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Abstract. Given a Boolean network BN and a subset A of attractors of
BN, we study the problem of identifying a minimal subset CBN of vertices
of BN, such that the dynamics of BN can reach from a state s in any
attractor As ∈ A to any attractor At ∈ A by controlling (toggling) a sub-
set of vertices in CBN in a single time step. We describe a method based
on the decomposition of the network structure into strongly connected
components called ‘blocks’. The control subset can be locally computed
for each such block and the results then merged to derive the global
control subset CBN. This potentially improves the efficiency for many
real-life networks that are large but modular and well-structured. We
are currently in the process of implementing our method in software.

1 Introduction

Systems biology, with the help of mathematical modelling, has revolutionised
the human diseasome research and paved the way towards the development of
new therapeutic approaches and personalised medicine. Such therapies target
specific proteins within the cellular systems aiming to drive it from a ‘diseased’
state to a ‘healthy’ state. However, it has been observed that disease-networks
are intrinsically robust against perturbations due to the inherent diversity and
redundancy of compensatory signalling pathways [2]. This greatly reduces the ef-
ficacy of single-target drugs. Hence, rather than trying to design selective ligands
that target individual receptors only, network polypharmacology seeks to modify
multiple cellular targets to tackle the compensatory mechanisms and robustness
of disease-associated cellular systems. This motivates the question of identifying
multiple drug targets using which the network can be ‘fully controlled’, i.e. driven
from any (diseased) state to any desired target (healthy) state. Furthermore, for
the feasibility of the synthesis of such drugs, the number of such targets should
be minimised. However, biological networks are intrinsically large (number of
components, parameters, interactions, etc.) which results in an exponentially
increasing number of potential drug target combination making a purely exper-
imental approach quickly infeasible. This reinforces the need of mathematical
modelling and computational techniques.

Boolean networks (BNs), first introduced by Kauffman [5], is a popular and
well-established framework for modelling gene regulatory networks (GRNs) and
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their associated signalling pathways. Its main advantage is that it is simple and
yet able to capture the important dynamical properties of the system under
study, thus facilitating the modelling of large biological systems as a whole.
The states of a BN are tuples of 0s and 1s where each element of the tuple
represents the level of activity of a particular protein in the GRN or the signalling
pathway it models - 0 for inactive and 1 for active. The BN is assumed to
evolve dynamically by moving from one state to the next governed by a Boolean
function for each of its components. The steady state behaviour of a BN is
given by its subset of states called attractors to one of which the dynamics
eventually settles down. In biological context, attractors are hypothesised to
characterise cellular phenotypes [5] and also correspond to functional cellular
states such as proliferation, apoptosis, differentiation, etc. [3]. The control of a
BN therefore refers to the reprogramming/changing of the parameters of the
BN (functions, values of variables, etc.) so that its dynamics eventually reaches
a desired attractor or steady state.

The full control of linear networks is a well-studied problem [4] and such
control strategies have been proposed over the years. Recent work on network
controllability has shown that full controllability and reprogramming of inter-
cellular networks can be achieved by a minimum number of control targets [7].
However, the full control of non-linear networks is apparently more challenging
predominantly due to the explosion of the potential search space with the in-
crease in the network size. There has not been a lot of work in this regard. Kim
et al. [6] developed a method to identify the so-called ‘control kernel’ which is a
minimal set of nodes for fully controlling a biological network. But, their method
is based on the construction of the full state transition graph of the network and
as such does not scale well for large networks.

In many cases, only some of the attractors of the BNs are ‘biologically rel-
evant’, i.e. correspond to meaningful expressions of the modelled GRNs. Thus,
focussing on only the relevant attractors might help reduce the complexity of
the control problem while still being biologically meaningful.

Our contributions. In this work, we report the initial results on a method for
the control of Boolean networks that exploits both their structural and dynamic
properties, as shown inevitable in [1]. More precisely, given a Boolean network
BN and a set of ‘relevant’ attractorsA of BN, the method computes a minimal set
of variables (the minimal control set), such that starting from an initial attractor
As ∈ A and by controlling specific subsets of these variables in a single time-
step, the BN can (potentially) reach any desired target attractor At ∈ A when
left to evolve on its own according to its original dynamics. A welcome side-
effect of the method is that when A is the set of all attractors of BN, it gives the
minimal set of vertices for fully controlling BN. We use an approach that we have
developed for the problem of target control (driving the BN to a given single
target attractor) of BNs, based on the decomposition of its network structure
into strongly connected components called ‘blocks’. Although the method can
be applied on the entire BN in one-go, we believe that using the decomposition-
based approach can greatly increase its efficiency on large real-life biological
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networks whose BN models have well-behaved modular structure. This is work-
in-progress and we are currently implementing our method in software to test
its effectiveness on various networks.

2 Background and Notations

Let N = {1, 2, . . . , n} where n ≥ 1. A Boolean network is a tuple BN = (x, f)
where x = (x1, x2, . . . , xn) such that each xi is a Boolean variable and f =
(f1, f2, . . . , fn) is a tuple of Boolean functions over x. In what follows, i will
always range over N , unless stated otherwise. A Boolean network BN = (x, f)
may be viewed as a directed graph GBN = (V,E), where V = {v1, v2 . . . , vn} is
the set of vertices or nodes (intuitively, vi corresponds to the variable xi for all
i) and for every i, j ∈ N , there is a directed edge from vj to vi, often denoted
as vj → vi, if and only if fi depends on xj . Thus V is ordered according to the
ordering of x. For any vertex vi ∈ V , we let ind(vi) = i be the index of vi in
this ordering. For any subset W of V , ind(W ) = {ind(v)| v ∈W}. A path from a
vertex v to a vertex v′ is a (possibly empty) sequence of edges from v to v′ in GBN.
For any vertex v ∈ V we define its set of parents as par(v) = {v′ ∈ V | v′ → v}
and for any subset W of V , par(W ) = {par(v) | v ∈ W}. For the rest of the
exposition, we assume that an arbitrary but fixed network BN of n variables is
given to us and GBN = (V,E) is its associated directed graph.

A state s of BN is an element in {0, 1}n. Let S be the set of states of BN.
For any state s = (s1, s2, . . . , sn), and for every i, the value of si, often denoted
as s[i], represents the value that the variable xi takes when the BN ‘is in state
s’. For some i, suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will denote
the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming distance
between s and s′ will be denoted as hd(s, s′) and arg(hd(s, s′)) ⊆ N will denote
the set of indices in which s and s′ differ. For a state s and a subset S′ ⊆ S, the
Hamming distance between s and S′ is defined as hd(s,S′) = mins′∈S′ hd(s, s′).
We let arg(hd(s,S′)) denote the set of subsets of N such that I ∈ arg(hd(s,S′))
if and only if I is a set of indices of the variables that realise hd(s,S′).

We assume that the Boolean network starts initially in a state s0 and its state
changes in every discrete time-step according to the update functions f . In this
work, we shall deal with the asynchronous updating scheme but all our results
transfer to the synchronous updating scheme as well. Suppose s0 ∈ S is an initial
state of BN. The asynchronous evolution of BN is a function ξ : N→ ℘(S) such
that ξ(0) = s0 and for every j ≥ 0, if s ∈ ξ(j) then s′ ∈ ξ(j + 1) if and only if
either hd(s, s′) = 1 and s′[i] = fi(s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and
there exists i such that s′[i] = fi(s).

The dynamics of a Boolean network can be represented as a state transition
graph or a transition system (TS). The transition system of BN, denoted as TSBN
is a tuple (S,→) where the vertices are the set of states S and for any two states
s and s′ there is a directed edge from s to s′, denoted s→ s′, if and only if either
hd(s, s′) = 1 and s′[i] = fi(s) where i = arg(hd(s, s′)) or hd(s, s′) = 0 and there
exists i such that s′[i] = fi(s).
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For any state s ∈ S, preTS(s) = {s′ ∈ S | s′ → s} contains all the states
that can reach s by performing a single transition in TS. For a subset S′ of S,
preTS(S′) =

⋃
s∈S′ preTS(s). A path from a state s to a state s′ is a (possibly

empty) sequence of transitions from s to s′ in TSBN. A path from a state s to a
subset S′ of S is a path from s to any state s′ ∈ S′. For a state s ∈ S, reachTS(s)
denotes the set of states s′ such that there is a path from s to s′ in TS.

An attractor A of TSBN (or of BN) is a subset of states of S such that for
every s ∈ A, reachTSBN

(s) = A. Any state which is not part of an attractor
is a transient state. An attractor A of BN is said to be reachable from a state
s if reachTSBN

(s) ∩ A 6= ∅. Attractors represent the stable behaviour of the BN
according to the dynamics. For an attractor A of BN, the weak basin or simply the
basin of attraction of A, denoted basTSBN

(A), is a subset of states of S such that
s ∈ basTSBN

(A) if reachTSBN
(s) ∩A 6= ∅. A control C is a (possibly empty) subset

of N . For a state s ∈ S, the application of control C to s, denoted C(s) is defined
as the state s′ ∈ S such that s′[i] = (1− s[i]) if i ∈ C and s′[i] = s[i], otherwise.
Henceforth, we drop the subscripts TS or BN or both when no ambiguity arises.

Control problems: In this work we shall exclusively deal with the notion of
existential control in that, after the control C is applied to a state s, there ‘exists’
a path from C(s) to the desired target attractor and also perhaps to other non-
target attractors. This is different from the notion of absolute control dealt with
in [10] where after the control, C(s) is ‘guaranteed’ to reach the target attractor.
Although the techniques applied for the computation of the minimal control are
similar in both cases, there are certain fundamental differences. Therefore, here
we are interested in the following control problems given a network BN. Note
that for us, the control is applied in a single time step (hence simultaneously)
to the state s under consideration.

1. Minimal existential target control: Given a state s ∈ S and a ‘target
attractor’ At of BN, it is a control Cs→At

such that after the application of
Cs→At

(s), BN can eventually reach At and Cs→At
is a minimal such subset.

2. Minimal existential all-pairs control: Given a set A = {A1, A2, . . . , Ap},
p ≥ 2, of attractors of BN, it is a minimal subset CA of N such that for any
pair Ai, Aj ∈ A of attractors, there is a state s ∈ Ai, such that Cs→Aj

⊆ CA.
3. Minimal existential full control: CBN is the minimal existential all-pairs

control CA when A is the set of all attractors of BN.

In this work we shall use ideas from the decomposition-based approach of [10]
to compute (2) and (3). We first give the relevant definitions and results.

Let SCC denote the set of maximal strongly connected components (SCCs)
of GBN. A basic block B is a subset of nodes of BN such that B = (S ∪ par(S))
where S is a maximal SCC of GBN. Let B denote the set of basic blocks of BN.
The union of two or more basic blocks will also be called a block. Using the set of
basic blocks as vertices, we can form a directed graph GB = (B, EB), called the
block graph of BN, where for any pair of basic blocks B′, B ∈ B, B′ 6= B, there is
a directed edge from B′ to B if and only if B′ ∩B 6= ∅ and for every v ∈ B′ ∩B,
par(v) ∩B = ∅. In such a case, B′ is called a parent block of B and v is called a
control node for B. The set of parent blocks of B is denoted as par(B).
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A block is called elementary if par(B) = ∅ and non-elementary otherwise.
We shall henceforth assume that BN has k basic blocks, |B| = k, and GBN is
topologically sorted as {B1, B2, . . . , Bk}. Given how GBN is constructed, it will
be a directed acyclic graph and hence can always be topologically sorted. Note
that for every j : 1 ≤ j ≤ k, (

⋃j
`=1B`) is an elementary block. We shall denote

it as Bj and let B−j = (Bj \ Bj−1). For two basic blocks B and B′ where B
is non-elementary, B′ is said to be an ancestor of B if there is a path from B′

to B in the block graph GB. The ancestor-closure of a basic block B, denoted
ac(B) is defined as the union of B with all its ancestors. Note that ac(B) is an
elementary block and so is (ac(B) \B−), denoted as ac(B)−.

For a block B of BN, its state space is {0, 1}|B| and is denoted as SB . For
any state s ∈ S, where s = (s1, s2, . . . , sn), the projection of s to B, denoted s|B
is the tuple obtained from s by suppressing the values of the variables not in B.
Let B1 and B2 be two blocks of BN and let s1 and s2 be states of B1 and B2,
respectively. s1⊗s2 is defined (called crossable) if there exists a state s ∈ SB1∪B2

such that s|B1
= s1 and s|B2

= s2. s1⊗ s2 is then defined to be this unique state
s. For any subsets S1 and S2 of SB1 and SB2 resp. S1⊗S2 is a subset of SB1∪B2

and is defined as: S1⊗S2 = {s1⊗ s2 | s1 ∈ S1, s2 ∈ S2 and s1, s2 are crossable}.
The cross operation can be defined for more than two states s1, s2, . . . , sk, as
s1 ⊗ s2 ⊗ . . . sk = (((s1 ⊗ s2) ⊗ . . .) ⊗ sk). The cross operation can be similarly
lifted to more than two sets of states.

The TS TSB of an elementary block B of BN is defined similarly to the TS of
BN, which can indeed be done as the update functions do not depend on vertices
outside B. The attractors, basin of attractions, etc. of such a TS is also defined
similarly. The TSs of a non-elementary basic block B are ‘realised’ by the basins
of attractions of the attractors of ac(B)−, each such attractor realising a different
TS. Thus, if A is an attractor of ac(B)− then TSB realised by bas(A) has set of
states S which the maximum subset of Sac(B) such that S|ac(B)− = bas(A). The
transitions are then defined as usual. The following is a key result, a counterpart
of which was proved in [10], saying that the ‘global’ attractors of BN and their
basins can be computed by first computing the ‘local’ attractors and basins of
the basic blocks and then merging them using the cross operation.

Theorem 1 ([10]). A is an attractor of BN iff there exist attractors Aj of Bj

where Aj = A|Bj
for all j : 1 ≤ j ≤ k and A = ⊗jAj. Furthermore, A|ac(Bj) is

an attractor of ac(Bj) and bas(A) = ⊗jbas(Aj) w.r.t. their TSs.

3 Results

In this section we develop our method for solving control problem (2). We first
describe a ‘global’ approach that works on the entire BN and then modify it
to exploit the decomposition-based approach of [10]. For simplicity, we assume
that every attractor of BN is a single state with a self loop. The methods can be
generalised for the case where an attractor can comprise of two or more states.

First, note that given a state s and an attractor A, for BN to potentially
end up in A after the application of a control C, it is necessary and sufficient
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that there is a path from C(s) to A in TSBN which means, by definition, that
C(s) ∈ bas(A). Thus given a set A of attractors of BN to compute CA it is enough
to compute the basins of the attractors in A. This can be done by a repeated
application of the pre(·) operator on an attractor till a fixed point is reached.
See [9] for a detailed description of this fixed point procedure.

So, assume that the given set of attractors A is sorted as {A1, A2, . . . , Ap}.
We then construct a p × p matrix M whose entries are subsets of N and are
defined as: for every I ⊆ N , I ∈ Mij if and only if I = arg(hd(s, s′)) where
s ∈ Ai and s′ ∈ bas(Aj). That is, for every pair of attractors Ai and Aj the
entries of Mij record the indices of the variables that need to be toggled in state
s ∈ Ai to end up in any of the states of the basin of Aj . The minimal all-pairs
control CA is then nothing but a minimal subset of N such that for every i, j
there exists I ∈ Mij such that I ⊆ CA.

We now describe a method to compute the set CA based on the power-set
lattice of N , denoted by L. Let ` : L → ℘(N × N) be a labelling function
that labels the elements of L with tuples in (N × N) defined as follows. For
any element L of L, (i, j) ∈ `(L) iff L ∈ Mij . Let `∗ denote the closure of
the labelling function of L under subsets, defined as: for every element L of
L, `∗(L) =

⋃
L′⊆L `(L

′). Finally, CA is any minimal element L of L such that
`∗(L) = ({1, 2, . . . , p}×{1, 2, . . . , p})\{(i, i) | i ∈ {1, 2, . . . , p}}. Control problem
(3) is a special case of (2) where A is the set of all attractors of BN. For solving
(3), given a BN as input, we can first apply any of the methods available in the
literature (e.g., see [8]) to compute the set of all attractors A of BN, and then
invoke the above method.

In general, the problem of computing CA given the matrix M is NP-hard.
Moreover, given a BN and an attractor A as input, the problem of computation
of the strong basin of A is PSPACE hard. Hence, the control problem (2) is at
least PSPACE-hard and so unlikely to have efficient algorithms for the general
case. However, in [10] we show that using a decomposition-based approach we
can improve the efficiency for many modular well-structured networks. We now
describe a similar approach for solving control problem (2) [and hence (3)].

The method is iterative where instead of computing the basin of attractions
of the given attractors for the entire BN in one-go, we decompose the BN into
blocks, as described in the previous section, and compute the basins and also the
minimal control w.r.t the basins of each such block. The basin of an attractor in
a block can once again be computed using a repeated application of the pre(·)
operator in that block. The details are given in [9].

Suppose we are given a BN and a set of attractorsA sorted as {A1, A2, . . . , Ap}
as input. We proceed in the following steps:

1. We decompose BN into basic blocks B, form the block graph GB and topo-
logically sort it to obtain an ordering of the blocks as B = {B1, B2, . . . , Bk}.

2. Proceeding in the sorted order, for each block Bj we repeat the steps below:

(a) Let B̂j = (Bj \ (
⋃

r<j Br)) and Ij = ind(B̂j).

(b) Let Mj be a p× p matrix whose entries are subsets of Ij .
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(c) Note that by Theorem 1, Ar|ac(Bj) is an attractor of Bj , for every r :
1 ≤ r ≤ p. For every r, we compute bas(Ar|ac(Bj)).

(d) We populate the matrix Mj as: for every I ⊆ Ij , I ∈ Mj
qr if and only if

I = (arg(hd(s|B̂j
, s′|B̂j

))) for some s ∈ Aq|ac(Bj) and s′ ∈ bas(Ar|ac(Bj)).

(e) Let Lj be the subset lattice of Ij and let `j label the elements of Lj with
tuples in (Ij × Ij) such that for L ∈ Lj , (q, r) ∈ `j(L) iff L ∈ Mj

qr.

(f) Let `∗j denote the closure of `j under subsets and let Cj
A be any mini-

mal element L of Lj such that `∗(L) = (({1, 2, . . . , p} × {1, 2, . . . , p}) \
{(i, i) | i ∈ {1, 2, . . . , p}})

3. Finally we let CA =
⋃k

j=1 C
j
A.

The above approach is worked-out in details on a toy example in [9].

4 Conclusion

In this report, we describe work-in-progress on the development of a procedure
for the computation of a minimal subset of nodes required for the existential
control of a given BN. Our procedure can be applied on the entire BN in one-go
or on the ‘blocks’ of the BN locally and then later combined to derive the global
control, whereby taking advantage of the decomposition-based approach towards
the problem of target control of BNs that we have developed in [10]. We are cur-
rently implementing our procedure in software to test its efficacy and efficiency
on various real-life and random BNs. We believe that our decomposition-based
approach has great potential to efficiently solve the control problem for large real-
life biological networks modelled as BNs that are modular and well-structured.
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