
SecCo 2005 Preliminary Version

Weak Probabilistic Anonymity 1

Yuxin Deng 2

INRIA Sophia-Antipolis and Université Paris 7

Catuscia Palamidessi Jun Pang

INRIA Futurs and LIX, École Polytechnique

Abstract

Anonymity means that the identity of the user performing a certain action is main-
tained secret. The protocols for ensuring anonymity often use random mechanisms
which can be described probabilistically. In this paper we propose a notion of weak
probabilistic anonymity, where weak refers to the fact that some amount of proba-
bilistic information may be revealed by the protocol. This information can be used
by an observer to infer the likeliness that the action has been performed by a certain
user. The aim of this work is to study the degree of anonymity that the protocol
can still ensure, despite the leakage of information.

We illustrate our ideas by using the example of the dining cryptographers with
biased coins. We consider both the cases of nondeterministic and probabilistic users.
Correspondingly, we propose two notions of weak anonymity and we investigate their
respective dependencies on the biased factor of the coins.

Key words: Anonymity, Probability, Nondeterminism, Dining
Cryptographers.

1 Introduction

Anonymity is the property of keeping secret the identity of the user perform-
ing a certain action. The need for anonymity may raise in a wide range of
situations, like postings on electronic forums, voting, delation, donations, and
many others.

The protocols for ensuring anonymity often use random mechanisms. This
is the case, for example, of the Dining Cryptographers [3], Crowds [8], Onion
Routing [12], and SG-MIX [7].

1 This work has been partially supported by the Project Rossignol of the ACI Sécurité
Informatique (Ministère de la recherche et nouvelles technologies).
2 Supported by the EU project PROFUNDIS.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Deng, Palamidessi and Pang

Various notions of probabilistic anonymity have been investigated in the
literature [3,8,5,2]. In this paper we propose a notion of weak probabilistic
anonymity, where weak refers to the fact that some amount of probabilistic
information may be revealed by the protocol. Typical causes may be either the
presence of attackers which interfere with the normal execution the protocol,
or some unavoidable imperfection of the internal mechanisms, or may even
be inherent to the way the protocol is designed. In any case, the information
leaked by the system can be used by an observer to infer the likeliness that
the action has been performed by a certain user. The aim of this work is to
study the degree of anonymity that the protocol can still ensure, despite the
leakage of information.

We illustrate our ideas by using the example of the Dining Cryptographers
Problem (DCP). In this protocol, a number of users (cryptographers) coop-
erate to ensure that the occurrence of a certain action is made visible, while
the cryptographer who has performed it remains anonymous. They achieve
this goal by executing a certain algorithm which involves coin tossing. In
the original formulation of [3] the coins are perfectly fair and no one (except
the authorized cryptographers) gets any information about the results of the
coins. As a consequence of these assumptions, the protocol ensures strong
anonymity in the sense that, from the point of view of an observer, there is
no way to infer that a cryptographers is more likely than another to have
performed the action.

We consider a more realistic scenario in which some probabilistic informa-
tion may be leaked by the system. In particular, we consider the case in which
this happens due to imperfections in its internal mechanisms. In the case of
the DCP, this means to relax the hypothesis of perfect fairness of the coins. It
is worth noting that even if an observer does not know a priori whether and
how much the coins in the DCP are biased, he may be able to infer it statis-
tically by running the protocol several times [2]. One of the main purposes
of this work is to investigate how the biased factor of the coins influences the
level of anonymity that the system can still achieve.

An issue to consider when we deal with a probabilistic system is whether
or not there is also some nondeterministic choice involved. Nondeterministic
means that the choice is completely unpredictable. In anonymity protocols,
the user which perform the action may be selected either nondeterministically
or probabilistically. In the nondeterministic case, the probabilistic aspect of
anonymity can only be relative to the probability of the observables, which
derives solely from the randomness of the internal mechanisms of the protocol.
The natural notion of anonymity is then that the probability of the observables
does not give information about the user.

In the case of probabilistic users, there are two possible points of view
under which one can define the notion of anonymity. Namely, we can focus
on the probability of the observables, and require that they do not allow to
infer information about the probability of the users (similarly to the nonde-

2

Deng, Palamidessi and Pang

terministic case), or we can focus on the probability of the users, and require
that the system does not allow to infer extra information about it through the
observables. Interestingly, in the case of strong anonymity these two notions
have been proved equivalent [2].

In this paper we consider both the cases of nondeterministic and proba-
bilistic users, and we propose two notions of weak anonymity corresponding to
the two points of view illustrated above. Although, as just said, in the limit
case of strong anonymity these two notions are equivalent, their functional
dependency on the biased factor of the coins turns out to be totally different.

1.1 Contributions

The main contributions of this work are:

• We propose two notions of weak probabilistic anonymity, for the cases of
nondeterministic and probabilistic users, respectively.

• We consider the Dining Cryptographers with biased coins, and we study
how the two notions of weak anonymity depend on the biased factor of the
coins.

• We show how to code the formulas that expresses weak anonymity in PRISM,
so that their validity can be checked automatically on a generic protocol.

1.2 Plan of the paper

In next section we recall some notions which are used in the rest of the paper:
the Probabilistic Automata, the Dining Cryptographers Problem, and the
framework for anonymity developed in [2]. In Section 3 we propose a notion
of weak anonymity for nondeterministic users, and we study the dependency
on the biased factor of the coins for the DCP. In Section 4 we do the same for
the case of probabilistic users. In Section 5 we code in PRISM the DCP and
the notions of anonymity. Finally, in Section 6 we conclude and discuss some
related work.

For reasons of space the proofs are omitted. They can be found in [4].

2 Preliminaries

2.1 Nondeterminism and probability

In this paper we consider systems that can perform both probabilistic and
nondeterministic choices. Intuitively, a probabilistic choice represents a set
of alternative transitions, each of them associated to a certain probability of
being selected. The sum of all probabilities on the alternatives of the choice
must be 1, i.e. they form a probability distribution. Nondeterministic choice
is also a set of alternatives, but we have no information on how likely one
alternative is selected.

3

Deng, Palamidessi and Pang

s2

s1 s1 s1

1/2

a

bc
1/2

1/2

1/3

2/3

c

c

b a
1/2

s3

s6

s5

s4

s8s7

(a)

a
b

c

a c

a

a

b
c

c
1/2 1/2 1/21/2

1/2

1/3

1/6

(b) (c)

Fig. 1. Examples of probabilistic automata

We take the point of view that a nondeterministic choice is not a proba-
bilistic choice with unknown probabilities: in the latter, if we repeatedly run
the program, we can infer the probability. For instance, if we have a choice
between two transitions and we observe that they are selected with the same
frequency, we can infer that the probability is close to 1/2. In the nondeter-
ministic case, this inference would be invalid. Nondeterministic means that
the choice is totally unpredictable and that there is no assumption of regularity
through time on the mechanisms that determine the selection.

There have been many models proposed in literature that combine both
nondeterministic and probabilistic choice. One of the most general is the
formalism of probabilistic automata proposed in [11]. We give here a brief and
informal description of it.

A probabilistic automaton consists in a set of states, and labeled transitions
between them. For each node, the outgoing transitions are partitioned in
groups called steps. Each step represents a probabilistic choice, while the
choice between the steps is nondeterministic.

Figure 1 illustrates some examples of probabilistic automata. We represent
a step by putting an arc across the member transitions. For instance, in (a),
state s1 has two steps, the first is a probabilistic choice between two transitions
with labels a and b, each with probability 1/2. When there is only a transition
in a step, like the one from state s3 to state s6, the probability is of course 1
and we omit it.

In this paper, we use only a simplified kind of automaton, in which from
each node we have either a probabilistic choice or a nondeterministic choice
(more precisely, either one step or a set of singleton steps), like in (b). This is
not a real restriction since it subsumes the so-called alternated model, in which
probabilistic and nondeterministic choices alternate, and which is known to
have the same expressive power as the full probabilistic automata. In the
particular case that the choices are all probabilistic, like in (c), the automaton
is called fully probabilistic.

Given an automaton M , we denote by etree(M) its unfolding, i.e. the
tree of all possible executions of M (in Figure 1 the automata coincide with

4

Deng, Palamidessi and Pang

their unfolding because there is no loop). If M is fully probabilistic, then
each execution (maximal branch) of etree(M) has a probability obtained as
the product of the probability of the edges along the branch. In the finite
case, we can define a probability measure for each set of executions, called
event, by summing up the probabilities of the elements 3 . Given an event
x, we will denote by p(x) the probability of x. For instance, let the event
c be the set of all computations in which c occurs. In (c) its probability is
p(c) = 1/3 × 1/2 + 1/6 = 1/3.

When nondeterminism is present, the probability can vary, depending on
how we resolve the nondeterminism. In other words we need to consider a
function ς that, each time there is a choice between different steps, selects one
of them. By pruning the non-selected steps, we obtain a fully probabilistic
execution tree etree(M, ς) on which we can define the probability as before.
For historical reasons (i.e. since nondeterminism typically arises from the
parallel operator), the function ς is called scheduler.

It should then be clear that the probability of an event is relative to the
particular scheduler. We will denote by pς(x) the probability of the event
x under the scheduler ς. For example, consider (a). We have two possible
schedulers determined by the choice of the step in s1. Under one scheduler,
the probability of c is 1/2. Under the other, it is 2/3 × 1/2 + 1/3 = 2/3. In
(b) we have three possible schedulers under which the probability of c is 0,
1/2 and 1, respectively.

2.2 The Dining Cryptographers

The general Dining Cryptographers Problem [3] is described as follows: A
number of cryptographers, situated in the nodes of a given connected graph,
are having a dinner. The representative of their organization (master) may or
may not pay the bill of the dinner. If he does not, then he will select exactly
one cryptographer and order him to pay the bill. The master will tell secretly
each cryptographer whether he has to pay or not. The cryptographers would
like to reveal whether the bill is paid by the master or by one of them, but,
in the latter case, they wish to keep anonymous the identity of the payer.

A possible solution to this problem, described in [3], is to associate a coin
to each edge of the graph, visible only to the adjacent cryptographers. The
coins are then tossed, and each cryptographer computes the binary sum of the
adjacent coins (counting 0, say, for head and 1 for tail), adds 1 if he is the
payer, and outputs the result.

In [3] it is proved that the payer is one of the cryptographers if and only
if the binary sum of all the outputs is 1. Furthermore, if the coins are fair,
then an external observer cannot identify the payer when it is one of the

3 In the infinite case things are more complicated: we cannot define a probability measure
for all sets of execution, and we need to consider as event space the σ-field generated by
the cones of etree(M). However, in this paper, we consider only the finite case.

5

Deng, Palamidessi and Pang

cryptographers.

The DCP will be a running example through the paper.

2.3 Anonymity systems

In this section we recall our approach to anonymity, as developed in [2].

We model the anonymity protocol as a probabilistic automaton M . The
concept of anonymity is relative to the set of anonymous users and to what
is visible to the observer. Hence, following [10,9] we classify the actions of M
into the three sets A, B and C as follows:

• A is the set of the anonymous actions A = {a(i) | i ∈ I} where I is the set
of the identities of the anonymous users and a is an injective functions from
I to the set of actions, which we call abstract action. We also call the pair
(I, a) anonymous action generator.

• B is the set of the observable actions. We will use b, b′, . . . to denote the
elements of this set.

• C is the set of the remaining actions (which are unobservable).

Note that the actions in A normally are not visible to the observer, or at least,
not for the part that depends on the identity i. However, for the purpose
of defining and verifying anonymity we model the elements of A as visible
outcomes of the system.

Definition 2.1 An anonymity system is a tuple (M, I, a, B,Z , p), where M
is a probabilistic automaton, (I, a) is an anonymous action generator, B is a
set of observable actions, Z is the set of all possible schedulers for M , and for
every ς ∈ Z , pς is the probability measure on the event space generated by
etree(M, ς).

If the system is fully probabilistic, then Z is a singleton and we omit it.

We introduce the following notation to represent the events of interest:

• a(i) : all the executions in etree(M, ς) containing the action a(i);

• a : all the executions in etree(M, ς) containing an action a(i) for an arbitrary
i;

• o : all the executions in etree(M, ς) containing as their maximal sequence
of observable actions the sequence o (where o is of the form b1b2 . . . bn for
some b1, b2, . . . , bn ∈ B). We denote by O (observables) the set of all such
o’s.

We use the symbols ∪, ∩ and ¬ to represent the union, the intersection, and
the complement of events, respectively.

We wish to keep the notion of observables as general as possible, but we
still need to make some assumptions on them. First, we want the observables
to be disjoint events. Second, they must cover all possible outcomes. Third,
an observable o must indicate unambiguously whether a has taken place or

6

Deng, Palamidessi and Pang

not, i.e. it either implies a, or it implies ¬a. In set-theoretic terms it means
that either o is a subset of a or of the complement of a. Formally:

Assumption 1 (on the observables)

(i) ∀ς ∈ Z . ∀o1, o2 ∈ O. o1 6= o2 ⇒ pς(o1 ∪ o2) = pς(o1) + pς(o2)

(ii) ∀ς ∈ Z . pς(O) = 1

(iii) ∀ς ∈ Z . ∀o ∈ O. (pς(o ∩ a) = pς(o)) ∨ pς(o ∩ ¬a) = pς(o)

Analogously, we need to make some assumption on the anonymous actions.
We consider first the conditions tailored for the nondeterministic users: each
scheduler determines completely whether an action of the form a(i) takes place
or not, and in the positive case, there is only one such i. Formally:

Assumption 2 (on the anonymous actions, for nondeterministic users)

∀ς ∈ Z . pς(a) = 0 ∨ (∃i ∈ I. (pς(a(i)) = 1 ∧ ∀j ∈ I. j 6= i ⇒ pς(a(j)) = 0))

In [2] the following strong notion of anonymity was proposed. Intuitively,
given two schedulers ς and ϑ that both choose a (say a(i) and a(j), respec-
tively), it should not be possible to detect from the probabilistic measure of
the observables whether the scheduler was ς or ϑ (i.e. whether the selected
user was i or j).

Definition 2.2 [(Strong) anonymity for nondeterministic users] A system
(M, I, a, B,Z , p) is anonymous if

∀ς, ϑ ∈ Z . ∀o ∈ O. pς(a) = pϑ(a) = 1 ⇒ pς(o) = pϑ(o)

We now consider the case in which the users are fully probabilistic. The
assumption on the anonymous actions in this case is much weaker: we only
require that there be at most one user that performs a, i.e. a(i) and a(j) must
be disjoint for i 6= j. Formally:

Assumption 3 (on the anonymous actions, for probabilistic users)

∀i, j ∈ I. i 6= j ⇒ p(a(i) ∪ a(j)) = p(a(i)) + p(a(j))

The probabilistic counterpart of Definition 2.2 can be formalized using the
concept of conditional probability. Recall that, given two events x and y with
p(y) > 0, the conditional probability of x given y, denoted by p(x | y), is equal
to p(x ∩ y)/p(y).

Definition 2.3 A fully probabilistic system (M, I, a, B, p) is anonymous if

∀i, j ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a(j)) > 0) ⇒ p(o | a(i)) = p(o | a(j))

The notions of anonymity illustrated so far focus on the probability of
the observables. In the case of probabilistic users, however, one can also
approach the concept of anonymity from the point of view of the probabilistic

7

Deng, Palamidessi and Pang

information associated to the users. This is the perspective adopted in [5]
to define what they call conditional anonymity. The idea is that a system is
anonymous if the observations do not change the probability of the a(i)’s. In
other words, we may know the probability of a(i) by some means external to
the system, but the system should not increase our knowledge about it. The
same notion was proposed, implicitly, in [3]. This concept can be formulated
in our framework as follows:

Definition 2.4 [(Strong) anonymity for probabilistic users] A fully proba-
bilistic system (M, I, a, B, p) is anonymous if

∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i) | a)

Despite Definitions 2.3 and 2.4 are based on conceptually different inter-
pretations of anonymity, it has been shown that they are equivalent (see [2]).

The definitions of anonymity illustrated in this section are satisfied by the
DCP only if the coins are fair. In next sections we propose weak versions
of these definitions, which may be satisfied also when the coins are biased,
depending on the biased factor.

3 Weak anonymity for nondeterministic users

In this section we propose a weak variant of Definition 2.2 and we study, in the
particular case of the DCP, how this property depends on the biased factor of
the coins.

Intuitively, the weakening consists in relaxing the constraint that the prob-
ability of an observer implying a is the same under every scheduler. Instead,
we require that the difference between any two such probabilities does not
exceed a certain parameter α. Formally:

Definition 3.1 [α-anonymity for nondeterministic users] Given α ∈ [0, 1], a
system (M, I, a, B, Z, p) is α-anonymous if

max{ pς(o)−pϑ(o) | ς, ϑ ∈ Z, o ∈ O, pς(o∩a) = pς(o), pϑ(o∩a) = pϑ(o)} = α

Intuitively, pς(o) − pϑ(o) = α means that, whenever we observe o, we
suspect that user i is more likely than user j to have performed the action by
an additive factor α (where i and j represent the users selected by ς and ϑ,
respectively).

Let us consider the DCP on a linear graph consisting of three nodes, i.e.
three cryptographers Crypt0, Crypt1, and Crypt2, and two edges, Coin0 be-
tween Crypt 0 and Crypt1, and Coin1, between Crypt 1 and Crypt2.

In case one of the cryptographers pays (event a), the possible observables
are

o1 = 111 o2 = 100 o3 = 010 o4 = 001

8

Deng, Palamidessi and Pang

o1

2o

o1

2o
3o o1 2o 3o

4o
6o

7o
8o

4o

o5

pays pays

pays pays

o3
o4

the master
0Crypt

Crypt 1 Crypt 2

Fig. 2. The DCP with three cryptographers and nondeterministic master.

where b0b1b2 refers to the outputs of Crypt0, Crypt1 and Crypt2, respectively.
For instance, if Crypt 1 is the payer, then o1 is obtained when both the two
coins give 1, o2 is obtained when Coin0 gives 1 and Coin1 gives 0, etc. In case
the master pays, then the possible observables are o5 = 110, o6 = 101, o7 =
011, o8 = 000. For instance, o5 = 110 is obtained when Coin0 gives 1 and
Coin1 gives 0.

The probabilistic automaton corresponding to this situation is illustrated
in Figure 2. For simplicity, we have drawn only the “big-step-transitions”
corresponding to the observables o1, o2 etc. They represents sequences of
“small-step-transitions” where each coin is flipped, then each cryptographer
in turn reads the coins, then it computes and output the results.

It is important to note that we will consider only one form of nondeter-
minism: that associated to the choice of the master (nondeterministic master,
which in the DCP is synonymous of nondeterministic users). In general in
a system there is also the nondeterminism caused by the different possible
interleaving of the various components of the system, but here, for simplicity,
we will assume that the order in which the various components of the system
(master, cryptographers, coins) execute their operations is fixed. In any case,
it can be shown that this latter form of nondeterminism would not affect the
properties of the DCP with respect to anonymity.

Let us represent by βi the “biased factor” of Coini, i.e. the probability
that Coin i gives 0. We want to determine how the parameter α of anonimity
(Definition 3.1) depends on β0 and β1.

Consider, for each scheduler that selects a payer among the cryptographers,
the possible observables and their probability measure. A simple calculation
gives the figures shown in Table 1. Then by case analysis, we obtain:

α =







|1 − (β0 + β1)| if (β0, β1 ≤ 0.5) or (β0, β1 ≥ 0.5);

|β0 − β1| if (β0 > 0.5 and β1 < 0.5) or (β0 < 0.5 and β1 > 0.5);

Figure 3 shows the graph of α as a function of β0 and β1.

The above analysis can be extended to the general case of linear graphs
with any number of nodes.

Theorem 3.2 In the DCP on a linear graph with n nodes the α in Defini-

9

Deng, Palamidessi and Pang

Observables: o1 = 111, o2 = 100, o3 = 010, o4 = 001

Crypt0 pays Crypt1 pays Crypt2 pays

p(o1) β0(1 − β1) (1 − β0)(1 − β1) (1 − β0)β1

p(o2) β0β1 (1 − β0)β1 (1 − β0)(1 − β1)

p(o3) (1 − β0)β1 β0β1 β0(1 − β1)

p(o4) (1 − β0)(1 − β1) β0(1 − β1) β0β1

Table 1
Probabilities of the observables in the case of 3 cryptographers on a linear graph.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

α-anonymity

non-deterministic master: α-anonymity with two biased coins

β0

β1

α-anonymity

Fig. 3. The dependency of α-anonymity on β0 and β1 in the case of three cryptog-
raphers.

tion 3.1 depends on the βi’s as follows:

α =
∏

βi≥0.5

βi

∏

βj<0.5

(1 − βj) −
∏

βi≥0.5

(1 − βi)
∏

βj<0.5

βj

It is possible to show that the above theorem holds also when the topology
is a ring. On the other hand, it does not hold for graphs which contain one or
more nodes with an odd number of adjacent edges.

Figure 4 illustrates the dependency of α on β for three to six cryptogra-
phers, where for all i, βi = β (uniform coins). We note that the anonymity
level increases (i.e. α decreases) as the number of cryptographers increases.
If the coins are fair (β = 0.5), then we have strong anonymity, i.e. α = 0. In
the two extreme cases of β = 0 or β = 1, the α-anonymity is always 1, which
is maximal. It is also possible to show that α is expressed by a polynomial on
β whose degree is n − 1 if n is even, and n − 2 if n is odd.

10

Deng, Palamidessi and Pang

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

α-
an

on
ym

ity

β (uniform coins)

α-anonymity with biased factor

3 cryptographers
4 cryptographers
5 cryptographers
6 cryptographers

Fig. 4. The dependency of α-anonymity on β’s in the case of 3-6 cryptographers.

p
0

p
3p

1
p
2

o1

2o

o1

2o
3o o1 2o 3o

4o
6o

7o
8o

4o

o5

pays pays

pays pays

o3
o4

the master
0Crypt

1Crypt Crypt 2

Fig. 5. The DCP with three cryptographers and probabilistic master.

4 Weak anonymity for probabilistic users

In this section we consider the case in which the user is selected according to a
certain probability distribution. Since we assume that we have no other source
of nondeterminism, the automata that we consider in this section are fully
probabilistic. For example, in the case of the DCP with three cryptographers,
we have the automaton represented in Figure 5.

4.1 Focusing on the probabilities of the observables

The fully probabilistic version of Definition 3.1, corresponding also to the weak
version of Definition 2.3, is the following:

Definition 4.1 [α-anonymity for probabilisitic users] Given α ∈ [0, 1], a fully
probabilistic system (M, I, a, B, p) is α-anonymous if

max{ p(o | a(i))−p(o | a(j)) | i, j ∈ I, o ∈ O, p(a(i)) > 0, p(a(j)) > 0 } = α

Like Definition 3.1, this notion focuses on the probability of the observ-
ables.

11

Deng, Palamidessi and Pang

It is possible to prove that for the DCP the α of the above definition de-
pends on the βi’s exactly like the α for nondeterministic users (Definition 3.1).
In fact consider, in the case of nondeterministic users, a scheduler ς that se-
lects i, i.e. pς(a(i)) = 1. Then assume, in the case of probabilistic users, that
pς(a(i)) > 0. It is easy to see that pς(o) = p(o | a(i)).

So, in a sense, the notion of anonymity proposed in Definition 4.1 does not
seem to introduce any new technical challenge with respect to the study done
for the case of nondeterministic users.

In next section we investigate, instead, the weak version of the alternative
notion of anonymity given in Definition 2.4.

4.2 Focusing on the probabilities of the users

We take here the point of view that anonymity means to preserve the proba-
bility of the users, like in [3] and [5].

Definition 4.2 [α-anonymity for probabilisitic users – alternative notion]
Given α ∈ [0, 1], a fully probabilistic system (M, I, a, B, p) is α-anonymous
if

max{ p(a(i) | o) − p(a(i) | a) | i ∈ I, o ∈ O, p(o ∩ a) > 0} = α

Intuitively, p(a(i) | o)− p(a(i) | a) = α means that, after observing o, the
probability we attribute to i as the performer of the action, has increased by
an additive factor α.

We study now the dependency of α on the βi’s in the case of the DCP with
n cryptographers on a linear graph. We need to introduce some definitions:
Let pi be the probability that Crypt i is the payer. Of course, the probability
that one of the cryptographers is the payer is then

∑n−1

i=0
pi. Let k be the

index of the cryptographer with the highest probability, i.e.

pk = max{pi | i ∈ [0, n − 1]}

For i ∈ [0, n − 2], define

γi =







βi if βi ≥ 0.5

1 − βi otherwise

Finally, for an arbitrary j ∈ [0, n − 1], define

qj =



























j−1
∏

i=0

γi

k−1
∏

i=j

(1 − γi)

n−2
∏

i=k

γi if j ≤ k

k−1
∏

i=0

γi

j−1
∏

i=k

(1 − γi)

n−2
∏

i=j

γi otherwise

12

Deng, Palamidessi and Pang

We are now ready to show how α depends on the βi’s:

Theorem 4.3 In the DCP on a linear graph with n nodes the α in Defini-
tion 4.2 depends on the βi’s (and on the pi’s) as follows:

α =
qk pk

n−1
∑

j=0

qj pj

−
pk

n−1
∑

j=0

pj

(1)

Figure 6 shows the dependency of α on the βi’s in the case of three cryp-
tographers. The various graphs refer to different probability distributions for
the payer. It is worth noting that, in contrast to the notion of α-anonymity
given in Definition 4.1, the version presented in this section depends not only
the βi’s, but also on the p(a(i))’s. On the other hand, in the limit case of
strong anonymity, the two notions are equivalent, as explained in Section 2.3.

5 Automatic Analysis

In the case of a very simple topology (linear graphs) we have been able to
express the dependency of α on the βi’s with a mathematical formula. In this
way, if we have a system whose internal bias are known, it is immediate to
check whether it satisfies weak anonymity (for a given α) or not. It is possible
to extend the method also to rings, but as the graphs get more complicated,
it is not clear how to proceed to find the formula that express the dependency.
This is a typical situation for most real-life systems: the symbolic analysis
is often unfeasible, and we have to resort to automatic tools supported by
computers.

In this section, we describe how to use the probabilistic model checker
PRISM to check the property of the α-anonymity for the DCP. We consider
both nondeterministic and probabilistic masters (recall that in the DCP non-
deterministic/probabilistic master is synonymous of nondeterministic/probabilistic
users). We model the DCP as a discrete-time Markov chain (DTMC) in the
case of a probabilistic master, and as Markov decision process (MDP) in the
case of a nondeterministic master 4 . The PRISM input language is a simple,
state-based language, based on the Reactive Modules formalism of Alur and
Henzinger [1]. The events are formalized using the temporal probabilistic logic
PCTL [6]. Once this translation is done, we can use PRISM to compute the
probabilities of the relevant events so to check α-anonymity. A brief overview
of PRISM and PCTL can be found in [4].

The following code is for three cryptographers and two coins arranged in
a line. It can be easily generalized to more cryptographers and a different

4 DTMC and MDP, which are the formats accepted by PRISM, can be seen as special cases
of probabilistic automata.

13

Deng, Palamidessi and Pang

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

α-anonymity

prbabilistic master: α-anonymity with p(a0)=p(a1)=p(a2)

β0

β1

α-anonymity

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

α-anonymity

α-anonymity: p(a0)=0.5, p(a1)=0.3, p(a2)=0.2

β0

β1

α-anonymity

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

α-anonymity

α-anonymity: p(a0)=0.98, p(a1)=0.05, p(a2)=0.05

β0

β1

α-anonymity

Fig. 6. The dependency of α-anonymity on the βi’s in the case of three cryptogra-
phers.

graph structure. First we describe the variables we use in the model. N is
the number of cryptographers, and, since the topology is a line, there are
N-1 coins in the model. The probabilities of each coin of showing head are
defined as beta0, beta1, etc. We define three more state variables: s master:

14

Deng, Palamidessi and Pang

[0..2] for the master, s coin: [0..N-1] to indicate how many coins have been
flipped, and s crypt: [0..N] to indicates how many cryptographers have decided
their outputs. payerid=N indicates that either no cryptographer will pay or
the master hasn’t decided yet.. Initially, they are all 0. Once the execution
terminates, we will have s master=2, s coin=N-1, and s crypt=N. The variable
payerid: [0..N] init N is used to record who is the payer. The variable toss:
bool init false is used to let the coins to be flipped after the master has made
his decision.

In the following, we consider the case N = 3. We use the variables crypt0,
crypt1, crypt2 to record the values computed by each cryptographer, that are
either 0 or 1 and depend on whether the cryptographer is paying and on the
sides of the coins the cryptographer can see. Initially, their values are 0. In
the model, there are two coins coin0 and coin1. The first is shared shared by
Cryptographers 0 and 1, the second is shared by Cryptographers 1 and 2. We
use 0 for head, and 1 for tail.

Next, we describe the behavior of the master, the coins and the cryptog-
raphers. If the master is nondeterministic, he will decide nondeterministically
the payer: one of the cryptographers (payerid = 0, 1, or 2) or himself (payerid
= 3). Once he has made the decision, the value of toss is set to true, in order
to let the coins to be flipped.

[] (s master=0) → (s master’=1) & (payerid’=0);
[] (s master=0) → (s master’=1) & (payerid’=1);
[] (s master=0) → (s master’=1) & (payerid’=2);
[] (s master=0) → (s master’=1) & (payerid’=3);
[] (s master=1) & (!toss) → (s master’=2) & (toss’=true);

If the master is probabilistic, then the choice of the payer is based on a
probability distribution. For instance:

[] (s master=0) →
0.5: (s master’=1) & (payerid’=0) +
0.3: (s master’=1) & (payerid’=1) +
0.1: (s master’=1) & (payerid’=2) +
0.1: (s master’=1) & (payerid’=3);

[] (s master=1) & (!toss) → (s master’=2) & (toss’=true);

Once toss becomes true, the coins start to flip. With probabilities beta0
and beta1, the side of the coins will be head. With probabilities 1-beta0 and
1-beta1, the side of the coins will be tail. Each time when a coin is flipped,
the value of s coin is increased by one.

[] (s coin=0) & (toss) →
beta0: (coin0’=0) & (s coin’=s coin+1) +
(1-beta0): (coin0’=1) & (s coin’=s coin+1);

[] (s coin=1) & (toss) →
beta1: (coin1’=0) & (s coin’=s coin+1) +

15

Deng, Palamidessi and Pang

(1-beta1): (coin1’=1) & (s coin’=s coin+1);

After all the coins have been flipped (s coin=N-1), the cryptographers cal-
culate the value of their variable crypt0, crypt1 and crypt2. Once a cryptog-
rapher has terminated this calculation, the value of s crypt is increased by 1.
Since the Cryptographers 0 and 2 sit at the two ends of the line, they can
only observe one coin: Cryptographer 0 sees Coin 0, and Cryptographer 2
sees Coin 1. If Cryptographer 0 is the payer, he will set the variable crypt0
to 1 if he sees the head of Coin 0, and to 0 otherwise. If Cryptographer 0 is
not the payer, he will set crypt0 to 0 if he sees the head of Coin 0, and to 1
otherwise. The code for Cryptographer 2 is similar: just rename crypt0 into
crypt2, coin0 into coin1, and s crypt=0 into s crypt=2.

[] (s crypt=0) & (s coin=N-1) & (payerid=0) & (coin0=0) s→
(crypt0’=1) & (s crypt’=s crypt+1);

[] (s crypt=0) & (s coin=N-1) & !(payerid=0) & (coin0=0) →
(crypt0’=0) & (s crypt’=s crypt+1);

[] (s crypt=0) & (s coin=N-1) & (payerid=0) & (coin0=1) →
(crypt0’=0) & (s crypt’=s crypt+1);

[] (s crypt=0) & (s coin=N-1) & !(payerid=0) & (coin0=1) →
(crypt0’=1) & (s crypt’=s crypt+1);

The behavior of Cryptographer 1 is slightly different, since he can observe
two coins. If he is the payer, he will set the variable crypt1 to 1 if the two
coins have the same side, and to 0 otherwise. If he is not the payer, he will
set crypt1 to 0 if the two coins have the same side, and to 1 otherwise.

[] (s crypt=1) & (s coin=N-1) & (payerid=1) & (coin1=coin0) →
(crypt1’=1) & (s crypt’=s crypt+1);

[] (s crypt=1) & (s coin=N-1) & !(payerid=1) & (coin1=coin0) →
(crypt1’=0) & (s crypt’=s crypt+1);

[] (s crypt=1) & (s coin=N-1) & (payerid=1) & !(coin1=coin0) →
(crypt1’=0) & (s crypt’=s crypt+1);

[] (s crypt=1) & (s coin=N-1) & !(payerid=1) & !(coin1=coin0) →
(crypt1’=1) & (s crypt’=s crypt+1);

A self-loop is added in the end of the specification to avoid deadlock
states 5 .

[] (s coin=N-1) & (s master=2) & (s crypt=N) →
(s coin’=N-1) & (s master’=2) & (s crypt’=N);

In the DCP, an external observer can see the values of the variables crypt0,
crypt2 and crypt2. Furthermore, the values of the variables in the PRISM
model define the states of the system. For example, the following predicate
represents the final states in which all cryptographers output 1. We denote it
by o1.

5 This is required by the design of PRISM.

16

Deng, Palamidessi and Pang

(crypt0=1) & (crypt1=1) & (crypt2=1) &
(s crypt=3) & (s coin=2) & (s master=2)

For each type of master (nondeterministic or probabilistic) we can describe
observables as a PCTL formula by using the P operator (see [4]). Then, we
can use PRISM to compute the probability of each observable for the analysis
of α-anonymity.

Nondeterministic master:

If the master is nondeterministic, we can compute the maximum and the
minimum probability of each observable, under any possible scheduler that
selects one of the cryptographers to pay. Below, we specify the PCTL formulas
to compute the probabilities of observable o1.

Pmax=?[true U o1] and Pmin=?[true U o1]

Thus, it is sufficient to use the formulation of α-anonymity given by the
following proposition, whose proof is immediate:

Proposition 5.1 A system (M, I, a, B, Z, p) is α-anonymous (with respect to
nondeterministic users) if

max{ max{ pς(o) | ς ∈ Z, pς(o ∩ a) = pς(o) }
−
min{ pϑ(o) | ϑ ∈ Z, pϑ(o ∩ a) = pϑ(o) } | o ∈ O } = α

The results in Figure 4 have been checked using PRISM.

Probabilistic master:

When the master is nondeterministic, α-anonymity is defined as

max{ p(a(i) | o) − p(a(i) | a) |i ∈ I, o ∈ O, p(o ∩ a) > 0 } = α.

Since PRISM does not support the calculation of conditional probability as a
primitive, we have to compute each p(a(i) | o) using the equivalent expression
p(a(i) ∩ o)/p(o). As for p(a(i) | a), this is the same as p(a(i))/p(a). For
example, in case of three cryptographers, p(a(0) ∩ o1) can be computed by
using the PCTL formula

P=?[true U o1 ∧ (payerid = 0)]

The results presented in Figure 6 have been checked using PRISM.

6 Conclusion

We propose two notions of weak probabilistic anonymity, for the cases of non-
deterministic and probabilistic users, respectively. We have applied these two
notions to the DCP with biased coins, and we have described the functional

17

Deng, Palamidessi and Pang

dependency of the weakness level on the biased factor of the coins. Further-
more we have coded in PRISM the DCP and the formulas that express weak
anonymity.

This paper builds on the framework of probabilistic anonymity proposed
in [2] that we have summarized in Section 2.3. The notions that we investigate
here represent a generalization of the strong probabilistic anonymity proposed
in [2].

To our knowledge, the first notion of probabilistic anonymity was proposed
(although not with an explicit definition) in [3]. That notion corresponds to
one of the notions of strong anonymity for probabilistic users investigated in
[2], and more precisely, to the one recalled in Definition 2.4. This is the notion
for which we have given the weak version in Definition 4.2.

In [8] Reiter and Robin have proposed an hierarchy of notions of proba-
bilistic anonymity in the context of Crowds. We recall that Crowds is a system
aimed at protecting the identity of users when sending (originating) messages.
This is achieved by forwarding the message to another user selected randomly,
which in turn forward the message, and so on, until the message reaches its
destination. Part of the users may be corrupted (attackers), and one of the
main purposes of the protocol is to protect the identity of the originator of
the message from those attackers.

The following is Reiter and Robin’s description of the hierarchy. Here the
sender stands for the user that forwards the message to the attacker.

Beyond suspicion From the attacker’s point of view, the sender appears no
more likely to be the originator of the message than any other potential
sender in the system.

Probable innocence From the attacker’s point of view, the sender appears no
more likely to be the originator of the message than to not be the originator.

Possible innocence From the attacker’s point of view, there is a nontrivial
probability that the real sender is someone else.

These notions were only given informally in [8] and we are not sure how
to interpret them formally. However, the property of anonymity which is
actually proved in [8] for the system Crowds (and which the authors call
“probable innocence”) is described formally, and says that the probability that
the originator forwards the message to an attacker is not greater than 1/2.
Equivalently, the probability that an attacker receives the message from user i
(observable event), given that i is the originator of the message (event a(i)), is
not greater than 1/2. A notion of probable innocence in that sense corresponds
to our Definitions 3.1 and 4.1 (for nondeterministic and probabilistic users,
respectively) with α ≤ 1/2.

Halpern and O’Neill have proposed in [5] various notions of probabilistic
anonymity, focusing on the probability of the users. Their principal notion
is based on epistemic logic and is formulated as a requirement on the knowl-
edge of the observer about the probability of the user. They have given both

18

Deng, Palamidessi and Pang

strong and weak version of this notion, proposing a formal interpretation the
three levels of the hierarchy proposed by [8] (see above). These notions do not
seem directly related to the ones we investigate in this paper. In particular,
those in [8] depend on the probabilities of the a(i)’s, while our notions ab-
stract from these probabilities. On the other hand, Halpern and O’Neill have
proposed also another notion, called conditional anonymity (cfr. Definition
4.4 in [5]), which corresponds to the strong probabilistic anonymity recalled
in Definition 2.4.

References

[1] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[2] Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. Technical
report, INRIA Futurs and LIX, 2005. To appear in the proceedings of CONCUR
2005. Report version available at
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/report.ps.

[3] David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

[4] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Weak probabilistic
anonymity. Technical report, INRIA Futurs and LIX, 2005. Available at
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/reportWA.pdf.

[5] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding in
multiagent systems. In Proc. of the 16th IEEE Computer Security Foundations
Workshop, pages 75–88, 2003.

[6] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[7] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go MIXes:
Providing probabilistic anonymity in an open system. In Proceedings of
Information Hiding Workshop (IH 1998). Springer-Verlag, LNCS 1525, 1998.

[8] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web
transactions. ACM Transactions on Information and System Security, 1(1):66–
92, 1998.

[9] Peter Y. Ryan and Steve Schneider. Modelling and Analysis of Security
Protocols. Addison-Wesley, 2001.

[10] Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc.
of the European Symposium on Research in Computer Security (ESORICS),
volume 1146 of Lecture Notes in Computer Science, pages 198–218. Springer-
Verlag, 1996.

19

Deng, Palamidessi and Pang

[11] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic
processes. Nordic Journal of Computing, 2(2):250–273, 1995. An extended
abstract appeared in Proceedings of CONCUR ’94, LNCS 836: 481-496.

[12] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and
onion routing. In IEEE Symposium on Security and Privacy, pages 44–54,
Oakland, California, 1997.

20

	Introduction
	Contributions
	Plan of the paper

	Preliminaries
	Nondeterminism and probability
	The Dining Cryptographers
	Anonymity systems

	Weak anonymity for nondeterministic users
	Weak anonymity for probabilistic users
	Focusing on the probabilities of the observables
	Focusing on the probabilities of the users

	Automatic Analysis
	Conclusion
	References

