
Modal Characterisation of Simulation Relations in
Probabilistic Concurrent Games

Chenyi Zhanga,∗, Jun Pangb,c

aCollege of Information Science and Technology, Jinan University, Guangzhou, China
b Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette,

Luxembourg
cInterdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg,

Esch-sur-Alzette, Luxembourg

Abstract

Probabilistic game structures combine both nondeterminism and stochastic-

ity, where players repeatedly take actions simultaneously to move to the next

state of the concurrent game. Probabilistic alternating simulation and bisim-

ulation are important tools to compare the behaviour of different probabilistic

game structures. In this paper, we present a sound and complete modal char-

acterisation of these two relations by proposing a new modal logic based on

probability distributions. This logic enables a player to enforce a property in

the next state or distribution. We further extend the logic with fixpoint opera-

tors, which also characterises the simulation relations. This logic can express a

lot of interesting properties in practical applications.

Keywords: Concurrent games, probabilistic alternating simulation,

probabilistic alternating bisimulation, modal logic, logic characterisation

1. Introduction

Simulation relations and bisimulation relations [1] are important research

topics in concurrency theory. In the classical model of labelled transition sys-

tems (LTS), simulation and bisimulation have been proved useful for compar-

∗Corresponding author
Email address: chenyi_zhang@jnu.edu.cn (Chenyi Zhang)

Preprint submitted to Science of Computer Programming December 8, 2021

ing the behaviour of concurrent systems, with many applications, for exam-

ple, to verifying communication protocols. The modal characterisation prob-

lem has been studied both in classical and in probabilistic systems, i.e., the

Hennessy-Milner logic (HML) [2] that characterises image-finite LTS, and var-

ious modal logics have been proposed to characterise strong and weak proba-

bilistic (bi)simulation in the model of probabilistic automata [3, 4, 5]. To study

multi-player games, the concurrent game structure (GS) [6] is a model that de-

fines a system that evolves while interacting with outside players. As a player’s

behaviour is not fully specified within a system, GS are often also known as

open systems. Alternating simulation (A-simulation) is defined in GS focusing

on players’ ability to enforce temporal properties specified in alternating-time

temporal logic (ATL) [6], and A-simulation is shown to be sound and complete

for a fragment of ATL [7].

In this paper, we work on the model of probabilistic game structure (PGS)

which has probabilistic transitions. PGS also allows probabilistic (or mixed)

choices of players. This makes PGS an appealing model for concurrent games

with application domains such as robotics, security, and autonomous transport.

The simulation relation in PGS, called probabilistic alternating simulation (PA-

simulation), has been shown to preserve a fragment of probabilistic alternating-

time temporal logic (PATL) under mixed strategies [8]. Given the classical

results of modal characterisations for (non-probabilistic) LTS, probabilistic au-

tomata, as well as for (non-probabilistic) game structures, we investigate if a

similar correspondence exists for processes and modal logics in the domain of

concurrent games with probabilistic transitions and mixed strategies. We find

that such a correspondence still holds by adapting a modal logic with nondeter-

ministic distributions extended from the work of [4].

Contributions. This paper studies modal characterisation of the probabilistic

alternating simulation relation and the probabilistic alternating bisimulation re-

lation in probabilistic game structures. For our research objective, we propose

a novel modal logic, L⊕, based on probability distributions. This new logic

2

expresses a player’s power to enforce a property in the next state or distribu-

tion. The logic also incorporates both probabilistic and nondeterminstic features

that need to be considered during the two-player interplay. We prove that L⊕

characterises probabilistic alternating bisimulation (PA-bisimulation), while its

sub-logic L	 characterises probabilistic alternating simulation (PA-simulation).

Another contribution of this paper is the introduction of a fixpoint logic, which

also characterises the PA-simulation and PA-bisimulation relations, extended

from the modal logic L⊕ with fixpoint operators. The expressive power of this

fixpoint logic has been discussed and illustrated by several examples.

Note that this paper extends on a conference paper presented at TASE’20 [9],

which was an extended abstract with many detailed proofs omitted. The modal

logic presented in the conference paper [9] is actually L	, a fragment of the new

modal logic L⊕ proposed in this paper. Moreover, the additional contribution

of this paper consists of the sound and complete modal characterisation of the

probabilistic alternating bisimulation relation by L⊕.

Structure of the paper. We present some necessary preliminaries in Sec-

tion 2, and give the formal definitions of probabilistic alternating simulation

and bisimulation in Section 3. A new modal logic with nondeterministic dis-

tributions, L⊕, is introduced in Section 4. We continue to show that its sub-

logic L	 has a correct characterisation of probabilistic alternating simulation

(Section 5), while L⊕ itself characterises probabilistic alternating bisimulation

(Section 6) for probabilistic concurrent games. In Section 7, the logic L⊕ is

then extended with variables and fixpoint operators, resulting in a probabilistic

alternating-time µ-calculus (PAMu), and the logic characterisation of proba-

bilistic alternating bisimulation (and simulation) can be extended to PAMu as

well. We discuss related work in Section 8 and conclude the paper with possible

future work in Section 9.

3

2. Preliminaries

A discrete probability distribution ∆ over a set S is a function of type

S → [0, 1], where
∑
s∈S ∆(s) = 1. We write D(S) for the set of all such distribu-

tions, ranged over by symbols ∆,Θ, Given a set T ⊆ S, ∆(T) =
∑
s∈T ∆(s),

i.e., the probability for the given set T . Given an index set I, a list of distri-

butions 〈∆i〉i∈I and a list of values 〈pi〉i∈I where pi ∈ [0, 1] for all i ∈ I and∑
i∈I pi = 1, we have that

∑
i∈I pi∆i is also a distribution, i.e., the weighted sum

of distributions is again a distribution. If |I| = 2 we may also write ∆1 ⊕α ∆2

for the distribution p1∆1 + p2∆2 where p1 = α and p2 = 1 − α. For s ∈ S, s?

represents a point (or Dirac) distribution satisfying s?(s) = 1 and s?(t) = 0 for

all t 6= s. Given ∆ ∈ D(S), we define d∆e as the set {s ∈ S | ∆(s) > 0}, which

is the support of ∆.

To this point, we present the model of (non-probabilistic) game structure

for two players I and II, though we believe that the results in this paper for

two players can be extended to handle a finite set of players as in the standard

concurrent game structures [6]. Each player has complete information about

the PGS at any time during a play. Let Prop be a finite set of propositions.

Definition 1. A game structure (GS) is a tuple 〈S, s0, L, Act, δ〉, where

• S is a finite set of states, with s0 the initial state;

• L : S → 2Prop is the labelling function which assigns to each state s ∈ S a

set of propositions true in s;

• Act = ActI × ActII is a finite set of joint actions, where ActI and ActII

are, respectively, the sets of actions for players I and II;

• δ : S × Act→ S is the transition function.

Given the deterministic transition of a GS, a game play is a sequence of

the form s0
〈a1,b1〉−−−−→ s1

〈a2,b2〉−−−−→ s2 . . .
〈ak,bk〉−−−−→ sk, where si = δ(si−1, 〈ai, bi〉)

for all 1 ≤ i ≤ k. During the game, the players choose their next moves

simultaneously for each step, so that this style of game play is often known

4

s0

s2s1

{draw}

{winI} {winII}

hr, rihp, pi hs, si

hs, rihr, pihp, sihs, pihr, sihp, ri

Figure 1: The PGS for the repeated rock-paper-scissors game.

as concurrent games [10]. In the above play, in each state si, one may think

of the players making their best efforts to win this game. Let us consider the

following example.

Example 1. Figure 1 presents the GS of two players repeatedly playing the

rock-paper-scissors game.1 It has three states s0, s1, and s2, with s0 being the

initial state. Each state is labelled with an atomic proposition indicating the

result of the current round (indicating which player wins or there is a draw).

For instance, in state s1 player I wins the game. Actions of the players are r

(representing “rock”), p (representing “paper”), and s (representing “scissors”).

The joint actions 〈a1, a2〉 with a1, a2 ∈ {r, p, s} are depicted along with the tran-

sitions. The function δ describes the transition function as shown in Figure 1.

The winning states s1 and s2 are absorbing, i.e., all actions from there make

self-transitions, and the game effectively terminates there.

Informally, it is sometimes impossible for a player, say player I, to find

a deterministic strategy that picks an action to maximize her chance to win

the game. Taking Example 1, in state s0, whichever (deterministic) action a

player I chooses, there exists a (counter) action b from player II, such that 〈a, b〉

1A similar example was used in [11], where a concurrent stochastic structure (CSG), as

defined in [11], is a game structure (GS) and also a PGS to be defined in the following, in the

sense that all the probability distributions involved in the CSG are point distributions.

5

leads to a losing state for player I. Consequently, following the classic results

on matrix games [12], we allow a player to have probabilistic (or randomized)

behaviour, which is defined in the following.

Definition 2. A mixed action of player i is a function from states to distri-

butions on Acti, ranged over by π, π1, σ We write Πi for the set of mixed

actions from player i. In particular, given a ∈ Acti, write a? for the determin-

istic mixed action for player i which always chooses action a with probability 1

in all states.

To show the effectiveness of probabilistic choices, in the rock-paper-scissors

game in Example 1 (see Figure 1), for both players, the mixed action with

probability 1
3 for each of the actions (r, p and s) is known as the optimal strategy

for both players, in the sense that it guarantees the chance to eventually win

the game with probability at least 1
2 .

Besides player strategies, randomization can also be used for modelling un-

certainty in system behaviour. For example, security market can be regarded

as a game between players, or between a player and the market, plus direct or

indirect influences from a variety of unknown factors [11]. In the following, we

extend the game structure (GS) model to allow probabilistic transitions.

Definition 3. A probabilistic game structure (PGS) is a tuple 〈S, s0, L, Act, δ〉,
where

• S is a finite set of states, with s0 the initial state;

• L : S → 2Prop is the labelling function;

• Act = ActI × ActII is a finite set of joint actions;

• δ : S × Act→ D(S) is a probabilistic transition function.

The new probabilistic transition function δ essentially captures the probabilistic

aspect of the game structure — after performing an action in Act, the game

structure moves to a distribution over the states, instead of moving into one

6

state. If in state s player I performs action a1 and player II performs action

a2, then δ(s, 〈a1, a2〉) is the distribution for the next states.

To this point, we generalise the transition function δ by δ̃ to handle mixed

actions. (Note that the domain of δ is finite as both S and Act are finite,

though the domain of δ̃ is infinite.) Given π1 ∈ ΠI and π2 ∈ ΠII , for all

s, t ∈ S, we define δ̃(s, 〈π1, π2〉) for the distribution that is reached by applying

mixed actions π1 and π2 on state s.

δ̃(s, 〈π1, π2〉)(t) =
∑

a1∈ActI ,a2∈ActII

π1(s)(a1) · π2(s)(a2) · δ(s, 〈a1, a2〉)(t).

In this definition, π1(s)(a1) and π2(s)(a2) are respectively the weights for actions

a1 and a2, which contribute to the probability of a state, say t, to be reached

by the transition from s.

Example 2. We refer to the simple three-state PGS depicted in Figure 2, where

the state space is {s0, s1, s2}, ActI = {a}, and ActII = {b1, b2}. Let ε > 0 be a

tiny positive real number (say, 10−10).

- δ(s0, 〈a, b1〉) = ∆1, where ∆1(s1) = ∆1(s2) = 1
2 .

- δ(s0, 〈a, b2〉) = ∆′1, where ∆′1(s1) = 1
2 + ε and ∆′1(s2) = 1

2 − ε.

One may observe that from s0, player II is only allowed to tweak the output

distribution by a tiny bit.

A convention for PGS figures. To improve readability of examples, we make

the following convention for the PGS figures throughout this paper. If from a

state there is no outgoing arrow, then that state is absorbing, as all actions from

there make only self-transitions.

In this example, if player II performs b1, then the resulting distribution will

have equal weights on the two states s1 and s2. If player II performs b2, the

resulting distribution will have slightly more weight (i.e., by 2 · ε) on s1 than s2.

In fact, player II may also perform a mixed action σ satisfying σ(s0, b1) = 1
2

and σ(s0, b2) = 1
2 . Informally, before her action, player II flips a fair coin, and

7

s0

s1 s2

⟨a, b1⟩ ⟨a, b2⟩

1
2

1
2

1
2 +ϵ 1

2 − ϵ

{$}

{¬$} {$}

Figure 2: A probabilistic game structure G1

performs b1 if the coin turns up heads and performs b2 otherwise. In this case,

we apply the generalised transition function, by δ̃(s0, 〈a?, σ〉) = ∆, where

∆(s1) = a?(s0, a) · σ(s0, b1) · δ(s0, 〈a, b1〉)(s1) + a?(s0, a) · σ(s0, b2) · δ(s0, 〈a, b2〉)(s1)

= 1 · 1

2
· 1

2
+ 1 · 1

2
·
(

1

2
+ ε

)
=

1 + ε

2

Similarly, ∆(s2) = a?(s0, a) · σ(s0, b1) · δ(s0, 〈a, b1〉)(s2) + a?(s0, a) · σ(s0, b2) ·
δ(s0, 〈a, b2〉)(s2), which gives 1−ε

2 .

Let ≤ ⊆ S×S be a partial order, define ≤Sm⊆ P(S)×P(S), by P ≤Sm Q if

for all t ∈ Q there exists s ∈ P such that s ≤ t. In the literature this definition

is known as the ‘Smyth order’ [13, 14] regarding ‘≤’.

Relations in probabilistic systems usually require a notion of lifting [15],

which extends the relations to the domain of distributions.2

Definition 4. Let S, T be two sets and R ⊆ S × T be a relation, then R ⊆
D(S)×D(T) is a lifted relation defined by ∆RΘ if there exists a weight function

w : S × T → [0, 1] such that

2In a probabilistic system without explicit user interactions, state s is simulated by state

t if for every s
a→ ∆1 there exists t

a→ ∆2 such that ∆1 is simulated by ∆2.

8

Figure 3: An example showing how to lift one relation.

•
∑
t∈T w(s, t) = ∆(s) for all s ∈ S,

•
∑
s∈S w(s, t) = Θ(t) for all t ∈ T ,

• sR t for all s ∈ S and t ∈ T with w(s, t) > 0.

The intuition behind the lifting is that each state in the support of one

distribution may correspond to a number of states in the support of the other

distribution, and vice versa. In the following section, we extend the notion of

alternating simulation [7] to a probabilistic setting in the way of lifting. The

next example is taken from [16] which shows how to lift a relation.

Example 3. In Figure 3, we have two sets of states defined by S = {s1, s2} and

T = {t1, t2, t3}, and a relation R = {(s1, t1), (s1, t2), (s2, t2), (s2, t3)}. Suppose

∆(s1) = ∆(s2) = 1
2 and Θ(t1) = Θ(t2) = Θ(t3) = 1

3 , we may establish ∆RΘ.

To check this, we define a weight function w by setting w(s1, t1) = 1
3 , w(s1, t2) =

w(s2, t2) = 1
6 , and w(s2, t3) = 1

3 . The dotted lines in the graph indicate the

allocation of weights that is required to relate ∆ to Θ via R.

We present some properties of lifted relations. First of all, we show that, by

combining pairs of distributions that are lift-related with the same probability

on both sides, we get the resulting (combined) distributions lift-related.

Lemma 1. Let R ⊆ S × T and 〈pi〉i∈I be an index satisfying
∑
i∈I pi = 1, and

∆iRΘi for ∆i ∈ D(S) and Θi ∈ D(T) for all i, then
∑
i∈I pi∆iR

∑
i∈I piΘi.

9

Proof: For all i ∈ I, suppose wi is the weight function that establishes ∆iRΘi.

We show that the new weight function w defined by w(s, t) =
∑
i∈I(pi ·wi(s, t))

is the weight function that establishes
∑
i∈I pi∆iR

∑
i∈I piΘi.

• For all s ∈ S, we have
∑
t∈T w(s, t) =

∑
t∈T

∑
i∈I pi · wi(s, t) =

∑
i∈I pi ·∑

t∈T wi(s, t). Since wi is the weight function that establishes ∆iRΘi

for all i, we have
∑
t∈T wi(s, t) = ∆i(s). Therefore,

∑
t∈T w(s, t) =∑

i∈I pi∆i(s), as required.

• For all t ∈ T , we are able to show
∑
s∈S w(s, t) =

∑
i∈I piΘi(t), which is

symmetric to the above case.

• Suppose w(s, t) > 0. Since w(s, t) =
∑
i∈I pi ·wi(s, t), we have wi(s, t) > 0

for some i. Therefore sR t.

�

The following lemma states that, given two related distributions, if we “split”

a distribution on one side of the relation by an index set, then there exists

a split on the other side by the same index set, so that the corresponding

(sub)distributions with the same index are related by the lifted relation.

Lemma 2. Let ∆ ∈ D(S), Θ ∈ D(T), R ⊆ S × T , 〈pi〉i∈I be a list of positive

real values satisfying
∑
i∈I pi = 1. If ∆RΘ, then

1. for all lists of distributions 〈∆i〉i∈I with ∆i ∈ D(S) for all i ∈ I, sat-

isfying ∆ =
∑
i∈I pi∆i, there exist 〈Θi〉i∈I with Θi ∈ D(T) such that

Θ =
∑
i∈I piΘi and ∆iRΘi for all i ∈ I;

2. for all lists of distributions 〈Θi〉i∈I with Θi ∈ D(T) for all i ∈ I, sat-

isfying Θ =
∑
i∈I piΘi, there exist 〈∆i〉i∈I with ∆i ∈ D(S) such that

∆ =
∑
i∈I pi∆i, and ∆iRΘi for all i ∈ I.

Proof: It suffices to only prove the second part, as the first part is symmetric.

Suppose Θ =
∑
i∈I pi ·Θi, and w is the weight function that establishes ∆RΘ,

we define ∆i for each i ∈ I by ∆i(s) =
∑
t∈T w(s, t) · Θi(t)

Θ(t) for all s ∈ S.

10

We first check that
∑
i∈I pi ·∆i(s) = ∆(s) for all s ∈ S, i.e., ∆ =

∑
i∈I pi ·∆i.

Let s ∈ S, then
∑
i∈I pi · ∆i(s) =

∑
i∈I pi

∑
t∈T w(s, t) · Θi(t)

Θ(t) =
∑
t∈T

w(s,t)
Θ(t) ·∑

i∈I piΘ(t). Since
∑
i∈I piΘi(t) = Θ(t) by definition, we have

∑
i∈I pi ·∆i(s) =∑

t∈T w(s, t) = ∆(s).

Next we show that ∆iRΘi for each i ∈ I. Define a weight function wi :

S×T → [0, 1] as follows. For all s ∈ S and t ∈ T , wi(s, t) = w(s, t) · Θi(t)Θ(t) . Then

we verify the following three conditions.

1. wi(s, t) > 0 implies w(s, t) > 0, therefore sR t.
2. For all t ∈ T , we have

∑
s∈S wi(s, t) =

∑
s∈S w(s, t) · Θi(t)

Θ(t) = Θi(t)
Θ(t) ·∑

s∈S w(s, t) = Θi(t)
Θ(t) ·Θ(t) = Θi(t).

3. This case is similar to the above case. For all s ∈ S, we have
∑
t∈T wi(s, t) =∑

t∈T w(s, t) · Θi(t)
Θ(t) = ∆i(s).

�

3. Probabilistic Alternating Simulation Relations

In concurrency models, simulation and bisimulation relations are used to

relate states with respect to their behaviours. For example, in a labelled tran-

sition system (LTS) 〈S,A,→〉, where S is a set of states, A is a set of actions

and → ⊆ S × A × S is the transition relation, we say state s is simulated by

state t, written s ≤ t, if for every s
a→ s′ there exists t

a→ t′ such that s′ ≤ t′.

In this coinductive definition, state t is able to simulate state s by performing

the same action a, with their destination states still related. Simulation is a

useful tool in abstraction and refinement based verification, as intuitively, in

the above case, t contains at least as much “behaviour” as s does. Bisimulation

is a stronger relation which requires that the two related states have exactly the

same pattern of behaviours.

In a two-player non-probabilistic game structure (GS), alternating simu-

lation (A-simulation) is used to describe a player’s ability to enforce certain

temporal requirements regardless of the other player’s behaviours [7]. In this

paper we focus on the ability of player I in a two-player game. Since in a game

11

structure a transition requires the participation of both parties, fixing player I’s

input leaves a set of possible next states depending on player II’s inputs. An

A-simulation ≤A⊆ S × S is defined in the model of GS (given in Definition 1)

as follows. Let s, t ∈ S, s is A-simulated by t, written s ≤A t, if

• L(s) = L(t), and

• for all a ∈ ActI there exists a′ ∈ ActI such that δ(s, a) ≤ASm δ(t, a′),

where δ(s, a) is the “curried” transition function defined by {s′ ∈ S | ∃b ∈
ActII : δ(s, 〈a, b〉) = s′}.

Regarding the above definition of ≤A, we have the following observations.

First, we do not require a and a′ to be the same action, as only the enforced

outcomes are considered for establishing an A-simulation. Second, only deter-

ministic strategies are used in the original A-simulation in [7]. Intuitively, on

state t action a′ enforces a more restrictive outcome than action a enforces on

state s, as shown by the Smyth-ordered relation ≤ASm: for every b′ ∈ ActII there

exists b ∈ ActII such that δ(s, 〈a, b〉) ≤A δ(t, 〈a′, b′〉).
Previously, Zhang and Pang have extended A-simulation to probabilistic

alternating simulation (PA-simulation) in PGS [8] and proposed an algorithm

for computing the largest PA-simulation [17]. Their definition requires lifting of

the simulation relation to derive a relation on distributions of states.

Definition 5. Given a PGS 〈S, s0, L, Act, δ〉, a binary relation R ⊆ S×S is a

probabilistic alternating simulation (PA-simulation) if whenever s R t, we have

• L(s) = L(t), and

• for all π1 ∈ ΠI , there exists π2 ∈ ΠI , such that δ̃(s, π1) RSm δ̃(t, π2),

where δ̃(s, π) = {∆ ∈ D(S) | ∃π′ ∈ ΠII : δ̃(s, 〈π, π′〉) = ∆}.

State s is PA-similar to t, written as s v t, if there is a PA-simulation R with

s R t.

If state s PA-simulates state t and t PA-simulates s, we say s and t are PA-

simulation equivalent, which is written s ' t.

12

t0

t1 t2

⟨a2, b1⟩

⟨a1, b1⟩ ⟨a2, b2⟩

⟨a1, b2⟩
1
3

2
3

1
3 +ϵ 2

3 − ϵ

{¬$}

{¬$} {$}

2
3

1
3

2
3 +ϵ 1

3 − ϵ

Figure 4: A probabilistic game structure G2

Example 4. We define another three-state PGS in Figure 4 where the state

space is {t0, t1, t2}, ActI = {a1, a2}, and ActII = {b1, b2}. Again, ε > 0 is a

tiny positive real number with the same value as in Example 2. The transition

function is now given as follows.

- δ(t0, 〈a1, b1〉) = ∆2, where ∆2(t1) = 1
3 and = ∆2(t2) = 2

3 .

- δ(t0, 〈a2, b1〉) = ∆3, where ∆3(t1) = 2
3 and = ∆3(t2) = 1

3 .

- δ(t0, 〈a1, b2〉) = ∆′2, where ∆′2(t1) = 1
3 + ε and ∆′2(t2) = 2

3 − ε.

- δ(t0, 〈a2, b2〉) = ∆′3, where ∆′3(t1) = 2
3 + ε and ∆′3(t2) = 1

3 − ε.

There are only self-transitions from all states t1 and t2. In this PGS, from t0,

if player I chooses action a1, then the destination distribution will be either

∆2 which satisfies ∆2(t1) = 1
3 and ∆2(t2) = 2

3 if player II performs b1, or ∆′2

which is very close to ∆2 if player II performs b2. If player I chooses action

a2, then the destination distribution will be ∆3 or ∆′3 which is very close to ∆3.

That is, G2 is designed to make player I the dominant player in this game.

Suppose we take G1 and G2 combined as a single PGS, it is easy to establish

s1 v t1 and s2 v t2 as all these four states have no outgoing transitions,

L(s1) = L(t1), and L(s2) = L(t2). Here we show that s0 v t0. Since from

13

s0 player I has only a single mixed action a?, from t0 we construct a mixed

action σ of player I, satisfying σ(t0, a1) = 1
2 and σ(t0, a2) = 1

2 . Next we need

to establish δ̃(s0, a?) vSm δ̃(t0, σ).

- Suppose the action from player II in state t0 is b1, and let δ̃(t0, 〈σ, b1〉) =

Θ1, then we have Θ1(t1) = 1
2 and Θ1(t2) = 1

2 . In this case we let

player II’s action from s0 also be b1, thus δ̃(s0, 〈a?, b1〉) = Θ2, which

satisfies Θ2(s1) = 1
2 and Θ2(s2) = 1

2 . Given s1 v t1 and s2 v t2, this

consequently establishes Θ2 v Θ1.

- Suppose the action from player II in state t0 is b2, and let δ̃(t0, 〈σ, b2〉) =

Θ3, then we have Θ3(t1) = 1
2 + ε and Θ3(t2) = 1

2 − ε. In this case we let

player II’s action from s0 be b2 as well, thus δ̃(s0, 〈a?, b2〉) = Θ4, which

satisfies Θ4(s1) = 1
2 +ε and Θ4(s2) = 1

2−ε. Again, as s1 v t1 and s2 v t2,

this consequently establishes Θ4 v Θ3.

- Suppose in t0 player II performs a mixed action that allocates probability

p to b1 and 1− p to b2 for any 0 < p < 1, we are able to establish that the

same mixed action from s0 (which allocates probability p to b1 and 1− p
to b2) produces the same result as in the above cases.

Since δ̃(s0, a?) vSm δ̃(t0, σ), we have effectively established s0 v t0. However,

t0 6v s0. This is because if from t0 player I performs a1? which enforces a

distribution that gives almost probability 1
3 to t1 and almost probability 2

3 to

t2, there exists no mixed action from s0 that can enforce a similar outcome.

Therefore, intuitively player I has strictly more behaviour from t0 than from s0.

Bisimulation [1] may be the most popular concept for behavioural equiva-

lence in concurrency modelling. Next we define this notion for PGS models.

Definition 6. Given a PGS 〈S, s0, L, Act, δ〉, a binary relation R ⊆ S×S is a

probabilistic alternating bisimulation (PA-bisimulation) if whenever s R t, we

have

• L(s) = L(t), and

14

r0

r1 r2

{¬!}

{¬!} {!}

⟨a0, b1⟩ ⟨a0, b2⟩

1
2

1
2

1
2 +ϵ 1

2 − ϵ

similar transitions as in

……
%2

Figure 5: A probabilistic game structure G3

• for all π1 ∈ ΠI , there exists π2 ∈ ΠI , such that δ̃(s, π1) RSm δ̃(t, π2),

where δ̃(s, π) = {∆ ∈ D(S) | ∃π′ ∈ ΠII : δ̃(s, 〈π, π′〉) = ∆}, and

• for all π2 ∈ ΠI , there exists π1 ∈ ΠI , such that δ̃(s, π1) RSm δ̃(t, π2).

State s is PA-bisimilar to t, written as s ≈ t, if there is a PA-bisimulation R
with s R t.

Example 5. We introduce a new PGS G3 illustrated in Figure 5 (the omitted

transitions are identical to those in G2 depicted in Figure 4), where player I has

three actions a0, a1 and a2 available in r0. The transition relations from r0 is

- δ(r0, 〈a0, b1〉) = Θ1, where Θ1(r1) = Θ1(r2) = 1
2 .

- δ(r0, 〈a0, b2〉) = Θ′1, where Θ′1(r1) = 1
2 + ε and Θ′1(r2) = 1

2 − ε.

- δ(r0, 〈a1, b1〉) = Θ2, where Θ2(r1) = 1
3 and = Θ2(r2) = 2

3 .

- δ(r0, 〈a1, b2〉) = Θ′2, where Θ′2(r1) = 1
3 + ε and Θ′2(r2) = 2

3 − ε.

- δ(r0, 〈a2, b1〉) = Θ3, where Θ3(r1) = 2
3 and Θ3(r2) = 1

3 .

- δ(r0, 〈a2, b2〉) = Θ′3, where Θ′3(r1) = 2
3 + ε and Θ′3(r2) = 1

3 − ε.

15

One may find that player I actions a0, a1 and a2 enforce that after a transition,

the probabilities to reach state r1 are within the ranges [1
2 ,

1
2 + ε], [1

3 ,
1
3 + ε], and

[2
3 ,

2
3 + ε], respectively. Informally, from r0, player I has as much behavioral

power as from s0 and t0 combined. Similar to showing s0 v t0, it is straight-

forward to establish r0 v t0 as well, and this is because the additional behaviour

brought by action a0 from r0 can be simulated by a mixed action σ from t0 with

σ(t0, a1) = 1
2 and σ(t0, a2) = 1

2 . Moreover, we can further establish r0 ≈ t0,

and we leave the details of that relation to the interested reader.

3.1. Approximating Probabilistic Simulation Relations

In the literature, bisimulation (simulation) relation is often defined as an

observational equivalence (observational preorder). In an LTS, given n ∈ N, we

say t can “follow” s up to n + 1 steps, written s ≤n+1 t, if (1) s ≤n t and (2)

for each step s
a→ s′, there exists t

a→ t′ and s′ ≤n t′. The base relation ≤0 is

the universal relation on states.3 Such a way of definition may provides a few

benefits. For example, it allows to define weaker “approximants” for similarity

and bisimilarity, which can be applied in scenarios where the “full” simulation

relations are too strong. Moreover, these approximants can be used as a proof

technique [2] for establishing the completeness result for modal characterisation,

as we apply in Section 5.2.

For both PA-simulation and PA-bisimulation, we construct approximant re-

lations vn and ≈n for n ∈ N, where n denotes the number of steps that are

required to check for a state to PA-simulate and PA-bisimulate another state.

Definition 7. Given a PGS 〈S, s0, L, Act, δ〉, and states s, t ∈ S,

- s v0 t if L(s) = L(t),

- s vn+1 t if (1) s vn t, and (2) for all π1 ∈ ΠI , there exists π2 ∈ ΠI , such

that δ̃(s, π1) (vn)Sm δ̃(t, π2).

Definition 8. Given a PGS 〈S, s0, L, Act, δ〉, and states s, t ∈ S,

3The simulation relation is ∩n∈N ≤n provided that the underlying LTS is image-finite.

16

• s ≈0 t if L(s) = L(t),

• s ≈n+1 t if (1) s ≈n t, (2) for all π1 ∈ ΠI , there exists π2 ∈ ΠI , such that

δ̃(s, π1) (≈n)Sm δ̃(t, π2), and (3) for all π2 ∈ ΠI , there exists π1 ∈ ΠI ,

such that δ̃(s, π1) (≈n)Sm δ̃(t, π2).

Given both S and Act are finite in a PGS, we are going to show that v=

∩n∈N vn and ≈= ∩n∈N ≈n, as follows.

Lemma 3. Given a PGS 〈S, s0, L, Act, δ〉,

1. Given a PA-simulation v, there exists n ∈ N such that vn = v,

2. Given a PA-bisimulation ≈, there exists n ∈ N such that ≈n = ≈.

Proof: We prove case (1) for PA-simulation, and then showing the case (2) for

PA-bisimulation is just similar.

Since for PA-simulation v, we have vi+1⊆ vi for all i ∈ N by Definition 7,

and given S being finite, we can always find n ∈ N such that vn = vn+1.

We need to show vn = v. Let s vn t, then we also have s vn+1 t (given

vn = vn+1). Following Definition 7, we establish the following cases.

• L(s) = L(t),

• for all π1 ∈ ΠI , there exists π2 ∈ ΠI , such that

δ̃(s, π1) (vn)Sm δ̃(t, π2).

This effectively shows that vn is a PA-simulation, i.e., vn ⊆ v.

Regarding the claim that v ⊆ vn, it can be established by a straightforward

induction which proves that v ⊆ vi for all i ∈ N. Therefore, vn = v. �

3.2. Lifted PA-Simulation on Distributions

Now we extend the function δ̃ to handle transitions from distributions to dis-

tributions. Formally, given a distribution ∆ ∈ D(S), π1 ∈ ΠI and π2 ∈ ΠII , for

all s ∈ S, we define δ̃(∆, 〈π1, π2〉)(s) =
∑
t∈d∆e∆(t)·δ̃(t, 〈π1, π2〉)(s). Informally,

from distribution ∆, if player I performs mixed action π1 and player II per-

forms mixed action π2, then the system will make a transition to δ̃(∆, 〈π1, π2〉).

17

Note that during this transition, player I strategy π1 and player II strategy

π2 are applied on all states in the support of distribution ∆. Given t ∈ d∆e,
the destination distribution δ̃(t, 〈π1, π2〉) is then joined (with the other distri-

butions) according to the weight of t in ∆. For better readability, sometimes

we write ∆
π1,π2−−−→ Θ if Θ = δ̃(∆, 〈π1, π2〉).

Since the notion of PA-simulation in Definition 5 is defined as a relation on

states, in the following we show that the lifted PA-simulation is also a simulation

on distributions over the states. This is later used as a stepping stone to our

soundness result.

In Definition 5, given s v t and π1 on s, we focus on the construction of a

mixed action π2 on t which “simulates” behaviour of π1 on s. When dealing

with a relation on distributions (e.g., showing ∆ v Θ), we may construct a

mixed action for each state in the support of Θ, before combing all the mixed

actions (for establishment of the simulation relation) according to the weights

of states in the support of Θ. Therefore, we study the properties of “splitting”

and “merging” of mixed actions. Similar to the way of treating distributions,

we allow a linear combination of mixed actions. Given a list of mixed actions

〈πi〉i∈I (of player I), and 〈pi〉i∈I satisfying
∑
i∈I pi = 1,

∑
i∈I piπi is a mixed

action defined by
(∑

i∈I piπi
)

(s)(a) =
∑
i∈I pi · (πi(s)(a)) for all s ∈ S and

a ∈ ActI . (In this definition, pi is the probability of choosing mixed action πi.)

The following two auxiliary lemmas allow us to “split” a mixed action in its role

in the next step of game playing.

Lemma 4. Let s ∈ S, π ∈ ΠI and σ =
∑
i∈I piσi ∈ ΠII , then δ̃(s, 〈π, σ〉) =∑

i∈I pi · δ̃(s, 〈π, σi〉).

Lemma 5. Let s ∈ S, π =
∑
i∈I piπi ∈ ΠI and σ ∈ ΠII , then δ̃(s, 〈π, σ〉) =∑

i∈I pi · δ̃(s, 〈πi, σ〉).

18

Proof: Let t ∈ S, then

δ̃(s, 〈π, σ〉)(t)
=

∑
a1∈Act1

∑
a2∈Act2 π(s)(a1) · σ(s)(a2) · δ(s, 〈a1, a2〉)(t)

=
∑
a1∈Act1

∑
a2∈Act2 π(s)(a1) ·∑i∈I pi · σi(s)(a2) · δ(s, a1, a2)(t)

=
∑
i∈I pi ·

(∑
a1∈Act1

∑
a2∈Act2 π(s)(a1) · σi(s)(a2) · δ(s, a1, a2)(t)

)
=

∑
i∈I pi · δ̃(s, 〈π, σi〉)(t)

�

Here we only prove Lemma 5, as the proof of Lemma 4 is similar to that of

Lemma 5. These two lemmas show that we can distribute a probability distribu-

tion over actions out of a transition operator to the resulting state distribution.

The following lemma further allows to shift a linear combination from the source

distribution to the destination distribution of a PGS transition, if the players’

strategies do not change.

Lemma 6. Let ∆ ∈ D(S) with ∆ =
∑
i∈I pi∆i, π ∈ ΠI and σ ∈ ΠII , then we

have δ̃(∆, 〈π, σ〉) =
∑
i∈I pi · δ̃(∆i, 〈π, σ〉).

Proof: Let t ∈ S, then ∑
i∈I pi · δ̃(∆i, 〈π, σ〉)(t)

=
∑
i∈I pi ·

∑
s∈S ∆i(s) · δ̃(s, 〈π, σ〉)(t)

=
∑
s∈S

∑
i∈I pi∆i(s) · δ̃(s, 〈π, σ〉)(t)

=
∑
s∈S ∆(s) · δ̃(s, 〈π, σ〉)(t)

= δ̃(∆, 〈π, σ〉)(t)

�

The next lemma shows another property of PA-simulation. If two dis-

tributions (∆ and Θ) can be split into distributions of smaller weights (i.e.,∑
i∈I pi · ∆i and

∑
i∈I pi · Θi), then by applying the corresponding strategies

(〈π1, σ1〉 and 〈π2, σ2〉), if PA-simulation can be established for all resulting dis-

tributions (i.e., δ̃(∆i, 〈π1, σ1〉) v δ̃(Θi, 〈π2, σ2〉)), then PA-simulation can be

established for the resulting combined distributions as organized by the same

index set.

19

Lemma 7. Let ∆,Θ ∈ D(S) with ∆ =
∑
i∈I pi∆i and Θ =

∑
i∈I piΘi, π1, π2 ∈

ΠI and σ1, σ2 ∈ ΠII . If δ̃(∆i, 〈π1, σ1〉) v δ̃(Θi, 〈π2, σ2〉) for all i ∈ I, then

δ̃(∆, 〈π1, σ1〉) v δ̃(Θ, 〈π2, σ2〉).

Proof: By assumption, δ̃(∆i, 〈π1, σ1〉) v δ̃(Θi, 〈π2, σ2〉) for all i ∈ I. By

Lemma 1, we have
∑
i∈I pi · δ̃(∆i, 〈π1, σ1〉) v

∑
i∈I pi · δ̃(Θi, 〈π2, σ2〉).

After that, we apply Lemma 6 on both sides of “v” to push the linear com-

bination of the individual distributions (i.e., δ̃(∆i, 〈π1, σ1〉) and δ̃(Θi, 〈π2, σ2〉)
for each i) into their corresponding start distributions (i.e., δ̃(∆, 〈π1, σ1〉) and

δ̃(Θ, 〈π2, σ2〉)), which gives δ̃(∆, 〈π1, σ1〉) v δ̃(Θ, 〈π2, σ2〉). �

Lemma 7 allows to merge the simulation by component distributions on

both sides of the relation. The next auxiliary lemma states that given a PA-

simulation on states, the lifted PA-simulation on distributions of states can be

treated as a simulation via mixed actions of player I and player II.

Lemma 8. Let G = 〈S, s0,L, Act, δ〉 be a PGS, and v be a PA-simulation

relation for G. Given ∆vΘ, for all player I mixed actions π1, there exists a

mixed action π2, such that δ̃(∆, π1)vSm δ̃(Θ, π2).

This can be proved by splitting distributions on both sides, and then merge

related components to form distributions on both sides of the lifted relation,

applying previous lemmas.

Proof: By definition there exists a weight function w, such that for all states

s, t ∈ S, we have w(s, t) > 0 implies s v t. For each pair of states s, t ∈ S

with w(s, t) > 0, we have a mixed action πs,t such that δ(s, π1) vSm δ(t, πs,t).

We construct a mixed action π2 =
∑
s,t∈S:w(s,t)>0 w(s, t)πs,t, and show that

δ̃(∆, π1) vSm δ̃(Θ, π2).

Let σ2 ∈ ΠII , and we show that there exists a mixed action σ1 ∈ ΠII

such that δ̃(∆, 〈π1, σ1〉) v δ̃(Θ, 〈π2, σ2〉). Since for each pair of states s, t ∈ S
with w(s, t) > 0, we have δ̃(s, π1) vSm δ̃(t, πs,t), there exists σs,t ∈ ΠII such

that δ̃(s, 〈π1, σs,t〉) v δ̃(t, 〈πs,t, σ2〉). Define σ1 =
∑
s,t∈S:w(s,t)>0 w(s, t)σs,t. By

20

Lemma 1, we have∑
s,t∈S,w(s,t)>0

w(s, t) · δ̃(s, 〈π1, σs,t〉) v
∑

s,t∈S,w(s,t)>0

w(s, t) · δ̃(t, 〈πs,t, σ2〉)

Applying Lemma 4 on the LHS of the above equation and Lemma 5 on the

RHS, we have δ̃(s, 〈π1, σ1〉)v δ̃(t, 〈π2, σ2〉). Then by Lemma 7, we join the

distributions according to the probabilities given by the weight function, and

get δ̃(∆, 〈π1, σ1〉)v δ̃(Θ, 〈π2, σ2〉). �

Similarly, we have the following results for PA-bisimulation.

Lemma 9. Let G = 〈S, s0,L, Act, δ〉 be a PGS, and ≈ be a PA-bisimulation

relation for G. Given ∆≈Θ,

• for all player I mixed actions π1, there exists a player I mixed action π2,

such that δ̃(∆, π1)≈Sm δ̃(Θ, π2),

• for all player I mixed actions π2, there exists a player I mixed action π1,

such that δ̃(∆, π1)≈Sm δ̃(Θ, π2).

We also have the following results for the approximants of PA-simulation

and PA-bisimulation, following the same proof strategy as for Lemma 8.

Corollary 1. Let G = 〈S, s0,L, Act, δ〉 be a PGS, and n ∈ N.

1. Given ∆vn+1 Θ, for all player I mixed actions π1, there exists a player

I mixed action π2, such that δ̃(∆, π1) (vn)Sm δ̃(Θ, π2).

2. Given ∆≈n+1 Θ, then

(1) for all player I mixed actions π1, there exists a player I mixed action

π2, such that δ̃(∆, π1) (≈n)Sm δ̃(Θ, π2),

(2) for all player I mixed actions π2, there exists a player I mixed action

π1, such that δ̃(∆, π1) (≈n)Sm δ̃(Θ, π2).

4. Modal Logics for Probabilistic GS

In the literature, different modal logics have been introduced to charac-

terise process semantics at different levels. Hennessy-Milner logic (HML) [2]

21

is a classical example, and it provides a sound and complete characterisation

of bisimulation semantics in image-finite LTS. In other words, two states (or

processes) satisfy the same set of HML formulas iff they are bisimilar. For a

more comprehensive survey we refer to [18]. For probabilistic systems, there are

modal logics proposed and proved to characterise strong and weak probabilistic

(bi)simulation in the model of probabilistic automata [3, 4, 5].

In this section we propose a modal logic for PGS that characterises a player’s

ability to enforce temporal properties. We define a new logic L⊕ that resembles

the logic of Deng et al. [19, 4]. The syntax of the logic L⊕ is presented below.

ϕ ::= p | ¬ϕ |
∧
i∈I

ϕi |
∨
i∈I

ϕi | 〈〈I〉〉ϕ | JIKϕ |
⊕
j∈J

pjϕj |
l

j∈J
ϕj

In particular, p is an atomic formula that belongs to the set Prop. Formula∧
i∈I ϕi produces a conjunction, and

∨
i∈I ϕi produces a disjunction, both via a

(possibly infinite) index set I. We then derive > =
∧
i∈∅ ϕi is a formula that is

true everywhere, and ⊥ =
∨
i∈∅ ϕi is a formula false everywhere. 〈〈I〉〉ϕ specifies

player I’s ability to enforce ϕ in the next step. JIKϕ is the dual of 〈〈ϕ〉〉 which

specifies player I’s “inability” to enforce ¬ϕ. (Informally, JIKϕ is equivalent to

¬〈〈I〉〉¬ϕ.) The probabilistic summation operator
⊕

j∈J pjϕj explicitly specifies

that a distribution satisfying such a formula should be split according to pre-

defined probability weights, each part with weight pj satisfying sub-formula ϕj .

For a summation formula with index set J , we may explicitly write down each

component coupled by its weight, such as in the way of [p1, ϕ1]⊕ [p2, ϕ2]⊕ . . .⊕
[p|J|, ϕ|J|]. The operator

d
j∈J ϕj asserts the existence of a linear interpolation

among formulas ϕj . Negation of a formula is interpreted as distributions that

do not satisfy the formula. We use L⊕ to denote the set of modal formulas

defined by the above syntax.

The semantics of L⊕ is presented as follows. The interpretation of each

formula is defined as a set of distributions of states in a finite PGS G =

〈S, s0, L, Act, δ〉.

• {[p]} = {∆ ∈ D(S) | ∀s ∈ d∆e : p ∈ L(s)};

22

• {[¬ϕ]} = {∆ ∈ D(S) | ∆ 6∈ {[ϕ]}};

• {[∧i∈I ϕi]} =
⋂
i∈I{[ϕi]}

• {[∨i∈I ϕi]} =
⋃
i∈I{[ϕi]};

• {[〈〈I〉〉ϕ]} = {∆ ∈ D(S) | ∃π1 ∈ ΠI : ∀π2 ∈ ΠII : ∆
π1,π2−−−→ Θ =⇒ Θ ∈

{[ϕ]}};

• {[JIKϕ]} = {∆ ∈ D(S) | ∀π1 ∈ ΠI : ∃π2 ∈ ΠII : ∆
π1,π2−−−→ Θ ∧Θ /∈ {[ϕ]}};

• {[⊕j∈J pjϕj]} = {∆ ∈ D(S) | ∆ =
∑
j∈J pj∆j ∧ ∀j ∈ J : ∆j ∈ {[ϕj]}};

• {[dj∈J ϕj]} = {∆ ∈ D(S) | ∃{pj}j∈J :
∑
j∈J pj = 1 ∧ ∆ =

∑
j∈J pj∆j ∧

∀j ∈ J : ∆j ∈ {[ϕj]}};

Note here we say a distribution ∆ satisfies a propositional formula if the formula

holds in every state in the support of ∆. The rest of the semantics is mostly

self-explained. Formally, given a formula ϕ ∈ L⊕ and a distribution ∆, we write

∆ |= ϕ iff ∆ ∈ {[ϕ]}, and FL⊕(∆) for the set of formulas {ϕ ∈ L⊕ | ∆ |= ϕ},
which denotes the set of formulas satisfied by distribution ∆. We further define

L	 for the sublogic of L⊕ by removing disjunction and the JIK modality, and

the negation operator (i.e., ¬ϕ) is only applied at the propositional level. Later

in Section 5, we prove that the modal logic L	 characterises PA-simulation.

Remark. The probabilistic modal logic proposed by Parma and Segala [3]

and Hermanns et al. [5] uses a fragment operator [ϕ]α, such that a distribution

satisfies [ϕ]α (i.e., ∆ |= [ϕ]α) iff there exists ∆1,∆2 ∈ D(S) such that ∆ = ∆1⊕α
∆2 and ∆1 |= ϕ. Informally, it states that a fragment of ∆ with weight at least

α satisfies ϕ. Note that the summation operator of L⊕ can be used to encode

the fragment operator [ϕ]α, in the way that ∆ |= [ϕ]α iff ∆ |= [α,ϕ]⊕ [1−α,>].

Therefore, a straightforward adaptation of the logic by Parma and Segala [3]

and Hermanns et al. [5] does not yield a more expressive logic than L⊕.

In particular, the semantics of nondeterministic summation
d
j∈J ϕj allows

arbitrary linear interpolation among formulas ϕj . It defines a set of distribu-

tions, each of which, say ∆, can be split into ∆1,∆2 . . . of weights p1, p2 . . . ,

23

i.e., with ∆k ∈ {[ϕk]} for all k ∈ J , and the only constraints for the weights are

that 0 ≤ pk ≤ 1 and they sum up to 1. This formula represents a weaker version

of probabilistic summation formula (i.e.,
⊕

j∈J pjϕj), and the nondeterministic

summation operator can be later used to “simulate” the nondeterminisic be-

havior from player II in the proof for modal characterisation of PA-simulation

relation. Similar to the way of treating probabilistic summations, one may write

down
d
j∈J ϕj by [ϕ1] u [ϕ2] u . . . u [ϕ|J|] given finite index J . The following

lemma is straightforward.

Lemma 10. Let ϕ =
⊕

j∈J pjϕj and ϕ′ =
d
j∈J ϕj, and ∆ ∈ D(S). We have

∆ |= ϕ implies ∆ |= ϕ′.

Similar to most of the literature, given a PGS G, we define preorders on the

set of states in G with respect to satisfaction of the modal logics L	 and L⊕.

Given s ∈ S, write L	(s) for {ϕ ∈ L	 | s |= ϕ} and L⊕(s) for {ϕ ∈ L⊕ | s |= ϕ}

Definition 9. Given states s, t ∈ S,

• s vL	 t if L	(s) ⊆ L	(t);

• s vL⊕ t if L⊕(s) ⊆ L⊕(t).

If s vL	 t (s vL⊕ t) and t vL	 s (t vL⊕ s), we write s ≈L	 t (s ≈L⊕ t).

In the following sections we state the main results of the paper.

5. Characterising Probabilistic Alternating Simulation

In this section we prove that the modal logic L	 characterises PA-simulation

in the following theorem, and we leave its proof to the following two subsections.

Theorem 1. Given a PGS 〈S, s0, L, Act, δ〉, for all s, t ∈ S, s v t iff s vL	 t.

5.1. A Soundness Proof

Since Lemma 8 extends the PA-simulation to a binary relation on distribu-

tions, we may rather prove a more general soundness result, as follows.

24

Theorem 2. Given ϕ ∈ L	, ∆,Θ ∈ D(S), and ∆ v Θ where v is a PA-

simulation, then ∆ |= ϕ implies Θ |= ϕ.

Proof: By structural induction on the formula ϕ.

Base case: As ∆ v Θ, by definition of lifting, there exists a weight function w,

such that for every t ∈ dΘe there is s′ ∈ d∆e such that w(s′, t) > 0 and s′ v t;

and for every s ∈ d∆e there is t′ ∈ dΘe such that w(s, t′) > 0 and s v t′. We

consider the following two cases.

(1) If ∆ |= ϕ and ϕ = p, then for all s ∈ d∆e, p ∈ L(s). Then p ∈ L(t) for

all t ∈ dΘe by Definition 5 and the weight function w. Therefore, Θ |= p.

(2) If ∆ |= ¬p, then there exists s ∈ d∆e such that s 6|= p. By the definition

of the weight function, there exists t ∈ dΘe such that w(s, t) > 0, and s v t.

Therefore L(s) = L(t), i.e., t 6|= p. This proves Θ |= ¬p.

Induction step: We have the following cases.

• If ϕ =
∧
i∈I ϕi, then for every ϕi, we have ∆ |= ϕi. By I.H., we have

Θ |= ϕi for all i. Therefore, Θ |= ∧i∈I ϕi.
• If ϕ =

⊕
i∈I piϕi, then by definition, there exist 〈pi,∆i〉i∈I such that

∆ =
∑
i∈I pi∆i and ∆i |= ϕi for all i ∈ I. By Lemma 2(1), there exist

〈Θi〉i∈I such that Θ =
∑
i∈I piΘi and ∆i v Θi for all i ∈ I. Then by I.H.,

Θi |= ϕi for all i. Therefore, Θ |= ⊕i∈I piϕi.

• If ϕ =
d
i∈I ϕi, then by definition, there exists 〈pi,∆i〉i∈I such that∑

i∈I pi = 1, ∆ =
∑
i∈I pi∆i and ∆i |= ϕi for all i ∈ I. Then similar to the

above case, by Lemma 2(1), there exist 〈Θi〉i∈I such that Θ =
∑
i∈I piΘi

and ∆i v Θi for all i ∈ I. Then by I.H., Θi |= ϕi for all i. Therefore,

Θ |= d
i∈I ϕi by definition.

• If ϕ = 〈〈I〉〉ψ, then there exists a player I mixed actions π1 such that for

all player II mixed actions σ1, ∆
π1,σ1−−−→ ∆′ and ∆′ |= ψ. By Lemma 8,

there exists a player I mixed action π2 such that δ̃(∆, π1)vSmδ̃(Θ, π2).

Therefore, for all player II mixed actions σ2 there exists a player II
strategy σ′1, such that ∆

π1,σ
′
1−−−→ ∆′′, Θ

π2,σ2−−−→ Θ′, and ∆′′ v Θ′. Since

25

∆′′ |= ψ, by I.H., Θ′ |= ψ. Now we have that π2 is the player I mixed

action showing Θ |= 〈〈I〉〉ψ.

�

5.2. A Completeness Proof

The completeness is proved by making use of the approximant relations of

v and vL	 . Similar to the relations vn with n ∈ N as in Definition 7, where n

denotes the number of steps that are required to check for a state to simulate

another, we define vL	n by placing restriction on formulas in L	 with size up

to n. Then we prove that the relation vL	n is contained in vn for all n ∈ N.

Definition 10. Let L	0 be the set of formulas constructed by using only p (where

p ∈ Prop) and
∧
i∈I ϕi. For n ∈ N, a formula ϕ ∈ L	n+1 if either ϕ ∈ L	n or

ϕ is a conjunction of formulas of the form 〈〈I〉〉di∈I
⊕

j∈J pjϕi,j, where each

ϕi,j ∈ L	n .

Intuitively, formulas in L	n require n steps of transitions (for player I) to enforce.

Given states s, t ∈ S, we write s vL	n t, if for all ϕ ∈ L	n , s? |= ϕ implies t? |= ϕ.

Before starting the completeness proof, we define formulas that charac-

terise properties of the game states. Let s ∈ S, the 0-characteristic formula

for s is φ0
s =

∧{p | p ∈ L(s)}. Plainly, the level 0-characterisation con-

siders only propositional formulas. For a distribution, we specify the char-

acteristic formulas for the states in its support proportional to weights. The

0-characteristic formula φ0
∆ for distribution ∆ is

⊕
t∈d∆e∆(t) · φ0

t . Given all

n-characteristic formulas defined, the (n + 1)-characteristic formula φn+1
s for

state s is
∧
π∈D(ActI)〈〈I〉〉

d
b∈ActII φ

n
∆π,b

, where s?
π,b?−−−→ ∆π,b. Similarly, an

n-characteristic formula φn+1
∆ for distribution ∆ is

⊕
t∈d∆e∆(t) · φn+1

t .

Obviously every state or distribution satisfies its own characteristic formula,

and the following lemma can be proved by induction on n ∈ N.

Lemma 11. For all ∆ ∈ D(S), ∆ |= φn∆ for all n ∈ N.

Lemma 12. For all states s, t ∈ S and n ∈ N, s vL	n t implies s vn t.

26

Proof: Since for each n ∈ N, we have s? |= φns by Lemma 11. Let s vL	n t,

then t? |= φns . Therefore, we need to prove t? |= φns implies s vn t. We proceed

by induction on the level of approximation n to show that s vn t.
We first show that it is equivalent to have this pattern of reasoning work-

ing over distributions (as well as over states). Suppose for all s, t ∈ S, we

have s vL	n t implies t? |= φns . Given two distributions ∆,Θ ∈ D(S), as-

sume that ∆ vL
	

n Θ. Then there exists a weight function w, such that ∆ =∑
s∈d∆e,t∈dΘe:w(s,t)>0 w(s, t) · s?, and Θ =

∑
s∈d∆e,t∈dΘe:w(s,t)>0 w(s, t) · t?, and

s vL	n t for all w(s, t) > 0. Since φn∆ can be written as
⊕

s∈d∆e,t∈dΘe:w(s,t)>0 w(s, t)·
φns , we must have Θ |= φn∆ as well.

Base case: Given s vL	0 t, then t? |= φ0
s, i.e., states s and t agree on all

propositional formulas, which implies L(s) = L(t). Therefore, s v0 t.

Induction step: Assume the condition holds up to level n. Let s vL	n+1 t, and

we need to show that s vn+1 t. Taking the (n+ 1)-characteristic formula for s,

then by s vL	n+1 t, we have t? |= φn+1
s , where φn+1

s =
∧
π∈D(ActI)〈〈I〉〉

d
b∈ActII φ

n
∆π,b

.

Then for each π ∈ D(ActI), t? |= 〈〈I〉〉
d
b∈ActII φ

n
∆π,b

. By definition there exists

a player I mixed action π′, such that for every player II mixed action σ, we

have t?
π′,σ−−−→ Θ and Θ |= d

b∈ActII φ
n
∆π,b

(i.e., π′ enforces
d
b∈ActII φ

n
∆π,b

). We

need to show that δ̃(s, π) (vn)Sm δ̃(t, π′).

It suffices to check each “deterministic action” action in ActII from t can

be followed by a player II mixed action from s to establish a simulation. Let b′

be a player II action, and t?
π′,b′?−−−−→ Θ. Since Θ |= d

b∈ActII φ
n
∆π,b

, there exists

a list of probability values 〈pc〉c∈ActII , such that Θ |= ∑
c∈ActII pcφ

n
∆π,c

. Then

by definition, we have Θ =
∑
c∈ActII pc · Θc,

∑
c∈ActII pc = 1 and Θc |= φn∆π,c

for all c ∈ ActII . In state s, we define a player II mixed action σ satisfying

σ(s)(c) = pc for all c ∈ ActII . Then by Lemma 4, we have δ̃(s, 〈π, σ〉) =∑
c∈ActII pc·δ(s, 〈π, c〉) = ∆π,σ. By Lemma 1, it suffices to show δ(s, 〈π, c〉)vnΘc

for all c ∈ ActII . Since Θc |= φn∆π,c
, we have ∆π,cvnΘc by I.H.. Therefore,

∆π,σ v Θ. Since b′ ∈ ActII is arbitrarily chosen, we have δ̃(s, π) (vn)Sm

δ̃(t, π′), as required. This proves s vn+1 t. �

Intuitively, by fixing a mixed strategy from player I, a transition in the

27

PGS is bounded by deterministic actions from player II, as mimicked in the

structure of the characteristic formulas. The way of showing satisfaction of a

characteristic formula thus mimics the PA-simulation in the proof of Lemma 12.

Theorem 3. For all s, t ∈ S, s vL	 t implies s v t.

Proof: In a finite state PGS (i.e., the space S × S is finite) there exists n ∈ N

such that v = vn by Lemma 3(1). Since vL	 ⊆ vL	n , and vL	n ⊆ vn which is

by Lemma 12, we have vL	 ⊆ vn = v. �

6. Characterising Probabilistic Alternating Bisimulation

In this section, we prove that PA-bisimulation can be characterised by the

modal logic L⊕. The soundness proof is still by structural induction. Regarding

the completeness proof, we prove that for all n ∈ N, if two states are not ≈n
related, then they are not ≈L⊕n related. Similar to what we have defined for L	

in the last section, we define L⊕0 for the set of formulas in L⊕ which does not

contain the strategy modality 〈〈I〉〉 (nor JIK4). For all n ∈ N, L⊕n+1 is the union

of L⊕n , all formulas in {〈〈I〉〉ϕ | ϕ ∈ L⊕n }, and the closure on the former two sets

by using all operators defined for L⊕ except for the strategy modality 〈〈I〉〉.
In the following, we first prove a stronger soundness result for approximants

of PA-bisimulation on distributions rather than on states.

Lemma 13. ∆≈nΘ implies ∆≈L⊕n Θ for all n ∈ N.

Proof: We prove by induction on n.

Base case: Given ∆ ≈0 Θ, there exists a weight function w satisfying (1)∑
s∈d∆e w(s, t) = Θ(t) for all t ∈ dΘe, (2)

∑
t∈dΘe w(s, t) = ∆(s) for all s ∈ d∆e,

and (3) w(s, t) implies L(s) = L(t). This effectively establishes ∆ ≈L⊕0 Θ with

the same weight function w.

4Strictly speaking, both disjunction and the JIK modality are syntactic sugars and are

expressible by the use of negation.

28

Induction step: Suppose the above claim is satisfied for k, we prove the case

for k + 1. Let ∆≈k+1Θ, we show that ∆≈L⊕k+1Θ. We have the following cases.

• Let 〈〈I〉〉ψ where ψ ∈ L⊕k and 〈〈I〉〉ψ ∈ L⊕k+1. Suppose ∆ |= 〈〈I〉〉ψ, we show

that Θ |= 〈〈I〉〉ψ. Let π1 ∈ ΠI be the strategy that enforces 〈〈I〉〉ψ on ∆.

Then by Corollary 1(2), there exists π2 ∈ ΠI such that for all σ2 ∈ ΠII ,

there exists σ1, such that ∆
π1,σ1−−−→ ∆′, Θ

π2,σ2−−−→ Θ′, and ∆′≈k Θ′. Since

π enforces ψ, we have ∆′ |= ψ. By I.H., we have Θ′ |= ψ, i.e., π2 is

the strategy that enforces 〈〈I〉〉ψ in Θ. Therefore Θ |= 〈〈I〉〉ψ. Suppose

Θ |= 〈〈I〉〉ψ, we can show that ∆ |= 〈〈I〉〉ψ which is a symmetric case.

• The cases where the strategy modality is not used can be proved by struc-

tural induction on construction of the formulas in L⊕n+1, similar to the

proof for Theorem 2.

�

To prove the completeness result, we show that if two states s and t are not

related by ≈, then s 6≈L⊕ t. We prove this claim for all approximant relations

≈n and ≈L⊕n , in the way that if s 6≈n t, we are able to construct a formula

ϕ ∈ L⊕n which is only satisfied by s, but not t. We need the following auxiliary

lemmas. The first lemma is a direct implication of the definition of ≈L⊕n .

Lemma 14. For all n ∈ N, s, t ∈ S, s 6≈L⊕n t then there exists ϕ ∈ L⊕n such

that s? |= ϕ and t? 6|= ϕ.

We enumerate the equivalence classes of ≈L⊕n as E1, E2 . . . Em such that Ei ∩
Ej = ∅ for all i < j and

⋃
i=1...mEi = S. Given a state s ∈ Ei, we can find a

formula ϕi such that s |= ϕi and t 6|= ϕi for all states t 6∈ Ei. In the following

we extend the result of Lemma 14 to lifted approximants for PA-bisimulation

as a relation on the set of distributions.

Lemma 15. For all n ∈ N, ∆,Θ ∈ D(S), ∆ 6≈L⊕n Θ then there exists ϕ ∈ L⊕n
such that ∆ |= ϕ and Θ 6|= ϕ.

Proof: Suppose ϕi is a formula in L⊕n that is satisfied by states in Ei but

not satisfied by all states in not Ei, by Lemma 14. Let ∆(Ei) = pi for all

29

i = 1 . . .m. We construct a formula ϕ∆ =
∑
i=1...m piϕi. Then we have ∆ |= ϕ∆

and Θ 6|= ϕ∆. �

Lemma 16. For all n ∈ N, S1, S2 ⊆ D(S), satisfying ∆ 6≈L⊕n Θ for all ∆ ∈ S1

and Θ ∈ S2, then there exists ϕ ∈ L⊕n such that ∆ |= ϕ for all ∆ ∈ S1 and

Θ 6|= ϕ for all Θ ∈ S2.

Proof: Let ∆ ∈ S1, then by Lemma 15, there exists a formula ϕ∆ such that

∆ |= ϕ∆ and Θ 6|= ϕ∆ for all Θ ∈ S2. We construct the formula φ =
∨

∆∈S1
ϕ∆.

Then we have ∆ |= φ for all ∆ ∈ S1 and Θ 6|= φ for all Θ ∈ S2. �

Now we apply Lemma 16 in the following result.

Lemma 17. s 6≈n t implies s 6≈L⊕n t for all n ∈ N.

Proof: We prove by induction on n ∈ N.

Base case: s 6≈0 t implies L(s) 6= L(t). Then w.l.o.g., there exists a proposition

p ∈ L(t) such that s? 6|= p and t? |= p. Therefore, s 6≈L⊕0 t.

Induction step: Suppose s 6≈n+1 t, there exists π ∈ ΠI such that for all

π′ ∈ ΠI , we have δ̃(s, π) (6≈n)Sm δ̃(t, π
′). By definition of Smyth order, for all

π′ ∈ ΠI , there exists σ′ ∈ ΠII , such that for all σ ∈ ΠII , we have (1) s?
π,σ−−→

∆π,σ, (2) t?
π′,σ′−−−→ Θπ′,σ′ , (3) ∆π,σ 6≈n Θπ′,σ′ . Then by I.H., ∆π,σ 6≈nL⊕Θπ′,σ′ .

In the above case, we define a function f : ΠI → ΠII which maps the choice

of player I mixed actions (e.g., π′) to the corresponding player II mixed actions

(e.g., σ′) from state t. Since σ can be any player II strategy, for all ∆ ∈ δ̃(s, π)

and for all Θ ∈ {Θπ′,σ′ | σ′ = f(π′)}, we have ∆ 6≈nL⊕Θ. We construct two sets

of distributions S1 = δ̃(s, π) and S2 = {Θπ′,σ′ | σ′ = f(π′)}. Now by Lemma 16,

there exists ϕ ∈ L⊕n such that ∆ |= ϕ for all ∆ ∈ S1 and Θ 6|= ϕ for all Θ ∈ S2.

Therefore, we construct a formula 〈〈I〉〉ϕ ∈ L⊕n+1, with s |= 〈〈I〉〉ϕ by strategy π

and t 6|= 〈〈I〉〉ϕ. Therefore s 6≈L⊕n+1 t. �

By combining Lemma 13 and Lemma 17, we have established s ≈n t iff

s ≈L⊕n t for all n ∈ N. Therefore, by applying Lemma 3(2), we have that

≈=
⋂
n∈N ≈n=

⋂
n∈N ≈L

⊕

n =≈L⊕ , which proves the following.

Theorem 4. For all s, t ∈ S, s ≈ t iff s ≈L⊕ t.

30

7. Probabilistic Alternating-time Mu-Calculus

Modal logics of finite modality depth are not enough to express temporal

requirements such as “something bad never happens”. In this section, we extend

the logic L⊕ into a Probabilistic Alternating-time µ-calculus (PAMu), by adding

variables and fixpoint operators.

ϕ ::= p | ¬ϕ | ∧i∈I ϕi | ∨i∈I ϕi | 〈〈I〉〉ϕ | JIKϕ | dj∈J ϕj

|⊕j∈J pjϕj | Z | µZ.ϕ | νZ.ϕ

Let the environment ρ : V → P(D(S)) be a mapping from variables in V
to sets of distributions on states, and the semantics of the fixpoint operators of

PAMu are defined in the standard way.

• {[p]}ρ = {∆ ∈ D(S) | ∀s ∈ d∆e : p ∈ L(s)};

• {[¬ϕ]}ρ = {∆ ∈ D(S) | ∆ 6∈ {[ϕ]}};

• {[∧i∈I ϕi]}ρ =
⋂
i∈I{[ϕi]}ρ;

• {[∨i∈I ϕi]} =
⋃
i∈I{[ϕi]}ρ;

• {[〈〈I〉〉ϕ]}ρ = {∆ ∈ D(S) | ∃π1 ∈ ΠI : ∀π2 ∈ ΠII : ∆
π1,π2−−−→ Θ =⇒ Θ ∈

{[ϕ]}ρ};

• {[JIKϕ]}ρ = {∆ ∈ D(S) | ∀π1 ∈ ΠI : ∃π2 ∈ ΠII : ∆
π1,π2−−−→ Θ ∧Θ 6∈ {[ϕ]}ρ};

• {[⊕j∈J pjϕj]}ρ = {∆ ∈ D(S) | ∆ =
∑
j∈J pj∆j ∧ ∀j ∈ J : ∆j ∈ {[ϕj]}ρ};

• {[dj∈J ϕj]}ρ = {∆ ∈ D(S) | ∃{pj}j∈J :
∑
j∈J pj = 1 ∧∆ =

∑
j∈J pj∆j ∧

∀j ∈ J : ∆j ∈ {[ϕj]}ρ};

• {[Z]}ρ = ρ(Z);

• {[µZ.ϕ]}ρ =
⋂{D ⊆ D(S) | {[ϕ]}ρ[Z 7→ D] ⊆ D};

• {[νZ.ϕ]}ρ =
⋃{D ⊆ D(S) | D ⊆ {[ϕ]}ρ[Z 7→ D]}.

31

The set of closed PAMu formulas are the formulas with all variables bounded

and satisfy the syntactic condition that in µX.ϕ and νX.ϕ, the variable X may

occur in ϕ only within the scope of an even number of negations. We define this

set of formulas as Lµ, and safely drop the environment ρ for those formulas.

Example 6. For the rock-paper-scissors game in Figure 1, the property de-

scribing that player I has a strategy to eventually win the game once can be

expressed as µZ.winI ∨ 〈〈I〉〉Z. This property does not hold. However, player

I has a strategy to eventually win the game with probability almost 1
2 , i.e., the

system satisfies µZ.([1
2 − ε,winI]⊕ [1

2 + ε,>])∨〈〈I〉〉Z for arbitrarily small ε > 0.

We explain the reason why players can only enforce ε-optimal strategies in a

later part of the section.

The logic characterisation of the simulation relations discussed in this paper

can be extended to PAMu. In particular, we show that PA-bisimulation can be

characterised by PAMu, and PA-simulation can be characterized by the frag-

ment of PAMu with disjunction and the JIK modality removed, and negation

only applied at the propositional level.

Theorem 5. Given ∆,Θ ∈ D(S), then

1. ∆ ≈ Θ iff for all ϕ ∈ Lµ, ∆ |= ϕ⇐⇒ Θ |= ϕ.

2. ∆ v Θ iff for all ϕ ∈ Lµ such that ϕ does not contain disjunction or the

JIK modality, and negation is only allowed at the propositional level of ϕ,

we have that ∆ |= ϕ =⇒ Θ |= ϕ.

We sketch a proof for PA-bismulation here, and the result for PA-simulation

can be shown in a similar way. Since L⊕ is syntactically a sublogic of Lµ, we only

need to show the soundness of PA-bisimulation to the logic Lµ. We apply the

classical approach of approximants for Modal Mu-Calculus [20]. Given formulas

µZ.ϕ and νZ.ϕ, we define the following.

µ0Z.ϕ = ⊥ ν0Z.ϕ = >
µi+1Z.ϕ = ϕ[Z 7→ µiZ.ϕ] νi+1Z.ϕ = ϕ[Z 7→ νiZ.ϕ]

µωZ.ϕ =
∨
i∈N µ

iZ.ϕ νωZ.ϕ =
∧
i∈N ν

iZ.ϕ.

32

Next we show that the approximants are semantically equivalent to the fix-

point formulas.

Lemma 18. 1. {[µωZ.ϕ]} = {[µZ.ϕ]};
2. {[νωZ.ϕ]} = {[νZ.ϕ]}.

We briefly sketch a proof of Lemma 18(1), and the proof for the other part of the

lemma is similar. To show {[µωZ.ϕ]} ⊆ {[µZ.ϕ]}, we initially have {[µ0Z.ϕ]} =

∅ ⊆ {[µZ.ϕ]}, then by the monotonicity of ϕ, given {[µiZ.ϕ]} ⊆ {[µZ.ϕ]}, we

prove {[µi+1Z.ϕ]} ⊆ {[µZ.ϕ]} by applying ϕ on both sides of ⊆. Therefore,

{[µiZ.ϕ]} ⊆ {[µZ.ϕ]} for all i ∈ N, thus {[∨i∈N µiZ.ϕ]} ⊆ {[µZ.ϕ]}. To show

{[µZ.ϕ]} ⊆ {[µωZ.ϕ]}, it is easy to see that µωZ.ϕ is a prefixpoint, therefore it

contains µZ.ϕ, the intersection of all prefixpoints.

From Lemma 18, a fixpoint formula can be unfolded to a semantically equiv-

alent (approximant) formula in L⊕ with countable conjunction or countable

disjunction. Then by the soundness of PA-bisimulation to L⊕ (Theorem 4), we

get the soundness of PA-bisimulation to the logic Lµ, as required.

Expressiveness of PAMu. There exist game-based extensions of probabilistic

temporal logics, such as the logic PAMC [21] that extends the Alternating-time

Mu-Calculus [6], and PATL [22] that extends PCTL [23]. The semantics of

both logics are sets of states, rather than sets of distributions. It has also been

shown in [21] that PAMC and PATL are incomparable on probabilistic game

structures, based on a result showing that PCTL and PµTL are incomparable

on Markov chains [24]. Here we make a short comparison between PAMu and

those logics.

Distribution formulas of PAMu cannot be expressed by state-based logics.

For example, the formula 〈〈I〉〉[1
2 , p]⊕ [1

2 , q], expressing that player I has a strat-

egy to enforce in the next move a distribution which has half of its weight

satisfying p and the other half satisfying q, cannot be expressed by PATL or

PAMC. As the latter two logics have probability values bundled with strategy

modalities, a formula such as 〈〈I〉〉≥ 1
2 p ∧ 〈〈I〉〉≥ 1

2 q denotes that player I has a

strategy to enforce p with at least probability 1
2 in the next step and player I

33

s0 s1{¬p} {p}

(a, 1
2)

(a, 1
2)

(a, 1)

Figure 6: An example for 〈〈I〉〉≥1♦p.

also has a possibly different strategy to enforce q with at least probability 1
2 in

the next step. However, the resulting states (or distributions) that satisfy p and

q may overlap.

The PATL formula 〈〈I〉〉≥1♦p is not expressible by PAMu. Given the PGS

in Figure 6 where player I has action set {a} and player II has action set ∅.
Then it is not difficult to see both s0 and s1 satisfies 〈〈I〉〉≥1♦p. The closest

formula in PAMu is µZ.p ∨ 〈〈I〉〉Z, but s0 6|= µZ.p ∨ 〈〈I〉〉Z. More precisely,

s0 |= µZ.([α, p]⊕ [1−α,>])∨〈〈I〉〉Z for all 0 ≤ α < 1. Intuitively, the semantics

of the least fixpoint operator in PAMu only track finite number of probabilistic

transitions, as starting from s0, player I can only reach distributions that satisfy

p with probability strictly less than 1 with finite number of steps. Intuitively,

s0?
a→ [1

2 , s0]⊕[1
2 , s1]

a→ [1
4 , s0]⊕[3

4 , s1]
a→ . . .

a→ [1
2i , s0]⊕[1− 1

2i , s1] We shall

see that in a finite number of transitions one never reaches s1? from s0? with

strict probability 1. However, such a restriction may be alleviated in practice,

as implemented in PRISM-game [11], ε-optimal strategies are synthesized for

unbounded reachability properties.

Since the strategy modality in PAMu can only handle the condition for the

next step, it cannot express some of the PAMC formulas that goes beyond

finite reachability. Based on the semantics of PAMC [21], the above form of

PATL formula 〈〈I〉〉>α♦p can be expressed by the PAMC formula 〈〈I〉〉>α(µZ.p∨
〈〈I〉〉≥1Z). Therefore, in general, PAMC and PAMu are incomparable.

Example 7. The authors of [11] proposed a CGS variant of a futures market

investor model [25], which studies the interactions between an investor and a

stock market. The investor and the market take their decisions simultaneously

34

in the CGS model, and the authors show that this does not give any additional

benefits to the investor by analysing his or her maximum expected value over a

fixed period of time.5 We take this example to demonstrate the expressiveness

of PAMu. For instance, the property “it is always possible for the investor to

cash in” can be specified with two nested fixpoints as

νX.(µY.cashin ∨ 〈〈investor〉〉Y) ∧ 〈〈investor〉〉X .

Here the greatest fixpoint νX asserts that the investor is able to enforce the

system to keep in a set of states (or a distribution of states taken from this

set), such that from any state it is possible to cash in within finite number of

transitions which is enforced by the inner least fixpoint µY .

Another interesting property is to check whether the investor has a strategy

to ensure a good chance to make a profit. This can be formulated in PAMu with

1
2 < α ≤ 1, as

µZ.(cashin ∧ [α, profit]⊕ [1− α,>]) ∨ 〈〈investor〉〉Z

By using the least fixpoint µZ, this formula asserts that the investor is able

to reach a position within finite number of steps where the investor’s cash in

behaviour is accompanied by a profitable state with at least probability α, where

α > 1
2 .

8. Related Work

Segala and Lynch [26] introduce a probabilistic simulation relation which

preserves probabilistic computation tree logic (PCTL) formulas without nega-

tion and existential quantification. Segala introduces the notion of probabilis-

tic forward simulation, which relates states to probability distributions over

states and is sound and complete for trace distribution precongruence [27, 28].

Parma and Segala [3] study logic characterisation of probabilistic bisimulation

5For details of the model, we refer to [25] and the website https://www.

prismmodelchecker.org.

35

https://www.prismmodelchecker.org
https://www.prismmodelchecker.org

for image-finite probabilistic automata. They use a probabilistic extension of

the Hennessy-Milner logic which allows countable conjunction and admits a new

operator [φ]p – a distribution satisfies [φ]p if the probability on the set of states

satisfying φ is at least p, with a sound and complete logic characterisation. Their

logic characterisation is both sound and complete. Hermanns et al. [5] further

extend this result for image-infinite probabilistic automata.6 Deng et al. [19, 4]

extend the non-probabilistic mu-calculus by adding a few probabilistic operators

to derive a probabilistic modal mu-calculus (pMu). A fragment of pMu (without

fixed points) has been proved to characterise (strong) probabilistic simulation

in finite-state probabilistic automata. Our work extends the above work by en-

riching it with the concurrent game semantics that are initiated in [6], which is

discussed in the following paragraph.

Alur, Henzinger and Kupferman [6] define alternating-time temporal logic

(ATL) to generalise CTL for game structures by requiring each path quantifier

to be parameterised by a set of agents. GS are more general than LTS, in the

sense that they allow both collaborative and adversarial behaviours of individ-

ual agents in a system, and ATL can be used to express properties like “a set of

agents can enforce a specific outcome of the system”. The alternating simula-

tion, which is a natural game-theoretic interpretation of the classical simulation

in (deterministic) multi-player games, is introduced in [7]. Logic characterisa-

tion of this relation concentrates on a subset of ATL? formulas where negations

are only allowed at propositional level and all path quantifiers are parameterised

by a predefined set of agents A. This sublogic of ATL? contains all formulas

expressing the properties that agents in A can enforce no matter what the

other agents do. Alur et al. [7] have proved both soundness and completeness of

their characterisation. Comparing with the standard alternating simulation and

its logic characterisation, PA-simulation focuses on the extension which allows

6Logic characterisation of weak probabilistic bisimulation has been studied in [29], where

the logic PCTL? is used. This result is extended to weak probabilistic simulation by

Parma [30].

36

mixed strategies in probabilistic game structures (PGS).

Game structures deal well with systems in which the players execute a pure

strategy, i.e., a strategy in which the moves are chosen deterministically. How-

ever, mixed strategies, which are formed by probabilistically combining pure

strategies, are necessary for a player to achieve optimal rewards [12]. Zhang

and Pang [8] extend the notion of game structures to probabilistic game struc-

tures (PGS) and introduce notions of simulation that are sound for a fragment of

probabilistic alternating-time temporal logic (PATL), a probabilistic extension

of ATL.

Fixpoint logics for sets of states in Markov chains and PGS have been studied

more recently in [24, 21], and a short comparison is given in Section 7.

Metric-based simulation on game structures have been studied by de Alfaro

et al. [31] regarding the probability of winning games whose goals are expressed

in quantitative µ-calculus (qMu) [25]. Two states are equivalent if the play-

ers can win the same games with the same probability from both states, and

similarity among states can thus be measured. Algorithmic verification com-

plexities are further studied for MDP and turn-based games [32]. Metric-based

approaches allow to analyze similarity with a quantitative measure, in which

sense our approach is more strict. However our definition of PA-simulation is

purely by actions and strategies, while metric-based approach is more target-

based as it defines similarity on states by the ability to achieve same outcomes

with similar probabilities.

More recently, algorithmic verification of turn-based and concurrent games

have been implemented in an extension of PRISM [33, 11]. The properties can be

specified as state formulas, path formulas and reward formulas. The verification

procedure requires solving matrix games for concurrent game structures, and it

applies value iteration algorithms to approach the goal (similar to [34, 31]).

For unbounded properties, the synthesised strategy is memoryless (but only

ε-optimal strategies). Finite-memory strategies are synthesised for bounded

properties. The model checking algorithms for PAMu in PGS may be extended

from the existing algorithms implemented for PRISM.

37

9. Conclusions and Future Work

In this paper, we have presented sound and complete modal characterisations

of PA-simulation and PA-bisimulation for concurrent games by introducing a

new modal logic L⊕ with its sub-logic L	 and its extension PAMu (with fix-

points). All three logics incorporate nondeterministic and probabilisitic features

and express the ability of the players to enforce a property in the current state

of a probabilistic game structure (PGS). In the future, we aim to study proof

systems for L⊕ and PAMu.

Since mixed actions can always be encoded as a linear combination of “nor-

mal” (deterministic) actions, the model checking problem of the next step strat-

egy modality 〈〈I〉〉ϕ can be effectively reduced to Linear Programming (LP).

Since both players have complete view over states in a PGS, the model checking

problem for L	 with finite conjunction/disjunction (also extended with fixpoint

operators) is likely to be decidable in P. However, it seems challenging to deal

with formulas that contain the negation operator on a probabilistic summation.

We plan to take a close look at the verification problem of Lµ (or a fragment of

Lµ) in the future.

References

[1] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[2] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concur-

rency, Journal of the ACM 32 (1) (1985) 137–161.

[3] A. Parma, R. Segala, Logical characterizations of bisimulations for discrete

probabilistic systems, in: Proc. 10th Conference on Foundations of Software

Science and Computational Structures, Vol. 4423 of LNCS, Springer, 2007,

pp. 287–301.

[4] Y. Deng, R. J. van Glabbeek, Characterising probabilistic processes logi-

cally (extended abstract), in: Proc. 17th Conference on Logic for Program-

38

ming, Artificial Intelligence, and Reasoning, Vol. 6397 of LNCS, Springer,

2010, pp. 278–293.

[5] H. Hermanns, A. Parma, R. Segala, B. Wachter, L. Zhang, Probabilistic

logical charaterization, Information and Computation 209 (2) (2011) 154–

172.

[6] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic,

Journal of ACM 49 (5) (2002) 672–713.

[7] R. Alur, T. A. Henzinger, O. Kupferman, M. Y. Vardi, Alternating refine-

ment relations, in: Proc. 9th Conference on Concurrency Theory, Vol. 1466

of LNCS, Springer, 1998, pp. 163–178.

[8] C. Zhang, J. Pang, On probabilistic alternating simulations, in: Proc. 6th

IFIP Conference on Theoretical Computer Science, Vol. 323 of IFIP AICT,

2010, pp. 71–85.

[9] C. Zhang, J. Pang, Characterising probabilistic alternating simulation for

concurrent games, in: Proc. 14th IEEE Symposium on Theoretical Aspects

of Software Engineering, IEEE CS, 2020, pp. 121–128.

[10] L. de Alfaro, T. A. Henzinger, O. Kupferman, Concurrent reachability

games, Theoretical Computer Science 386 (3) (2007) 188–217.

[11] M. Kwiatkowska, G. Norman, D. Parker, G. Santos, Automated verification

of concurrent stochastic games, in: Proc. 15th Conference on Quantitative

Evaluation of Systems, Vol. 11024 of LNCS, Springer, 2018, pp. 223–239.

[12] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behav-

ior, Princeton University Press, 1947.

[13] M. B. Smyth, Power domains, Journal of Computer and System Sciences

16 (1) (1978) 23–36.

39

[14] B. v. Karger, Plotkin, Hoare and Smyth order: On observational models

for CSP, in: Proc. of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Con-

ference on Programming Concepts, Methods and Calculi, PROCOMET’94,

1994, pp. 383–402.

[15] B. Jonsson, K. G. Larsen, Specification and refinement of probabilistic

processes, in: Proc. 6th IEEE Symposium on Logic in Computer Science,

IEEE CS, 1991, pp. 266–277.

[16] R. Segala, Modeling and verification of randomized distributed real-time

systems, Ph.D. thesis, Massachusetts Institute of Technology (1995).

[17] C. Zhang, J. Pang, An algorithms for probabilistic alternating simulation,

in: Proc. 38th Conference on Current Trends in Theory and Practice of

Computer Science, Vol. 7147 of LNCS, Springer, 2012, pp. 431–442.

[18] R. van Glabbeek, The linear time-branching time spectrum I. The seman-

tics of concrete, sequential processes., in: Handbook of Process Algebra,

Elsevier, 2001, pp. 3–99.

[19] Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, C. Zhang, Charac-

terising testing preorders for finite probabilistic processes, in: Proc. 22nd

IEEE Symposium on Logic in Computer Science, IEEE CS, 2007, pp. 313–

325.

[20] J. Bradfield, C. Stirling, Modal mu-calculi, in: The Handbook of Modal

Logic, Elsevier, 2006, p. 721–756.

URL https://homepages.inf.ed.ac.uk/jcb/Research/MLH-bradstir.

pdf

[21] F. Song, Y. Zhang, T. Chen, Y. Tang, Z. Xu, Probabilistic alternating-

time µ-calculus, in: Proc. 33rd AAAI Conference on Artificial Intelligence,

AAAI Press, 2019.

40

https://homepages.inf.ed.ac.uk/jcb/Research/MLH-bradstir.pdf
https://homepages.inf.ed.ac.uk/jcb/Research/MLH-bradstir.pdf
https://homepages.inf.ed.ac.uk/jcb/Research/MLH-bradstir.pdf

[22] T. Chen, J. Lu, Probabilistic alternating-time temporal logic and model

checking algorithm, in: Proc. 4th Conference on Fuzzy Systems and Knowl-

edge Discovery, IEEE CS, 2007, pp. 35–39.

[23] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability,

Formal Aspects of Computing 6 (5) (1994) 512–535.

[24] W. Liu, L. Song, J. Wang, L. Zhang, A simple probabilistic extension

of modal mu-calculus, in: Proc. 24th International Joint Conference on

Artificial Intelligence, AAAI Press, 2015, pp. 882–888.

[25] A. McIver, C. Morgan, Results on the quantitative µ-calculus qMu, ACM

Transactions on Computational Logic 8 (1).

[26] R. Segala, N. A. Lynch, Probabilistic simulations for probabilistic processes,

Nordic Journal of Computing 2 (2) (1995) 250–273.

[27] R. Segala, A compositional trace-based semantics for probabilistic au-

tomata, in: Proc. 6th Conference on Concurrency Theory, Vol. 962 of

LNCS, Springer, 1995, pp. 234–248.

[28] N. A. Lynch, R. Segala, F. W. Vaandrager, Observing branching structure

through probabilistic contexts, SIAM Journal of Computing 37 (4) (2007)

977–1013.

[29] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden, Weak bisimu-

lation is sound and complete for PCTL?, Information and Computation

208 (2) (2010) 203–219.

[30] A. Parma, Axiomatic and logic characterizations of probabilistic preorders

and trace semantics, Ph.D. thesis, University of Verona (2008).

[31] L. de Alfaro, R. Majumdar, V. Raman, M. Stoelinga, Game refinement

relations and metrics, Logic Methods in Computer Science 4 (3:7) (2008)

1–28.

41

[32] K. Chatterjee, L. de Alfaro, R. Majumdar, V. Raman, Algorithms for game

metrics (full version), Logical Methods in Computer Science 6 (3:13) (2010)

1–27.

[33] M. Kwiatkowska, D. Parker, C. Wiltsche, PRISM-games: Verification and

strategy synthesis for stochastic multi-player games with multiple objec-

tives, International Journal on Software Tools for Technology Transfer

20 (2) (2018) 195–210.

[34] L. de Alfaro, R. Majumdar, Quantitative solution of omega-regular games,

Journal of Computer and System Sciences 68 (2) (2004) 374–397.

42

	Introduction
	Preliminaries
	Probabilistic Alternating Simulation Relations
	Approximating Probabilistic Simulation Relations
	Lifted PA-Simulation on Distributions

	Modal Logics for Probabilistic GS
	Characterising Probabilistic Alternating Simulation
	A Soundness Proof
	A Completeness Proof

	Characterising Probabilistic Alternating Bisimulation
	Probabilistic Alternating-time Mu-Calculus
	Related Work
	Conclusions and Future Work

