0⇒ qi = 0 ∧ qi 6= 0⇒ pi = 0)

In the following table the five methods of calculating the distance between two prob-
ability distributions are compared in terms of the above two properties.

Distance notion Range Observation 1 Observation 2

Bhattacharyya [0,+∞) Yes Yes

Euclidean [0,
√

2] Yes No
Hellinger [0, 1] Yes Yes

Total variation [0, 1] Yes Yes
Relative entropy [0,+∞) Yes No

Table 5.1: Comparison between methods of measuring the distance between two proba-
bility distributions

We see that Hellinger distance and Total variation distance satisfy the two properties.
So we will use these two notions as the methods of calculating the distance between two
LS-vectors.

We analyze these two notions in more detail. In the Hellinger distance,
∑n

i=1

√
pi · qi,

called the Bhattacharyya coefficient [1], is an approximate measurement of the amount
of overlap between two distributions. It can be used to determine the relative closeness of
two distributions. In the Total variation distance, the distance between two distributions
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is derived from the difference between each pair of corresponding probabilities of the same
index.

There are two ways of calculating the similarity value between two users’ LS-vector
pattern sets which is the similarity value between two users, depending on whether we
are able to calculate the distance between two LS-vector patterns of different lengths.

• The first way is that we divide each user’s LS-vector pattern set into subsets each
of which consists of all the user’s patterns of some specific length, and then apply
the Definition 18 to each pair of subsets whose patterns have the same length.

To calculate the distance between each pair of subsets using the Definition 18,
we need to know how to calculate the distance between two LS-vector patterns
of the same length. It is not only affected by the distance between each pair of
corresponding LS-vectors of the same index, but also by the support values of the
two LS-vector patterns. The greater the support values are, the more frequent
the behavior represented by the two patterns is and thus the more contribution
the distance between the two patterns should have to the similarity between the
two users. According to the previous analysis, this means that the two patterns
are more likely to be one of the two pairs of patterns which are selected in the
second phase of the modified Hausdorff distance calculation and the two distances
of which average out at the distance between the two subsets. Thus the greater the
support values are, the more likely the two patterns are to be the pair of patterns
chosen by the first phase of the modified Hausdorff distance. Thus the greater
the support values are, the smaller the distance between the two patterns should
be. The distance between the LS-vector pattern Pv = v1 → v2 → . . . → vn and
P ′v = v′1 → v′2 → . . .→ v′n is defined as:

d(Pv, P
′
v) =

∑n
i=1 dHe/T (vi, v

′
i)

n
· (1− support(Pv) · support(P ′v)) (5.1)

From Equation (5.1) we see that the distance between two LS-vector patterns of
the same length is between 0 and 1. Thus the range of the distance between a pair
of subsets mentioned above is also [0,1].

An problem occurs when the longest LS-vector patterns of the two users are not
of the same length, which is that the user whose longest patterns are longer than
those of the other user has subsets that do not have corresponding subsets in the
other user’s pattern set. So in order to solve this problem we introduce the notion
of “virtual subset”, which has the property that the distance between any LS-
vector pattern set and it is the maximum possible value, which is 1 in the cases of
Hellinger distance and Total variation distance. Then we have all the subsets that
do not have corresponding subsets pair the “virtual subset”.

What follows is to convert the distance d between each pair of subsets to the
similarity value s using the equation below.

s = 1− d (5.2)

Then all the similarity values between all pairs of subsets are integrated into an
overall one between the two users. The longer a frequent pattern is, the more
difficult it is for a user to have the pattern. Thus to compensate this difficulty, the
longer the patterns in a pair of subsets are, the more weight the similarity value
between the pair of subsets should carry. So we follow the practice of Equation 3.1
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with respect to the weight of patterns’ lengths. Assume that the longest patterns
of the users u and u′ are of length n, then the similarity value sim(u, u′) between
the two users is calculated as:

sim(u, u′) =

∑n
i=1 i

2 · si∑n
i=1 i

2
(5.3)

where si is the similarity value between the pair of subsets whose patterns are of
length i.

• The second way is to directly calculate the distance between two users’ LS-vector
pattern sets. We extend the above-mentioned method of calculating the distance
between two LS-vector patterns of the same length to enable it to calculate the
distance between two patterns of different lengths.

Similarly, we introduce the notion of “virtual LS-vector”, which has the property
that the distance between any LS-vector and it is the maximum possible value,
which is 1 in the cases of Hellinger distance and Total variation distance. When
calculating the distance between two LS-vector patterns of different lengths, the
LS-vectors that come from the longer pattern and do not have corresponding LS-
vectors in the shorter pattern are paired with the “virtual LS-vector”. In this way
the two LS-vector patterns have the same length.

Consequently we can obtain the distance between LS-vector pattern sets of users
u and u′ by directly applying Definition 18 to the two sets, which is in the range
[0,1].

dmH(PSuv , PS
u′
v ) = avg{ sup

Pv∈PSu
v

inf
P ′
v∈PSu′

v

d(Pv, P
′
v), sup

P ′
v∈PSu′

v

inf
Pv∈PSu

v

d(Pv, P
′
v)}

Then dmH(PSuv , PS
u′
v ) is converted to the similarity value s between the two users

using Equation 5.2.

Example 6. Assume that the frequent patterns of the users u and u′ and their support
values are as follows, respectively.

A 0.50
B 0.50

A→ B 0.20

A 0.50
C 0.50

The LS-vectors of all the RoIs are given below.

A 7→ (0.0, 0.1, 0.9) B 7→ (0.8, 0.2, 0.0) C 7→ (0.1, 0.8, 0.1)

We use the notion of the total variation distance to calculate the distance between
two LS-vectors. If we use the first way of calculating the similarity between two users
mentioned previously, the distance between the two subsets whose patterns are of length
one of u and u′ is 0.525, and there is a distance 1 between u’s subset which has a pattern
of length 2 and the “virtual subset”. Then the similarity values of the two pairs of
pattern subsets are 0.475 and 0, respectively. According to Equation 5.3, the similarity
value between u and u′ is about 0.10.

If we use the second way of calculating the similarity between two users, the distance
between the two users’ LS-vector pattern sets is 0.525, and then the similarity value
between u and u′ is about 0.48.
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Intuitively, the similarity value 0.48 should be more appropriate than 0.10, so for this
example we can see that the second way mentioned above, which is to directly calculate the
distance of the two users’ LS-vector pattern sets, has a better performance. The reason
is that in the first way when the longest patterns of two users have different lengths,
the similarity value 0 between a user’s actual subset whose patterns are of some length
and the “virtual subset”will be involved in the calculation of the similarity value between
the two users, and the problem that the similarity value between the two users obtained
finally seems smaller than the expectation is exacerbated by considering the weight of the
length factor is the square of it.

5.2 Experiments

We carried out experiments on the same two datasets using the same LS-vectors as those
used in the previous chapter. In the following we give the results.

5.2.1 The experiment on the Geolife dataset

003 004 017 030 068 113 151 160 163 164
003 1.00 0.31 0.40 0.34 0.37 0.42 0.15 0.39 0.16 0.16
004 0.31 1.00 0.17 0.39 0.18 0.20 0.06 0.18 0.07 0.08
017 0.40 0.17 1.00 0.18 0.47 0.49 0.15 0.39 0.15 0.15
030 0.34 0.39 0.18 1.00 0.18 0.20 0.07 0.18 0.07 0.07
068 0.37 0.18 0.47 0.18 1.00 0.45 0.13 0.41 0.12 0.11
113 0.42 0.20 0.49 0.20 0.45 1.00 0.22 0.63 0.19 0.16
151 0.15 0.06 0.15 0.07 0.13 0.22 1.00 0.24 0.69 0.41
160 0.39 0.18 0.39 0.18 0.41 0.63 0.24 1.00 0.24 0.15
163 0.16 0.07 0.15 0.07 0.12 0.19 0.69 0.24 1.00 0.65
164 0.16 0.08 0.15 0.07 0.11 0.16 0.41 0.15 0.65 1.00

Table 5.2: Result using Hellinger distance and the first way

003 004 017 030 068 113 151 160 163 164
003 1.00 0.32 0.37 0.34 0.39 0.39 0.15 0.43 0.17 0.17
004 0.32 1.00 0.16 0.39 0.20 0.18 0.06 0.20 0.07 0.08
017 0.37 0.16 1.00 0.17 0.44 0.48 0.17 0.40 0.16 0.14
030 0.34 0.39 0.17 1.00 0.18 0.20 0.07 0.19 0.07 0.07
068 0.39 0.20 0.44 0.18 1.00 0.43 0.10 0.43 0.12 0.11
113 0.39 0.18 0.48 0.20 0.43 1.00 0.20 0.58 0.17 0.15
151 0.15 0.06 0.17 0.07 0.13 0.20 1.00 0.23 0.64 0.37
160 0.43 0.20 0.40 0.19 0.43 0.58 0.23 1.00 0.25 0.17
163 0.17 0.07 0.16 0.07 0.12 0.17 0.64 0.25 1.00 0.67
164 0.17 0.08 0.14 0.06 0.11 0.15 0.37 0.17 0.67 1.00

Table 5.3: Result using total variation distance and the first way
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003 004 017 030 068 113 151 160 163 164
003 1.00 0.63 0.40 0.57 0.35 0.38 0.34 0.36 0.31 0.35
004 0.63 1.00 0.33 0.51 0.35 0.38 0.33 0.37 0.30 0.36
017 0.40 0.33 1.00 0.36 0.40 0.47 0.40 0.36 0.37 0.36
030 0.57 0.51 0.36 1.00 0.32 0.38 0.32 0.32 0.29 0.36
068 0.35 0.35 0.40 0.32 1.00 0.39 0.34 0.38 0.30 0.27
113 0.38 0.38 0.47 0.38 0.39 1.00 0.52 0.51 0.45 0.37
151 0.34 0.33 0.40 0.32 0.37 0.52 1.00 0.50 0.49 0.39
160 0.36 0.37 0.36 0.32 0.38 0.51 0.50 1.00 0.45 0.42
163 0.31 0.30 0.37 0.29 0.30 0.45 0.49 0.45 1.00 0.73
164 0.35 0.36 0.36 0.36 0.27 0.37 0.39 0.42 0.73 1.00

Table 5.4: Result using Hellinger distance and the second way

003 004 017 030 068 113 151 160 163 164
003 1.00 0.66 0.37 0.55 0.35 0.35 0.36 0.39 0.35 0.37
004 0.66 1.00 0.32 0.51 0.35 0.35 0.33 0.39 0.31 0.35
017 0.37 0.32 1.00 0.34 0.37 0.45 0.41 0.37 0.39 0.36
030 0.55 0.51 0.34 1.00 0.33 0.38 0.34 0.36 0.32 0.36
068 0.35 0.35 0.37 0.33 1.00 0.39 0.32 0.38 0.30 0.26
113 0.35 0.35 0.45 0.38 0.39 1.00 0.48 0.48 0.41 0.34
151 0.36 0.33 0.41 0.34 0.32 0.48 1.00 0.46 0.43 0.35
160 0.39 0.39 0.37 0.36 0.38 0.48 0.46 1.00 0.50 0.47
163 0.35 0.31 0.39 0.32 0.30 0.41 0.43 0.50 1.00 0.76
164 0.37 0.35 0.36 0.36 0.26 0.34 0.35 0.47 0.76 1.00

Table 5.5: Result using total variation distance and the second way

Comparing Table 5.2 with Table 5.3, or Table 5.4 with Table 5.5, we see that when
using the same way of calculating the similarity value between two users’ LS-vector
pattern sets, the similarity values obtained using Hellinger distance are quite close to
those obtained using total variation distance.

Comparing Table 5.2 with Table 5.4, or Table 5.3 with Table 5.5, we see that the
phenomenon revealed in Example 6 exists, which is that for each pair of users whose
longest frequent patterns are of different lengths the similarity value obtained using the
first way of calculating the similarity value between two users’ pattern sets is much
smaller than that obtained using second way. For other pairs of users the similarity
values obtained using the two ways are close.

Comparing the above four tables with Table 4.3, we see that for the pairs of users
whose similarity values given by the improved MTP similarity measure with semantics
are 0, they have some degree of similarity using the Hausdorff distance-based measure.

Our results are more reasonable than those of the improved MTP similarity measure
with semantics. We take the example of users 003 and 163 to elucidate it.

This pair of users also appears as an example in the previous chapter, and according
to the analysis in the example of the previous chapter the two users have some degree of
similarity. From Table 4.3, we see that the similarity value between them given by the
improved MTP similarity measure is 0, which is obviously inappropriate.
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5.2.2 The experiment on the Yonsei dataset

001 002 003 004 007 009 081 082 121 122
001 1.00 0.56 0.48 0.45 0.55 0.16 0.23 0.19 0.40 0.46
002 0.56 1.00 0.50 0.47 0.37 0.14 0.21 0.20 0.46 0.45
003 0.48 0.50 1.00 0.66 0.53 0.15 0.18 0.19 0.48 0.49
004 0.45 0.47 0.66 1.00 0.50 0.15 0.18 0.22 0.51 0.51
007 0.55 0.37 0.53 0.50 1.00 0.26 0.22 0.21 0.56 0.62
009 0.16 0.14 0.15 0.15 0.26 1.00 0.09 0.09 0.18 0.18
081 0.23 0.21 0.18 0.19 0.22 0.09 1.00 0.50 0.19 0.18
082 0.19 0.20 0.19 0.22 0.21 0.09 0.50 1.00 0.21 0.20
121 0.40 0.46 0.48 0.51 0.56 0.18 0.19 0.21 1.00 0.82
122 0.46 0.45 0.49 0.51 0.62 0.18 0.18 0.20 0.82 1.00

Table 5.6: Result using Hellinger distance and the first way

001 002 003 004 007 009 081 082 121 122
001 1.00 0.54 0.46 0.46 0.54 0.16 0.22 0.18 0.42 0.45
002 0.54 1.00 0.49 0.46 0.36 0.14 0.21 0.20 0.48 0.46
003 0.46 0.49 1.00 0.65 0.52 0.15 0.17 0.18 0.45 0.45
004 0.46 0.46 0.65 1.00 0.53 0.15 0.18 0.22 0.52 0.52
007 0.54 0.36 0.52 0.53 1.00 0.26 0.22 0.23 0.56 0.62
009 0.16 0.14 0.15 0.15 0.26 1.00 0.09 0.09 0.17 0.18
081 0.22 0.21 0.17 0.18 0.22 0.09 1.00 0.50 0.20 0.18
082 0.18 0.20 0.18 0.22 0.23 0.09 0.50 1.00 0.23 0.23
121 0.42 0.48 0.45 0.52 0.56 0.17 0.20 0.23 1.00 0.83
122 0.45 0.46 0.45 0.52 0.62 0.18 0.18 0.23 0.83 1.00

Table 5.7: Result using total variation distance and the first way

001 002 003 004 007 009 081 082 121 122
001 1.00 0.56 0.42 0.41 0.42 0.41 0.40 0.39 0.38 0.39
002 0.56 1.00 0.35 0.37 0.30 0.36 0.37 0.38 0.38 0.38
003 0.42 0.35 1.00 0.46 0.51 0.39 0.31 0.34 0.42 0.42
004 0.41 0.37 0.46 1.00 0.47 0.39 0.35 0.40 0.46 0.46
007 0.42 0.30 0.51 0.47 1.00 0.57 0.41 0.41 0.53 0.54
009 0.41 0.36 0.39 0.39 0.57 1.00 0.47 0.48 0.46 0.47
081 0.40 0.37 0.31 0.35 0.41 0.47 1.00 0.50 0.34 0.34
082 0.39 0.38 0.34 0.40 0.41 0.48 0.50 1.00 0.38 0.39
121 0.38 0.38 0.42 0.46 0.53 0.46 0.34 0.38 1.00 0.63
122 0.39 0.38 0.42 0.46 0.54 0.47 0.34 0.39 0.63 1.00

Table 5.8: Result using Hellinger distance and the second way
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001 002 003 004 007 009 081 082 121 122
001 1.00 0.54 0.40 0.40 0.42 0.42 0.40 0.36 0.43 0.44
002 0.54 1.00 0.34 0.35 0.29 0.36 0.38 0.38 0.41 0.41
003 0.40 0.34 1.00 0.48 0.52 0.39 0.29 0.31 0.42 0.42
004 0.40 0.35 0.48 1.00 0.47 0.39 0.33 0.40 0.46 0.46
007 0.42 0.29 0.52 0.47 1.00 0.56 0.40 0.45 0.55 0.55
009 0.42 0.36 0.39 0.39 0.56 1.00 0.49 0.47 0.46 0.47
081 0.40 0.38 0.29 0.33 0.40 0.49 1.00 0.51 0.38 0.37
082 0.36 0.38 0.31 0.40 0.45 0.48 0.51 1.00 0.40 0.41
121 0.43 0.41 0.42 0.46 0.55 0.46 0.38 0.40 1.00 0.65
122 0.44 0.41 0.42 0.46 0.55 0.47 0.37 0.41 0.65 1.00

Table 5.9: Result using total variation distance and the second way

Comparing Table 5.6 with Table 5.7, or Table 5.8 with Table 5.9, we see that when
using the same way of calculating the similarity value between two users’ LS-vector
pattern sets, the similarity values obtained using Hellinger distance are quite close to
those obtained using total variation distance.

Comparing Table 5.6 with Table 5.8, or Table 5.7 with Table 5.9, we see that the
phenomenon revealed in Example 6 exists, which is that for each pair of users whose
longest frequent patterns are of different lengths the similarity value obtained using the
first way of calculating the similarity value between two users’ pattern sets is much
smaller than that obtained using second way. For other pairs of users the similarity
values obtained using the two ways are close.

Comparing the above four tables with Table 4.4 / 4.5, we see that for the great
majority of pairs of users, the similarity values given by the Hausdorff distance-based
measure are greater than those given by the CPS-based measure with semantics. Com-
paring the four tables with Table 4.6, we see that there are some pairs of users whose
similarity values given by the Hausdorff distance-based measure are greater and smaller
than those given by the improved MTP measure with semantics, respectively.

We take the example of users 121 and 122 to show that the results of the Hausdorff
distance-based measure are more reasonable than those of the improved MTP measure
with semantics. Using the first way of removing infrequent behavior in the CPS-based
measure with semantics, user 121 has 182 frequent semantic patterns and user 122 has
234 patterns. They have 182 common patterns. Using the second way of removing
infrequent behavior in the CPS-based measure with semantics, user 121 has 192 frequent
semantic patterns and user 122 has 207 patterns. They have 172 common patterns. So we
see that the average percentage of common patterns accounting for all of their patterns
cannot be as high as 0.94 given by the improved MTP measure with semantics. After
considering the similarity between the frequencies of the common patterns, the similarity
value between the two users will become smaller than the average percentage. So their
similarity value cannot be as high as 0.94 given by the improved MTP measure with
semantics.
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Chapter 6

The MinUS Tool

We developed a tool, named MinUS (Mine User Similarity), that can abstract users’
profiles from the source data of their geographical trajectories and then use them to
compare user similarity by virtue of different similarity measures. It provides four major
functions, which are managing datasets, constructing user mobility profiles, viewing files
and visualization on maps, and measuring user similarity. Below is the general workflow
of the tool.

Figure 6.1: The general workflow

6.1 Managing datasets

This module consists of two parts, which are basic operations of datasets and viewing
statistic information.

6.1.1 Basic operations of datasets

We allow users to add a new dataset, edit and delete an existing dataset.
The tool is able to handle two types of datasets according to the different types of

source data. Source data of the new dataset a user provides should be of one of the two
types, GPS points and stay points. When adding a new dataset of some type, the tool
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will check if the source data of the dataset is in accord with the format requirements
of that type. If the dataset is added successfully, the tool will continue gathering users’
statistics of GPS trajectories or stay point trajectories for the two types of datasets,
respectively.

The name and output directory of an existing dataset can be changed. Users can
choose whether to delete contents on disk as well while deleting a dataset.

6.1.2 Viewing statistics

Users can view a dataset’s general information, which includes its name, type, input
directory, output directory, and the number of users it contains.

The tool also permits viewing statistics of users included in a dataset, which includes
statistics of GPS trajectories and possible statistics of stay point trajectories if already
detected for a dataset of GPS point type, or only statistics of stay point trajectories for
a dataset of stay point type. GPS points (stay points) of a user in a day form a GPS
(stay point) trajectory. Statistics of GPS (stay point) trajectories of a user contain the
number of days in which the user has GPS (stay point) trajectories, the total number of
GPS points (stay points), the minimum number of GPS points (stay points) in a GPS
(stay point) trajectory, the maximum number of GPS points (stay points) in a GPS
(stay point) trajectory, and the average number of GPS points (stay points) in a GPS
(stay point) trajectory. The user list in the user interface allows multiple selection, so
statistics of any number of users can be viewed at a time.

Taking advantage of these statistics, the user of the MinUS tool can choose appro-
priate users in a dataset to compare their similarity.

Figure 6.2: User interface of viewing users’ statistics
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6.2 Constructing user mobility profiles

For datasets of GPS point type the mobility profile construction process of Chen et al. is
made up of three sequential steps, which are detecting stay points, generating RoIs and
extracting frequent pattern sets, while for datasets of stay point type it only consists of
the latter two steps. The intermediate results can be visualized on maps and viewed by
opening files.

6.2.1 The construction process

Three parameters need setting before detecting stay points, which are the time interval
threshold θt, the distance threshold θd and the threshold θm that are mentioned in
Chapter 2. A user will generate different files of stay point trajectories using different
parameter settings.

Figure 6.3: User interface of detecting stay points

After obtaining users’ stay points, RoIs can be generated from multiple users’ stay
points. Three parameters need setting, which are the deletion percentage that refers
to how many stay points at most will constitute outliers and then be deleted before
proceeding to the clustering process, and the upper and lower bounds of a parameter
K that will be used in the LOF algorithm of removing the outliers. It is meaningful to
generate RoIs from multiple users’ stay points only when all the stay points are detected
using the same parameter setting.
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Figure 6.4: User interface of generating RoIs

After obtaining the RoI file, frequent pattern sets will be able to be extracted from
stay point trajectories. Only the frequent patterns of those users who are involved in
generating a RoI file can be extracted based on the RoI file from the users’ files of stay
point trajectories used to generate the RoI file. Parameters which need setting include
the support value threshold and the time tolerance introduced in Chapter 2 for a T-
pattern to become frequent, the side length of a cell which will be used in the T-pattern
mining algorithm, and a usable RoI file. The tool uses the trajectory pattern mining
tool initially created in [18] to carry out this task, and we improved one defect, which
is that it cannot produce results when the time tolerance threshold τ is set below 18000
seconds. We also enhance its functionality by not only permitting extracting frequent
patterns from all the stay point trajectories of a user, but also permitting extracting
frequent patterns from his stay point trajectories in some particular type of days, like
on weekdays or weekends.
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Figure 6.5: User interface of extracting frequent pattern sets

6.2.2 Visualization and viewing files

In the midst of constructing a user’s profile, we can visualize the intermediate results,
like his GPS and stay point trajectories, and RoI files which he is involved in forming, by
displaying them on maps. Any combination of the three types of intermediate results can
be chose at a time in the visualization panel. By clicking context menus an intermediate
result can be visualized individually as well. A user’s files that store his intermediate
results can also be opened and viewed via right-click menus of the list components in
the visualization panel and those panels of constructing user profiles.

Figure 6.6: User interface of viewing files and visualization
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6.3 Measuring user similarity

6.3.1 Managing semantic files

Since semantics is taken into account in the form of LS-vectors, we should know the
LS-vector associated with each RoI in the file if we want to compare user similarity
semantically based on an RoI file. A file which stores all RoI IDs in an RoI file and their
associated LS-vectors is called a semantic file.

The tool provides two ways of adding a semantic file, which are to have the tool
automatically generate one whose LS-vectors are normally distributed based on an RoI
file, or to add an existing one manually. Each semantic file is only attached to one RoI
file, so a semantic file can only be used when comparing users’ pattern sets that are
produced based on the RoI file to which the semantic file is attached.

Figure 6.7: User interface of managing semantic files

6.3.2 Comparing users

The tool provides four user similarity measures, which are the MTP similarity measure
(with time), the improved MTP similarity measure (with sematics) (with time), the CPS-
based similarity measure (with sematics) and the Hausdorff distance-based similarity
measure (with sematics). To list the users’ pattern sets which can be compared with
each other, we need to specify three parameters sequentially for datasets of GPS point
type, which are the parameter setting used when detecting stay points, the RoI file based
on and the parameter setting when extracting these pattern sets, by selecting items from
the three combo boxes from top to bottom. For datasets of stay point type, only the
latter two parameters need setting. An arbitrary number of users can be chosen to be
compared at a time. The result will be displayed in a table in which the gray value of
each cell’ background color is linearly proportional to the similarity value contained in
the cell.
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Figure 6.8: User interface of comparing users
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Chapter 7

Conclusion

In this thesis, we focused on comparing user similarity based on mobility profiles in the
form of sequence pattern sets. First, we found a couple of defects of the (improved) MTP
similarity measure in the literature. These defects are all related to the measure’s main
idea which is to use the comparison between frequent patterns as a building block for
the comparison between users. Then we gave four rudimentary principles that similarity
measures should follow, and affirmed that the (improved) MTP similarity measure does
not completely satisfy the principles. Next we proposed the CPS-based similarity mea-
sure that follows all of those principles. And we extended it further to enable it to take
semantics into consideration. In addition, we proposed another Hausdorff distance-based
similarity measure with semantics which directly calculate the similarity value between
users’ pattern sets. The experiments conducted on two real datasets demonstrate that
our newly proposed similarity measures are able to efficiently produce more reasonable
results than the improved MTP similarity measure (with semantics). Finally, we de-
veloped the MinUS software tool which implements the mobility profile construction
process of Chen et al. and all of the involved similarity measures in this thesis.

Next we conclude that which similarity measures apply in some specific situation.

• If we would like to search for similar users who live in the same geographical region,
like a city, we should use the CPS-based similarity measure.

• If we would like to search for similar users no matter whether their living places are
close, e.g., they can live in different cities, we should use the CPS-based similarity
measure with semantics or the Hausdorff distance-based similarity measure.

With our new similarity measures and the MinUS tool, location-based social networks
are able to measure the similarity among users more accurately and thus provide a more
effective user recommendation service.

There are a few limitations on comparing user similarity using frequent pattern sets.
First, the user mobility profile construction process might be a bit time-consuming. Sec-
ond, in this thesis we used simulated LS-vectors which are randomly generated. To
obtain precise similarity values after considering semantics in reality, we need to ob-
tain real and precise LS-vectors associated with the involved RoIs; in other words, we
need to precisely gather real information about the probabilities of users utilizing the
functionalities of the involved places, which might be a laborious work.

For future work, we can apply our similarity measures to location privacy analysis. A
high similarity value between a given set of anonymous trajectories and a user’s mobility
profile indicates a high likelihood for the user to be the owner of the trajectories.
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