
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Cones and foci for protocol verification revisited

W.J. Fokkink, J. Pang

REPORT SEN-R0229 DECEMBER 31, 2002

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Cones and Foci for Protocol Verification Revisited

Wan Fokkink 1,2 & Jun Pang 1

1 CWI

Cluster of Software Engineering

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

email: wan@cwi.nl, pangjun@cwi.nl
2 Vrije Universiteit Amsterdam

Department of Theoretical Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

email: wanf@cs.vu.nl

ABSTRACT

We define a cones and foci proof method, which rephrases the question whether two system specifications are

branching bisimilar in terms of proof obligations on relations between data objects. Compared to the original

cones and foci method from Groote and Springintveld [GS01], our method is more generally applicable, and

does not require a preprocessing step to eliminate τ -loops. We prove soundness of our approach and give an

application.

2000 Mathematics Subject Classification: 68N30 [Specification and verification]; 68Q85 [Process algebras and

bisimulation]

1998 ACM Computing Classification System: D.2.1 [Requirements/Specifications]; C.2.2 [Protocol verification]

Keywords and Phrases: µCRL, branching bisimulation, process algebra, specification, verification techniques

Note: This research is supported by the Dutch Technology Foundation STW under the project CES5008:

Improving the quality of embedded systems using formal design and systematic testing.

1. Introduction
In order to make data a first class citizen in the study of processes, the language µCRL [GP95]
combines the process algebra ACP [BW90] with equational abstract data types [LEW96]. Processes
are intertwined with data: Actions and recursion variables are parametrized by data types; an if-then-
else construct allows data objects to influence the course of a process; and alternative quantification
sums over possibly infinite data domains. Internal activity of a process can be hidden by a hiding
operator τI , which renames all internal actions (i.e., the actions in the set I) into the hidden action τ
[BK85].

A labeled transition system is associated to each µCRL specification. Two µCRL specifications are
considered equivalent if the initial states of their labeled transition systems are branching bisimilar
[GW96]. Verification of system correctness boils down to checking whether the implementation of
a system (with all internal activity hidden) is branching bisimilar to the specification of the desired
external behavior of the system. Checking whether two states are branching bisimilar can be performed
efficiently [GV90]. The µCRL toolset [BFG+01] supports the generation of labeled transition systems,
together with reduction modulo branching bisimulation equivalence, and allows model checking of
temporal logic formulas [CGP00] via a back-end to the CADP toolset [FGK+97].

This approach to verify system correctness has three important drawbacks. First, the labeled
transition systems of the µCRL specifications involved must be generated; often the labeled transition

2

system of the implementation of a system cannot be generated, as it is too large, or even infinite.
Second, this generation usually requires a specific choice for one network or data domain; in other
words, only the correctness of an instantiation of the system is proved. Third, support from and
rigorous formalization by theorem provers and proof checkers is not readily available.

Groote and Springintveld [GS01] introduced the cones and foci method, which rephrases the question
whether two µCRL specifications are branching bisimilar in terms of proof obligations on relations
between data objects. These proof obligations can be derived by means of algebraic calculations, in
general with the help of invariants (i.e., properties of the reachable states) that are proved separately.
This method was used in the verification of a considerable number of real-life protocols (e.g., [FGK97,
GMP98, SvdZ98]), often with the support of a theorem prover or proof checker.

The main idea of this method is that quite often in the implementation of a system, internal actions
progress inertly towards a state in which no internal actions can be executed; such a state is declared
to be a focus point. The cone of a focus point consists of the states that can reach this focus point by
a string of internal actions. In the absence of infinite sequences of internal actions, each state belongs
to a cone. This core idea is depicted below. Note that the external actions at the edge of the depicted
cone can also be executed in the ultimate focus point F ; this is essential for soundness of the cones
and foci method, as otherwise internal actions in the cone would not be inert.

External actions

F

Internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

Linear process equations [BG94] constitute a restricted class of µCRL specifications in some kind
of linear format. Algorithms have been developed to transform µCRL specifications into this linear
format [GPU01, GW01, Use02]. In a linear process equation, the states of the associated labeled
transition system are data objects.

Assume that the implementation of a system and its desired external behavior are both given in the
form of a linear process equation. In the cones and foci method, a state mapping φ relates each state
of the implementation to a state of the desired external behavior. Groote and Springintveld [GS01]
formulated matching criteria, consisting of relations between data objects, which ensure that states s
and φ(s) are branching bisimilar.

If an implementation, with all internal activity hidden, includes infinite sequences of τ -actions, then
Groote and Springintveld [GS01] distinguish between progressing and non-progressing τ -actions. Their
requirements are that (1) there is no infinite sequence of progressing τ -actions, (2) non-progressing τ -
actions are only executed at a focus point, and (3) a focus point cannot perform progressing τ -actions.
A pre-abstraction function divides occurrences of τ -actions in the implementation into progressing and
non-progressing ones, and only progressing τ ’s are abstracted away; in many cases it is far from trivial
to define the proper pre-abstraction. Finally, a special fair abstraction rule [BBK87] can be used to
try and eliminate the remaining (non-progressing) τ ’s.

3

In this paper, we propose an adaptation of the cones and foci method, in which the cumbersome
treatment of infinite sequences of τ -actions is no longer necessary. This improvement of the cones
and foci method was conceived during the verification of a sliding window protocol [FGP], where the
adaptation simplified matters considerably. As before, the method deals with linear process equations,
requires the definition of a state mapping, and generates the same matching criteria. However, we
allow the user to freely assign which states are focus points (instead of prescribing that they are the
states in which no progressing τ -actions can be performed), as long as each state is in the cone of
a focus point. We do allow infinite sequences of internal actions. Since the meaning of recursive
specifications that include infinite sequences of τ -actions is ambiguous, we leave the hiding operator
τI around the µCRL specification of the implementation in place. No distinction between progressing
and non-progressing internal actions is needed, and loops of internal actions are eliminated without
having to resort to a fair abstraction rule.

We prove that our method is sound modulo branching bisimulation equivalence. Furthermore, we
apply our method to the Concurrent Alternating Bit Protocol [KM90], which served as the main
example in [GS01]. While the old cones and foci method required a typical cumbersome treatment of
τ -loops, here we can take these τ -loops in our stride.

Related Work In compiler correctness, advances have been made to validate programs at a sym-
bolic level with respect to an underlying simulation notion (e.g., [CGP+97, GS99, Nec00]). The
methodology surrounding cones and foci incorporates well-known and useful concepts such as the pre-
condition/effect notation [Jon87, LT87], invariants and simulations. Linear process equations resemble
the UNITY format [CM88] and recursive applicative program schemes [Cou90]; state mappings are
comparable to refinement mappings [LV95, PSS98] and simulation [FP97]. Van der Zwaag [vdZ01]
gave an adaptation of the cones and foci method from [GS01] to a timed setting, modulo timed
branching bisimulation equivalence. We leave it as an open question whether our innovations for the
cones and foci method can also be introduced in this timed setting.

2. Preliminaries
2.1 µCRL
µCRL [GP95] is a language for specifying distributed systems and protocols in an algebraic style. It is
based on process algebra extended with equational abstract data types. In a µCRL specification, one
part specifies the data types, while a second part specifies the process behavior. We do not describe
the treatment of data types in µCRL in detail. For our purpose it is sufficient that processes can be
parametrized with data. We assume the data sort of booleans Bool with constant T and F, and the
usual connectives ∧, ∨, ¬ and ⇒. For a boolean b, we abbreviate b = T to b and b = F to ¬b.

The specification of a process is constructed from action names, recursion variables and process
algebraic operators. Actions and recursion variables carry zero or more data parameters. There are
two predefined actions in µCRL: δ represents deadlock, and τ a hidden action. These two actions
never carry data parameters.

Processes are represented by process terms, which describe the order in which the actions from a
set Act may happen. A process term consists of action names and recursion variables combined by
process algebraic operators. p·q denotes sequential composition and p + q non-deterministic choice,
summation

∑
d:D p(d) provides the possibly infinite choice over a data type D, and the conditional

construct p�b�q with b a data term of sort Bool behaves as p if b and as q if ¬b. Parallel composition
p ‖ q interleaves the actions of p and q; moreover, actions from p and q may also synchronize to
a communication action, when this is explicitly allowed by a predefined communication function.
Two actions can only synchronize if their data parameters are semantically the same, which means
that communication can be used to represent data transfer from one system component to another.
Encapsulation ∂H(p), which renames all occurrences in p of actions from the set H into δ, can be used
to force actions into communication. Finally, hiding τI (p) renames all occurrences in p of actions from
the set I into τ . The syntax and semantics of µCRL are given in [GP95].

4

2.2 Labeled transition systems
Labeled transition systems (LTSs) capture the operational behavior of concurrent systems. An LTS

consists of transitions s
a→ s′, denoting that the state s can evolve into the state s′ by the execution of

action a. To each µCRL specification belongs an LTS, defined by the structural operational semantics
for µCRL in [GP95].

Definition 2.1 (Labeled transition system) A labeled transition system is a tuple (S,Lab,→, s0),
where S is a set of states, Lab a set of transition labels, →⊆ S × Lab × S a transition relation, and

s0 the initial state. A transition (s, `, s′) is denoted by s
`→ s′.

Here, S consists of µCRL specifications, and Lab consists of actions from Act ∪ {τ} parametrized
by data. We define branching bisimilarity [GW96] between states in LTSs. Branching bisimulation is
an equivalence relation [Bas96].

Definition 2.2 (Branching bisimulation) Assume an LTS. A branching bisimulation relation B

is a symmetric binary relation on states such that if sBt and s
`→ s′, then

- either ` = τ and s′ B t;

- or there is a sequence of (zero or more) τ -transitions t
τ→ · · · τ→ t0 such that sBt0 and t0

`→ t′

with s′Bt′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a branching bisimulation
relation B such that sB t.

The µCRL toolset [BFG+01] supports the generation of labeled transition systems of µCRL spec-
ifications, together with reduction modulo branching bisimulation equivalence and model checking
of temporal logic formulas. This approach has been used to analyze a wide range of protocols and
distributed systems (e.g., [AL01, GPW03, Pan02, PVE02]).

In this paper we focus on analyzing protocols and distributed systems on the level of their symbolic
specifications.

2.3 Linear process equations
A linear process equation (LPE) is a one-line µCRL specification consisting of actions, summations,
sequential compositions and conditional constructs. In particular, an LPE does not contain any
parallel operators, encapsulations or hidings. In essence an LPE is a vector of data parameters
together with a list of condition, action and effect triples, describing when an action may happen and
what is its effect on the vector of data parameters. Each µCRL specification that does not include
successful termination can be transformed into an LPE [Use02].1

Definition 2.3 (Linear process equation) A linear process equation is a µCRL specification of
the form

X(d:D) =
∑

a∈Act∪{τ}

∑

e:E

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ

where fa : D ×E → D, ga : D ×E → D and ha : D ×E → Bool for each a ∈ Act ∪ {τ}.
1To cover µCRL specifications with successful termination, LPEs should also include a summand∑
a∈Act∪{τ}

∑
e:E a(fa(d, e)) � ha(d, e) � δ. The cones and foci method extends to this setting without any complica-

tion. However, this extension would complicate the matching criteria in Definition 3.3. For the sake of presentation,
successful termination is not taken into account here.

5

The LPE in Definition 2.3 has exactly one LTS as its solution.2 In this LTS, the states are data
elements d:D (where D may be a Cartesian product of n data types, meaning that d is a tuple
(d1, ..., dn)) and the transition labels are actions parametrized with data. The LPE expresses that
state d can perform a(fa(d, e)) to end up in state ga(d, e), under the condition that ha(d, e) is true.
The data type E gives LPEs a more general form, as not only the data parameter d:D but also the
data parameter e:E can influence the parameter of action a, the condition ha and the resulting state
ga.

Definition 2.4 (Invariant) A mapping I : D → Bool is an invariant for an LPE, written as in
Definition 2.3, if for all a ∈ Act ∪ {τ}, d:D and e:E,

I(d) ∧ ha(d, e) ⇒ I(ga(d, e)).

Intuitively, an invariant characterizes the set of reachable states of an LPE. That is, if I(d), and if one
can involve from state d to state d′ in zero or more transitions, then I(d′). Namely, if I holds in state
d and it is possible to execute a(fa(d, e)) in this state (meaning that ha(d, e)), then it is ensured that
I holds in the resulting state ga(d, e). Invariants tend to play a crucial role in algebraic verifications
of system correctness that involve data.

3. Cones and foci
In this section, we present our version of the cones and foci method [GS01]. Suppose that we have an
LPE X(d:D) (including internal actions from a set I , which will be hidden) specifying the implementa-
tion of a system, and an LPE Y (d′:D′) (without internal actions) specifying the desired input/output
behavior of this system. Furthermore, assume an invariant I : D → Bool characterizing the reachable
states of X . We want to prove that the implementation exhibits the desired input/output behavior.

We assume the presence of an invariant I : D → Bool for X . In the cones and foci method, a state
mapping φ : D → D′ relates each state of the implementation X to a state of the desired external
behavior Y . Furthermore, some states in D are designated to be focus points. In contrast with the
approach of [GS01], we allow to freely assign focus points, as long as each state d:D of X with I(d)
can reach a focus point by a sequence of internal transitions. If a number of matching criteria for
d:D are fulfilled, consisting of relations between data objects, and if I(d), then the states d and φ(d)
are guaranteed to be branching bisimilar. These matching criteria require that (A) after hiding, all
internal transitions of d become invisible, (B) each external transition of d can be mimicked by φ(d),
and (C) if d is a focus point, then vice versa each transition of φ(d) can be mimicked by d.

We start with defining the predicate FC, designating the focus points of X in D. Next we define
the state mapping together with its matching criteria.

Definition 3.1 (Focus point) A focus condition is a mapping FC : D → Bool . If FC (d), then d is
called a focus point.

Definition 3.2 (State mapping) A state mapping is of the form φ : D → D′.

Definition 3.3 (Matching criteria) Let the LPE X be of the form

X(d:D) =
∑

a∈Act

∑

e:E

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ.

Furthermore, let the LPE Y be of the form

Y (d′:D′) =
∑

a∈Act\I

∑

e:E

a(f ′a(d′, e))·Y (g′a(d′, e)) � h′a(d′, e) � δ.

A state mapping φ : D → D′ satisfies the matching criteria for d:D if for all a ∈ Act\I and c ∈ I :
2LPEs exclude “unguarded” recursive specifications such as X = X, which have multiple solutions.

6

I ∀e:E (hc(d, e)⇒ φ(d) = φ(gc(d, e)));

II ∀e:E (ha(d, e)⇒ h′a(φ(d), e));

III FC (d)⇒ ∀e:E (h′a(φ(d), e) ⇒ ha(d, e));

IV ∀e:E (ha(d, e)⇒ fa(d, e) = f ′a(φ(d), e));

V ∀e:E (ha(d, e)⇒ φ(ga(d, e)) = g′a(φ(d), e)).

Matching criterion I requires that after hiding, all internal c-transitions from d are invisible, meaning
that d and gc(d, e) are branching bisimilar. Criteria II, IV and V express that each external transition
of d can be simulated by φ(d). Finally, criterion III expresses that if d is a focus point, then each
external transition of φ(d) can be simulated by d.

Theorem 3.4 Assume LPEs X(d:D) and Y (d′:D′) written as in Definition 3.3. Let I ⊆ Act , and let
I : D → Bool be an invariant for X . Suppose that for all d:D with I(d),

1. φ : D → D′ satisfies the matching criteria for d, and

2. there is a d̂:D such that FC (d̂) and d
c1→ · · · cn→ d̂ with c1, . . . , cn ∈ I in the LTS for X .

Then for all d:D with I(d),

τI(X(d))↔b Y (φ(d)).

Proof. We assume without loss of generality that D and D′ are disjoint. Define B ⊆ D∪D′×D∪D′
as the smallest relation such that whenever I(d) for a d:D then dBφ(d) and φ(d)Bd. Clearly, B is
symmetric. We show that B is a branching bisimulation relation.

Let sBt and s
`→ s′. First consider that case where φ(s) = t. By definition of B we have I(s).

1. If ` = τ , then hc(s, e) and s′ = gc(s, e) for some c ∈ I and e:E. By matching criterion I,
φ(gc(s, e)) = t. Moreover, I(s) and hc(s, e) together imply I(gc(s, e)). Hence, gc(s, e)Bt.

2. If ` 6= τ , then ha(s, e), s′ = ga(s, e) and ` = a(fa(s, e)) for some a ∈ Act\I and e:E. By matching

criteria II and IV, h′a(t, e) and fa(s, e) = f ′a(t, e). Hence, t
a(fa(s,e))→ g′a(t, e). Moreover, I(s) and

ha(s, e) together imply I(ga(s, e)), and matching criterion V yields φ(ga(s, e)) = g′a(t, e), so
ga(s, e)Bg

′
a(t, e).

Next consider the case where s = φ(t). Since s
`→ s′, for some a ∈ Act\I and e:E, h′a(s, e), s′ = g′a(s, e)

and ` = a(f ′a(s, e)). By definition of B we have I(t).

1. If FC (t), then by matching criterion III, ha(t, e). So by matching criterion IV, fa(t, e) = f ′a(s, e).

Hence, t
a(f ′a(s,e))→ ga(t, e). Moreover, I(t) and ha(t, e) together imply I(ga(t, e)), and matching

criterion V yields φ(ga(t, e)) = g′a(s, e), so g′a(s, e)Bga(t, e).

2. If ¬FC (t), then there is a t̂:D with FC (t̂) such that t
c1→ ...

cn→ t̂ with c1, . . . , cn ∈ I in the

LTS for X . This implies that t
τ→ ...

τ→ t̂ in the LTS for τI (X). Invariant I, so also the
matching criteria, hold for all states on this τ -path. Repeatedly applying matching criterion I
we get φ(t̂) = φ(t) = s. So matching criterion III together with h′a(s, e) yields ha(t̂, e). Then

by matching criterion IV, fa(t̂, e) = f ′a(s, e), so t
τ→ ...

τ→ t̂
a(f ′a(s,e))→ ga(t̂, e). Moreover, I(t̂) and

ha(t̂, e) together imply I(ga(t̂, e)), and matching criterion V yields φ(ga(t̂, e)) = g′a(s, e), so sBt̂
and g′a(s, e)Bga(t̂, e).

Concluding, B is a branching bisimulation. �

7

We note that Groote and Springintveld [GS01] proved for their notion of their cones and foci method
that it can be derived from the axioms of µCRL, which implies that their method is sound modulo
branching bisimulation equivalence. We leave it as future work to try and derive our cones and foci
method from the axioms of µCRL.

4. Application to the CABP
Groote and Springintveld [GS01] proved correctness of the Concurrent Alternating Bit Protocol
(CABP) [KM90] as an application of their cones and foci method. Here we redo their correctness
proof using our version of the cones and foci method, where in contrast to [GS01] we can take loops
of internal activity in our stride.

In the CABP, data elements d1, d2, . . . are communicated from a data transmitter S to a data receiver
R via a lossy channel, so that a message can be corrupted or lost. Therefore, acknowledgments are
sent from R to S again via a lossy channel. In the CABP, sending and receiving of acknowledgments
is decoupled from R and S, in the form of separate components AS and AR, respectively, where AS
autonomously sends acknowledgments to AR. This ensures a better use of available bandwidth.

S attaches a bit 0 to data elements d2k−1 and a bit 1 to data elements d2k, and AS sends back the
attached bit to acknowledge reception. S keeps on sending a pair (di, b) until AR receives the bit b
and sends the message ac to S; then S starts sending the next pair (di+1, 1 − b). Alternation of the
attached bit enables R to determine whether a received datum is really new, and alternation of the
acknowledging bit enables AR to determine which datum is being acknowledged.

The CABP contains unbounded internal behavior, which occurs when a channel eternally corrupts
or loses the same datum or acknowledgment. The fair abstraction paradigm [BBK87], which underlies
branching bisimulation, says that such infinite sequences of faulty behavior do not exist in reality,
because the chance of a channel failing infinitely often is zero. Groote and Springintveld [GS01]
defined a pre-abstraction function to hide all internal actions except those that are executed in focus
points, and used Koomen’s fair abstraction rule [BBK87] to eliminate the remaining loops of internal
actions. In our adaptation of the cones and foci method, focus points can perform internal actions,
so neither pre-abstraction nor Koomen’s fair abstraction rule are needed here.

The structure of the CABP is shown in Figure 1. The CABP system is built from six components.

S is a data transmitter, which reads data from port 1 and transmits such a datum repeatedly via
channel K, until an acknowledgment ac regarding this datum is received from AR.

K is a lossy data transmission channel, which transfers data from S to R. Either it delivers the
datum correctly, or it can make two sorts of mistakes: lose the datum or change it into the
checksum error ce.

R is a data receiver, which receives data from K, sends freshly received data into port 2, and sends
an acknowledgment to AS via port 5.

AS is an acknowledgment transmitter, which receives an acknowledgment from R and repeatedly
transmits it via L to AR.

L is a lossy acknowledgment transmission channel, which transfers acknowledgments from AS to
AR. Either it delivers the acknowledgment correctly, or it can make two sorts of mistakes: lose
the acknowledgment or change it into an acknowledgment error ae.

AR is an acknowledgment receiver, which receives acknowledgments from L and passes them on to
S.

The components can perform read rn(...) and send sn(...) actions to transport data through port n.
A read and a send action over the same port n can synchronize into a communication action cn(...).

8

RS K
1 2

58

3 4

AR ASL 67

Figure 1: The structure of the CABP

4.1 Implementation and external behavior
We give descriptions of the data types and each component’s specification in µCRL, which were
originally presented in [GS01]. In each summand of the µCRL specifications below, we take the
convenience to only present the parameters whose values are changed.

We use the sort Nat of natural numbers, and the sort Bit with elements b0 and b1 with an inversion
function inv : Bit → Bit to model the alternating bit. The sort D contains the data elements to be
transferred. The sort Frame consists of pairs 〈d, b〉 with d:D and b:Bit. Frame also contains two error
messages, ce for checksum error and ae for acknowledgment error. eq : S × S → Bool coincides with
the equality relation between elements of the sort S.

The data transmitter S reads a datum at port 1 and repeatedly transmits the datum with a bit bs
attached at port 3 until it receives an acknowledgment ac through port 8; after that, the bit-to-be-
attached is inverted. The parameter is is used to model the state of the data transmitter.

Definition 4.1 (Data transmitter)

S(ds:D, bs:Bit, is:Nat)
=

∑
d:D r1(d)·S(d/ds, 2/is) � eq(is, 1) � δ

+ (s3(〈ds, bs〉)·S + r8(ac)·S(inv(bs)/bs, 1/is)) � eq(is, 2) � δ

The data transmission channel K reads a datum at port 3. It can do one of three things: it deliver
the datum correctly via port 4, it lose the datum, or it corrupt the datum by changing it into ce.
The non-deterministic choice between the three options is modeled by the action j. bk is the attached
alternating bit for K. And its state is modeled by the parameter ik.

Definition 4.2 (Data transmission channel)

K(dk:D, bk:Bit, ik:Nat)
=

∑
d:D

∑
b:Bit r3(〈d, b〉)·K(d/dk, b/bk, 2/ik) � eq(ik, 1) � δ

+ (j·K(1/ik) + j·K(3/ik) + j·K(4/ik)) � eq(ik, 2) � δ
+ s4(〈dk, bk〉)·K(1/ik) � eq(ik, 3) � δ
+ s4(ce)·K(1/ik) � eq(ik, 4) � δ

The data receiver R reads a datum at port 4. If the datum is not a checksum ce and if the bit attached
is the expected bit, it sends the received datum into port 2 and sends an acknowledgment ac via port
5, and the bit-to-be-expected is inverted. If the datum is a checksum error or the bit attached is not
the expected one, the datum is simply ignored. The parameter ir is used to model the state of the
data receiver.

9

Definition 4.3 (Data receiver)

R(dr:D, br:Bit, ir:Nat)
=

∑
d:D r4(〈d, br〉)·R(d/dr, 2/ir) � eq(ir, 1) � δ

+ (r4(ce) +
∑
d:D r4(〈d, inv(br)〉))·R� eq(ir, 1) � δ

+ s2(dr)·R(3/ir) � eq(ir, 2) � δ
+ s5(ac)·R(inv(br)/br, 1/ir) � eq(ir, 3) � δ

The acknowledgment transmitter AS repeats sending its acknowledgment bit b′r via port 6, until it
receives an acknowledgment ac from port 5, after which the acknowledgment bit is inverted.

Definition 4.4 (Acknowledgment transmitter)

AS(b′r:Bit)
= r5(ac)·AS(inv(b′r)) + s6(b′r)·AS

The acknowledgment transmission channel L reads an acknowledgment bit from port 6. It non-
deterministically does one of three things: deliver it correctly via port 7, lose the acknowledgment,
or corrupt the acknowledgment by changing it to ae. The non-deterministic choice between the three
options is modeled by action j. bl is the attached alternating bit for L. And its state is modeled by
the parameter il.

Definition 4.5 (Acknowledgment transmission channel)

L(bl:Bit, il:Nat)
=

∑
b:Bit r6(b)·L(b/bl, 2/il) � eq(il, 1) � δ

+ (j·L(1/il) + j·L(3/il) + j·L(4/il)) � eq(il, 2) � δ
+ s7(bl)·L(1/il) � eq(il, 3) � δ
+ s7(ae)·L(1/il) � eq(il, 4) � δ

The acknowledgment receiver AR reads an acknowledgment bit from port 7. If the bit is the expected
one, it sends an acknowledgment ac to the data transmitter S via port 8, after which the bit-to-be-
expected is inverted. Acknowledgments errors ae or unexpected bits are ignored.

Definition 4.6 (Acknowledgment receiver)

AR(b′s:Bit, i
′
s:Nat)

= r7(b′s)·AR(2/i′s) � eq(i′s, 1) � δ
+ (r7(ae) + r7(inv(b′s)))·AR � eq(i′s, 1) � δ
+ s8(ac)·AR(inv(b′s)/b

′
s, 1/i

′
s) � eq(i′s, 2) � δ

The µCRL specification of the CABP is obtained by putting the six components in parallel and
encapsulating the internal actions at ports {3, 4, 5, 6, 7, 8}. Synchronization between the components
is modeled by communication actions at connecting ports.

Definition 4.7 Let H denote {s3, r3, s4, r4, s5, r5, s6, r6, s7, r7, s8, r8}.

CABP(d:D) = ∂H(S(d, b0, 1) ‖ AR(b0, 1) ‖ K(d, b1, 1) ‖ L(b1, 1) ‖ R(d, b0, 1) ‖ AS(b1))

Next the CABP is expanded to a LPE Sys. We first group S and AR, respectively R and AS,
together. This step is to dispose of the parameters b′s and b′r.

10

Definition 4.8 Let ds, dr, dk:D, bs, br, bk, bl:Bit and is, i
′
s, ir, ik, il:Nat . We define:

SAR(ds, bs, is, i
′
s) = S(ds, bs, is) ‖ AR(bs, i

′
s)

RAS(dr, br, ir) = R(dr, br, ir) ‖ AS(inv(br))
Sys(ds, bs, is, i

′
s, dr, br, ir, dk, bk, ik, bl, il)

= ∂H(SAR(ds, bs, is, i
′
s) ‖ K(dk, bk, ik) ‖ L(bl, il) ‖ RAS(dr, br, ir))

Lemma 4.9 For all d:D we have

CABP(d) = Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1)

Proof. This is straightforward by the definitions. �

Lemma 4.10 In each summand of the LPE for Sys below, we only present the parameters whose
values are changed. It holds that

Sys(ds:D, bs:Bit , is:Nat , i′s:Nat , dr:D, br:Bit , ir:Nat , dk:D, bk:Bit , ik:Nat , bl:Bit , il:Nat)
=

∑
d:D r1(d)·Sys(d/ds, 2/is) � eq(is, 1) � δ (1)

+ c3(〈ds, bs〉)·Sys(ds/dk, bs/bk, 2/ik) � eq(is, 2) ∧ eq(ik, 1) � δ (2)
+ (j·Sys(1/ik) + j·Sys(3/ik) + j·Sys(4/ik)) � eq(ik, 2) � δ (3)
+ c4(〈dk , br〉)·Sys(dk/dr, 2/ir, 1/ik) � eq(ir, 1) ∧ eq(br, bk) ∧ eq(ik, 3) � δ (4)
+ c4(〈dk , br〉)·Sys(1/ik) � eq(ir, 1) ∧ eq(br, inv(bk)) ∧ eq(ik, 3) � δ (5)
+ c4(ce)·Sys(1/ik) � eq(ir, 1) ∧ eq(ik, 4) � δ (6)
+ s2(dr)·Sys(3/ir) � eq(ir, 2) � δ (7)
+ c5(ac)·Sys(inv(br)/br, 1/ir) � eq(ir, 3) � δ (8)
+ c6(inv(br))·Sys(inv(br)/bl, 2/il) � eq(il, 1) � δ (9)
+ (j·Sys(1/il) + j·Sys(3/il) + j·Sys(4/il)) � eq(il, 2) � δ (10)
+ c7(bl)·Sys(1/il, 2/i

′
s) � eq(i′s, 1) ∧ eq(bl, bs) ∧ eq(il, 3) � δ (11)

+ c7(bl)·Sys(1/il) � eq(i′s, 1) ∧ eq(bl, inv(bs)) ∧ eq(il, 3) � δ (12)
+ c7(ae)·Sys(1/il) � eq(i′s, 1) ∧ eq(il, 4) � δ (13)
+ c8(ac)·Sys(inv(bs)/bs, 1/is, 1/i

′
s) � eq(is, 2) ∧ eq(i′s, 2) � δ (14)

Proof. By straightforward process algebraic calculations and Lemma A.3 in the Appendix of [GS01]
and the auxiliary definitions given above. �

The specification of the external behavior of the CABP is a one-datum buffer, which reads a datum
at port 1, and sends out this same datum at port 2.

Definition 4.11 The LPE of the external behavior of the CABP is

B(d:D, b:Bool) =
∑
d′:D r1(d′)·B(d′,F) � b� δ + s2(d)·B(d,T) � ¬b� δ.

4.2 Verification
Let Ξ abbreviate D ×Bit ×Nat ×Nat ×D ×Bit ×Nat ×D× Bit ×Nat ×Bit ×Nat . Furthermore,
let ξ:Ξ denote (ds, bs, is, i

′
s, dr, br, ir, dk, bk, ik, bl, il).

Invariants I1-I5, I7 below were taken from [GS01]. I1-I5 describe the range of the data parameters
is, i

′
s, ik, ir, and il, respectively. I6 says that bs and bk remain equal until S gets an acknowledgment

from AR. I7 expresses that each component in Figure 1 either has received information about the
datum being transmitted which it must forward, or did not yet receive this information.

11

Definition 4.12

I1(ξ) ≡ eq(is, 1) ∨ eq(is, 2)
I2(ξ) ≡ eq(i′s, 1) ∨ eq(i′s, 2)
I3(ξ) ≡ eq(ik, 1) ∨ eq(ik, 2) ∨ eq(ik, 3) ∨ eq(ik, 4)
I4(ξ) ≡ eq(ir, 1) ∨ eq(ir, 2) ∨ eq(ir, 3)
I5(ξ) ≡ eq(il, 1) ∨ eq(il, 2) ∨ eq(il, 3) ∨ eq(il, 4)
I6(ξ) ≡ ¬eq(ik, 1) ∧ eq(is, 2)⇒ eq(bs, bk)
I7(ξ) ≡ (eq(is, 1)⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)

∧ eq(ds, dr) ∧ eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 1))
∧ (eq(bs, bk)⇒ eq(ds, dk))
∧ (eq(ir, 2) ∨ eq(ir, 3)⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk))
∧ (eq(bs, inv(br))⇒ eq(ds, dr) ∧ eq(bs, bk))
∧ (eq(bs, bl)⇒ eq(bs, inv(br)))
∧ (eq(i′s, 2)⇒ eq(bs, bl)).

Lemma 4.13 I1, I2, I3, I4, I5, I6 and I4 ∧ I7 are invariants of Sys .

Proof. We need to show that the invariants hold in the initial state, and that the invariants are
preserved by each of the summands (1)− (14) in the specification of Sys .

1. Invariants I1 − I5 are trivial to prove.

2. It is easy to find that invariant I6 hold in the initial state.

• Summands (1): We must show I6 ∧ eq(is, 1)⇒ I6(d/ds, 2/is).

By eq(is, 1) and I4 ∧ I7 we have eq(ik, 1), hence I6(d/ds, 2/is).

• Summands (2): We must show I6 ∧ eq(ik, 1) ∧ eq(is, 2)⇒ I6(bs/bk, 2/ik).

This is straightforward.

• Summands (14): We must show I6 ∧ eq(is, 2) ∧ eq(i′s, 2)⇒ I6(inv(bs)/bs, 1/is, 1/i
′
s).

This is straightforward.

• The other summands are trivial.

3. To prove I4 ∧ I7, I4 holds and it is easy to find that invariant I7 hold in the initial state. We
divide I7 into six parts as follows:

I71(ξ) ≡ (eq(is, 1)⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)
∧ eq(ds, dr) ∧ eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 1))

I72(ξ) ≡ eq(bs, bk)⇒ eq(ds, dk)
I73(ξ) ≡ eq(ir, 2) ∨ eq(ir, 3)⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk)
I74(ξ) ≡ eq(bs, inv(br))⇒ eq(ds, dr) ∧ eq(bs, bk)
I75(ξ) ≡ eq(bs, bl)⇒ eq(bs, inv(br))
I76(ξ) ≡ eq(i′s, 2)⇒ eq(bs, bl).

• Summand (1): We must show I4 ∧ I7 ∧ eq(is, 1)⇒ I4 ∧ I7(d/ds, 2/is).

By eq(is, 1) and I71 we have eq(bs, inv(bk)), eq(ir, 1), eq(bs, br), eq(i
′
s, 1), so I71((d/ds, 2/is)),

I72(d/ds, 2/is), I73(d/ds, 2/is), I74(d/ds, 2/is), I76(d/ds, 2/is) hold, and I75(d/ds, 2/is) is
trivial.

• Summand (2): We must show I4 ∧ I7 ∧ eq(is, 2) ∧ eq(ik, 1)⇒ I4 ∧ I7(ds/dk, bs/bk, 2/ik).

By eq(is, 2), we have I71(ds/dk, bs/bk, 2/ik). I72(ds/dk, bs/bk, 2/ik), I73(ds/dk, bs/bk, 2/ik),
I74(ds/dk, bs/bk, 2/ik), I75(ds/dk, bs/bk, 2/ik) and I76(ds/dk, bs/bk, 2/ik) are trivial.

12

• Summand (4): We must show I4∧I7∧eq(ir, 1)∧eq(br, bk)∧eq(ik, 3)⇒ I4∧I7(dk/dr, 2/ir, 1/ik).

Assume eq(is, 1), by I71, it follows that eq(bs, inv(bk)) ∧ eq(bs, br). Hence eq(br, inv(bk)),
this contradicts the condition eq(br, bk). By I1, we have eq(is, 2), hence I71(dk/dr, 2/ir, 1/ik).
To prove I73(dk/dr, 2/ir, 1/ik), we have to show that eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk).
Assume eq(bs, inv(br)), by I74 it follows that eq(bs, bk), hence eq(bk, inv(br)), which con-
tradicts with the condition eq(br, bk). So we have eq(bs, br) and eq(bs, bk). By I72, we
have eq(ds, dk), hence I73(dk/dr, 2/ir, 1/ik). I72(dk/dr, 2/ir, 1/ik), I74(dk/dr, 2/ir, 1/ik),
I75(dk/dr, 2/ir, 1/ik) and I76(dk/dr, 2/ir, 1/ik) are trivial.

• Summand (5): We must show I4∧I7∧eq(ir, 1)∧eq(br, inv(bk))∧eq(ik, 3)⇒ I4∧I7(1/ik).

Assume eq(is, 1), by I71, it follows that eq(ik, 1), which contradicts the condition eq(ik, 3).
By I1 we have eq(is, 2), hence I71(1/ik). I72(1/ik), I73(1/ik), I74(1/ik), I75(1/ik) and
I76(1/ik) are trivial.

• Summand (8): We must show I4 ∧ I7 ∧ eq(ir, 3)⇒ I4 ∧ I7(inv(br)/br, 1/ir).

Assume eq(is, 1), by I71, we have eq(ir, 1), which contradicts the condition eq(ir, 3). By I1

we have eq(is, 2), hence I71(inv(br)/br, 1/ir). By eq(ir, 3) and I73, it follows that eq(bs, br)∧
eq(ds, dr)∧eq(bs, bk), so I74(inv(br)/br, 1/ir). Assume eq(bs, bl), we have eq(bs, inv(br)) by
I75. This contradicts eq(bs, br). So ¬eq(bs, bl), hence I74(inv(br)/br, 1/ir). I72(inv(br)/br, 1/ir),
I73(inv(br)/br, 1/ir) and I76(inv(br)/br, 1/ir) are trivial.

• Summand (9): We must show I4 ∧ I7 ∧ eq(il, 1)⇒ I4 ∧ I7(inv(br)/bl, 2/il),

If eq(bs, bl), by I75 we have eq(bs, inv(br)). Hence I72(inv(br)/bl, 2/il). If eq(i′s, 2), by I76

we have eq(bs, bl), and by I75, we I76(inv(br)/bl, 2/il). The other parts are trivial.

• Summand (11): We must show I4∧I7 ∧eq(i′s, 1)∧eq(bl, bs)∧eq(il, 3)⇒ I4∧I7(1/il, 2/i
′
s).

We only need to check I76. By condition eq(bl, bs), I76(1/il, 2/i
′
s) is straightforward.

• Summand (14): We must show I4∧I7∧eq(is, 2)∧eq(i′s, 2)⇒ I4∧I7(inv(bs)/bs, 1/is, 1/i
′
s).

To prove I71(inv(bs)/bs, 1/is, 1/i
′
s), we must show eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk) ∧

eq(ds, dr) ∧ eq(i′s, 1) ∧ eq(ir, 1). Given the conditions, eq(is, 2) ∧ eq(i′s, 2), and the as-
signments inv(bs)/bs, 1/is and 1/i′s, the formula above reduces to eq(inv(bs), inv(bk)) ∧
eq(br, inv(bs)) ∧ eq(ds, dk) ∧ eq(ds, dr) ∧ eq(ir, 1), which we must prove, given the invari-
ants and the facts eq(is, 2) ∧ eq(i′s, 2). As eq(i′s, 2), by I76 we have eq(bs, bl), and by
I75, we have eq(bs, inv(br)). Hence eq(bs, inv(br)). By I74, it follows that eq(bs, bk) ∧
eq(ds, dr). As eq(bs, bk) and I72, we have eq(ds, dk). Assume that ¬eq(ir, 1), by I4 and
I73, it follows eq(bs, br), which contradicts eq(bs, inv(br)). So we have eq(ir, 1), hence
I71(inv(bs)/bs, 1/is, 1/i

′
s). The other five parts are trivial.

• The other summands are trivial.

�

The focus condition for Sys is obtained by taking the disjunction of the summands in the LPE in
Definition 4.10 that deal with an external action; these summands are (1) and (7).

Definition 4.14 The focus condition for Sys is

FC (ξ) = eq(is, 1) ∨ eq(ir, 2).

We proceed to prove that each state satisfying the invariants above can reach a focus point by a
sequence of internal transitions, carrying labels from I = {c3, c4, c5, c6, c7, c8, j}.

Lemma 4.15 For each ξ:Ξ with In(ξ) for n = 1-6, there is a ξ̂:Ξ such that FC(ξ̂) and ξ
c1→ · · · cn→ ξ̂

with c1, . . . , cn ∈ I in Sys.

13

Proof. Let ¬FC(ξ); in view of I1 and I4 this implies eq(is, 2)∧ (eq(ir, 1)∨eq(ir, 3)). In case eq(ir, 3),
we can perform c5(ac) at summand (8) to arrive a state with eq(is, 2)∧eq(ir, 1). By I3 and summands
(2), (3) and (6), we can perform internal actions to reach a state where eq(is, 2)∧ eq(ir, 1)∧ eq(ik, 3).
We distinguish two cases.

1. eq(br, bk).

We can perform c4(〈dk , br〉) at summand (4) to reach a focus point.

2. eq(br, inv(bk)).

If i′s = 2, then we can perform c(ac) at summand (14) to reach a focus point, so by I2 we can
assume that i′s = 1. If eq(il, 3) ∧ eq(bl, bs), then by performing c7(bl) at summand (11) followed
by c8(ac) at summand (14) we can reach a focus point. Otherwise, by I5 and summands (10),
(12) and (13) we can reach a state where eq(is, 2)∧ eq(i′s, 1)∧ eq(ir, 1)∧ eq(ik, 3)∧ eq(il, 1). We
can perform c6(inv(br)) at summand (9) followed by j at summand (10) to reach a state where
eq(is, 2) ∧ eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 3) ∧ eq(il, 3) ∧ eq(bl, inv(br)). By eq(br, inv(bk)), I6 and
eq(bl, inv(br)) we have eq(bl, bs). Hence, we can perform c7(bl) at summand (11) followed by
c8(ac) at summand (14) to reach a focus point.

�

The state mapping φ : Ξ→ D × Bool is defined by

φ(ξ) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉.

Note that φ is independent of i′s, dr, dk, bk, ik, bl, il; we write φ(ds, bs, is, br, ir).

Theorem 4.16 For all d:D and b0, b1:Bit ,

τI(Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1))↔b B(d,T).

Proof. It is easy to check that ∧7
n=1In(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1).

We obtain the following matching criteria. For class I, we only need to check the summands (4), (8)
and (14), as the other nine summands that involve an initial action leave the values of the parameters
in φ(ds, bs, is, br, ir) unchanged.

1. eq(ir, 1) ∧ eq(br, bk) ∧ eq(ik, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, br, 2/ir)

2. eq(ir, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, inv(br)/br, 1/ir)

3. eq(is, 2) ∧ eq(i′s, 2) ⇒ φ(ds, bs, is, br, ir) = φ(ds, inv(bs)/bs, 1/is, br, ir)

The matching criteria for the other four classes are produced by summands (1) and (7). For class II
we get:

1. eq(is, 1) ⇒ eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)

2. eq(ir, 2) ⇒ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br))
For class III we get:

1. (eq(is, 1) ∨ eq(ir, 2)) ∧ (eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(is, 1)

2. (eq(is, 1) ∨ eq(ir, 2)) ∧ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(ir, 2)

For class IV we get:

1. ∀d:D (eq(is, 1) ⇒ d = d)

14

2. eq(ir, 2) ⇒ dr = ds

Finally, for class V we get:

1. ∀d:D (eq(is, 1) ⇒ φ(d/ds, bs, 2/is, br, ir) = 〈d,F〉)
2. eq(ir, 2) ⇒ φ(ds, bs, is, br, 3/ir) = 〈ds,T〉

We proceed to prove the matching criteria.

I.1 Let eq(ir, 1). Then

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈ds, eq(is, 1) ∨ eq(2, 3) ∨ ¬eq(bs, br)〉
= φ(ds, bs, is, br, 2/ir).

I.2 Let eq(ir, 3). Then by I7, eq(bs, br). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉
= 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, inv(br))〉
= φ(ds, bs, is, inv(br)/br, 1/ir).

I.3 Let eq(i′s, 2). By I7, eq(bs, bl), which together with I7 yields eq(bs, inv(br)). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉
= 〈ds, eq(1, 1) ∨ eq(ir, 3) ∨ ¬eq(inv(bs), br)〉
= φ(ds, inv(bs)/bs, 1/is, br, ir).

II.1 Trivial.

II.2 Let eq(ir, 2). Then clearly ¬eq(ir, 3), and by I7, eq(bs, br). Furthermore, according to I7,
eq(is, 1)⇒ eq(ir, 1), so eq(ir, 2) also implies ¬eq(is, 1).

III.1 If ¬eq(ir, 2), then eq(is, 1)∨ eq(ir, 2) implies eq(is, 1). If eq(ir, 2), then by I7, eq(bs, br), so that
eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br) implies eq(is, 1).

III.2 If ¬eq(is, 1), then eq(is, 1) ∨ eq(ir, 2) implies eq(ir, 2). If eq(is, 1), then ¬(eq(is, 1) ∨ eq(ir, 3) ∨
¬eq(bs, br)) is false, so that it implies eq(ir, 2).

IV.1 Trivial.

IV.2 Let eq(ir, 2). Then by I7, eq(dr, ds).

V.1 Let eq(is, 1). Then by I7, eq(ir, 1) and eq(bs, br). So for any d:D,

φ(d/ds, bs, 2/is, br, ir) = 〈d, eq(2, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈d,F〉.

V.2

φ(ds, bs, is, br, 3/ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉
= 〈ds,T〉.

Note that φ(d, b0, 1, b0, 1) = 〈d,T〉. So by Theorem 3.4 and Lemma 4.15,

τI(Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1))↔b B(d,T).

�

Acknowledgments
Jan Friso Groote is thanked for valuable discussions.

15

References

[AL01] T. Arts and I.A. van Langevelde. Correct performance of transaction capabilities. In
Proceedings of 2nd Conference on Application of Concurrency to System Design, pages
35–42. IEEE Computer Society, June 2001.

[Bas96] T. Basten. Branching bisimilarity is an equivalence indeed! Information Processing
Letters, 58:141–147, 1996.

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s fair
abstraction rule. Theoretical Computer Science, 51:129–176, 1987.

[BFG+01] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and J.C. van de
Pol. µCRL: A toolset for analysing algebraic specifications. In G. Berry, H. Comon,
and A. Finkel, editors, Proceedings of 13th Conference on Computer Aided Verification,
volume 2102 of Lecture Notes in Computer Science, pages 250–254. Springer-Verlag, 2001.

[BG94] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jonsson and
J. Parrow, editors, Proceedings of 5th Conference on Concurrency Theory, volume 836 of
Lecture Notes in Computer Science, pages 401–416. Springer-Verlag, 1994.

[BK85] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37:77–121, 1985.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

[CGP+97] A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra, J. Profeta, D. Romano, P. Traverso,
and B. Yu. A provably correct embedded verifier for the certification of safety critical
software. In O. Grumberg, editor, Proceedings of 9th Conference on Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science, pages 202–213. Springer-
Verlag, 1997.

[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design. A Foundation. Addison Wesley,
1988.

[Cou90] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume B, Formal Methods and Semantics, pages 459–
492. Elsevier, 1990.

16 References

[FGK+97] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu.
CADP – a protocol validation and verification toolbox. In R. Alur and T.A. Henzinger,
editors, Proceedings of 8th Conference on Computer-Aided Verification, volume 1102 of
Lecture Notes in Computer Science, pages 437–440. Springer-Verlag, 1997.

[FGK97] L.-Å. Fredlund, J.F. Groote, and H.P. Korver. Formal verification of a leader election
protocol in process algebra. Theoretical Computer Science, 177:459–486, 1997.

[FGP] W.J. Fokkink, J.F. Groote, and J. Pang. Verification of a sliding window protocol in
µCRL. In preparation.

[FP97] W.J. Fokkink and J.C. van de Pol. Simulation as a correct transformation of rewrite
systems. In I. Pŕıvara and P. Ružička, editors, Proceedings of 22nd Symposium on Math-
ematical Foundations of Computer Science, volume 1295 of Lecture Notes in Computer
Science, pages 249–258. Springer-Verlag, 1997.

[GMP98] J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of protocols and
distributed systems by computer. In D. Sangiorgi and R. de Simone, editors, Proceedings
of 9th Conference on Concurrency Theory, volume 1466 of Lecture Notes in Computer
Science, pages 629–655. Springer-Verlag, 1998.

[GP95] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse, C. Verhoef,
and S.F.M. van Vlijmen, editors, Proceedings of 1st Workshop on the Algebra of Commu-
nicating Processes, Workshops in Computing Series, pages 26–62. Springer-Verlag, 1995.

[GPU01] J. F. Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL. Journal of
Logic and Algebraic Programming, 48:39–72, 2001.

[GPW03] J. F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for lifting
trucks. Journal of Logic and Algebraic Programming, 2003. To appear.

[GS99] W. Goerigk and F. Simon. Towards rigorous compiler implementation verification. In
J. Padget, editor, Collaboration between Human and Artificial Societies, Coordination and
Agent-Based Distributed Computing, volume 1624 of Lecture Notes in Computer Science,
pages 62–73. Springer-Verlag, 1999.

[GS01] J.F. Groote and J. Springintveld. Focus points and convergent process operators. A proof
strategy for protocol verification. Journal of Logic and Algebraic Programming, 49:31–60,
2001.

[GV90] J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. In M.S. Paterson, editor, Proceedings of 17th Colloquium
on Automata, Languages and Programming, volume 443 of Lecture Notes in Computer
Science, pages 626–638. Springer-Verlag, 1990.

[GW96] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43:555–600, 1996.

[GW01] J.F. Groote and J.J. van Wamel. The parallel composition of uniform processes with data.
Theoretical Computer Science, 266:631–652, 2001.

[Jon87] B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis, Department
of Computer Science, Uppsala University, 1987.

[KM90] C.P.J. Koymans and J.C. Mulder. A modular approach to protocol verification using
process algebra. In J.C.M. Baeten, editor, Applications of Process Algebra, Cambridge
Tracts in Theoretical Computer Science 17, pages 261–306. Cambridge University Press,
1990.

[LEW96] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wi-
ley/Teubner, 1996.

References 17

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of 6th Annual ACM Symposium on Principles of Distributed Computing,
pages 137–151. ACM, 1987.

[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations. Part I: Untimed
systems. Information and Computation, 121:214–233, 1995.

[Nec00] G. Necula. Translation validation for an optimizing compiler. In Proceedings of 2000 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages SIG-
PLAN Notices 35:83–94. ACM, 2000.

[Pan02] J. Pang. Analysis of a security protocol in µCRL. In Proceedings of 4th International
Conference on Formal Engineering Methods, volume 2495 of Lecture Notes in Computer
Science, pages 396–400. Springer-Verlag, 2002.

[PSS98] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In B. Steffen, editor,
Proceedings of 4th Conference on Tools and Algorithms for Construction and Analysis of
Systems, volume 1384 of Lecture Notes in Computer Science, pages 151–166. Springer-
Verlag, 1998.

[PVE02] J.C. van de Pol and M. Valero Espada. Formal specification of JavaspacesTM architecture
using µCRL. In Proceedings of 5th Conference on Coordination Models and Languages,
volume 2315 of Lecture Notes in Computer Science, pages 274–290. Springer-Verlag, 2002.

[SvdZ98] C. Shankland and M.B. van der Zwaag. The tree identify protocol of IEEE 1394 in µCRL.
Formal Aspects of Computing, 10:509–531, 1998.

[Use02] Y.S. Usenko. Linearization of µCRL specifications (extended abstract). In M. Leuschel
and U. Ultes-Nitsche, editors, Proceedings of 3rd International Workshop on Verification
and Computational Logic (VCL2002), Technical Report DSSE-TR-2002-5. Department of
Electronics and Computer Science, University of Southampton, 2002.

[vdZ01] M.B. van der Zwaag. The cones and foci proof technique for timed transition systems.
Information Processing Letters, 80(1):33–40, 2001.

