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1. Introduction

As is well known, protocols for distributed systems form a major aspect of system design. Verifying
the correctness of the protocols that regulate the behavior of such systems is usually a formidable
task, as even simple behaviors become wildly complicated when they are carried out in parallel.

Algebraic approaches to the study of concurrent systems focus on the manipulation of process
descriptions. Processes are represented by means of process terms consisting of process names, action
terms (which represent atomic activities) and operators (specifying the order in which the activities
can be carried out). A set of axioms specifies how process terms can be manipulated in such way that
the processes they represent are in a certain sense the same.

Traditional process algebras such as ccs [Mil89], csp [Ros98] and acp [Fok00] are well suited for
the study of elementary behavioral properties of distributed systems. However, when it comes to the
study of more realistic systems, these languages turn out to lack the ability to handle data adequately.

In order to solve this problem, the language µcrl [GP95] has been developed. This language
combines the process algebra acp with equational abstract data types [LEW96]. This is done by
parameterising action and process terms with data. A conditional (if-then-else construct) can be used
to have data influence the course of a process, and alternative quantification is added to sum over
possibly infinitely many data elements of some data type. Also communication and recursion can be
data-parametric in µcrl.

To each µcrl specification there belongs a transition system, in which the states are process terms
and the edges are labeled with actions. If this transition system consists of finitely many states, then
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the µcrl tool set [Wou00] can be used in combination with the Cæsar Aldébaran Development

Package (cadp) [FGK+97] to generate, visualise and analyse this transition system. For example,
one can detect the presence of deadlocks and livelocks, single step through the graph, and apply model
checking [CGP00] to check the validity of temporal logic formulas.

This paper reports on the analysis of a real-life system for lifting trucks (lorries, railway carriages,
busses and other vehicles). The system consists of a number of lifts; each lift supports one wheel of
the truck that is being lifted and has its own micro controller. The controls of the different lifts are
connected by means of a cyclical network. A special purpose protocol has been developed to let the
lifts operate synchronously.

This system has been designed and implemented by a Dutch company. When testing the imple-
mentation the developers found three problems. They solved these problems in an ad hoc manner,
although the causes of two of the three problems were unclear. Moreover, the developers were unsure
that there were no other bugs hidden in the system. In close cooperation with the developers, we
specified the lift system in µcrl; we strove to stay as close as possible to the actual implementation.
Next, we analysed the resulting specification with the µcrl tool set and cadp. The three known
problems turned up in our specification (which indicates that our specification is valid). In addition
we found a fourth error. This error was unknown and found its way into the implementation of the
lift system. We propose solutions for these problems. We have analysed the µcrl specification that
results from the incorporation of the proposed solutions, showing that this specification meets the
requirements of the developers.

This article is structured as follows. After this introduction, we give an informal specification of the
lift system (Section 2). Next we discuss the requirements which the system should satisfy (Section 3)
and the initial specification in µcrl (Section 4). Then, we report on the problems we found and we
propose solutions to the problems (Section 5). The methods and result of our formal verification is
presented in (Section 6). We draw some conclusions in (Section 7).

2. Description of the lift system

First, we explain the general layout of the lift system (Section 2.1). Then we explain the manner in
which lift movement is controlled (Section 2.2).

2.1 Layout of the lift system
The system studied in this paper consists of an arbitrary number of lifts. Each lift supports one wheel
of a vehicle being lifted. The system is operated by means of buttons on the lifts. There are four such
buttons on each lift: up, down, setref and axis. The system knows three kinds of movements. If
the up or down button of a certain lift is pressed, all the lifts of the system should go up, respectively
down. If the up or down button is pressed together with setref, only one lift (the one of which
the buttons are pressed) should go up or down. This allows the operator to adjust the height of a
lift to inequalities in the surface of the floor. If the up or down button is pressed together with the
axis button, the opposite lifts (and only those) are supposed to move up or down, respectively. This
is needed to replace the axis of a truck. As different trucks may have different numbers of wheels,
the operator may add or remove lifts to or from the system. We have only studied the first kind of
movement and for that reason we will restrict the remainder of the paper to that mechanism.

Normally, the lifts contain a locking pin which is intended to prevent the lift from moving down
when motors fail, or oil is leaking from the hydraulic pumps or valves. This pins restrict the movement
of the lifts. If one wants to move the lifts over a larger distance this pin has to be retracted. This
detail is not taken into account in our specification.

Lift movement is controlled by means of a microcontroller. The lift controller can adopt eight
different states. For our study the following states are important: startup, standby, up, and
down. The meaning of these states will become clear in the course of the discussion.

The lift controls of the different lifts belonging to a system are connected to a ‘cyclical’ can bus
[Rob91] which is interrupted by relays (see Figure 1). The different controllers connected to the
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bus are called ‘stations’. There is a relay between every pair of adjacent stations and each relay is
controlled by the station at its left side. When the system is switched on all relays are open. After
initialization, all relays but one should be closed. In effect this means that if the initialization succeeds
all the stations are connected to one linear bus.

The can bus is a simple, low-cost, multi-master serial bus with excellent error detection capabilities.
Multi-master means that all stations can claim the bus at each bus cycle and several stations can claim
the bus simultaneously, in which case a non-destructive arbitration mechanism determines which
message is transmitted by the bus. A message on the bus is immediately received by all other stations
connected to the sending station via closed relays. The can protocol does not use addresses.

In the lift system, the user data field of the messages transfered over the bus contain three pieces of
information: the position of the sender station, the type of the message, and the (measured) height
of the sender’s lift. There are two kinds of messages: sync messages and ‘state’ messages. State
messages report the state of the sender station (e.g., startup, standby, up, down). sync messages
initiate physical movement. In response to a sync message each station will immediately transfer its
state to the input of the motor of its lift. This means that if the station is in the up state after a
sync message, the lift will move up a fixed distance; if the station is in the down state, the lift will
move down a fixed distance; and if the station is in standby it will not move.

The system continuously checks the heights broadcasted in the messages to determine if they do
not differ too much. If there is something wrong an emergency stop is brought about. This is not
modeled in our specification due to the state explosion problem.

2.2 Control of lift movement
To assure that all lifts move simultaneously in the same direction, the station initiating a certain
movement must verify whether all stations are in the appropriate state before it sends the sync

message.
The can protocol allows several stations to claim the bus at the same time. However, in the lift

system, the controls are programmed in such a way that (during normal operation) the stations take
turns claiming the bus. They claim the bus in a fixed order (turn counter clockwise in Figure 1).

To achieve this orderly usage of the bus, each station must know its position in the network.
Furthermore, in order to be able to find out whether all stations are in the same state, each station
must know how many stations there are in the network. This is achieved by means of a startup phase
in which all the stations come to know their position in the network as well as the total number of
stations in the network. This startup phase is discussed as follows:

Startup As said, when the system is switched on, all the relays are open (see the left part of Figure 1).
In the startup phase two things might happen to a station:

• The setref button of that station might be pressed. In this case the station will initiate the
startup phase as follows:

1. it stores that it has position 1,

2. it adopts the startup state,

3. it closes its relay,

4. it broadcasts a startup message,

5. it opens its relay,

6. it waits for a startup message,

7. it stores the position of the sender of that message as the number of stations in the network,

8. it adopts the standby state,

9. it broadcasts this state.
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Figure 1: State of the relays before (left) and after (right) initialization

• The station might receive a startup message from another station. In this case:

1. it adds 1 to the position of the sender of that message and stores this as its own position,

2. it stores its own position as the number of stations in the network,

3. it adopts the startup state,

4. it closes its relay,

5. it sends a startup message,

6. – if it receives an another startup message it stores the position of the sender of that
message as the number of stations in the network,

– if it receives a standby message it adopts the standby state (if the station has position
2 it will in addition initiate normal operation by broadcasting its state).

Assume, for example that in the system of Figure 1 the setref button of station B is pressed. The
station of this lift gets position (‘logical address’) 1. It closes the relay between B and C, broadcast
a startup message, and open this relay again. The startup message from B is received by only
one station (C). This station draws the conclusion that it has position 2. It subsequently closes the
relay to D and broadcasts a startup message. This message is received by only one station (D). This
station draws the conclusion that it has position 3, closes the relay to A and sends a startup message.
This message is received by A and C. C draws the conclusion that now there are three stations in
the network. A draws the conclusion that it has position 4, closes the relay to B and broadcasts a
startup message. This message is received by B, C, and D. C and D draw the conclusion that now
there are four stations in the network. Station B draws the conclusion that the circle is completed. It
stores the position of the sender of that message (4) as the number of stations in the network, adopts
the standby state and initiates normal operation by sending a standby message. This message is
received by C, D, and A which adopt the standby state in response.

The result is that all stations are connected in the manner pictured in the right part of Figure 1,
that all stations know how many stations there are in the network and what their position is, and
that all stations are in standby. Normal operation starts when station 2 broadcasts its state.

Normal operation During normal operation, the first station broadcasts its state and height, then
the next station broadcasts its state and height and so on, until the last station has broadcast its state
and height after which the first station starts again.
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Figure 2: State transitions of an individual lift during normal operation

The transition diagram of each lift during normal operation is sketched in Figure 21. Initially all
stations are in standby. A station in standby changes to another state if one of its buttons is
pressed or if it receives a message with another state. The station that is initiating a certain change
(i.e., when it is in standby and a button is pressed) is called the active station. All other stations
are passive. If the up or down button of a certain lift is pressed and its station is in standby that
station becomes active and changes its state to up or down, respectively. When a passive station
receives a state message it adopts the state in that message. An active station does not change its
state in response to state messages. The state of an active station changes only if the appropriate
button is released. In that case its state changes to standby and the station becomes passive again.

As said, physical movement is initiated by a sync message. In order to assure that all lifts move
in the same direction the active station will count the number of messages that contain the intended
state. The active station will send a sync message if and only if it has counted enough messages with
the right state (i.e., all the other stations are in the same state at itself), when it is its turn to use
the bus.

Assume, for example, that all stations are in standby and that the up button of station 4 is pressed.
This station adopts the up state. When it is this station’s turn to use the bus it will broadcast its
state; in response the other stations will adopt the up state too. Next, it is station 1’s turn to use the
bus. This station will broadcast its state (which is up). The message from station 1 is received by all
other stations, among which the active station 4. As the state in the message is the same as that of
the active station 4, this latter station will count this message. In the next two cycles station 2 and

1Some actions of pressing or releasing a button are not represented in this figure, since those actions do not make
any state transition of a lift druing normal operation phase.
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station 3 claim the bus in turn and broadcast their states (up), both messages are counted by station
4. So, if all goes well, station 4 will have received the right number of up messages when it is its turn
to use the bus again and it will send a sync message to initiate physical movement.

3. Requirements

There are five requirements for the lift system. Each requirement describes a different aspect of the
system’s behavior.

1. Deadlock freeness : the lift system never ends up in a state where it cannot perform any action.

2. Liveness I : though the system might ignore buttons temporarily, it is always possible to return
to a state in which pressing the up or down button of any lift will yield the appropriate response.

3. Liveness II : if exactly one up or exactly one down button is pressed and not released, then all
the lifts will (eventually) move up or down, respectively.

4. Safety I : if one of the lifts moves, all the other lifts should simultaneously move in the same
direction.

5. Safety II : if the lifts move, an appropriate button is pressed. In other words, the lifts will not
move if no one has pressed an appropriate button.

4. Specification

We specified the lift system in µcrl. As is demonstrated by this case study, this language is useful
as a tool to analyse medium-sized distributed systems.

4.1 A short introduction to µcrl

The specification language µcrl is based on process algebra acp extended with a formal treatment
of data. A µcrl specification consists of two parts. One part specifies the data types, the second
part the processes. Each data type is declared using the keyword sort. Elements of a data type are
declared by using the keywords func and map. The keyword func is used to declare the functions
that construct a certain sort. The additional properties or additional relations between the elements of
an already defined sort are declared with the keyword map. They are defined by means of equations,
which consists of an optional variable declaration (starting with the keyword var) followed by equation
section (starting with the keyword rew). For example, the sort Bool of booleans with conjunction is
defined as follows:

sort Bool
func T,F: →Bool
map and: Bool×Bool→Bool
var b: Bool
rew and(T,b) = b

and(F,b) = F

Because booleans are used in the ‘if-then-else’ construct of the process descriptions, the sort Bool must
be included in every µcrl specification. Besides the declaration of sort Bool, it is also obligatory that
T and F are declared in every specification. To reflect equality between terms, one needs to specify
an equality function eq:D× D→ Bool. Actually, such an equality function is only needed for data
types that are used as parameters of actions that occur in a communication. The equality relation is
achieved by comparing every two terms. For example, one could define an equality function for the
booleans as follows:
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rew eq(T,T)=T
eq(F,F)=T
eq(T,F)=F
eq(F,T)=F

In the remainder of our discussion, the specification of equality function eq is omitted to increase the
readability.

The definition of a process is constructed from action names, process names and process-algebraic
operators. Actions are declared by means of the keyword act. They are defined with zero or more
parameters. Each of the parameters is defined over some data type. There are two predefined actions
in µcrl: δ represents deadlock, τ represents the hidden actions2. Processes are represented by process
terms. Process terms describe the order in which the actions may happen. Process-terms consist of
basic process-terms (action names and process names) combined by process-algebraic operators. p · q
indicates sequential composition, where p and q are processes. The operator ‘+’ stands for non-
deterministic choice. p + q means that it can behave as p or q. The parallel composition of p and q
is written as p ‖ q. The sum operator provides the possibly infinite choice for one element of a sort.
The conditional expression ‘if-then-else’ has the form of p�b�q3, where b is a data term of sort Bool.
This means that if b holds then it behaves as p, otherwise as q. The keyword comm can be used
to specify which actions may synchronise. Two actions can only synchronise if their data parameters
are exactly the same, which means that communication can be used to represent data transform from
one process to another. If two actions are able to synchronise, then we only want these actions to
occur in communication with each other, and not on their own. This can be done by the operator
encap. The operator hide hides all enclosed actions by converting them into the τ action. It is an
important means to analyse communicating systems. It makes the internal behaviors invisible. The
initial behavior of the system can be specified with the keyword init. The syntax and semantics of
µcrl are given in [GP95].

As we described in Section 2, our specification is still an abstraction of the real system. Such details
as the locking pins, the parameter of height containing in the messages, and the checking of the height
broadcasted in messages are not modelled in our specification. And we also only studied this kind
of movement of the lift system: If the up or down button of one lift is pressed, all the lifts of the
system should go up, respectively down. The initial specification for system with three lifts is given
in Appendix I. Here we only highlight some parts of this specification. The part of data types is
discussed in Section 4.2, the part of processes in Section 4.3.

4.2 Data types
Obviously we need to represent the physical structure of the lift system. This is done by means of
the sort Address. The constructors of this data type consist of identifiers (one for each station).
The functions suc and pre yield the identifiers of the neighbours in the circle. suc yields the one at
the right side, pre yields the one at the left-hand side (see Figure 1). Because of the similarity in
structure, we use this data type also to represent the logical position of a station. This data type is
also used to identify the position of relays. Relay n is the one between the station with address n and
the station with address suc(n); it is controlled by the station at the left side (addressed as n).

sort Address
func 1, 2, 3: →Address
map suc: Address→Address

pre: Address→Address
rew suc(1)=2

2These two actions can also be written in ASCII as delta and tau, respectively.
3In ASCII symbols, it is represented as p < |b| > q. We use both LATEX and ASCII symbols in the following µcrl

specifications to obtain a better layout.
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pre(1)=3
suc(2)=3
pre(2)=1
suc(3)=1
pre(3)=2

To model the bus, we must record which relays are closed. This is done by means of the sort Alist,
which is a list of addresses. The constructors of this sort are ema and set. ema stands for an empty
list. set constructs a new list by inserting an address into a list. The function reset(a,A) removes all
addresses a from a list A. Function test(a,A) tells us whether the address a is in list A. The function
empty(A) is used to judge whether a list is empty, or not. The choice between two lists is achieved by
function if(b,A,A’), where b is a data term of sort Bool. It means that if b holds then A is selected,
otherwise A′. And the concatenation of two lists is represented by the function conc(A,A’). The
function Addresses(A, a) is used to get the list of all stations connected to the station a via list A of
closed relays. a is not included in the result (see its detail in Appendix I).

sort Alist
func ema: →Alist

set: Address×Alist→Alist
map reset: Address×Alist→Alist

test: Address×Alist→Bool
empty: Alist→Bool
if: Bool×Alist×Alist→Alist
conc: Alist×Alist→Alist
Addresses: Alist×Address→Alist

var a, a’: Address A, A’: Alist
rew reset(a,ema)=ema

reset(a,set(a’,A))=if(eq(a,a’),reset(a,A),set(a’,reset(a,A)))
test(a,ema)=F
test(a,set(a’,A))=if(eq(a,a’),T,test(a,A))
empty(ema)=T
empty(set(a,A))=F
if(T,A,A’)=A
if(F,A,A’)=A’
conc(ema,A)=A
conc(set(a,A),A’)=set(a,conc(A,A’))

In our model, only the following states of stations are specified by a sort State: standby, up,
down, startup and sync. The state sync is not really a state, but it can be broadcasted in a
message instead of the states. This kind of message is used to synchronise the physical movement of
all the lifts.

sort State
func standby, up, down, startup, sync: →State

The messages travelling on the network are specified by sort Message. A message has the form
mes(m, s): m is the logical address of the station sending the message and s is the state of the sending
station. By using the functions getaddress and getstate, we can get the logical position, respec-
tively the state of the station.
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sort Message
func mes: Address×State→Message
map getaddress: Message→Address

getstate: Message→State
var a: Address s: State
rew getaddress(mes(a,s))=a

getstate(mes(a,s))=s

4.3 Processes
In this section, we focus on the process part of our specification. It is obvious that we need to represent
the behaviors of the bus and the station. The bus and the station are both modelled as processes.

The specification of the bus poses two problems. First, we must represent which relays are open and
which ones are closed. This is done by parameterising the bus process with an Alist R of identifiers
of all closed relays. If a station closes a relay, the identifier of the relay is added to this list. If it opens
a relay, the identifier of the relay is removed from this list. This is achieved with help of two actions
r open-relay(n) and r close-relay(n).

Second, we must represent the transportation of messages over the bus. In the real system, a
message put on the bus by one station is immediately received by all the other stations connected
to the sending station via closed relays. This is modelled by means of a delivery process (Deliver)
parameterised with an Alist A of stations that have yet to receive the message. After accepting a
message from a station with the action r stob(m,a) (receive message m from station a to the bus),
the bus process moves to the delivery phase, provided that the list R is not empty. This phase consists
of a number of cycles. In each cycle, the message is delivered to one station in list A by the action
s btos(m,a) (send message m from the bus to station a) and then the next cycle is entered with the
station a removed from list A. If the last station is removed, the bus process returns to the Bus phase.
The Deliver process has R as one of its parameters; this is needed to restart the Bus process after
the delivery phase with correct list of the closed relays. In the delivery phase, the bus does not accept
messages from the stations, which ensures that a message broadcasted by a station is received by all
other stations before the next station can send a message.

act r stob, s btos: Message×Address
r open-relay, r close-relay: Address

proc Bus(R: Alist) =
sum(m: Message, sum(a: Address, r stob(m,a)·
(Bus(R)
�empty(Addresses(R,a))�
Deliver(m,R,Addresses(R,a)))))

+ sum(a: Address, r open-relay(a)·Bus(reset(a,R)))
+ sum(a: Address, r close-relay(a)·Bus(set(a,R)))

proc Deliver(m: Message, R: Alist, A: Alist) =
sum(a: Address, s btos(m,a)·
( (Bus(R)
�empty(reset(a,A))�
Deliver(m,R,reset(a,A)))

�test(a,A)�δ))
+ sum(a: Address, r open-relay(a)·Deliver(m,reset(a,R),A))
+ sum(a: Address, r close-relay(a)·Deliver(m,set(a,R),A))

The actions r stob and s btos are intended to communicate with the actions s stob (send a
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message from a station to the bus) and r btos (receive a message from the bus to a station) into
c stob(m,n) and c btos(m,n), respectively. Likewise, the actions r open-relay(n) and r close-relay(n)
are synchronised with the actions s open-relay(n) and s close-relay(n).

comm s stob | r stob = c stob
s btos | r btos = c btos
s open-relay | r open-relay = c open-relay
s close-relay | r close-relay = c close-relay

After modelling the bus process, we come to the specification of the lift controller. The following
actions are associated with the buttons of a lift. But they do not simply represent the physical action
of pressing a button of the real system. Only those actions of pressing a button which have effect on
the behavior of the system are modelled in our specification. For example, in the normal operation
phase, a setref button can be physically pressed. Because in this phase, a stations does not respond
to this action, the action setref cannot occur according to our specification of the normal operation
phase. The action of outputting state s of station a to the motor input is represented as the action
move(n,s).

act setref, up, down, released: Address
move: Address×State

The control of the lift system movement is divided into two phases. Initially, all relays are open.
In the first phase (startup phase), the network connection is set up, and each station gets to know its
logical position and the number of stations in the network. In the second phase (normal operation
phase), the stations claim the bus in a fixed order and the physical movement of the system can be
initiated. Each lift process is parameterised with an address n, which identifies the station.

The behavior of a station in the startup phase is modelled by two processes, Lift0 and Lift1.
Initially, all stations are in Lift0. Lift0 specifies the initial behaviors of a station. In this phase, the
setref button of a station can be pressed or a station can receive a startup message from another
one. Lift1 models how the stations with a logical position greater than 1 get to know the number
of stations in the network. The parameter m is added to Lift1 to record the logical position of a
station. The parameter nos is used to remebmer the number of the stations.

The station of which the setref button is pressed gets logical position 1. It closes its relay with
the action s close-relay(n) and broadcasts a startup message. Next, it opens its relay with the
action s open-relay(n) and waits for a startup message. When it gets the startup message, it
responds by changing its state to standby and broadcasting its state, then it involves into the normal
operation phase, which is modelled as Lift2. If a station with logical position greater than 1 gets a
startup message, it adds 1 to the position of the message’s sender and stores this both as its m and
as its nos. It adopts the startup state, closes its relay and broadcast its own state. Next, it moves
into Lift1, where it can change its own nos according to the logical address of the startup message
it receives. At last, each station gets to know the number of the stations in the network by the logical
address of the last received startup message. When the stations with a logical position greater than
1 get a standby message, they also adopt their states to standby and involve into process Lift2
too. In this way, the startup phase is finished and all stations are connected to one linear bus. The
processes Lift0 and Lift1 are specified as follows:

proc Lift0(n:Address)=
setref(n)·s close-relay(n)·s stob(mes(1,startup),n)·s open-relay(n)·
sum(mes: Message, r btos(mes,n)·
(s stob(mes(1,standby),n)·
Lift2(n,1,getaddress(mes),standby)
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�eq(getstate(mes),startup)�δ))
+
sum(mes: Message, r btos(mes,n)·
(s close-relay(n)·s stob(mes(suc(getaddress(mes)),startup),n)·
Lift1(n,suc(getaddress(mes)),suc(getaddress(mes))))
�eq(getstate(mes),startup)�δ))

proc Lift1(n:Address, m:Address, nos:Address)=
sum(mes: Message, r btos(mes,n)·
(Lift1(n,m,getaddress(mes))
�eq(getstate(mes),startup)�

(s stob(mes(1,standby),n)·Lift2(n,m,nos,standby)
�eq(getaddress(mes),pre(m))�
Lift2(n,m,nos,standby))

�eq(getstate(mes),standby)�δ))

The behavior of a station during the normal operation is specified by means of two processes (Lift2
and Lift3). The parameter s is used to record the state of the station. In this phase, the stations
broadcast their messages in a fixed order. A station knows that it is its turn to claim the bus when it
receives a message from its predecessor. In both Lift2 and Lift3, a station responds to an incoming
sync message by immediately outputting its state to the motor input with the action move(n,s).
Lift2 models the behavior of a station that is passive or in standby. In this phase, a station will
respond to a state message by adopting the state in the message. When a station gets the turn to
claim the bus, it adopts the state in the received message and broadcasts it. In addition, a station
in standby will respond to an action of pressing a button. It adopts the corresponding state and
becomes active (Lift3). Lift3 models the behavior of an active station. The parameter count is
used to count the number of stations that are in the same state as this active one. This counter is
initiated with the number of stations in the network. Each time the active station receives a message
with the same state as itself, the counter is decreased. When the active station gets the turn to use
the bus, it will determine whether it has received enough messages of the right type (i.e., whether its
counter equals 2 and the state of the message of its predecessor is the same as the state of itself).
If so, it will send a sync message, output its state to the motor, broadcast its own state and reset
the counter to the number of the stations in the network. If not, it will broadcast its state and reset
its counter. When the pressed button on the lift is released (modelled by released(n)), the active
station returns to standby.

proc Lift2(n:Address, m:Address, nos:Address, s:State)=
(up(n)·Lift3(n,m,nos,up,nos)+ down(n)·Lift3(n,m,nos,down,nos))
�eq(s,standby)�δ
+
sum(mes: Message, r btos(mes,n)·
(move(n,s)·Lift2(n,m,nos,s)
�eq(getstate(mes),sync)�
(s stob(mes(m,getstate(mes)),n)·Lift2(n,m,nos,getstate(mes))
�eq(getaddress(mes),pre(m))�
Lift2(n,m,nos,getstate(mes)))))

proc Lift3(n:Address, m:Address, nos:Address, s:State, count:Address)=
released(n)·Lift2(n,m,nos,standby)
+
sum(mes: Message, r btos(mes,n)·
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(move(n,s)·Lift3(n,m,nos,s,count)
�eq(getstate(mes),sync)�

((s stob(mes(m,sync),n)·move(n,s)·
s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)
�eq((getstate(mes),s)∧eq(count,2)�
s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos))

�eq(getaddress(mes),pre(m))�
(Lift3(n,m,nos,s,pre(count))
�eq(getstate(mes),s)�
Lift3(n,m,nos,s,count))))

By putting n Lift0 processes and one Bus process in parallel, we model a system with n lifts.

init hide (
{c stob, c btos, c open-relay, c close-relay},
encap(
{s stob, r stob, s btos, r btos,
s open-relay, r open-relay, s close-relay, r close-relay},

Bus(ema) ‖ Lift0(1) ‖ Lift0(2) ‖ ... Lift0(n)) )

The encapsulation operator encap enforces the actions s btos(m,n) and s stob(m,n) to occur in
communication with the actions r btos(m,n), respectively r btos(m,n). To analyse the specification,
all internal actions like the communication between bus and stations can be abstracted away, which
is achieved by converting them into the τ action with the help of the hide operator.

5. Analysis results

In our study, the µcrl tool set was used to generate a transition system from the µcrl specification.
This transition system was analysed with the cadp tool set. When an error was found the specification
was modified and the modified specification was analysed again.

Four errors were found in the original design. We discuss these problems separately and propose
solutions (Sections 5.1–5.4). The modified specification resulting from the incorporation of our sug-
gestions was shown to meet the requirements (Section 6).

5.1 Problem 1
The first problem occurs if station 2 sends a startup message before the relay between station 1 and
2 is opened. This startup message is received by station 1, which will draw the erroneous conclusion
that the circle is completed. From this all sorts of errors may occur (depending on the exact timing).
For example, if the relay between station 1 and station 2 is closed before station 1 sends the standby

message which initiates normal operation, no station will receive this message. The start up phase
will continue as intended until station 1 receives the startup message from the last station in the
system. As this is unexpected it will result in a deadlock.

The developers had spotted this problem in the test phase, but they were unaware of its cause.
They had solved the problem by adding delays before sending a startup message.

In our revised specification4, the delay is modelled by the communication of two actions, s sync
and r sync. This is enough to make us sure of only when station 2 waits till the relay between station
1 and station 2 is closed, it sends a startup message.

comm s sync | r sync = c sync
proc Lift0(n:Address)=

... s open-relay(n)·s sync· ...
4“...” means it is the same as the corresponding part in the initial specification.
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+
sum(mes: Message, r btos(mes,n)·
( s close-relay(n)·
(r sync·s stob(mes(2,startup),n)·
Lift1(n,2,startup)
�eq(getaddress(mes),1)�
s stob(mes(suc(getaddress(mes)),startup),n)·
Lift1(n,suc(getaddress(mes)),startup))

�eq(getstate(mes),startup)�...))

Our experiments have indicated that this solves the problem adequately (if the delay is long enough
to make sure that the relay between 1 and 2 is opened before station 2 sends the startup message).
The developers also indicate that it suffices to delay only the second startup message.

5.2 Problem 2
The second problem occurs if the setref buttons of two lifts are pressed at almost the same time.
This may result in different lifts moving in different directions. Assume that the system consists of
four lifts (A, B, C, D) and that the setref buttons of A and C are pressed at the same time. Both
A and C send a startup message which is received by respectively B and D. The relays between A
and B, and between C and D are opened again. Next B closes the relay between B and C and then B
broadcasts a startup message. This message is received by C. Station C draws the conclusion that
the circle is completed and initiates normal operation. At the same time D closes the relay between D
and A and sends a startup message that is received by A, after which A initiates normal operation.
The result is that there are two independently operating networks, one consisting of A and D; the
other of B and C. There is no way in which the stations or the bus can prevent or detect this situation.

A similar situation may occur if the setref buttons of two neighboring lifts (say A and B) are
pressed. Assume that B sends a startup message slightly before A does so. The message from B is
received by C. Assume that next the relay between B and C is opened again and that A subsequently
sends its startup message. Station B receives it, draws the conclusion that the circle is completed,
and initiates normal operation. Station A opens the relay between A and B, and after receiving a
startup message from D it finishes the startup phase. The result is that B is isolated from the rest
of the network. Again the system will not detect this error.

We have modified the specification in such way that it is impossible to initiate the system by pressing
the setref button of several lifts at once. The process Setref monitor is defined to prevent that in
the startup phase more than one setref button are pressed at different lifts at the same time. The
action setref(n) in Lift0 is replaced by the action s init(n), which applies a lock on the monitor.
After station 1 gets a startup message, it releases the lock by the action s stable. During the period
when the monitor is locked, no other setref button pressed action can have effect on the whole lift
system.

comm s init | r init = c init
s stable | r stable = c stable

proc Setref monitor =
sum(n: Address, r init(n)·r stable·Setref monitor)

proc Lift0(n:Address)=
s init(n)· ...
sum(mes: Message, r btos(mes,n)·
(s stob(mes(1,sync),n)·s stable·s stob(mes(1,standby),n)·
Lift2(n,1,getaddress(mes),standby)
�eq(getstate(mes),startup)�
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...

We avoid this problem in a very tricky way. It is useful for our continuous analysis. Given the chosen
bus it seems impossible to solve this problem satisfactorily. The developers choose to emphasize in
the manual that it is important to make sure that in the initial phase the setref button of only one
lift is pressed.

5.3 Problem 3
The third problem occurs if a button is pressed and released at an inappropriate moment. Suppose
that in a network of four stations all stations are standby, and that the down button of station 1 is
pressed, as a result of which it acquires the down state. When it is the turn of station 1 to use the
bus it broadcasts the down state, and all other stations adopt this state in response. Suppose that
the down button is released after station 3 sends its down message, but before station 4 has done
this. As a result station 1 returns to the standby state. In this state it adopts the state of all state
messages it receives, so when station 4 sends its state message it adopts the down state. We now
have the situation that all stations are in down state, but there is no active station. This means that
they will remain in that state until the system is shut down.

This problem was discovered by the developers when testing the system and they solved it by means
of an initiator flag. In our example this flag is set in station 1 if the down button is pressed. When
the flag is set, the station does not accept state changes from the bus until both its own state and the
received state are standby. Then the flag is reset and new commands are accepted.

Our solution is simpler, we only let the station wait to become passive after the button is released,
until it is that station’s turn to use the bus. This is the solution incorporated in our modified
specification. The main modification is made in the definition of process Lift3. It is shown together
with the solution to the fourth problem at the end of Section 5.4.

5.4 Problem 4
The fourth problem occurs when two (up or down) buttons on different lifts are pressed at the same
time. Suppose there are four stations in the network and that the down buttons of station 1 and
station 2 are pressed at the same moment as the result of which both stations become active. Assume
that it is station 1’s turn to use the bus. It sends a down message, and in response station 3 and
station 4 adopt the down state. In turn stations 2, 3 and 4 send a down message. When it is the
turn of station 1 to use the bus again, it has counted three down messages so it sends sync (after
which all lifts move down), and as the down button is still pressed it then sends down. Now it is
station 2’s turn and as this station is active and has counted three down messages it sends a sync

message. Suppose (and now comes the problem) that the down button of station 1 is released after
station 1 has sent the down message and before station 2 sends the sync message. As a result station
1 is in standby when it receives the sync message, and its lift remains at the same height while the
others move down.

A similar problem occurs if the up button of station 2 is released just after station 3 has sent its
down message but before station 1 sends its sync message. In this case lift 2 will remain at the same
height while the others move down.

This problem was not known to the developers and found its way into the implementation. We
propose to solve this problem by allowing a station to become active only when it is its turn to use
the bus and only when at that moment there is no other station active. In revised specification, a
Bool parameter is added into the definition of process Lift2 to mark the station that wants to be
active. It is set true when one button of the station is pressed. When it is the marked station’s turn
to use the bus, but it finds there is already an active station in the system, the marked station fails
to be active. It adopts the state of the received message and broadcasts the message.

proc Lift2(n:Address, m:Address, nos:Address, s:State, c:Bool)=
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(up(n)·Lift2(n,m,nos,up,nos,T)+ down(n)·Lift2(n,m,nos,down,nos,T))
�eq(s,standby)�delta
+
sum(mes: Message, r btos(mes,n)·
(move(n,s)·Lift2(n,m,nos,s,c)
�eq(getstate(mes),sync)�

((((s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)
� eq(getstate(mes),standby)�
s stob(mes(m,getstate(mes)),n)·Lift2(n,m,nos,getstate(mes),F)))

� c �

s stob(mes(m,getstate(mes)),n)·Lift2(n,m,nos,getstate(mes),F))
�eq(getaddress(mes),pre(m))�

(Lift2(n,m,nos,s,c)
� c �

Lift2(n,m,nos,getstate(mes),c))))))

proc Lift3(n:Address, m:Address, nos:Address, s:State, count:Address)=
released(n)·Lift3(n,m,nos,standby,nos)
+
sum(mes: Message, r btos(mes,n)·
(s stob(mes(m,standby),n)·Lift2(n,m,nos,standby,F)
�eq(s,standby)�

(s stob(mes(m,sync),n)·(move(n,s)·s stob(mes(m,s),n)·Lift3(n,m,nos,s,nos)
�eq((getstate(mes),s)∧eq(count,2)�...))

�eq(getaddress(mes),pre(m))�...)))

Our experiments indicate that this solves the problem adequately. After these four problems are
all repaired, no more problems have been found. We show by means of model checking that that
this modified specification meets the requirements in the next section. The specification for model
checking is given in Appendix II.

6. Verification

The language µcrl has been the basis for the development of a proof theory (the cones and foci
method) [GP94] that has enabled the formal verification of distributed systems in a precise and logical
way. To prove a system correct, the axioms of µcrl are applied to a µcrl specification of that system
to show that the specification is identical to a specification of the intended external behavior. Proving
the correctness of a system by hand is an elaborate and time consuming task which is currently
infeasible for large systems.

In our case, proving is not an option, not only because of the size of the specification but also
because the intended external behavior is difficult to describe. For that reason we studied the system
by model checking.

6.1 Techniques and Input Language for evaluator

Model checking is an automatic technique to determine whether a state transition system satisfies
certain requirements [CW96]. It has been successfully applied to a large number of communication
protocols, such as the link layer protocol of the Futurebus+ cache coherence protocol [CGH+93], the
ieee 802.3 Ethernet csma/cd protocol [NS94] and the access.bus protocol [BG96]. In order to check
whether a certain requirement holds, it should be expressed as a temporal logic formula firstly. A
model checker searches the reachable states of a certain state transition system to determine whether
this formula holds. If the model checker finds that the formula does not hold it presents a fragment
of the transition system that violates the requirement.
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The temporal logic used as input language for evaluator
5 is called regular alternation-free µ-

calculus. It is an extension of the alternation-free fragment of the modal µ-calculus with action
predicates and regular expressions over action sequences. The regular alternation-free µ-calculus is
built from three types of formulae, according to the syntax as follows [MS00]:

1. Action formulae α ::= a | ¬α | α1 ∧ α2

2. Regular formulae β ::= α | β1 · β2 | β1|β2 | β∗

3. State formulae ϕ ::= F | T | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | <β>ϕ | [β]ϕ | Y | µY.ϕ | υY.ϕ

Action formulae α are built from action names a ∈ A by the boolean operators. Regular formulae β are
built from action formulae α by using the standard regular expression operators, such as concatenation
(·), choice (|) and transitive-reflexive closure (*). State formulae ϕ are built from proposition variables
by using the standard boolean operators, the possibility <β>ϕ and necessity operators [β]ϕ, and the
least and greatest fixpoint operators µY.ϕ and υY.ϕ. The intuitive meaning of the formula <β>ϕ is
“it is possible to make β-transition to a state where ϕ holds.” Likewise, [β]ϕ means that “ϕ holds in
all states reachable by making a β-transition.” The µ and υ are used to express least and greatest
fixpoints, respectively.

6.2 Expressing requirements as formulae
There are five requirements on the lift system. The first property is a universal one: deadlock freeness.
In the regular alternation-free µ-calculus syntax this is specified as follows:

[T*]<T>T

stating that every state has at least one successor.
The second property is that of Liveness I, which means that buttons on the stations can eventually

be pressed. The regular alternation-free µ-calculus code is given below:

<T*·up(.)>T
<T*·down(.)>T

It states that there exists a sequence leading to an up or down action after zero or more transitions.
The property of Liveness II is expressed in the regular alternation-free µ-calculus syntax as the

following:

[(¬(up(.) | down(.)))* · up(*) ·
(¬(up(.) | down(.) | released(*))))*]
<(¬(up(.) | down(.) | released(*)))* · move(.,up)>T

[(¬(up(.) | down(.)))* · down(*) ·
(¬(up(.) | down(.) | released(*))))*]
<(¬(up(.) | down(.) | released(*)))* · move(.,down)>T

It says that in any execution sequence containing only one button-pressed action, and containing no
button-released action of the pressed button, the whole system always begins to move.

The property of our specification is Safety I. It says that if one of the lifts moves, all the other
lifts should not move in the opposite direction. What is more, to keep the trucks in balance, all lifts
have to move in the same direction simultaneously. To formalise this property, any order of the lifts’
movements must be dealt with carefully. This means that the size of the formula grows in a factorial
fashion with respect to the number of lifts.

5It is a model checker among the Cæsar Aldébaran Development Package (cadp).
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To solve this problem, we split the formula into pieces which can be checked by the evaluator.
Taking a lift system with three stations as an example, one piece of this property in the regular
alternation-free µ-calculus syntax is specified as follows:

[ normal movement* ·
¬(move(1,up) | move(2,up) | move(3,up))* ·
move(1,up) ·
¬(move(1,up) | move(2,up) | move(3,up))* ·
move(2,up) ·
¬(move(1,up) | move(2,up) | move(3,up))* ·
move(3,down)
] F

The action predicate normal movement denotes the sequence of the correct behaviors of the lift system.
Above code says that in all paths consisting of normal movements of the system, lift 1 is the first to
move up, after that, no movement of the other stations, and then lift 2 moving up, also no movements
of other stations following; moreover, the action of lift 3 moving down always results in a state where F
holds, equivalently, as long as lift 1 and lift 2 move up, lift 3 cannot move down. The other possibilities
of the movement of stations can also be specified like this.

The fifth property of Safety II states that if no up or down button is pressed, then the system
cannot move up or down. The following shows the code in regular alternation-free µ-calculus.

[(¬ up(.))* · move(.,up)] F
[(¬ down(.))* · move(.,down)] F

This should be read as follows: if an execution sequence does not contain button-pressed action,
then in the resulting state the stations cannot move up or down.

A notorious problem when model checking is the state explosion caused by the fact that the number
of states grows exponentially with the number of components of a distributed system. One way to
fight the explosion of states is to abstract away from the internal behavior of a system. In line with this
approach we rename all internal behavior into the silent action τ and consider the resulting transition
system modulo weak equivalence. This allows an efficient minimization of the transition system space
[Mil89].

6.3 Verification of the modified specification
All five requirements stated in section 3 were shown to be satisfied by modified specifications of systems
with respectively 2, 3, 4 and 5 lifts. For any lift system consisting of six or more lifts, our toolset
fails to generate the transition system due to memory crash6. The size of transition system generated
quickly increases with the number of the lifts. This dues to the buttons on each lift can be pressed in
the arbitrary order.

The dimensions of the generated transition systems are summarised in Table 1. For each of the lift
systems, the size of the generated transition system and the time it took to generate the system are
given. Generation was performed on a 300 MHz SGI Origin 2000 R12000 Processor (8 Mb Cache)
with 64 Gb memory.

7. Conclusion

We have discovered four real errors in the design of a real system. The fourth was unknown and has
found its way into the final release. Three of these problems were also found by the developers of that
system in the test phase. For two of the three known problems, it was only known that the problem
occurred but not what its causes were. We have discovered the causes of those problems. We were
able to solve three of the four problems and showed by means of model checking that the modified

6Instantiator: No memory to re-claim hashtable.
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Number of lifts Number of states Number of transitions cpu time generation
2 383 716 2s11
3 7,282 18,957 11s80
4 128,901 419,108 3m54s95
5 2,155,576 8,676,815 1h32m54s70

Table 1: Transition system dimensions

system meets the requirements. The problem 2 is difficult to solve within the restrictions of the chosen
hardware.

This presented case study demonstrates that by using formal specification and verification tech-
niques, an improvement of such protocols and their implementations is possible.
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Appendix I

The initial µcrl specification of a system with 3 lifts

1
% mCRL specification of a distributed system for lifting trucks

% Arno Wouters and Pang Jun, November 2000

% This is a modification of a specification made by Jan Friso Groote.

% The change is made to take into account some differences between

% the real system and Jan Friso’s specification that turned up in the

% discussion with the developer of the system.

% This is the initial specification.

10
% The parts of equality function of several sorts are omitted to

% simplify the specification.

sort Bool

func T,F:->Bool

map if:Bool#Bool#Bool->Bool

not:Bool->Bool

and:Bool#Bool->Bool

or:Bool#Bool->Bool

20 var b,b’:Bool

rew if(T,b,b’)=b

if(F,b,b’)=b’

not(T)=F

not(F)=T

not(not(b))=b

and(T,b)=b

and(F,b)=F

and(b,T)=b

and(b,F)=F

30 or(T,b)=T

or(F,b)=b

or(b,T)=T

or(b,F)=b
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sort State

func STANDBY:->State % Stand by

STARTUP:->State % Start up (station is part of a not yet completely

% initialized network

UP:->State % Up (lift is ready to go up)

40 DOWN:->State % Down (lift is ready to go down)

SYNC:->State % SYNC is not really a state, but it can be broadcasted

% in a message instead of the state

map eq:State#State->Bool

sort Address

func 1,2,3:->Address % there should be as many Addresses as there are lifts

map eq:Address#Address->Bool

suc:Address->Address % address of next station in network

% successor modulo the number of lifts

50 pre:Address->Address % address of previous lift in network

% predecessor modulo the number of lifts

rew suc(1)=2 suc(2)=3 suc(3)=1

pre(2)=1 pre(3)=2 pre(1)=3

sort Alist % A list of addresses (behaves as a multiset)

func ema:->Alist % empty address list

set:Address#Alist->Alist

map reset:Address#Alist->Alist % reset(a,A) - list A without address a

60 test:Address#Alist->Bool % test (a,A) - is address a in list A?

empty:Alist->Bool % empty(A) - is list A empty?

if:Bool#Alist#Alist->Alist % select the first Alist if Bool is true

% and the second Alist if Bool is false

conc:Alist#Alist->Alist % concatenate two lists

var a,a’:Address

A,A’:Alist

rew reset(a,ema)=ema

reset(a,set(a’,A))=if(eq(a,a’),reset(a,A),set(a’,reset(a,A)))

test(a,ema)=F

70 test(a,set(a’,A))=if(eq(a,a’),T,test(a,A))

empty(ema)=T

empty(set(a,A))=F

if(T,A,A’)=A

if(F,A,A’)=A’

conc(ema,A)=A

conc(set(a,A),A’)=set(a,conc(A,A’))

% Addresses(A,a) is the list of stations connected to station a

80 % via the relays in list A (a is not included)

map Addresses:Alist#Address->Alist

Addresses-up:Alist#Address#Address->Alist

Addresses-up-aux:Bool#Bool#Alist#Address#Address->Alist

Addresses-down:Alist#Address#Address->Alist

Addresses-down-aux:Bool#Bool#Alist#Address#Address->Alist

var a,a’:Address
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A,A’:Alist

90 b: Bool

rew Addresses(A,a)=conc(Addresses-up(A,a,a),Addresses-down(A,a,a))

Addresses-up(A,a,a’)=

% if(test(a,A),set(suc(a),if(eq(suc(a),a’),ema,Addresses-up(A,suc(a),a’))),ema)

Addresses-up-aux(test(a,A),eq(suc(a),a’),A,a,a’)

Addresses-up-aux(T,T,A,a,a’)=set(suc(a),ema)

Addresses-up-aux(T,F,A,a,a’)=set(suc(a),Addresses-up(A,suc(a),a’))

Addresses-up-aux(F,b,A,a,a’)=ema

Addresses-down(A,a,a’)=

100 % if(eq(pre(a),a’),ema,if(test(a,A),set(a,Addresses-down(A,pre(a),a’)),ema))

Addresses-down-aux(eq(pre(a),a’),test(pre(a),A),A,a,a’)

Addresses-down-aux(T,b,A,a,a’)=ema

Addresses-down-aux(F,T,A,a,a’)=set(pre(a),Addresses-down(A,pre(a),a’))

Addresses-down-aux(F,F,A,a,a’)=ema

sort Message

func mes:Address#State->Message

% A message has the form: mes(m,s)

% m is the logical address of the station sending the message

110 % s is the state of the station sending the message

map getaddress:Message->Address % getaddress(m) - get the address parameter

getstate:Message->State % getstate(m) - get the state parameter of

eq: Message#Message->Bool % whether two message are equal

var a,aa: Address s,ss: State

rew getaddress(mes(a,s))=a

getstate(mes(a,s))=s

120 % Below the Bus is described. If it receives a message from a station

% it will broadcast it to all stations connected via closed relays to the

% original sender (but not to the sender itself).

act r_stob,s_btos:Message#Address

% r_sob(m,a) - receive message m from station a (station to bus)

% s_btos(m,a) - send message m to station a (bus to station)

r_open-relay,r_close-relay:Address

% receive commands to open/close a relay

130 proc Bus(R:Alist) =

% R is the list of physical addresses of all closed relays

% receive a message and move to the delivery phase

sum(m:Message, sum(a:Address,

r_stob(m,a)

. (

Bus(R)

<| empty(Addresses(R,a))|>

Deliver(m,R,Addresses(R,a))

)

140 ))

% receive a command to open a relay (i.e. add that relay to R)

+ sum(a:Address,r_open-relay(a).Bus(reset(a,R)))

% receive a command to close a relay (i.e. remove that relay from R)
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+ sum(a:Address,r_close-relay(a).Bus(set(a,R)))

Deliver(m:Message,R:Alist,A:Alist)=

% This is the phase of the bus where it delivers a message to all

% connected stations. Note, that the bus is able to handle commands

% to open or close relays even when it is busy delivering messages.

150
% m - the message to be broadcasted

% R - the list of all stations in the network

% A - the list of all stations that have yet to receive m

sum(a:Address,

(

s_btos(m,a).

(

Bus(R)

160 <| empty(reset(a,A)) |>

Deliver(m,R,reset(a,A))

)

<| test(a,A) |>

delta

)

)

+ sum(a:Address,r_open-relay(a).Deliver(m,reset(a,R),A))

+ sum(a:Address,r_close-relay(a).Deliver(m,set(a,R),A))

170
% Below the behavior of the station of each lift is described

act s_stob,r_btos:Message#Address

% s_stob(m,a) - send (to the bus) a package consisting of

% message m and the address of the sending station (a) (station to bus)

% r_btos(m,a) - receive (from the bus) a package consisting

% of a message m and the intended receiver (a)

% of this message (stations only accept packages

% with their addresses as the destination) (bus to station)

180
s_open-relay,s_close-relay:Address

% by these two actions, the bus can add and remove this relay from the

% the list of the closed relays.

% The relay is the one between station (a) and its successor

% The following actions are associated with the buttons of a lift

setref: Address % setref button pressed at the start of the day

up: Address % up button pressed

down: Address % down button pressed

190 released: Address % the button which was pressed is released

% The following actions initiate hardware actions

move: Address#State % output the sate to the motor of station

% Lift0 is the initial state ("at the start of the day").

proc Lift0(n:Address)=

setref(n). % setref button pressed

s_close-relay(n). % close its relay, between n abd suc(n)
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s_stob(mes(1,STARTUP),n). % send a STARTUP message

200 s_open-relay(n). % open its relay, between n abd suc(n)

sum(mes:Message, % wait till it receives a message

r_btos(mes,n).

% if it is the expected message (start up)

% (this message is supposed to originate from the last station

% in the network)

( s_stob(mes(1,STANDBY),n) . % start broad casting

Lift2(n,1,getaddress(mes),STANDBY) % adopt STANDBY state

<| eq(getstate(mes),STARTUP) |>

delta

210 )

)

+

sum(mes:Message,

r_btos(mes,n).

% if it is a startup message:

(

s_close-relay(n). % close its relay

s_stob(mes(suc(getaddress(mes)),STARTUP),n).

% and move to Lift1 (determine number of lifts)

220 Lift1(n,suc(getaddress(mes)),suc(getaddress(mes)))

<| eq(getstate(mes),STARTUP) |>

delta

)

)

% Lift1 catches all STARTUP messages, until a SYNC message arrives .

% The logical address in the last STARTUP message is the number

% of stations in the network

230
proc Lift1(n:Address, % This station’s identifier

m:Address, % This station’s logical address (position number)

nos:Address) % Counts the number of stations

=

sum(mes:Message,

r_btos(mes,n) .

% if it is a STARTUP message:

(

% store its logical address and continue

240 Lift1(n,m,getaddress(mes))

<| eq(getstate(mes),STARTUP) |>

% If it is a STANDBY message,

% and the station get an STANDBY message

% adopt the STANDBY state, and broadcast it

( (

s_stob(mes(m,STANDBY),n) . Lift2(n,m,nos,STANDBY)

<| eq(getaddress(mes),pre(m)) |>

Lift2(n,m,nos,STANDBY)

)

250 <| eq(getstate(mes),STANDBY) |>

delta

)

)
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)

%% Lift 2 is normal operation

260 proc Lift2(n:Address, % This station’s identifier

m:Address, % This station’s logical address (position)

nos:Address, % The number of stations in the network

s:State % The current state

) =

( up(n) . Lift3(n,m,nos,UP,nos)

+ down(n) . Lift3(n,m,nos,DOWN,nos)

) <| eq(s,STANDBY) |> delta

+ sum(mes:Message,

270 r_btos(mes,n) .

(

% If it is a SYNC message

move(n,s) . Lift2(n,m,nos,s)

<| eq(getstate(mes),SYNC) |>

% other messages (other than SYNC):

(

% If it is this station’s turn:

% adopt the state in the message and broadcast it

s_stob(mes(m,getstate(mes)),n) .

280 Lift2(n,m,nos,getstate(mes))

<| eq(getaddress(mes),pre(m)) |>

% If it isn’t this station’s turn:

% just adopt the state in the message

Lift2(n,m,nos,getstate(mes))

)

)

)

% Lift3 is the state of an active lift (counting messages)

290
proc Lift3(n:Address, % This station’s identifier

m:Address, % This station’s logical address (position)

nos:Address, % The number of stations in the network

s:State, % The current state

count:Address % Counter

) =

released(n) . Lift2(n,m,nos,STANDBY)

+

300 sum(mes:Message,

r_btos(mes,n) .

% If it is a SYNC message

(

move(n,s) . Lift3(n,m,nos,s,count)

<| eq(getstate(mes),SYNC) |>

% other messages (other than SYNC):

% if it is this station’s turn

(
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% if the message is of the right type and the counter is right

310 (

s_stob(mes(m,SYNC),n) .

move(n,s) . s_stob(mes(m,s),n) .

Lift3(n,m,nos,s,nos)

<| and(eq(getstate(mes),s),eq(count,2)) |>

% otherwise

s_stob(mes(m,s),n) . Lift3(n,m,nos,s,nos)

)

<| eq(getaddress(mes),pre(m)) |>

% otherwise (not this station’s turn)

320 % If the message is the one expected, decrease the counter

(Lift3(n,m,nos,s,pre(count))

<| eq(getstate(mes),s) |>

% Otherwise

% do nothing

Lift3(n,m,nos,s,count))

)

)

)

330
act c_stob, c_btos: Message # Address % station to bus, resp. bus to station

c_open-relay,c_close-relay:Address % open/close relay

comm s_stob | r_stob = c_stob

s_btos | r_btos = c_btos

s_open-relay | r_open-relay = c_open-relay

s_close-relay | r_close-relay = c_close-relay

init

340 hide({

c_stob, c_btos,

c_open-relay, c_close-relay

},

encap({

s_stob, r_stob,

s_btos, r_btos,

s_open-relay, r_open-relay,

s_close-relay, r_close-relay

},

350 Bus(ema) || Lift0(1) || Lift0(2) || Lift0(3)

)

)



28

Appendix II

The modified µcrl specification of a system with 3 lifts

1
% mCRL specification of a distributed system for lifting trucks

% Arno Wouters and Pang Jun, November 2000

% This is a modification of a specification made by Jan Friso Groote.

% The change is made to take into account some differences between

% the real system and Jan Friso’s specification that turned up in the

% discussion with the developer of the system.

10 % This is the "final" specification used for model checking.

sort Bool

func T,F:->Bool

map if:Bool#Bool#Bool->Bool

not:Bool->Bool

and:Bool#Bool->Bool

or:Bool#Bool->Bool

var b,b’:Bool

20 rew if(T,b,b’)=b

if(F,b,b’)=b’

not(T)=F

not(F)=T

not(not(b))=b

and(T,b)=b

and(F,b)=F

and(b,T)=b

and(b,F)=F

or(T,b)=T

30 or(F,b)=b

or(b,T)=T

or(b,F)=b
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sort State

func STANDBY:->State % Stand by

STARTUP:->State % Start up (station is part of a not yet completely

% initialized network

UP:->State % Up (lift is ready to go up)

DOWN:->State % Down (lift is ready to go down)

40 SYNC:->State % SYNC is not really a state, but it can be broadcasted

% in a message instead of the state

map eq:State#State->Bool

rew eq(STANDBY,STANDBY)=T eq(STANDBY,STARTUP)=F

eq(STANDBY,UP)=F eq(STANDBY,DOWN)=F

eq(STANDBY,SYNC)=F

eq(STARTUP,STANDBY)=F eq(STARTUP,STARTUP)=T

eq(STARTUP,UP)=F eq(STARTUP,DOWN)=F

50 eq(STARTUP,SYNC)=F

eq(UP,STANDBY)=F eq(UP,STARTUP)=F

eq(UP,UP)=T eq(UP,DOWN)=F

eq(UP,SYNC)=F

eq(DOWN,STANDBY)=F eq(DOWN,STARTUP)=F

eq(DOWN,UP)=F eq(DOWN,DOWN)=T

eq(DOWN,SYNC)=F

60 eq(SYNC,STANDBY)=F eq(SYNC,STARTUP)=F

eq(SYNC,UP)=F eq(SYNC,DOWN)=F

eq(SYNC,SYNC)=T

sort Address

func 1,2,3:->Address % there should be as many Addresses as there are lifts

map eq:Address#Address->Bool

suc:Address->Address % address of next station in network

% successor modulo the number of lifts

pre:Address->Address % address of previous lift in network

70 % predecessor modulo the number of lifts

rew suc(1)=2 suc(2)=3 suc(3)=1

pre(2)=1 pre(3)=2 pre(1)=3

eq(1,1)=T eq(1,2)=F eq(1,3)=F

eq(2,1)=F eq(2,2)=T eq(2,3)=F

eq(3,1)=F eq(3,2)=T eq(3,3)=T

sort Alist % A list of addresses (behaves as a multiset)

func ema:->Alist % empty address list

80 set:Address#Alist->Alist

map reset:Address#Alist->Alist % reset(a,A) - list A without address a

test:Address#Alist->Bool % test (a,A) - is address a in list A?

empty:Alist->Bool % empty(A) - is list A empty?

if:Bool#Alist#Alist->Alist % select the first Alist if Bool is true

% and the second Alist if Bool is false

conc:Alist#Alist->Alist % concatenate two lists

var a,a’:Address
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A,A’:Alist

90 rew reset(a,ema)=ema

reset(a,set(a’,A))=if(eq(a,a’),reset(a,A),set(a’,reset(a,A)))

test(a,ema)=F

test(a,set(a’,A))=if(eq(a,a’),T,test(a,A))

empty(ema)=T

empty(set(a,A))=F

if(T,A,A’)=A

if(F,A,A’)=A’

conc(ema,A)=A

conc(set(a,A),A’)=set(a,conc(A,A’))

100

% Addresses(A,a) is the list of stations connected to station a

% via the relays in list A (a is not included)

map Addresses:Alist#Address->Alist

Addresses-up:Alist#Address#Address->Alist

Addresses-up-aux:Bool#Bool#Alist#Address#Address->Alist

Addresses-down:Alist#Address#Address->Alist

Addresses-down-aux:Bool#Bool#Alist#Address#Address->Alist

110
var a,a’:Address

A,A’:Alist

b: Bool

rew Addresses(A,a)=conc(Addresses-up(A,a,a),Addresses-down(A,a,a))

Addresses-up(A,a,a’)=

% if(test(a,A),set(suc(a),if(eq(suc(a),a’),ema,Addresses-up(A,suc(a),a’))),ema)

Addresses-up-aux(test(a,A),eq(suc(a),a’),A,a,a’)

Addresses-up-aux(T,T,A,a,a’)=set(suc(a),ema)

Addresses-up-aux(T,F,A,a,a’)=set(suc(a),Addresses-up(A,suc(a),a’))

120 Addresses-up-aux(F,b,A,a,a’)=ema

Addresses-down(A,a,a’)=

% if(eq(pre(a),a’),ema,if(test(a,A),set(a,Addresses-down(A,pre(a),a’)),ema))

Addresses-down-aux(eq(pre(a),a’),test(pre(a),A),A,a,a’)

Addresses-down-aux(T,b,A,a,a’)=ema

Addresses-down-aux(F,T,A,a,a’)=set(pre(a),Addresses-down(A,pre(a),a’))

Addresses-down-aux(F,F,A,a,a’)=ema

sort Message

130 func mes:Address#State->Message

% A message has the form: mes(m,s)

% m is the logical address of the station sending the message

% s is the state of the station sending the message

map getaddress:Message->Address % getaddress(m) - get the address parameter

getstate:Message->State % getstate(m) - get the state parameter of

eq: Message#Message->Bool % whether two message are equal

var a,aa: Address s,ss: State

140 rew getaddress(mes(a,s))=a

getstate(mes(a,s))=s

eq(mes(a,s),mes(aa,ss))=and(eq(a,aa),eq(s,ss))
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% Below the Bus is described. If it receives a message from a station

% it will broadcast it to all stations connected via closed relays to the

% original sender (but not to the sender itself).

act r_stob,s_btos:Message#Address

% r_sob(m,a) - receive message m from station a (station to bus)

150 % s_btos(m,a) - send message m to station a (bus to station)

r_open-relay,r_close-relay:Address

% receive commands to open/close a relay

proc Bus(R:Alist) =

% R is the list of physical addresses of all closed relays

% receive a message and move to the delivery phase

sum(m:Message, sum(a:Address,

r_stob(m,a)

. (

160 Bus(R)

<| empty(Addresses(R,a))|>

Deliver(m,R,Addresses(R,a))

)

))

% receive a command to open a relay (i.e. add that relay to R)

+ sum(a:Address,r_open-relay(a).Bus(reset(a,R)))

% receive a command to close a relay (i.e. remove that relay from R)

+ sum(a:Address,r_close-relay(a).Bus(set(a,R)))

170 Deliver(m:Message,R:Alist,A:Alist)=

% This is the phase of the bus where it delivers a message to all

% connected stations. Note, that the bus is able to handle commands

% to open or close relays even when it is busy delivering messages.

% m - the message to be broadcasted

% R - the list of all stations in the network

% A - the list of all stations that have yet to receive m

sum(a:Address,

180 (

s_btos(m,a).

(

Bus(R)

<| empty(reset(a,A)) |>

Deliver(m,R,reset(a,A))

)

<| test(a,A) |>

delta

)

190 )

+ sum(a:Address,r_open-relay(a).Deliver(m,reset(a,R),A))

+ sum(a:Address,r_close-relay(a).Deliver(m,set(a,R),A))

% Below the behavior of the station of each lift is described

act s_stob,r_btos:Message#Address

% s_stob(m,a) - send (to the bus) a package consisting of
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% message m and the address of the sending station (a) (station to bus)

200 % r_btos(m,a) - receive (from the bus) a package consisting

% of a message m and the intended receiver (a)

% of this message (stations only accept packages

% with their own addresses as the destination) (bus to station)

s_open-relay,s_close-relay:Address

% by these two actions, the bus can add and remove this relay from the

% the list of the closed relays.

% The relay is the one between station (a) and its successor

% The following actions are associated with the buttons of a lift

210 s_init: Address % setref button pressed at the start of the day

up: Address % up button pressed

down: Address % down button pressed

released: Address % the button which was pressed is released

% The following actions initiate hardware actions

move: Address#State % output the sate to the motor of station

% synchronize actions used to prevent station 2 to send

% a STARTUP message before the relay between 1 and 2 is opened

220 s_sync r_sync

% stable message used by the setref_monitor

s_stable % system ready for normal operation

% Lift0 is the initial state ("at the start of the day").

proc Lift0(n:Address)=

s_init(n). % setref button pressed

s_close-relay(n). % close its relay, between n and suc(n)

230 s_stob(mes(1,STARTUP),n). % send a STARTUP message

s_open-relay(n). % open its relay, between n and suc(n)

s_sync. % signal to station 2 that relay is open

sum(mes:Message, % wait till it receives a message

r_btos(mes,n).

% if it is the expected message (start up)

% (this message is supposed to originate from the last station

% in the network)

(

s_stable. % stop two button monitor

240 s_stob(mes(1,STANDBY),n) . % start broad casting

Lift2(n,1,getaddress(mes),STANDBY,F) % adopt STANDBY state

<| eq(getstate(mes),STARTUP) |>

delta

)

)

+

sum(mes:Message,

r_btos(mes,n).

% if it is a startup message:

250 (

s_close-relay(n). % close its relay

% if this is station 2:

(
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r_sync . % wait till relay between 1

% and 2 is closed

s_stob(mes(2,STARTUP),n). % send start up message

% and move to Lift1 (determine number of lifts)

Lift1(n,suc(getaddress(mes)),suc(getaddress(mes)))

260 <| eq(getaddress(mes),1) |>

% if this is station 3 or higher:

% send STARTUP message

s_stob(mes(suc(getaddress(mes)),STARTUP),n).

% and move to Lift1 (determine number of lifts)

Lift1(n,suc(getaddress(mes)),suc(getaddress(mes)))

)

<| eq(getstate(mes),STARTUP) |>

delta

)

270 )

% Lift1 catches all STARTUP messages, until a SYNC message arrives .

% The logical address in the last STARTUP message is the number

% of stations in the network

proc Lift1(n:Address, % This station’s identifier

m:Address, % This station’s logical address (position number)

nos:Address) % Counts the number of stations

=

280 sum(mes:Message,

r_btos(mes,n) .

% if it is a STARTUP message:

(

% store its logical address and continue

Lift1(n,m,getaddress(mes))

<| eq(getstate(mes),STARTUP) |>

% If it is a STANDBY message,

% and the station get an STANDBY message

% adopt the STANDBY state, and broadcast it

290 ( (

s_stob(mes(m,STANDBY),n) . Lift2(n,m,nos,STANDBY,F)

<| eq(getaddress(mes),pre(m)) |>

Lift2(n,m,nos,STANDBY,F)

)

<| eq(getstate(mes),STANDBY) |>

delta

)

)

)

300

%% Lift 2 is normal operation

proc Lift2(n:Address, % This station’s identifier

m:Address, % This station’s logical address (position)

nos:Address, % The number of stations in the network

s:State, % The current state

c:Bool % Button has been pressed on this station,
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% and this station wants to be controller

310 ) =

( up(n) . Lift2(n,m,nos,UP,T)

+down(n) . Lift2(n,m,nos,DOWN,T)

) <| eq(s,STANDBY) |> delta

+

sum(mes:Message,

r_btos(mes,n) .

(

% If it is a SYNC message

320 move(n,s) . Lift2(n,m,nos,s,c)

<| eq(getstate(mes),SYNC) |>

% other messages (other than SYNC):

% If it is this station’s turn:

(

(% no more controllers, broadcast my state and begin counting

(

s_stob(mes(m,s),n) .

Lift3(n,m,nos,s,nos)

<| eq(getstate(mes),STANDBY) |>

330 % one controller before me, adopt the state and broadcast

s_stob(mes(m,getstate(mes)),n) .

Lift2(n,m,nos,getstate(mes),F)

)

<| c |>

% the station does not want to be the controller,

% adopt the state and broadcast it

s_stob(mes(m,getstate(mes)),n) .

Lift2(n,m,nos,getstate(mes),c)

)

340 <| eq(getaddress(mes),pre(m)) |>

% If it isn’t this station’s turn:

% if the station wants to be controller

(

%do nothing

Lift2(n,m,nos,s,c)

<| c |>

%otherwise

% adopts the state in the message

Lift2(n,m,nos,getstate(mes),c)

350 )

)

)

)

% Lift3 is the state of an active lift (counting messages)

proc Lift3(n:Address, % This station’s identifier

m:Address, % This station’s logical address (position)

nos:Address, % The number of stations in the network

360 s:State, % The current state

count:Address % Counter

) =

released(n) . Lift3(n,m,nos,STANDBY,nos) % after release the station waits for the
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% token to become passive

+

sum(mes:Message,

r_btos(mes,n) .

% if it is this station’s turn

(

370 (

% if button was released

% send STANDBY and become passive again

s_stob(mes(m,STANDBY),n) . Lift2(n,m,nos,STANDBY,F)

<| eq(s,STANDBY) |>

% if button is still pressed

% if the message is of the right type and the counter is right

(

% synchronize and move

s_stob(mes(m,SYNC),n) .

380 move(n,s) . s_stob(mes(m,s),n) .

Lift3(n,m,nos,s,nos)

<| and(eq(getstate(mes),s),eq(count,2)) |>

% otherwise, broadcast this station’s state

s_stob(mes(m,s),n) . Lift3(n,m,nos,s,nos)

)

)

<| eq(getaddress(mes),pre(m)) |>

% If the message is the one expected, decrease the counter

(Lift3(n,m,nos,s,pre(count))

390 <| eq(getstate(mes),s) |>

% Otherwise

% do nothing

Lift3(n,m,nos,s,count))

)

)

% Setref_monitor prevents that at the initial stage the setref button

% is pressed at more lifts at the same time

act r_init: Address

400 r_stable

proc Setref_monitor = sum(n:Address, r_init(n) . r_stable . Setref_monitor)

act c_stob, c_btos: Message # Address % station to bus, resp. bus to station

c_open-relay,c_close-relay:Address % open/close relay

c_sync % synchronize action to prevent that

% message is send to fast

c_init: Address % actions needed to prevent two setref buttons to

c_stable % be pressed at the same time in the initial phase

410 comm s_stob | r_stob = c_stob

s_btos | r_btos = c_btos

s_open-relay | r_open-relay = c_open-relay

s_close-relay | r_close-relay = c_close-relay

s_sync | r_sync = c_sync

s_init | r_init = c_init

s_stable | r_stable = c_stable

init
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hide({

420 c_stob, c_btos,

c_open-relay, c_close-relay,

c_sync,

c_init, c_stable

},

encap({

s_stob, r_stob,

s_btos, r_btos,

s_open-relay, r_open-relay,

s_close-relay, r_close-relay,

430 s_sync, r_sync,

s_init, r_init,

s_stable, r_stable

},

Bus(ema) || Lift0(1) || Lift0(2) || Lift0(3) || Setref_monitor

)

)


