
A New Decomposition-based Method
for Detecting Attractors in Synchronous Boolean Networks

Qixia Yuana, Andrzej Mizerab, Jun Pangc,∗, Hongyang Qud

aFaculty of Science, Technology and Communication, University of Luxembourg
bInstitute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

cFaculty of Science, Technology and Communication & Interdisciplinary Centre for Security, Reliability
and Trust, University of Luxembourg

dDepartment of Automatic Control & Systems Engineering, University of Sheffield

Abstract

Boolean networks are a well-established formalism for modelling biological systems.

An important aspect of analysing a Boolean network is to identify all its attractors. This

becomes challenging for large Boolean networks due to the infamous state-space ex-

plosion problem. In this paper, we propose a new strongly connected component (SCC)

based decomposition method for attractor detection in large synchronous Boolean net-

works and prove its correctness. Experimental results show that our proposed method

is significantly better in terms of performance when compared to existing methods in

the literature.

Keywords: synchronous Boolean networks, attractor detection, decomposition,

binary decision diagram (BDD)

1. Introduction

Boolean networks (BNs) are a well-established framework widely used for mod-

elling biological systems, such as gene regulatory networks (GRNs). Originally pro-

posed by Kauffman for modelling GRNs, BNs have quickly contributed to many other

scientific fields, such as fault diagnosis (e.g. see [1]) and robotics applications (e.g.

see [2]). Although they provide a simple system representation, BNs can still capture

∗Corresponding author
Email addresses: qixia.yuan@uni.lu (Qixia Yuan), andrzej.mizera@gmail.com

(Andrzej Mizera), jun.pang@uni.lu (Jun Pang), h.qu@sheffield.ac.uk (Hongyang Qu)

Preprint submitted to Science of Computer Programming May 2, 2019

the important dynamic properties of the modelled system, e.g. the attractors. An at-

tractor is a set of states that a system will stay forever once entered. In the literature,

attractors are hypothesised to characterise cellular phenotypes [3] or to correspond to

functional cellular states such as proliferation, apoptosis, or differentiation [4]. Hence,

attractor identification is of vital importance to the study of biological systems mod-

elled as BNs.

Attractors are defined based on the BN’s state space (often represented as a tran-

sition system or graph), the size of which is exponential in the number of nodes in

the network. Therefore, attractor detection becomes non-trivial when it comes to a

large network. In the BN framework, algorithms for detecting attractors have been ex-

tensively studied in the literature. The first study dates back to the early 2000s when

Somogyi and Greller proposed an enumeration and simulation method [5]. The idea

is to enumerate all the possible states and to run simulations from each of them until

an attractor is found. This method is largely limited by the network size as its running

time grows exponentially with the number of nodes in the BN. In 2006, Irons pro-

posed a method to detect BNs with a special topology [6], making it possible to deal

with BNs with maximum 80 nodes. Later on, the performance of attractor detection

has been greatly improved with the use of two techniques. The first technique utilizes

binary decision diagrams (BDDs). These methods [7, 8] encode Boolean functions

of BNs with BDDs and represents the network’s corresponding transition system with

BDD structures. Using the BDD operations, the forward and backward reachable states

can be often efficiently computed. Detecting attractors is then reduced to finding fix

point sets of states in the corresponding transition system. The other technique makes

use of satisfiability (SAT) solvers. It transforms attractor detection in BNs into a SAT

problem [9]. An unfolding of the transition relation of the BN for a bounded number

of steps is represented as a propositional formula. The formula is then solved by a SAT

solver to identify a valid path in the state transition system of the BN. The procedure is

repeated iteratively for larger and larger upper bound on the number of steps until all

attractors are identified. The efficiency of this type of algorithms largely relies on the

number of unfolding steps required and the number of nodes in the BN. In addition to

BDD and SAT based methods, modular and Gröebner bases computation in Boolean

2

rings were also used for the computation of attractors in a BN [10]. The usage of this

method, however, scales only to a few tens of nodes. Recently, a few decomposition

methods [11, 12, 13, 14, 15] were proposed to deal with large BNs. The main idea is to

decompose a large BN into small components based on its structure, to detect attractors

of the small components, and then to restore the attractors of the original BN.

In the literature, two different updating schemes have been proposed for BNs. One

is the synchronous scheme, where all the nodes are updated simultaneously at each

time point. In [16], an HGF network has been analysed under the synchronous scheme.

Moreover, in [17], a synchronous Boolean network model of the cell-cycle regulatory

network of fission yeast (Schizosaccharomyces Pombe) was shown to faithfully repro-

duce the known activity sequence of regulatory proteins along the cell cycle of the

living cell. The other scheme is the asynchronous one, where one randomly selected

node is updated at each time point. A network of tumour has been analysed under the

asynchronous scheme in [18]. In this paper, we propose a new decomposition method

for attractor detection in BNs, in particular, in large synchronous BNs. We prove the

correctness of our proposed method and demonstrate its performance with experiments

on both randomly generated and real-life biological networks. Considering the fact

that a few decomposition methods have already been introduced, we explain our new

method by showing its main differences from the existing ones. First, our method

carefully considers the semantics of synchronous BNs and thus it does not encounter

a problem that the method proposed in [11] does, which we explain in more details

in Section 3. Second, our previous method [12] does not consider the dependency

relation among different sub-networks. Therefore, the state space of a sub-network

is not restricted by the networks it depends on. This results in a lot of unnecessary

states in the state space of a sub-network. In this newly proposed method, we take

into consideration the dependency relation to reduce the state space of a sub-network.

Therefore, the performance of our method can potentially be improved. We show with

experimental results that this consideration can significantly improve the performance

of attractor detection in large BNs. Third, the method in [13] also considers the de-

pendency relation among different sub-networks. However, the dependency relation

is not used to restrict the construction of the state space or the state transition graph

3

in a sub-network, but the recovery of attractors. Therefore, the state space and state

transition graph in their sub-networks are bigger than ours. Hence, we expect to have a

better performance with our method than with theirs. Due to the fact that no tool is pro-

vided for their method, we do not perform experimental comparison with their method.

Fourth, the method proposed in [14] proposed a different way of partition. Then they

over-approximated the set of attractors and generated the exact sets of attractors using

global fixed-point iterations. Comparing to the other methods mentioned above, this

method is suitable for networks with large average in-degree (also known as number of

parent nodes). However, the size of the network this method can handle is reduced to a

few tens due to the increase of average in-degree. Further, the decomposition method

in [15] is designed for asynchronous networks while here we extend it to synchronous

networks. As a consequence, the key operation realisation for the synchronous BNs is

completely re-designed with respect to the one for asynchronous BNs in [15].

Note that this is an extended and revised version of the conference paper [19]. This

extended version has the following two main contributions. Firstly, we have included

the proofs for all the theorems and lemmas in the conference paper. The proofs are

added after each of the corresponding theorems or lemmas in Sections 3 and 4. With

the proofs, our proposed method becomes mathematically sound. Secondly, we have

performed further evaluation of our method on 9 real-life biological models (see Sec-

tion 5.2). The evaluation results on real-life biological networks are consistent with

that on randomly generated models. Moreover, by using the same model with different

input settings (see the last three models in Table 2), we further demonstrate the fact that

our proposed method can gain large speedups for models with a small size of attractors.

This is crucial as the number of attractors for real-life biological networks should be

small in order to be meaningful.

2. Preliminaries

2.1. Boolean networks

A Boolean network (BN) is composed of two elements: binary-valued nodes,

which represent elements of a biological system, and Boolean functions, which rep-

4

resent interactions between the elements. The concept of BNs was first introduced in

1969 by S. Kauffman for analysing the dynamical properties of GRNs [20], where each

gene was assumed to be in only one of two possible states: ON/OFF.

Definition 1 (Boolean network). A Boolean network G(V,f) consists of a set of

nodes V = {v1, v2, . . . , vn}, also referred to as genes, and a vector of Boolean func-

tions f = (f1, f2, . . . , fn), where fi is a predictor function associated with node vi

(i = 1, 2, . . . , n). A state of the network is given by a vector x = (x1, x2, . . . , xn) ∈

{0, 1}n, where xi ∈ {0, 1} is a value assigned to node vi.

Since the nodes are binary, the state space of a BN is exponential in the number

of nodes. Each node vi ∈ V has an associated subset of nodes {vi1 , vi2 , . . . , vik(i)
},

referred to as the set of parent nodes of vi, where k(i) is the number of parent nodes and

1 ≤ i1 < i2 < · · · < ik(i) ≤ n. Starting from an initial state, the BN evolves in time

by transiting from one state to another. The state of the network at a discrete time point

t (t = 0, 1, 2, . . .) is given by a vector x(t) = (x1(t), x2(t), . . . , xn(t)), where xi(t) is

a binary-valued variable that determines the value of node vi at time point t. The value

of node vi at time point t+ 1 is given by the predictor function fi applied to the values

of the parent nodes of vi at time t, i.e. xi(t+1) = fi(xi1(t), xi2(t), . . . , xik(i)
(t)). For

simplicity, with slight abuse of notation, we use fi(xi1 , xi2 , . . . , xik(i)
) to denote the

value of node vi at the next time step. For any j ∈ [1, k(i)], node vij is called a parent

node of vi and vi is called a child node of vij .

In general, the Boolean predictor functions can be formed by combinations of any

logical operators, e.g. logical AND ∧, OR ∨, and NEGATION ¬, applied to variables as-

sociated with the respective parent nodes. The BNs are divided into two types based on

the time evolution of their states, i.e. synchronous and asynchronous. In synchronous

BNs, values of all the variables are updated simultaneously; while in asynchronous

BNs, one variable at a time is randomly selected for update.

In this paper, we focus on synchronous BNs. The transition relation of a syn-

chronous BN is given by

T (x(t),x(t+ 1)) =

n∧
i=1

(
xi(t+ 1)↔ fi(xi1(t), xi2(t), . . . , xik(i)

(t))
)
. (1)

5

Equation 1 states that in every step all the nodes are updated simultaneously in accor-

dance with their Boolean functions.

In many cases, a BN G(V,f) is studied as a state transition system. Formally, the

definition of a state transition system is given as follows.

Definition 2 (State transition system). A state transition system T is a 3-tuple 〈S, S0,

T 〉 where S is a finite set of states, S0 ⊆ S is the initial set of states, and T ⊆ S × S

is the transition relation. When S = S0, we simply write 〈S, T 〉.

A BN can be easily modelled as a state transition system: the set S is just the state

space of the BN, so there are 2n states for a BN with n nodes; the initial set of states

S0 is the same as S; finally, the transition relation T is given by Equation 1.

In most part of the paper, we focus on the structure of a BN and demonstrate a BN

with a graph showing its structure while ignoring the predictor function details. Simi-

larly, we demonstrate a state transition system as a transition graph.

Example 1 (BN). A BN G1 with 3 nodes is shown in Figure 1a. Its Boolean functions

are given as: f1 = ¬(x1 ∧ x2), f2 = x1 ∧ ¬x2, and f3 = ¬x2. In Figure 1a, the

three circles v1, v2, and v3 represent the three nodes of the BN. The edges between

nodes represent the interactions between nodes. By applying the transition relation

to each of the states, we obtain the corresponding state transition system. For better

understanding, we demonstrate the state transition system as a state transition graph

in this paper. The corresponding state transition graph of this example is shown in

Figure 1b. Throughout this paper, the nodes in a state are always arranged lexico-

graphically based on their subscripts. For example, the nodes in a state in Figure 1b

are arranged as {v1, v2, v3}.

In the transition graph of Figure 1b, the three states (000), (1 ∗ 1)1 can be reached

from each other but no other state can be reached from any of them. This forms an at-

tractor of the BN. The formal definition of an attractor is given as follows.

1We use ∗ to denote that the corresponding bit can have value either 1 or 0, so (1 ∗ 1) actually denotes

two states: 101 and 111.

6

v1 v2

v3

(a) A BN with 3 nodes.

000 101 001 011

110 111 100 010

(b) Transition graph of the BN in Example 1.

Figure 1: The Boolean network in Example 1 and its state transition graph.

Definition 3 (Attractors of a state transition system). An attractor of a state transition

system is a set of states such that any state in this set can be reached from any other

state in this set and no state in this set can reach any other state that is not in this set.

Attractors of a BN are simply attractors of its corresponding state transition sys-

tem. The states constituting an attractor are called attractor states. When analysing

an attractor, we often need to identify transition relations between the attractor states.

This leads to the following definition.

Definition 4 (Attractor system). We call an attractor together with its state transition

relation an attractor system (AS).

The attractors of a BN characterise its long-run behaviour [21] and are of partic-

ular interest due to their biological interpretation. For synchronous BNs, each state

of the network has exactly one outgoing transition. Therefore, the transition graph

of an attractor in a synchronous BN is simply a loop. By detecting all the loops in

a synchronous BN, one can identify all its attractors.

Example 2 (Attractor). The BN given in Example 1 has one attractor with three states,

i.e. {(000), (1 ∗ 1)}.

2.2. Encoding BNs in BDDs

Binary decision diagrams (BDDs) were introduced by Lee in [22] and Akers in [23]

to represent Boolean functions [22, 23]. BDDs have the advantage of memory effi-

ciency and have been applied in many model checking algorithms to alleviate the state

space explosion problem. A BN G(V,f) can be modelled as a state transition system,

which can further be encoded into a BDD.

7

Each variable in V can be represented by a binary BDD variable. By slight abuse

of notation, we also use V to denote the set of BDD variables. In order to encode the

transition relation, another set V ′ of BDD variables, which is a copy of V , is intro-

duced: V encodes the possible current states, i.e. x(t), and V ′ encodes the possible

next states, i.e. x(t + 1). Hence, the transition relation can be viewed as a Boolean

function T : 2|V |+|V
′| → {0, 1}, where values 1 and 0 indicate a valid and an invalid

transition, respectively. Our attractor detection algorithm, which will be discussed in

the next section, also utilises two basic functions: Image(X,T) = {s′ ∈ S | ∃s ∈

X such that (s, s′) ∈ T}, which returns the set of target states that can be reached from

any state in X ⊆ S with a single transition in T ; Preimage(X,T) = {s′ ∈ S | ∃s ∈

X such that (s′, s) ∈ T}, which returns the set of predecessor states that can reach

a state in X with a single transition. We define the pre-image Predecessors(X,T),

which can reach the set of states X in an arbitrary number of steps, by the least fix-

point equation µZ.(X
⋃
Z
⋃
Preimage(Z, T)).

3. The New Method

In this section, we describe in details the new SCC-based decomposition method

for detecting attractors of large synchronous BNs and we prove its correctness. The

method comes from the idea of divide-and-concur and it consists of three steps. First,

we divide a BN into sub-networks called blocks. This step is performed on the network

structure and not on the state transition system of the network. We want to divide

a BN in such a way that the attractors of the original BN can be partially “preserved”

in a block. In another word, the concept of attractors still exist in a block and the

attractors in a block is related with the attractors of the BN such that we can use the

attractors in the blocks to recover attractors of the BN. Second, we detect attractors in

individual blocks. To make the attractor detection speed as fast as possible, we consider

the dependency relationships between blocks in this process because by taking into

consideration the dependency relationship, we can reduce the state-space of a block.

Last, we restore attractors of the original BN from the attractors of the blocks.

Before we immerse in explaining the details of our method, we consider an example

8

to demonstrate the method and to provide an intuitive overview in order to ease the

understanding of the technicalities that follow.

Example 3 (Attractor detection with the new method). As the BN G1 used in Ex-

amples 1 is too simple, we extend it to a more complexed BN G2 in order to better

demonstrate our method. The structure of the extended BN is shown in Figure 2a. We

highlight the SCCs with rectangles of dashed lines in this figure as they will be used

for dividing the network. Compared to G1, G2 has three more nodes and the Boolean

functions of the three nodes are given as: f4 = (x2 ∧ x3) ∨ x5, f5 = x4 ∨ x5, and

f6 = ¬x3 ∧ x6. The remaining nodes have the same Boolean functions as the corre-

sponding nodes in G1.

Step 1. We divide the BN into blocks based on the SCCs of the BN’s structure. There

are four SCCs labelled with Σi (i ∈ [1, 4]). For each SCC, we form one block with the

nodes in the SCC and the nodes that can directly affect the SCC. Figure 2b shows the

division. In this example, the BN is divided into four blocks, namely, block B1 contain-

ing nodes v1 and v2; block B2 containing nodes v2 and v3; block B3 containing nodes

v2, v3, v4, and v5; and block B4 containing nodes v3 and v6. Notice that contrary to

SCCs, the blocks can be overlapping. For detailed explanation, we refer to Section 3.1.

Step 2. We detect attractors of the four blocks one by one. Since the nodes in block B1

do not depend on nodes in other blocks, B1 can be viewed as a small BN. The small

BN’s attractors can then be easily obtained from its state transition system, which is

exponentially smaller than the transition system of the whole BN G2. The nodes in

any of the other blocks, however, depend not only on the nodes inside the considered

block, but also on nodes outside the block. When computing attractors for any of these

blocks, the relevant outside nodes need to be considered in a specific way. We explain

in details the attractor detection of such blocks in Section 3.2.2, but the general idea

is that the blocks can be topologically ordered and the attractors of a block can be

effectively obtained by considering the attractors of its predecessor blocks. Therefore,

the attractors of the blocks are computed in an iterative manner in accordance with the

topological ordering of the blocks.

Step 3. Once the attractors for the four blocks are computed, the attractors of G2

9

v1 v2

v3

v4

v5v6

Σ1 Σ3

Σ4 Σ2

(a) BN G2 with 6 nodes and its SCCs.

v1 v2

v3

v4

v5v6

B1
B3

B4

B2

(b) The decomposition of the BN.

Figure 2: BN G2 with 6 nodes and its decomposition.

can be obtained, or restored as we call this operation, by crossing (see Definition 15)

the attractors of “terminal” blocks, i.e. blocks that no other blocks depend on. In

this example, we need to cross the attractors of blocks B3 and B4 since these are

the only terminal blocks. G2 has only one attractor, which is the restored attractor

A = {{(000000), (101000), (111000)}, {(000110), (111110), (101010)}}. Details of

this step are explained in Section 3.3.

3.1. Decomposition of a BN

The first step is to divide a BN into sub-networks. The nodes in a sub-network

is a subset of the nodes in the original BN and so do the Boolean functions. Due to

this, we distinguish two types of sub-networks. First, the nodes in a sub-network do

not rely on nodes in other sub-networks. Secondly, at least one node in a sub-network

relies on nodes in other sub-networks. In the first case, the sub-network in fact is a

small BN and the attractors can be identified with existing methods as mentioned in

Section 1. In the second case, the attractors rely on other sub-networks as at least

one node relies on nodes in other sub-networks. The problem will become complexed

if two sub-networks rely on each other or the dependency relationships form a loop.

Therefore, we will decompose a BN in such a way that the dependency relationships

in sub-networks do not form a loop. Formally, we name a sub-network as a block and

give its definition as follows.

Definition 5 (Block). Given a BN G(V,f) with V = {v1, v2, . . . , vn} and f = {f1,

f2, . . . , fn}, a block B(V B ,fB) is a subset of the network, where V B ⊆ V . For any

10

node vi ∈ V B , its Boolean function is exactly the same as that in G if B contains

all the parent nodes of vi based on the function fi. We refer to this kind of nodes

as determined nodes. Otherwise, the node is referred as an undermined node and its

Boolean function is undetermined, meaning that additional information is required to

determine the value of vi inB. We refer to a block as an elementary block if it contains

no undetermined nodes.

Based on the above definition, a BN is in fact an elementary block. We consider

synchronous networks in this paper and therefore a block is also under the synchronous

updating scheme, i.e. all the nodes in the block will be updated simultaneously at each

time point no matter this node is undetermined or not.

We now introduce a method to construct blocks using SCC-based decomposition.

Formally, the standard graph-theoretical definition of an SCC is as follows.

Definition 6 (SCC). Let G be a directed graph and V be its vertices. A strongly con-

nected component (SCC) of G is a maximal set of vertices C ⊆ V such that for every

pair of vertices u and v, there is a directed path from u to v and vice versa.

We first decompose a given BN into SCCs. We use the BN G2 in Example 3 to

demonstrate this decomposition. Figure 2a shows the decomposition of this BN into

four SCCs: Σi for i ∈ [1, 4]. The SCCs are shown with rectangles of dashed lines.

A node outside an SCC that is a parent to a node in the SCC is referred to as a control

node of this SCC. In Figure 2a, node v2 is a control node of Σ2. The SCC Σ1 does

not have any control node. An SCC together with its control nodes forms a block. For

example, in Figure 2a, Σ2 and its control node v2 form one blockB2. Recall the blocks

in Figure 2b.

Definition 7 (Parent SCC, Ancestor SCC). An SCC Σi is called a parent SCC (or

parent for short) of another SCC Σj if Σi contains at least one control node of Σj .

Σi is called a child of Σj . Denote P (Σi) the set of parent SCCs of Σi. An SCC Σk is

called an ancestor SCC (or ancestor for short) of an SCC Σj if and only if either (1) Σk

is a parent of Σj or (2) Σk is a parent of Σk′ , where Σk′ is an ancestor of Σj . Denote

Ω(Σj) the set of ancestor SCCs of Σi.

11

The definition of parent and ancestor can be naturally extended to blocks. For

an SCC Σj , if it has no parent SCC, then this SCC forms an elementary block; if it

has at least one parent, then it must have an ancestor that has no parent, and all its

ancestors Ω(Σj) together can form an elementary block, which is also a BN. The SCC-

based decomposition will usually result in one or more non-elementary blocks.

By adding directed edges from all parent blocks to all their child blocks, we form

a directed acyclic graph (DAG) of the blocks. Notice that our proposed attractor detec-

tion method is general in the sense that as long as the block graph is guaranteed to be

a DAG, other strategies to form blocks can be applied. Two blocks can be merged into

one larger block. Formally, the merge of two blocks is given below.

Definition 8 (Merge of blocks). Given two blocks B1(V B1 ,fB1) and B2(V B2 ,fB2)

of a BNG, merge ofB1 andB2 forms a new blockB1,2(V B1,2 ,fB1,2), where V B1,2 =

V B1 ∪ V B2 and fB1,2 is the set of Boolean functions for the nodes in V B1,2 . The set

fB1,2 is defined based on the definition of a block (Definition 5).

The merging of blocks allows us to construct a single elementary parent block for

any non-elementary block. For example, blocks B1 and B2 can be merged in a natural

way to form a larger block B1,2, which is a single elementary parent block of B3.

Definition 9 (The least single elementary parent block). Given a block Bi and its

elementary parent block Bj in G, Bj is called a single elementary parent block of Bi

if Bj contains all the control nodes of Bi. Moreover, if Bj is the minimal elementary

block in terms of inclusion which contains all the control nodes ofBi, thenBj is called

the least single elementary parent block of Bi.

Example 4 (The least single elementary parent block). Recall the blocks in Figure 2b.

By merging blocks B1 and B4, we obtain a new elementary block B1,4, which contains

all the control nodes of B3. Therefore, B1,4 is a single elementary parent block of

B3. However, it is not the least single elementary parent block of B3: by merging

B2 containing all the control nodes of B3 with block B1, we obtain another single

elementary parent block B1,2, which nodes form a proper subset of the nodes in B1,4.

In fact, B1,2 is the least single elementary parent block of B3.

12

A state of a block is a binary vector of length equal to the number of nodes in the

block and it determines the values of all the nodes in the block. In this paper, we use a

number of operations on the states of a BN and its blocks. Their definitions are given

in Definition 10. In addition, we also extend the definition of a path in a graph into the

concept of a path in a BN as given by Definition 11.

Definition 10 (Projection map, Projected state, Lifting states). Given a block B, its set

of nodes is V B = {v1, v2, . . . , vm, vm+1, . . . , vn}. Let B′ be a sub-block of B and

its set of nodes is V B′
= {v1, v2, . . . , vm}. Denote the state space of block B and

B′ as SB and SB′
respectively. The projection map πB′ : SB → SB′

is given by

x = (x1, x2, . . . , xm, xm+1, . . . , xn) 7→ πB′(x) = (x1, x2, . . . , xm). For any set of

states S ⊆ SB , we define πB′(S) = {πB′(x) | x ∈ S}. The projected state πB′(x) is

called a projected state of x. For any state xB′ ∈ SB′
, we define its set of lifting states

in B asMB(xB′
) = {x | πB′(x) = xB′}. For any set of states SB′ ⊆ SB′

, its set of

lifting states isMB(SB′
) = {x | πB′(x) ∈ SB′}.

Definition 11 (Path). Given a blockB of n nodes and its state space S, a path of length

k (k> 2) in B is a series x1 → x2 → · · · → xk of states in S such that there exists

a transition between any consecutive two states xi and xi+1, where i ∈ [1, k − 1].

When B is an elementary block, for any two consecutive states xi, xi+1 in a path

x1 → x2 → · · · → xk in a BN G, k > 2 and i ∈ [1, k − 1], there is a transition from

πB(xi) to πB(xi+1) since the Boolean functions of the nodes in the block B are the

same as the ones in the BN G. Therefore, the projection of all the states in the path

x1 → x2 → · · · → xk on blockB actually forms a path πB(x1)→ πB(x2)→ · · · →

πB(xk) in block B. When B is a non-elementary block, the projection will also hold

given that the control nodes in the block follow the same transition rules as in the BN.

3.2. Detection of attractors in a block

As mentioned in the beginning of this section, we want to the attractors in each

block can partially “preserve” the attractors of the original BN in order to recover the

attractors of the original BN from the attractors in the blocks. Therefore, in this step,

13

v1 v2

v3

B1 B2

(a) Blocks of G1.

01 10

00 11

(b) Transition graph of block B1.

Figure 3: SCC decomposition and a transition graph of a block.

we will introduce how we define attractors in a block to “preserve” the attractor infor-

mation of the original BN and how we can detect these attractors. An elementary block

does not depend on any other block while a non-elementary block does. Therefore,

they are treated separately.

3.2.1. Detection of attractors in elementary blocks.

We first consider the case of elementary blocks. Recall that the attractors of a BN

or an elementary block are attractors of its corresponding transition state system. As

discussed in Section 1, a few existing methods for detecting attractors of a transition

state system can be applied to detect attractors of an elementary block. A key point

is how one can use the attractors in an elementary block of a BN to detect or recover

attractors of the BN. In the following discussion, we show that one can use the lifting

states of the attractors of an elementary block to improve the performance for detect-

ing attractors in a BN. We first give the following definition to show the relationship

between attractors in an elementary block and attractors in a BN.

Definition 12 (Preservation of attractors). Given a BNG and an elementary blockB in

G, let A = {A1, A2, . . . , Am} be the set of attractors of G and AB = {AB
1 , A

B
2 , . . . ,

AB
m′} be the set of attractors of B. We say that B preserves the attractors of G if for

any k ∈ [1,m], there is an attractor AB
k′ ∈ AB such that πB(Ak) = AB

k′ .

Example 5 (Preservation of attractors). For simplification, we will use G1 to demon-

strate the preservation of attractors. Its set of attractors is A = {{(000), (1 ∗ 1)}}.

14

We show the blocks of G1 in Figure 3a. Nodes v1 and v2 form an elementary block

B1. B1 can be viewed as a BN and its transition graph is shown in Figure 3b. Its

set of attractors is AB1 = {{(00), (1∗)}} (nodes are arranged as v1, v2). We have

πB1
({(000), (1 ∗ 1)}) = {(00), (1∗)} = AB1 , i.e. block B1 preserves the attractors of

G1.

The last equal in Definition 12 can also be replaced with inclusion without affecting

other definitions and theorems in this paper. With Definition 12, we have the following

theorem and lemma.

Theorem 1. Given a BN G, let B be an elementary block in G. B preserves the

attractors of G.

Proof. Let A = {A1, A2, . . . , Am} be the set of attractors of G. For any i ∈ [1,m],

let L = x1 → x2 → · · · → xk be a path containing all the states in Ai and let

x1 = xk. In fact, L is an attractor system of Ai. Therefore, πB(x1) → πB(x2) →

· · · → πB(xk) is a path in B. We denote this path as LB . Given that the choice of

the attractor Ai is arbitrary, the claim holds if we can prove that states in the path LB

form an attractor of B. Since x1 = xk, we have πB(x1) = πB(xk). The path LB is

in fact a loop. As B is a synchronous BN, the transitions in B are determined and thus

starting from any state in B, no state not in B is reachable. Therefore, the states in the

path LB form an attractor.

Lemma 1. Given a BNG and an elementary blockB inG, let Φ be the set of attractor

states of G and ΦB be the set of attractor states of B. If B preserves the attractors of

G, then Φ ⊆MG(ΦB).

Proof. LetA = {A1, A2, . . . , Am} be the set of attractors ofG andAB = {AB
1 , A

B
2 , . . . ,

AB
m′} be the set of attractors of B. Since B preserves the attractors of G, for any

k ∈ [1,m], there exists a k′ ∈ [1,m′] such that πB(Ak) ⊆ AB
k′ . Therefore, πB(Φ) =

∪mi=1πB(Ai) ⊆ ∪m
′

i=1A
B
i = ΦB . By Definition 10, we have that Φ ⊆ MG(πB(Φ)).

Hence, Φ ⊆MG(ΦB).

For an elementary block B, the lifting states of its attractor states cover all G’s

attractor states according to Lemma 1 and Theorem 1. Therefore, by searching from

15

the lifting states only instead of the whole state space, we can detect all the attractor

states of G. We now consider the case of non-elementary blocks.

3.2.2. Detection of attractors in non-elementary blocks.

As mentioned in Section 1, our method considers the dependency relationships

among different blocks. This consideration actually applies to attractor detection in

non-elementary blocks. The key idea is that if a non-elementary block Bi depends on

another block Bj , the attractors of Bj will be used to detect the attractors of Bi to

improve the detection speed and to recover the attractors of the original BN later on.

We call this process as realisation as described later in Definition 16. We first give four

definitions to better describe the dependency relationships between blocks.

Definition 13 (Crossability, Cross operations of two states). LetG be a BN,Bi andBj

be two blocks in G. The two blocks share common nodes {v1, v2, . . . , vt}. Let xBi =

(x1, x2, . . . , xs, y
i
1, y

i
2, . . . , y

i
t) be a state of Bi and xBj = (yj1, y

j
2, . . . , y

j
t , z1, z2, . . . ,

zu) be a state of Bj , where yik and yjk for k ∈ [1, t] represent the values of vk in

Bi and Bj respectively. States xBi and xBj are said to be crossable, denoted as

xBi C xBj , if the values of their common nodes are the same, i.e. yik = yjk for all

k ∈ [1, t]. The cross operation of two crossable states xBi and xBj is defined as

Π(xBi ,xBj) = (x1, x2, . . . , xs, y
i
1, y

i
2, . . . , y

i
t, z1, z2, . . . , zu).

Example 6 (Crossability of two states). We continue the demonstration based on Ex-

ample 5. Consider the state (000) ∈ A and the state (00) ∈ AB1 . The values of their

common nodes (v1 and v2) are the same. Therefore, (000) C (00).

Note that if two blocks do not have common nodes, any two states of the two blocks

are crossable. We continue to give the definition of crossability and cross operations in

the level of two sets of states and two families of sets.

Definition 14 (Crossability, Cross operations of two sets of states). We say SBi
1 ⊆ SBi

and SBj

1 ⊆ SBj are crossable, denoted as SBi
1 C S

Bj

1 , if at least one of the sets is empty

or the following two conditions hold: 1) for any state xBi ∈ SBi
1 , there exists a state

xBj ∈ SBj

1 such that xBi and xBj are crossable; 2) vice versa. The cross operation

16

on two crossable non-empty sets of states SBi
1 and SBj

1 is defined as Π(SBi
1 , S

Bj

1) =

{Π(xBi ,xBj) | xBi ∈ SBi
1 ,xBj ∈ SBj

1 and xBi C xBj}. When one of the two sets

is empty, the cross operation simply returns the other set, i.e. Π(SBi
1 , S

Bj

1) = SBi
1 if

S
Bj

1 = ∅ and Π(SBi
1 , S

Bj

1) = S
Bj

1 if SBi
1 = ∅.

Example 7 (Crossability of two sets of states). We continue the demonstration based

on Example 6. Denote the state space of G1 as S and the state space of B1 as SB1 .

ThenA ⊂ S andAB1 ⊂ SB1 . For (000) ∈ A and (00) ∈ AB1 , we have (000) C (00).

For (1 ∗ 1) ∈ A and (1∗) ∈ AB1 , we have (1 ∗ 1) C (1∗). Therefore, A C AB1 .

Definition 15 (Crossability, Cross operations of two families of sets). Let SBi =

{SBi
1 | S

Bi
1 ⊆ SBi} be a family of sets of states in Bi and SBj = {SBj

1 | SBj

1 ⊆ SBj}

be a family of sets of states in Bj . We say SBi and SBj are crossable, denoted as

SBi C SBj if 1) for any set SBi
1 ∈ SBi , there exists a set SBj

1 ∈ SBj such that SBi
1

and SBj

1 are crossable; 2) vice versa. The cross operation on two crossable families of

sets SBi and SBj is defined as Π(SBi ,SBj) = {Π(Si, Sj) | Si ∈ SBi , Sj ∈ SBj and

Si C Sj}.

Example 8 (Crossability of two families of sets). We continue the demonstration based

on Example 7. We define a new set of states {(000)} ⊂ S and a new set of states

{(00)} ⊂ SB1 . Therefore, {(000)} C {(00)}. We denote the family of set {A, {(000)}}

as S and the family of set {AB1 , {(00)}} as SB1 . Since A C AB1 , we have S C SB1 .

After decomposing a BN into SCCs, there is at least one SCC with no control

nodes. Hence, there is at least one elementary block in every BN. Moreover, for each

non-elementary block we can construct, by merging all its predecessor blocks, a single

parent elementary block. We detect the attractors of the elementary blocks and use the

detected attractors to guide the values of the control nodes of their child blocks. The

guidance is achieved by considering realisations of the dynamics of a non-elementary

block with respect to the attractors of its parent elementary block, shortly referred

to as realisations of a non-elementary block. In some cases, a realisation of a non-

elementary block is simply obtained by assigning new Boolean functions to the control

nodes of the block. However, in many cases, it is not this simple and a realisation of

17

000 101 001

110 111 100

(a) For the realisation in Example 9.

00 01

10 11

(b) For the incorrect “realisation” in Example 10.

Figure 4: Two transition graphs used in Example 9 and Example 10.

a non-elementary block is obtained by explicitly constructing a transition system of

this block corresponding to the considered attractor of the elementary parent block.

Since the parent block of a non-elementary block may have more than one attractor,

a non-elementary block may have more than one realisation.

Definition 16 (Realisation of a non-elementary block). Let Bi be a non-elementary

block formed by merging a single SCC with its control nodes. Let nodes u1, u2, . . . , ur

be all the control nodes of Bi and let them all be contained in block Bj being the least

single elementary parent block of Bi. Denote as Bi,j the block obtained by merging

Bi and Bj . Let ABj

1 , A
Bj

2 , . . . , A
Bj

t be the attractor systems of Bj . For any k ∈ [1, t],

a realisation of block Bi with respect to ABj

k is a state transition system such that:

1) a state of the system is a vector of the values of all the nodes in the block Bi and its

ancestor blocks; 2) the state space of this realisation is crossable with ABj

k ; 3) for any

transition xBj → x̃Bj in the attractor system of ABj

k , there is a transition xBi,j →

x̃Bi,j in the realisation such that xBi,j C xBj and x̃Bi,j C x̃Bj ; 4) each transition in

the realisation is caused by the update of all nodes synchronously: the update of non-

control nodes of Bi is regulated by the Boolean functions of the nodes and the update

of nodes in its parent block Bj is regulated by the transitions of the attractor system of

A
Bj

k .

Example 9 (Realisation). We continue to use the BN G1 in Example 1 to show how

to construct realisations. In this BN, the parent block of the non-elementary block Σ2

only contains one attractor. We form one realisation with respect to this attractor by

assigning transitions {(00) → (10), (10) → (11), (11) → (00)} to nodes v1 and v2

(nodes from its parent block B1). The transitions of node v3 will be in accordance with

18

its Boolean function f3 = ¬x2. Combining these transitions, we have the transitions

for the three nodes as follows. {(00∗) → (101), (10∗) → (111), (11∗) → (000)}.

With the transitions, we can easily get the realisation (state transition system). We

demonstrate its transition graph in Figure 4a.

In the realisation of a non-elementary block all the nodes of its least single elemen-

tary parent block are considered and not only the control nodes of the parent block.

This allows to distinguish the potentially different states in which the values of control

nodes are the same. Without this, a state in the state transition graph of the realisation

may have more than one outgoing transition, which is contrary to the fact that the out-

going transition for a state in a synchronous network is always determined. Although

the definition of attractors can still be applied to such a transition graph, the attractor

detection algorithms for synchronous networks, e.g. SAT-based algorithms, may not

work any more. Moreover, the meaning of attractors in such a graph is not consistent

with the synchronous semantics and therefore the detected “attractors” may not be at-

tractors of the synchronous BN. Note that the decomposition method introduced in [11]

does not take this issue into account and therefore produces incorrect results in certain

cases. We now give an example in Example 10 to illustrate one of such cases.

Example 10 (Counter example). Consider the BN in Example 1, which can be divided

into two blocks: block B1 with nodes v1, v2 and block B2 with nodes v2, v3. The

transition graph of B1 is shown in Figure 3b and its attractor is (00)→ (10)→ (11).

If we do not include the node v1 when forming the realisation of B2, we will get a

transition graph as shown in Figure 4b, which contains two states with two outgoing

transitions. This is contrary to the synchronous semantics.

For asynchronous networks, however, such a distinction is not necessary since the

situation of multiple outgoing transitions is inconsistent with the asynchronous updat-

ing semantics. Definition 16 forms the basis for a key difference between this decom-

position method for synchronous BNS and the one for asynchronous BNs proposed

in [15].

Constructing realisations for a non-elementary block is a key step in obtaining its

attractors. For each realisation, the construction process requires the knowledge of

19

all the transitions in the corresponding attractor of its elementary parent block. In

Section 4, we explain in details how to implement it with BDDs. We now give an

example to show how we construct realisations.

A realisation of a non-elementary block takes care of the dynamics of the undeter-

mined nodes, providing a state transition system of the block. Therefore, attractors of

a realisation is an attractors of its corresponding state transition system. Moreover, we

extend the attractors of a non-elementary blocks as follows.

Definition 17 (Attractors of a non-elementary block). The attractors of a non-elementary

block is the set of the attractors of all realisations of the block.

With this definition, we can extend Definition 12 of preservation of attractors in a

straightforward way to also include non-elementary blocks. Therefore, the notion of

preservation of attractors is valid for any block. Moreover, we can extend Definition 16

by allowingBj to be a non-elementary block. As long asBi’s parent blockBj contains

all the control nodes of block Bi, the attractors of Bj can be used to form the realisa-

tions of Bi, no matter Bj is elementary or not. Observe that using a non-elementary

block as a parent block does not change the fact that the attractor states of the parent

block contain the values of all the nodes in the current block and all its ancestor blocks.

Computing attractors of non-elementary blocks requires the knowledge of the at-

tractors of their parent blocks. Therefore, we need to order the blocks so that for any

blockBi, the attractors of its parent blocks are always detected prior to the attractors of

blockBi being considered. This can be achieved by considering a topological ordering

of a directed graph of blocks, where the edges represent the relation of being a parent:

there is an edge from block Bj to block Bi if and only if Bj is parent of Bi. However,

instead of constructing such a graph, we introduce the concept of depth as follows.

Definition 18 (Depth). Given a BN G, an elementary block Bi of G has a depth of 0,

denoted as P(Bi) = 0. Let Bj be a non-elementary block and Bj1 , . . . , Bjp(j) be all

its parent blocks. The depth ofBj is defined as P(Bj) = max
p(j)
k=1(P(Bjk))+1, where

p(j) is the number of parent blocks of Bj .

By this definition, the depth of a parent block is always lower than of its child block

and a topological ordering is obtained by considering the blocks in the ascending order

20

of their depths. With this ordering, the attractors of a block with a lower depth value

are always detected first and are already available when determining the attractors of

descendant blocks.

3.3. Restoring attractors of the original BN

After computing attractors for all the blocks, we need to restore the attractors of

the original BN. Our SCC-based decomposition may result in two cases. In the first

case, there is only one leaf block (a block without child block), and the ancestor blocks

together with this leaf block form the original BN. In this case, we assume that the

attractors of the leaf block is the attractors of the original BN based on Definitions 16

and 17. In the second case, there are more than one leaf blocks. We assume that

the attractors of the original BN can be recovered by merging the attractors of the

leaf blocks. We now give the following two theorems to show that our assumption is

correct.

Theorem 2. Let G be a BN and let Bi be one of its blocks. Denote as X (Bi) the

block formed by merging Bi with its ancestor blocks. The attractors of block Bi are

the attractors of X (Bi).

Proof. X (Bi) is an elementary block, which is also a BN. IfBi is an elementary block,

Bi is the same asX (Bi) and the claim holds. We now prove the case whereBi is a non-

elementary block. This is equivalent to proving the following two statements: 1) any

attractor of Bi is an attractor in X (Bi); 2) any attractor in X (Bi) is an attractor of Bi.

Statement 1: Let ABi be an attractor of Bi and let xBi
1 → xBi

2 → · · · → xBi

k be a path

LBi containing all the states in this attractor with xBi
1 = xBi

k . For any state xBi

` in this

path, xBi

` is also a state in the block X (Bi) as xBi

` is a vector formed by the values

of nodes in Bi and all its ancestors. In the transition xBi

` → xBi

`+1, the nodes in block

Bi are updated by their Boolean functions and the nodes that are not in Bi are updated

in accordance with the attractor that forms the corresponding realisation. Therefore,

all the nodes are updated in accordance with their Boolean functions. Hence, such

a transition xBi

` → xBi

`+1 also exists in the block X (Bi). Path LBi is therefore a path

21

in X (Bi). Since xBi
1 = xBi

k , states in the path LBi , i.e., states in the attractor ABi

form an attractor in X (Bi).

Statement 2: We prove this by induction. Our assumption is that if the statement holds

for all blocks with depth k, then it holds for those with depth k + 1, where k ≥ 0. We

first consider the base case, that is the statement holds for blocks with depth 0. In this

case, Bi equals to X (Bi). Therefore, the statement holds in this case. We now prove

the general case. When Bi has a depth of k + 1, we denote its least single elementary

parent block as Bj . The attractors of Bj are the attractors of X (Bj). Therefore, the

realisations of Bi are formed with respect to the attractors of X (Bj). Let AX (Bi) be

an attractor of X (Bi) and x1 → x2 → · · · → xk be a path LX (Bi) containing all

the states in this attractor and x1 = xk. Since X (Bj) is an elementary block, we

have that πX (Bj)(x1) → πX (Bj)(x2) → · · · → πX (Bj)(xk) is a path in X (Bj) and

πX (Bj)(x1) = πX (Bj)(xk). Therefore, states in this path form an attractor of X (Bj),

which is also an attractor of Bj , denoted as ABj . Regarding ABj , block Bi has a

realisation. For any ` ∈ [1, k], state x` in the path LX (Bi) is crossable with πBj (x`)

(which is also πX (Bj)(x`)). Therefore, x` is also a state in the realisation. Hence,

AX (Bi) is also an attractor in the realisation. Hence, the claim holds.

Theorem 3. Given a BN G, where Bi and Bj are its two blocks, let ABi and ABj be

the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging

the nodes in Bi and Bj . Denote the set of all attractor states of Bi,j as ABi,j . If both

Bi and Bj are elementary blocks, ABi C ABj and ∪A∈Π(ABi ,ABj)A = ABi,j .

Proof. Let Bi and Bj be two elementary blocks of G. If Bi and Bj do not have

common nodes, then it holds by definition that ABi C ABj . If they have common

nodes, their common nodes must form an elementary block. Denote this block as Bc.

For any attractor ABi ∈ ABi , πBc
(ABi) is an attractor in Bc and ABi C πBc

(ABi).

Denote the nodes in Bi but not in Bc as N . The nodes in N and their control nodes in

Bc (if they have) form a block BN . We have the following two claims. Claim I: For

any attractor ABc of Bc, there exists an attractor ABN in BN such that ABc C ABN .

Claim II: For any attractor ABc of Bc, there exists an attractor ABi ∈ ABi such that

ABi C ABc . We first prove Claim I. If block BN does not share nodes with Bc, Claim

22

I holds according to the definition of crossability. If block BN shares nodes with

Bc, the realisations of BN is constructed based on the attractors of Bc. According

to Definition 16, for any attractor ABc of Bc, a realisation will be constructed and

the attractor of this realisation is crossable with ABc , thus Claim I holds in this case

as well. We continue to prove Claim II. Denote the length of attractor ABc as `Bc

and the length of attractor ABN as `BN . Let xBc be a state in ABc and xBN be a

state in ABN . Let x1 = Π(xBc ,xBN). Let L be a path starting from state x1 and

of length k = lcm(`Bc , `BN) + 1, where lcm means the lowest common multiple.

Since xBc is an attractor state, πBc(xk) = xBc . Similarly, πBN
(xk) = xBN . Hence,

xk = Π(πBc
(xk), πBN

(xk)) = x1. Therefore, states in L form an attractor of Bi.

Hence the claim holds. Similarly, it holds that for any attractor ABc of Bc, there

exists an attractor ABj ∈ ABj such that ABj C ABc . Now, let ABi be an attractor in

ABi . Then, πBc(ABi) is an attractor in Bc and by the above, there exists an attractor

ABj ∈ ABj such that πBc(ABi) C ABj . Thus, ABi C ABj . By similar argument,

for any ABj ∈ ABj there exists ABi ∈ ABi such that ABj C ABi . In consequence,

ABi C ABj .

We now prove that ∪A∈Π(ABi ,ABj)A = ABi,j . Denote S = ∪A∈Π(ABi ,ABj)A.

This is equivalent to showing the following two statements: 1) for any state s ∈ S, s

is in ABi,j ; 2) any state in ABi,j is contained in S. We prove them one by one.

Statement 1: Let A be any set of states in Π(ABi ,ABj). Then there exists ABi ∈ ABi

and ABj ∈ ABj such that A = Π(ABi , ABj) and ABi C ABj . Given the choice of A

is arbitrary, it is enough to show that any s ∈ A is an attractor state of Bi,j . It holds

that s = Π(πBi
(s), πBj

(s)), where πBi
(s) ∈ ABi and πBj

(s) ∈ ABj . Let lBi be the

attractor length of ABi and lBj be the attractor length of ABj . Further, let L = s1 →

s2 → · · · → sk be a path starting from state s, i.e., s1 = s, with k = lcm(lBi , lBj)+1.

Since both Bi and Bj are elementary blocks, it holds that πBi
(s1) → πBi

(s2) →

· · · → πBi
(sk) is a path in Bi and πBj

(s1) → πBj
(s2) → · · · → πBj

(sk) is a path

in Bj . Since πBi(s1) = πBi(s), we have πBi(sk) = πBi(s). Similarly, we have

πBj (sk) = πBj (s). Then, sk = Π(πBi(sk), πBj (sk)) = Π(πBi(s), πBj (s)) = s. In

consequence, s1 = s = sk and the states in L form an attractor of Bi,j with s being

23

one of its states.

Statement 2: Let s be a state inABi,j and let A be the attractor of Bi,j containing state

s. Let L = s → s1 → s2 → · · · → sk → s be a path starting end ending with s. It

holds that πBi(s)→ πBi(s1)→ πBi(s2)→ · · · → πBi(sk)→ πBi(s) is an attractor

system in the elementary block Bi. Let us denote the attractor’s set of states as ABi .

We have that πBi
(s) ∈ ABi . Similarly, πBj

(s) belongs to an attractor of Bj , denoted

as ABj . Therefore, s = Π(πBi
(s), πBj

(s)) ∈ Π(ABi , ABj) ⊆ S. Given the arbitrary

choice of s, the claim holds.

The above developed theoretical background with Theorem 2 and Theorem 3 be-

ing its core result, allows us to design a new decomposition-based approach towards

detection of attractors in large synchronous BNs. We describe the idea as follows and

also in Algorithm 1. We divide a BN into blocks according to the detected SCCs. We

order the blocks in the ascending order based on their depths and detect attractors of

the ordered blocks one by one in an iterative way. We start with detecting attractors

of elementary blocks (depth 0), and continue to detect attractors of blocks with higher

depths after constructing their realisations. According to Theorem 2, by detecting the

attractors of a block, we in fact obtain the attractors of the block formed by the current

block and all its ancestor blocks. Hence, after the attractors of all the blocks have been

detected, either we have obtained the attractors of the original BN or we have obtained

the attractors of several elementary blocks of this BN. According to Theorem 3, we

can perform a cross operation on any two elementary blocks (depths 0) to restore the

attractor states of the two merged blocks. The resulting merged block will form a new

elementary block, i.e. one with depth 0. Then, the set of attractor states can be straight-

forwardly split into the actual attractors by simply performing simulation of the BN

dynamics staring from any of the attractor states. Once an attractor is detected, the

procedure is repeated for the remaining attractor states. This continues till no attractor

states are left. Since the initial set contains attractor states only, no additional states will

ever be visited. By iteratively performing the cross operation until a single elementary

block containing all the nodes of the BN is obtained, we can restore the attractor states

of the original BN. The details of this new algorithm are discussed in the next section.

24

Algorithm 1 Attractor detection with decomposition-based approach

1: procedure ATTRACTORDETECT(G)

2: Divide a BN G into k block;

3: Order the blocks ascendingly based on their depths as B := [B1, B2, · · · , Bk];

4: A := ∅; initialise dictionary A` to store attractors of the blocks later;

5: for Bi ∈ B do

6: Detect attractors of Bi and store it in A`;

7: end for

8: for Bi ∈ B and Bi has no child block do

9: S = Π(A`.get(Bi),A); A`.get(Bi) is the set of attractors of Bi

10: A = D(S); //D(S) splits the set of attractor states S into attractors

11: end for

12: return A.

13: end procedure

Recall the counter example we show in Example 10. If we restored the attractors

of the BN based on the attractors of the incorrect “realisation” shown in Figure 4b, we

would get a non-attractor state of the original BN, i.e. (001). The attractor for this ex-

ample computed with the tool from [11] has four states, i.e. {(000), (001), (101), (111)}.

Hence, the state (001) would be included incorrectly.

In addition, we have the following corollary that extends Theorem 3 by allowing

Bi andBj to be non-elementary blocks. This corollary will be used in the next section.

Corollary 1. Given a BN G, where Bi and Bj are its two blocks, let ABi and ABj be

the set of attractors for Bi and Bj , respectively. Let Bi,j be the block got by merging

the nodes inBi andBj . Denote the set of attractor states ofBi,j as SBi,j . It holds that

ABi C ABj and ∪S∈Π(ABi ,ABj)S = SBi,j .

Proof. If Bi and Bj are both elementary blocks, the claim holds according to The-

orem 3. We now prove the general cases. Denote Ω(Bi) the block formed by all

Bi’s ancestor blocks and denote X (Bi) the block formed with Bi and Ω(Bi). De-

note Ω(Bj) the block formed by all Bj’s ancestor blocks and denote X (Bj) the block

25

formed with Bj and Ω(Bj). According to Theorem 2, the attractors of block Bi are in

fact the attractors of the elementary block X (Bi) and the attractors of block Bj are in

fact the attractors of the elementary block X (Bj). Since both X (Bi) and X (Bj) are

elementary blocks, the claim holds by Theorem 3.

4. A BDD-based Implementation

We describe the SCC-based attractor detection method in Algorithm 2. As men-

tioned in Section 2.2, we encode BNs into BDDs; hence most of the operations in this

algorithm is performed with BDDs. For example, the DETECT function in line 8, the

cross operation in line 18, and the realisation operation in line 26. The realisation of a

block Bi with respect to an attractor A is implemented by first projecting the transition

relation of the whole set of nodes in a BN onto the subset of nodes in block Bi, and

then by restricting the projected transitions with that from the attractor system of A.

The projecting and restricting operations are performed with the existence abstraction

in BDDs.

Algorithm 2 SCC-based decomposition algorithm

1: procedure SCC DETECT(G)

2: B := FORM BLOCK(G); A := ∅; k := size of B;

3: initialise dictionary A`; //A` is a dictionary storing the set

4: for i := 1; i ≤ k; i++ do // of attractors for various blocks

5: if Bi is an elementary block then

6: T Bi := transition system converted from Bi;

7: //see Section 2.2 for more details

8: Ai := DETECT(T Bi); A`.add((Bi,Ai));

9: else

10: Ai := ∅;

11: if Bp
i is the only parent block of Bi then

12: Ap
i := A`.getAtt(Bp

i); //obtain attractors of Bp
i

13: else Bp := (Bp
1 , B

p
2 , . . . , B

p
m) be the list of parent blocks of Bi;

14: Bc := Bp
1 ; //Bp is ordered based on depths

26

15: for j := 2; j ≤ m; j++ do

16: Bc,j := a merged block comprised of nodes in Bc and Bp
j ;

17: if (Ap
i := A`.getAtt(Bc,j)) == ∅ then

18: S := Π(A`.getAtt(Bc),A`.getAtt(Bj)); Ap
i := D(S);

19: //D(S) splits the set of attractor states S into attractors

20: A`.add(Bc,j ,Ap
i);

21: end if

22: Bc := Bc,j ;

23: end for

24: end if

25: for A ∈ Ap
i do

26: T Bi(A) := the realisation of Bi with respect to A;

27: Ai := Ai ∪ DETECT(T Bi(A));

28: end for

29: A`.add((Bi,Ai)); //the add operation will not add duplicated items

30: A`.add((Bi,ancestors,Ai));

31: //Bi,ancestors stands for Bi merged with all its ancestor blocks

32: for any Bp ∈ {Bp
1 , B

p
2 , . . . , B

p
m} do //Bp

1 , B
p
2 , . . . , B

p
m are

33: A`.add((Bi,p,Ai)); // parent blocks of Bi

34: end for

35: end if

36: end for

37: for Bi ∈ B and Bi has no child block do

38: A = D(Π(A`.get(Bi),A));

39: end for

40: return A.

41: end procedure

42: procedure FORM BLOCK(G)

43: decompose G into SCCs and form blocks with SCCs and their control nodes;

44: order the blocks in an ascending order according to their depths;

27

45: return the list of blocks after ordering.

46: end procedure

Algorithm 2 takes a BN G as its input, and outputs the set of attractors of G. In

this algorithm, we denote by DETECT(T) a basic function for detecting attractors of a

given transition system T . As mentioned in Section 1, there exist many methods for

detecting attractors in a BN. In our implementation, we use the monolithic attractor de-

tection algorithm mentioned in [12]. This is a BDD-based method relying on efficient

BDD operations for computing of forward and backward images. Lines 25-28 of this

algorithm describe the process for detecting attractors of a non-elementary block. The

algorithm detects the attractors of all the realisations of the non-elementary block and

performs the union operation on the detected attractors. For this, if the non-elementary

block has only one parent block, its attractors are already computed as the blocks are

considered in the ascending order with respect to their depths by the main for loop in

line 4. Otherwise, all the parent blocks are considered in the for loop in lines 15-23. By

iteratively applying the cross operation in line 18 to the attractor sets of the ancestor

blocks in the ascending order, the attractor states of a new block formed by merging

all the parent blocks are computed according to Corollary 1. The attractors are then

identified from the attractor states with one more operation. The correctness of the

algorithm is stated as Theorem 4.

Theorem 4. Algorithm 2 correctly identifies the set of attractors of a given BN G.

Proof. Algorithm 2 divides a BN into SCC blocks and detects attractors of each block.

Lines 4 to 36 describe the process for detecting attractors of each block. Assuming

this process is correct, based on Theorems 2 and 3, the merging operations of all the

terminal blocks (lines 37 to 39) can actually restore the attractors of the BN. Now we

only need to prove the above assumption is correct.

The algorithm distinguishes between two different types of blocks. The first type

is an elementary block and the algorithm takes care of this type with lines 5 to 8. Since

it is in fact a BN, the attractors of this type of block are directly detected via the ba-

sic attractor detection function DETECT(T). Therefore, lines 5 to 8 correctly compute

the attractors of an elementary block. The second type is a non-elementary block and

28

00010 10101 00000 10100

00001 11111 00011 11100

11110 10111 11101 10110

(a) The realisation of B3.

00010 10101

00001 11111

11110 10111

(b) The realisation of B4.

Figure 5: Two realisations used in Example 11.

the algorithm takes care of this type with lines 9 to 35. Based on Definition 17, the

algorithm constructs the realisations of this type of block (lines 10 to 28), detects at-

tractors of each realisation (line 27), and adds them to the set of attractors of the block

(line 27). The correctness of line 27 is guaranteed by the general attractor detection

approach and Definition 17. We now focus on lines 10 to 24. The algorithm takes

special care of blocks with more than one parent block. It merges all the parent blocks

of such a block to form a single parent block. Since the parent blocks are considered

in an ascending order with respect to their depths (comment in line 14), the two oper-

ations in line 18 will iteratively restore the attractors of the parent block in accordance

with Corollary 1.

We have given an example to demonstrate an overview of the attractor detection

approach in Example 3 (the beginning of Section 3). We can now explain this example

in more details following Algorithm 2.

Example 11 (Attractor detection). Recall the BN G2 we have demonstrated in Exam-

ple 3. It is divided into four SCCs Σi, where i ∈ [1, 4]. The four SCCs form four blocks

Bi, where i ∈ [1, 4]. Since the blocks B1 and B2 in G2 are the same as that in G1,

we do not distinguish them in the rest of the paper. Block B1 is an elementary block

and it has one attractor as can be seen from its transition graph shown in Figure 3b.

Obtaining the attractors of B1 corresponds to Lines 5-8 in Algorithm 2. To detect the

attractors of block B2, we first form realisations of B2 with respect to the attractors

of its parent block B1. This has been shown in Example 9. The transition graph of

29

this realisation is shown in Figure 4a. It is clear from the graph that this realisation

has one attractor, i.e. A2 = {(000), (101), (111)}. Since block B2 has only one re-

alisation, the attractor A2 is also the attractor of block B2. This part corresponds to

Lines 9-12, and 25-27 in Algorithm 2. B3 has two parent blocks. Therefore, we need

to merge the two parent blocks to form a single parent block. Since the attractors of

the merged block B1,2 are the same as that of B2, we directly obtain the attractors of

B1,2, i.e. A1,2 = A2. We form one realisation of block B3 with respect to A1,2 and its

transition graph is shown in Figure 5a. Clearly B3 contains two attractors, i.e. A3 =

{{(10101), (11111), (00011)}, {(00000), (10100), (11100)}}. Detecting the attrac-

tors of B3 corresponds to Lines 13-27 in Algorithm 2. Similarly to block B2, we can

obtain the realisation of block B4 (transition graph shown in Figure 5b), and attrac-

tors of block B4, i.e., A4 = {(0000), (1010), (1110)}. Lastly, we follow Lines 37-39

in Algorithm 2 and recover the attractors of the original BN asA = D(Π(A3,A4)) =

{{(000000), (101000), (111000)}, {(000110), (111110), (101010)}}.

4.1. An optimisation

It often happens that a BN contains many leaf nodes that do not have any child

node. Each of the leaf nodes will be treated as an SCC in our algorithm and it is not

worth the effort to process an SCC consisting of only a single leaf node. Therefore,

we treat leaf nodes in a special way. Formally, leaf nodes are recursively defined as

follows.

Definition 19. A node in a BN is a leaf node (or leaf for short) if and only if it is not

the only node in the BN and either (1) it has no child nodes except for itself or (2) it has

no other children after iteratively removing all its child nodes which are leaf nodes.

Algorithm 3 outlines the leaf-based optimisation for attractor detection.

We now show that Algorithm 3 can identify all attractor states of a given BN.

Theorem 5. Algorithm 3 correctly identifies all the attractor states of a given BN G.

Proof. Block B formed in Line 2 is an elementary block. Algorithm 3 finds the attrac-

tor states of B, denoted AB in Line 3. Since B is an elementary block, it preserves the

30

Algorithm 3 Leaf-based optimisation

1: procedure LEAF DETECT(G)

2: form a BN B by removing all the leaf nodes of G;

3: AB := SCC DETECT (B);

4: T := transition system of G with state space restricted toMG(∪AB∈ABAB);

5: A := DETECT (T);

6: return A.

7: end procedure

attractors ofG by Theorem 1 and thus, by Lemma 1, it holds thatMG(ΦB) contains all

the attractor states of G. Therefore, the basic attractor detection function DETECT ap-

plied in Line 5 to the transition system of G restricted to the statesMG(ΦB) identifies

all the attractor states of G.

5. Evaluation

We use BDD-based techniques to implement our algorithm. Existing BDD-based

techniques have already been widely applied to model checking. Therefore, we im-

plement our method based on an existing model checker. In particular, we have im-

plemented the decomposition algorithm presented in Section 4 in the model checker

MCMAS [24] and we have adapted the SCC detection function in this model checker

for serving as the function DETECT in the algorithm. In this section, we demonstrate

the efficiency of our method by comparing our method with the state-of-the-art decom-

position method presented in [12] which is also based on BDD implementation. The

demonstration is performed on both randomly generated networks and real-life biolog-

ical networks. All the experiments are conducted on a high-performance computing

(HPC) node, which contains an Intel(R) Xeon(R) CPU L5640 @ 2.26GHz. 2

2The experiment environment mentioned in the conference paper [19] is incorrect. We correct it here.

31

5.1. Evaluation on Randomly Generated Networks

We generate 33 random BN models with different number of nodes using the tool

ASSA-PBN [25, 26] and compare the performance of the two methods on these 33

models. The 33 BNs are randomly generated with different size (number of nodes)

and different connectivity (the average number of parents of a Boolean function) to

reflect different networks. The size ranges from 100 to 500 due to that 500 is almost

the limit of our method. In total, there are 11 different sizes. For each size, we generate

3 different networks with different connectivity. In the end, there are 33 networks

generated.

We denote our proposed decomposition method asM1 and the one in [12] asMref .

There are two possible implementations of the DETECT function used in Algorithm 2

as mentioned in [12]: monolithic and enumerative. We use the monolithic one which

is shown to be more suitable for small networks as the decomposed sub-networks are

relatively small. Since the method in [12] uses similar leaf reduction technique to the

one presented in this study, we make comparisons on both the original models and

the models obtained from the original ones by removing leaves in order to eliminate

the influence of leaf nodes. We set the expiration time to 3 hours. Before removing

leaf nodes, there are 11 cases where both methods fail to return a result within the

3-hour time limit. Among the other 22 cases, our method is faster than Mref in 16

cases, i.e. in approximately 73% of the cases. After removing leaf nodes, there are 5

cases in which both methods fail to accomplish the computations. Among the other

28 cases, our method is faster than Mref in 25 cases, i.e. in approximately 89% of

the cases. We demonstrate the results in Table 1. Since our method considers the

dependency relation between different blocks, the attractors of all the blocks need to be

computed; while method Mref can ignore the blocks with only leaf nodes. Therefore,

the performance of our method is affected by the presence of leaf nodes to a larger

extent than Mref . This is why the percentage of cases in which our method is faster

than Mref is increased from 73% to 89% when leaf nodes are removed. Notably,

after eliminating the influence of leaf nodes, our method is significantly faster than

Mref . The “–” in Table 1 means the method failed to process the model within 3 hours.

The speedup is therefore not available (N/A) for the respective case. The speedup is

32

computed as tMref
/tMour , where tMour is the time cost forMour and tMref

is the time

cost for Mref . All the times shown in Table 1 are in seconds.

Several reasons may affect the performance of the two methods. For example, the

number of attractors, the base attractor detection method DETECT, the BDD ordering.

In our implementation, we have fixed the BDD variable ordering with the first ordering

strategy used in [24] for the attractor detection method. In general, choosing a good

variable ordering is known to be a hard problem [27]. Our choice is based on our

experimental evaluation. However, the fixed ordering may not be the best for every

network. For example, in our experiment on the network with 400 nodes, our algorithm

takes 13.64 seconds to compute the attractors with the monolithic implementation of

the DETECT function. The time will be reduced to 2.52 if we change the DETECT

function to enumerative implementation. On the contrary, the time cost of the method

Mref will be increased from 8.28 to 19.68 if the same change is made. Due to these

considerations, it is very difficult to find clear criteria which allow to judge which

method is definitely faster for a given network. However, it is justified to conclude

that our method is faster thanMref in most cases and where the number of attractors is

relatively small, the chances that our method is faster are even higher. This is due to the

fact that our method takes the attractors of the parent block into account when forming

a realisation of a non-elementary block and the number of realisations increases with

the number of attractors.

In addition, we plot the speedups of method Mour with respect to (w.r.t.) method

Mref in Figure 6. Note that we manually set up a maximum value, i.e., 3 × 104 as

highlighted by the dashed line in the upper part of the figure, and a minimum value, i.e.,

3× 10−3 as highlighted by the dashed line in the lower part of the figure, for the cases

that only one of the two methods finishes the computation within 3 hours. According

to the plot, it is clear that after removing leaves, our new method has more chances

to perform faster than the method Mref as there are more red diamonds between the

two upper dashed lines comparing to the blue circles. Summarising, for an important

proportion of random models, our new method shows a significant improvement on the

state-of-the-art decomposition method.

33

original models models with leaves removed
nodes # non-leaves # attractors

tMref
[s] tMour [s] S. tMref

[s] tMour [s] speedup

100 17 12 3.74 1.34 2.8 0.72 0.14 5.1

100 7 32 4.56 0.86 5.3 0.58 0.02 29.0

100 34 20 8.64 6.37 1.4 1.24 0.16 7.8

120 17 28 16.32 12.48 1.3 0.94 0.04 23.5

120 9 1 18.13 0.95 19.1 1.10 0.04 27.5

120 11 128 12.61 13.09 1.0 1.16 0.16 7.3

150 17 1266 517.8 13618.00 0.0 18.17 7.09 2.6

150 12 208 151.79 960.81 0.2 2.32 0.27 8.6

150 19 2 201.22 1.66 121.2 0.74 0.02 37.0

180 15 16 11.9 4.40 2.7 0.85 0.03 28.3

180 29 N/A – – N/A – – N/A

180 42 128 609.41 482.72 1.3 4.2 4.54 0.9

200 6 16 268.69 7.04 38.2 0.97 0.02 48.5

200 10 120 407.12 655.80 0.6 1.02 0.08 12.8

200 15 640 1493.42 231.06 6.5 3.59 1.96 1.8

250 25 12 533.57 11.16 47.8 0.90 0.04 22.5

250 19 4320 10631.83 – N/A 33.88 24.79 1.4

250 35 4976 – 28434.00 N/A 100.78 43.35 2.3

300 21 192 – 5113.15 N/A 1.56 0.70 2.2

300 88 1 – – N/A 238.96 65.33 3.7

300 32 20 2204.57 37.86 58.2 1 0.19 5.3

350 68 3440 – – N/A -1 8572.85 0.0

350 46 3904 – – N/A 75.14 28.84 2.6

350 21 188 – 10520.40 N/A 3.09 0.41 7.5

400 65 N/A – – N/A – – N/A

400 52 3 342.54 20.68 16.6 8.28 13.64 0.6

400 64 N/A – – N/A – – N/A

450 20 18304 – – N/A 154.98 132.08 1.2

450 83 N/A – – N/A – – N/A

450 43 8 – 60.82 N/A 3704.33 0.17 21790.2

500 62 612 – – N/A 26.43 23.16 1.1

500 81 N/A – – N/A – – N/A

500 48 1728 – – N/A – 38.14 N/A

Table 1: Results of the performance comparison of methods Mour and Mref .

34

network size
100 150 200 250 300 350 400 450 500

s
p

e
e

d
u

p
s

10-2

10-1

100

101

102

103

104

105

before removing leaves
after removing leaves

Figure 6: Speedups of Method Mour w.r.t. Method Mref .

5.2. Evaluation on Real-life Networks

We continue to evaluate the performance of our proposed decomposition method

Mour with respect to Mref on 9 different models from 6 real-life biological networks

which we obtain from the literature. We give a brief introduction of the 6 networks

below.

• Tumour. Tumour is a model constructed in [18] for studying the role of in-

dividual mutations or their combinations affecting the metastatic development.

Metastasis accounts for 90% of cancer patient mortality; therefore, understand-

ing the etiology of metastasis is very important in clinical perspective. The early

stages of metastasis are tightly controlled in normal cells and can be drastically

affected by malignant mutations; therefore, they might constitute the principal

determinants of the overall metastatic rate even if the later stages take long to

occur.

• MAPK network. Mitogen-activated protein kinases (MAPKs) are a family of

serine/threonine kinases that transduce biochemical signals from the cell mem-

brane to the nucleus in response to a wide range of stimuli, such as growth

35

model name reference # nodes # attractors tMref
[s] tMour

[s] speedup

tumour [18] 32 15 1.48 0.28 5.34

MAPK r3 [28] 53 60 2.85 0.98 2.91

MAPK r4 [28] 53 132 6.37 2.68 2.37

T-LGL [29] 60 1322 214.04 45.08 4.75

HGF [16] 66 2 0.39 0.05 7.50

T-diff [30] 68 18 1.15 0.60 1.91

apoptosis 1 [31] 97 152 13.86 11.42 1.21

apoptosis 2 [31] 97 16 7.91 1.17 6.77

apoptosis 3 [31] 97 1 7.93 0.33 24.24

Table 2: Evaluation on real-life models.

factors, hormones, inflammatory cytokines, and environmental stresses. Cas-

cades of these kinases participate in multiple intracellular signalling pathways

that control a wide range of cellular processes, e.g. cell cycle machinery, dif-

ferentiation, survival, and apoptosis. MAPK pathways are highly evolutionary

conserved among all eukaryotic cells and allow the cells to respond coordinately

to multiple and diverse inputs. To date, three main pathways have been exten-

sively studied: Extracellular Regulated Kinases (ERK), Jun NH2 Terminal Ki-

nases (JNK), and p38 Kinases (p38), named after their specific MAPK kinases

involved. These pathways are characterised by enormous cross-talks with each

other, which gives rise to a complex network of molecular interactions [32]. Mal-

functioning of MAPK signalling mechanisms is often observed in cancer [33].

Therefore, a deeper comprehension of the MAPK pathways and their interac-

tions is of utter importance to elucidate the roles of MAPKs in the development

and progression of cancer. This in turn is crucial for the development of new and

effective therapeutic strategies. In [28], a predictive dynamical Boolean model

of the MAPK network is presented. It recapitulates observed responses of the

MAPK network to characteristic stimuli in selected urinary bladder cancers to-

gether with its specific contribution to cell fate decision on proliferation, apop-

36

tosis, and growth arrest. In our study we consider two mutants of the model:

one with EGFR over-expression and the other with FGFR3 activating mutation

which correspond to the r3 and r4 variants of [28], respectively, and therefore we

refer to them as as MAPK r3 and MAPK r4.

• T cell large granular lymphocyte leukemia network. T cell large granular

lymphocyte (T-LGL) leukemia is a clonal proliferation of cytotoxic T lympho-

cytes (CTL). In T-LGL leukemia, cytotoxic T cells avoid cell death and survive,

which can cause diseases such as neutropenia, anemia, and autoimmune disor-

ders. Zhang et al. constructed a T-LGL model in [29] in order to systematically

understand signalling components that determine the survival of CTL in T-LGL

leukemia. We take this model with 60 nodes and perform our evaluation.

• HGF. Hepatocyte growth factor (HGF) is one of the factors that are known to

activate and regulate cell migration. Cell migration plays an important role in

tissue homeostasis. In case the cell migration is in an abnormal condition, it

can lead to scar formation and facilitate cancer metastasis formation. In [16],

a large-scale dynamic network describing HGF-induced keratinocyte migration

was developed based on prior knowledge. We take the fifth network named HGF

from [16] for our evaluation.

• T-diff. Helper T cells is a type of T cell that plays a central role in the regulation

of the immune response in mammals. They are essential in the activation of B

cells and cytotoxic T cells to protect the body and kill infected cells. In [30],

Naldi et al. propose an integrated, comprehensive model of the regulatory net-

work and signalling pathways controlling T cell differentiation. The T-diff model

is based on this work.

• Apoptosis network. Apoptosis is a process of programmed cell death and has

been linked to many diseases. It is often regulated by several signalling pathways

extensively linked by cross-talks. We take the apoptosis signalling network pre-

sented in [31] and recast it into the Boolean network framework: a BN model

which compromise 97 nodes. In this network, there are 10 input nodes. We ob-

tained three different variants of this network based on different sets of inputs

and named the three variants as apoptosis 1, apoptosis 2, and apoptosis 3.

37

The evaluation results are shown in Table 2. In all the 9 networks, our proposed

decomposition method Mour is faster than Mref . Due to the fact that our decomposi-

tion method considers the attractors of the parent block when forming a realisation of

a non-elementary block, our decomposition method takes more time when the number

of attractors increases. Hence, our method results in larger speedups when the num-

ber of attractors is smaller. This can be clearly observed from the last three apoptosis

models. This observation is important as most of the meaningful real-life biological

systems should have a relatively small number of attractors [34, 35]. In addition, the

model T-LGL contains a large number of attractors; however, our method still gains a

relatively large speedup of 4.75 compared to the method Mref . This is due to the fact

that most of the attractors are contributed by only one block and this block has only

three leaf children. Hence, it does not take too much time to take into consideration the

dependency relationships between blocks in this case.

In addition to the above evaluation, we future applied the leaf-based optimisation

to the network named “apoptosis 1”. In this network, 17 out of 97 nodes are leaves.

It takes 3.26 seconds to get the results of 152 attractors, which is 3.5 times faster than

the original 11.42 seconds. We chose this network to apply our leaf-based optimisation

due to the following three reasons. Firstly, the percentage of leaf nodes is high enough

(bigger than 10%). Secondly, the time cost of the original method is relatively large

(bigger than 5). Lastly, the number of attractors is relatively small (smaller than 500).

The evaluation results clearly show that our proposed decomposition method is

faster than the one in [12], for a significant proportion of models and, in particular, all

the real-life models that we have considered. Our method can lead to a large speedup

when the number of attractors in a network is relatively small, which is often the case

for real-life biological networks.

6. Conclusion and Future Work

We have introduced a new SCC-based decomposition method for attractor detection

of large synchronous BNs. Although our decomposition method shares similar ideas on

how to decompose a large network with existing decomposition methods, our method

38

differs from them in the key process and has significant advantages.

First, our method is designed for synchronous BNs. As a consequence, the key

process for constructing realisations in our method is substantially different from the

one in [15], which is designed for asynchronous networks. Secondly, our method con-

siders the dependency relation among the sub-networks. The method in [12] does not

rely on this relation and only takes the attractors of sub-networks to restrict the initial

states when detecting the attractors for the original network. In this way, the decom-

position method in [12] potentially cannot scale up very well for large systems, as it

still requires a BDD encoding of the transition relation of the whole network. This

is our main motivation to extend our previous work [15] towards synchronous BNs.

Experimental results show that our method is significantly faster than the one in [12].

Lastly, we have shown that the method proposed in [11] fails to compute correct results

in certain cases.

The most time consuming part of our algorithm is the DETECT function. Our cur-

rent implementation is based on BDDs. The performance is strongly related to the

performance of BDD operations. We choose a BDD-based technique mainly due to the

following two considerations. Firstly, it is fair to compare our method with the method

in [12] as they are both using BDD-based techniques. Secondly, BDD-based technique

is one of the leading techniques that are suitable for the computation of SCCs, which

can be easily applied to the detection attractors. One future work is to use SAT-solvers

to implement the DETECT function as SAT-based methods are normally more efficient

for attractor detection of synchronous BNs [9].

Acknowledgments

Qixia Yuan is supported by the National Research Fund, Luxembourg (grant refer-

ence 7814267). This work is also partially supported by the research project SEC-PBN

(funded by the University of Luxembourg) and the ANR-FNR project AlgoReCell (IN-

TER/ANR/15/11191283).

39

References

[1] Z. Dong, Y. Pan, X. Huang, Parameter identifiability of Boolean networks with

application to fault diagnosis of nuclear plants, Nuclear Engineering and Tech-

nology 50 (4) (2018) 599605.

[2] A. Roli, M. Villani, R. Serra, S. Benedettini, C. Pinciroli, M. Birattari, Dynamical

properties of artificially evolved Boolean network robots, in: Proc. 14th Interna-

tional Conference of the Italian Association for Artificial Intelligence, Vol. 9336

of LNCS, Springer, 2015, pp. 45–57.

[3] S. Kauffman, Homeostasis and differentiation in random genetic control net-

works, Nature 224 (1969) 177–178.

[4] S. Huang, Genomics, complexity and drug discovery: insights from Boolean net-

work models of cellular regulation, Pharmacogenomics 2 (3) (2001) 203–222.

[5] R. Somogyi, L. D. Greller, The dynamics of molecular networks: applications to

therapeutic discovery, Drug Discovery Today 6 (24) (2001) 1267–1277.

[6] D. J. Irons, Improving the efficiency of attractor cycle identification in Boolean

networks, Physica D: Nonlinear Phenomena 217 (1) (2006) 7–21.

[7] A. Garg, L. Xenarios, L. Mendoza, G. DeMicheli, An efficient method for dy-

namic analysis of gene regulatory networks and in silico gene perturbation exper-

iments, in: Proc. 11th Annual Conference on Research in Computational Molec-

ular Biology, Vol. 4453 of LNCS, Springer, 2007, pp. 62–76.

[8] A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, G. De Micheli, Synchronous ver-

sus asynchronous modeling of gene regulatory networks, Bioinformatics 24 (17)

(2008) 1917–1925.

[9] E. Dubrova, M. Teslenko, A SAT-based algorithm for finding attractors in syn-

chronous Boolean networks, IEEE/ACM Transactions on Computational Biology

and Bioinformatics 8 (5) (2011) 1393–1399.

40

[10] Q.-N. Tran, Algebraic model checking for Boolean gene regulatory networks,

in: Software Tools and Algorithms for Biological Systems, Springer, 2011, pp.

113–122.

[11] W. Guo, G. Yang, W. Wu, L. He, M. Sun, A parallel attractor finding algorithm

based on Boolean satisfiability for genetic regulatory networks, PLOS ONE 9 (4)

(2014) e94258.

[12] Q. Yuan, H. Qu, , J. Pang, A. Mizera, Improving BDD-based attractor detection

for synchronous Boolean networks, Science China Information Sciences 59 (8)

(2016) 080101.

[13] Y. Zhao, J. Kim, M. Filippone, Aggregation algorithm towards large-scale

Boolean network analysis, IEEE Transactions on Automatic Control 58 (8)

(2013) 1976–1985.

[14] A. Le Coënt, L. Fribourg, R. Soulat, Compositional analysis of Boolean networks

using local fixed-point iterations, in: International Workshop on Reachability

Problems, Springer, 2016, pp. 134–147.

[15] A. Mizera, J. Pang, H. Qu, Q. Yuan, Taming asynchrony for attractor detection

in large Boolean networks, IEEE/ACM Transactions on Computational Biology

and Bioinformatics 15 (2).

[16] A. Singh, J. M. Nascimento, S. Kowar, H. Busch, M. Boerries, Boolean approach

to signalling pathway modelling in HGF-induced keratinocyte migration, Bioin-

formatics 28 (18) (2012) i495–i501.

[17] M. I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence

of fission yeast, PLOS One 3 (2) (2008) e1672.

[18] D. P. Cohen, L. Martignetti, S. Robine, E. Barillot, A. Zinovyev, L. Calzone,

Mathematical modelling of molecular pathways enabling tumour cell invasion

and migration, PLOS Computational Biology 11 (11) (2015) e1004571.

41

[19] A. Mizera, J. Pang, H. Qu, Q. Yuan, A new decomposition method for attrac-

tor detection in large synchronous Boolean networks, in: Proc. 3rd International

Symposium on Dependable Software Engineering: Theories, Tools, and Applica-

tions, Vol. 10606 of LNCS, Springer, 2017, pp. 232–249.

[20] S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed ge-

netic nets, Journal of Theoretical Biology 22 (3) (1969) 437–467.

[21] I. Shmulevich, E. R. Dougherty, Probabilistic Boolean Networks: The Modeling

and Control of Gene Regulatory Networks, SIAM Press, 2010.

[22] C.-Y. Lee, Representation of switching circuits by binary-decision programs, Bell

System Technical Journal 38 (4) (1959) 985–999.

[23] S. B. Akers, Binary decision diagrams, IEEE Transactions on Computers 100 (6)

(1978) 509–516.

[24] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: An open-source model checker for

the verification of multi-agent systems, International Journal on Software Tools

for Technology Transfer 19 (1) (2017) 9–30.

[25] A. Mizera, J. Pang, Q. Yuan, ASSA-PBN 2.0: A software tool for probabilis-

tic Boolean networks, in: Proc. 14th International Conference on Computational

Methods in Systems Biology, Vol. 9859 of LNCS, Springer, 2016, pp. 309–315.

[26] A. Mizera, J. Pang, C. Su, Q. Yuan, ASSA-PBN: A toolbox for probabilis-

tic Boolean networks, IEEE/ACM Transactions on Computational Biology and

Bioinformatics 15 (4) (2018) 1203–1216.

[27] B. Bollig, I. Wegener, Improving the variable ordering of OBDDs is NP-

complete, IEEE Transactions on Computers 45 (9) (1996) 993–1002.

[28] L. Grieco, L. Calzone, I. Bernard-Pierrot, F. Radvanyi, B. Kahn-Perles, D. Thief-

fry, Integrative modelling of the influence of MAPK network on cancer cell fate

decision, PLOS Computational Biology 9 (10) (2013) e1003286.

42

[29] R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert,

T. P. Loughran, Network model of survival signaling in large granular lympho-

cyte leukemia, Proceedings of the National Academy of Sciences 105 (42) (2008)

16308–16313.

[30] A. Naldi, J. Carneiro, C. Chaouiya, D. Thieffry, Diversity and plasticity of th cell

types predicted from regulatory network modelling, PLoS Computational Biol-

ogy 6 (9) (2010) e1000912.

[31] R. Schlatter, K. Schmich, I. A. Vizcarra, P. Scheurich, T. Sauter, C. Borner, M. Ed-

erer, I. Merfort, O. Sawodny, ON/OFF and beyond - a Boolean model of apopto-

sis, PLOS Computational Biology 5 (12) (2009) e1000595.

[32] M. Krishna, H. Narang, The complexity of mitogen-activated protein kinases

(MAPKs) made simple, Cellular and Molecular Life Sciences 65 (22) (2008)

3525–3544.

[33] A. S. Dhillon, S. Hagan, O. Rath, W. Kolch, MAP kinase signalling pathways in

cancer, Oncogene 26 (2007) 3279–3290.

[34] B. Samuelsson, C. Troein, Superpolynomial growth in the number of attractors in

Kauffman networks, Physical Review Letters 90 (9) (2003) 098701.

[35] B. Dorssel, Number of attractors in random Boolean networks, Physical Review

Letters 72 (2005) 016110.

43

	Introduction
	Preliminaries
	Boolean networks
	Encoding BNs in BDDs

	The New Method
	Decomposition of a BN
	Detection of attractors in a block
	Detection of attractors in elementary blocks.
	Detection of attractors in non-elementary blocks.

	Restoring attractors of the original BN

	A BDD-based Implementation
	An optimisation

	Evaluation
	Evaluation on Randomly Generated Networks
	Evaluation on Real-life Networks

	Conclusion and Future Work

