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Target Control of Asynchronous
Boolean Networks

Cui Su, Jun Pang

Abstract—We study the target control of asynchronous Boolean networks, to identify interventions that can drive the dynamics of a
given Boolean network from any initial state to the desired target attractor. Based on the application time, the control can be realised
with three types of perturbations, including instantaneous, temporary and permanent perturbations. We develop efficient methods to
compute the target control for a given target attractor with these three types of perturbations. We compare our methods with the stable
motif-based control method on a variety of real-life biological networks to evaluate their performance. We show that our methods scale
well for large Boolean networks and they are able to identify a rich set of solutions with a small number of perturbations.

Index Terms—Boolean networks, network control, attractor, perturbations
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1 INTRODUCTION

C Ell reprogramming has great potential for treating the
most devastating diseases characterised by diseased

cells or a deficiency of certain cells. It is capable of repro-
gramming any kind of abundant cells in the human body
into the desired cells to restore functions of the diseased or-
gans [1], [2], [3]. Cell reprogramming opens up a novel field
in cell and tissue engineering and regenerative medicine.

A major challenge of cell reprogramming lies in the
identification of effective target proteins or genes, the ma-
nipulation of which can trigger desired changes. Lengthy
time commitment and high cost hinder the efficiency of
experimental approaches, which perform brute-force tests
of tunable parameters and record corresponding results [4].
This strongly motivates us to turn to mathematical mod-
elling of biological systems, which allows us to identify key
genes or pathways that can trigger desired changes using
computational methods.

Boolean network, first introduced by Kauffman [5], is a
well-established modelling framework for gene regulatory
networks and their associated signalling pathways. It has
apparent advantages compared to other modelling frame-
works [6]. Boolean network provides a qualitative descrip-
tion of biological systems and thus evades the parametri-
sation problem, which often occurs in quantitative models,
such as models of ordinary differential equations (ODEs).
In Boolean networks, molecular species, such as genes and
transcription factors, are described as Boolean variables.
Each variable is assigned with a Boolean function, which
determines the evolution of the variable. Boolean functions
characterise activation or inhibition regulations between
molecular species. The dynamics of a Boolean network is
assumed to evolve in discrete time steps, moving from
one state to the next, under one of the updating schemes,
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such as synchronous or asynchronous. Under the synchronous
scheme, all the nodes update their values simultaneously
at each time step; while under the asynchronous scheme,
only one node is randomly selected to update its value at
each time step. We focus on the asynchronous updating
scheme since it can capture the phenomenon that biolog-
ical processes occur at different time scales. The steady-
state behaviour of the network dynamics is described as
attractors, to one of which the system eventually settles
down. Attractors are hypothesised to characterise cellular
phenotypes [7]. Each attractor has a weak basin and a strong
basin. The weak basin contains all the states that can reach
this attractor, while the strong basin includes the states
that can only reach this attractor and cannot reach any
other attractors of the network. In the context of Boolean
networks, cell reprogramming is interpreted as a control
problem: modifying the parameters of a network to lead
its dynamics from the source state towards the desired
attractor.

Control theories have been employed to modulate the
dynamics of complex networks in recent years. Due to the
intrinsic non-linearity of biological systems, control meth-
ods designed for linear systems, such as structure-based
control methods [8], [9], [10], are not applicable — they
can both overshoot and undershoot the number of control
nodes for non-linear networks [11]. For nonlinear systems
of ODEs, Fiedler et al. [12], [13], [14] proved that the control
of a feedback vertex set is sufficient to control the entire
network; and Cornelius et al. [15] proposed a simulation-
based method to predict instantaneous perturbations that
can reprogram a cell from an undesired phenotype to a
desired one. However, further study is required to figure
out if these two methods can be lifted to control Boolean
networks. Several methods based on semi-tensor product
(STP) [16], [17], [18], [19], [20], [21], [22], [23] have been
proposed to solve different control problems for Boolean
control networks (BCNs) under the synchronous updating
scheme. For synchronous Boolean networks, Kim et al. [24]
developed a method to compute a small fraction of nodes,
called ‘control kernels’, that can be modulated to govern the
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dynamics of the network; and Moradi el al. [25] developed
an algorithm guided by forward dynamic programming
to solve the control problem. However, all these methods
are developed for the synchronous updating scheme of
Boolean networks, thus they are not directly applicable to
asynchronous Boolean networks.

Previously, we have developed several methods [26],
[27], [28], [29], [30] for the source-target control of asyn-
chronous Boolean networks: to drive the dynamics of a
Boolean network from the source attractor to the target
attractor. However, cells in tissues and in culture normally
exist as a population of cells, corresponding to different
states [31]. This gives rise to the need of target control in
order to compute a subset of nodes, whose perturbation can
drive the network from any initial state to the desired target
attractor. The main difference between these two control
problems lies in the source state: the source state is a given
attractor for the source-target control problem, while the
source state can be any state of the Boolean network in the
case of target control.

In this paper, we study target control of asynchronous
Boolean networks with instantaneous, temporary and per-
manent perturbations (ITC, TTC and PTC). We aim to find
a control C = (C0,C1), such that the instantaneous, tem-
porary or permanent application of C – setting the value
of a node, whose index is in C0 (or C1) to 0 (or 1) – can
drive the network from any initial state s in the state space
S to the target attractor At. Since the network can take any
state s ∈ S as the source state, there exist a set of possible
intermediate states with respect to C and they form a subset
S′ of S, called schema. Instantaneous control should drive
the system to states in the strong basin of the target attractor.
Thus, we partition the strong basin of the target attractor
into a set of disjoint schemata. The support variables of each
schema form an instantaneous target control. For temporary
and permanent control, due to their extended effects on
the network dynamics, all the intermediate states should
fall into the weak basin of the target attractor. Therefore,
we partition the weak basin of the target attractor into a
set of mutually disjoint schemata. Each schema results in
a candidate temporary or permanent target control, which
will be further optimised and verified.

Clinical applications are highly time-sensitive, control-
ling more nodes may shorten the period of time for generat-
ing sufficient desired cells for therapeutic application [2].
Hence, we parameterise our method with a threshold ζ
on the number of perturbations. By increasing ζ , we can
obtain solutions with at most ζ perturbations. It is worth
noticing that more perturbations may cause a significant
increase in experimental costs, thus the threshold ζ should
be considered individually based on specific experimental
settings.

Note that in our previous work [32], we have introduced
the target control method with temporary perturbations,
namely TTC. In this paper, which is an extended and revised
version of [32], we further introduce the target control
methods with instantaneous and permanent perturbations,
i.e. ITC and PTC. We implemented these three target control
methods and compared their performance with the stable
motif-based control (SMC) [33] on various real-life biological
networks. The results show that our methods outperform

SMC in terms of the computational time for most of the
networks. As for the temporary control, both our method
TTC and SMC find a number of valid temporary controls,
but our method is able to identify more solutions with
fewer perturbations for some networks. Another interesting
observation is that the number of required perturbations is
often quite small compared to the sizes of the networks.
This agrees with the empirical findings that the control of
few nodes can reprogram biological networks [34].

2 PRELIMINARIES

In this section, we present some preliminary notions of
Boolean networks.

2.1 Boolean networks
A Boolean network (BN) describes elements of a dynamical
system with binary-valued nodes and interactions between
elements with Boolean functions.

Definition 1 (Boolean networks). A Boolean network is a tuple
BN = (X,F ) where X = {x1, x2, . . . , xn}, such that xi ∈ X
is a Boolean variable and F = {f1, f2, . . . , fn} is a set of Boolean
functions over X . Each fi : {x1, . . . , xn} → {0, 1} is a update
function associated with xi.

The structure of a Boolean network BN = (X,F ) can be
viewed as a directed graph G(V,E), called the dependency
graph of BN, where V = {v1, v2 . . . , vn} is the set of nodes.
Node vi ∈ V corresponds to variable xi ∈ X . For every
i, j ∈ {1, 2, . . . , n}, there is a directed edge from vj to vi, if
and only if fi depends on xj . For the rest of the exposition,
we assume an arbitrary but fixed network BN = (X,F ) of
n variables is given to us. For all occurrences of xi and fi,
we assume xi and fi are elements of X and F , respectively.

A state s of BN is an element in {0, 1}n. Let S be the set
of states of BN. For any state s = (s[1], s[2], . . . , s[n]), and
for every i ∈ {1, 2, . . . , n}, the value of s[i], represents the
value that xi takes when the network is in state s. For some
i ∈ {1, 2, . . . , n}, suppose fi depends on xi1 , xi2 , . . . , xik .
Then fi(s) will denote the value fi(s[i1], s[i2], . . . , s[ik])
and xi1 , xi2 , . . . , xik are called parent nodes of xi, denoted
as par(xi). For two states s, s′ ∈ S, the Hamming dis-
tance between s and s′ will be denoted as hd(s, s′) and
arg(hd(s, s′)) ⊆ {1, 2, . . . , n} will denote the set of indices
in which s and s′ differ. For two subsets S′, S′′ ⊆ S,
the Hamming distance between S′ and S′′ is defined as
the minimum of the Hamming distances between all the
states in S′ and all the states in S′′. That is, hd(S′, S′′) =
mins′∈S′,s′′∈S′′ hd(s′, s′′). We let arg(hd(S′, S′′)) denote the
set of subsets of {1, 2, . . . , n} such that I ∈ arg(hd(S′, S′′))
if and only if I is a set of indices of the variables that realise
this Hamming distance.

Definition 2 (Control). A control C is a tuple (C0,C1), where
C0,C1 ⊆ {1, 2, . . . , n} and C0 and C1 are mutually disjoint
(possibly empty) sets of indices of nodes of a Boolean network
BN. The size of the control C is defined as |C| = |C0| + |C1|.
Given a state s ∈ S, the application of C to s, denoted as C(s),
is defined as a state s′ ∈ S, such that s′[i] = 0 for i ∈ C0 and
s′[i] = 1 for i ∈ C1, and s′[i] = s[i] otherwise. State s′ is called
the intermediate state w.r.t. C.



3

Fig. 1. (a) Transition system TS and (b) transition system under control
TS |C of Example 2, where C = {x2 = 0}. We omit selfloops for all the
states except for state (101) in (a).

Essentially, the application of a control C inhibits the nodes
in C0, i.e., the values of these nodes are set (perturbed) to
be 0, and overexpresses the nodes in C1, i.e., the values of
these nodes are set (perturbed) to be 1.

The control can be lifted to a subset of states S′ ⊆ S.
Given a target control C = (C0,C1), C(S′) = S′′, where
S′′ = {s′′ ∈ S|s′′ = C(s′), s′ ∈ S′}. Set S′′ includes all the
intermediate states with respect to C. Intuitively, sets C0 and
C1 represent the indices of variables of BN whose values are
held fixed to 0 and 1 respectively under the control C. The
application of a control C to BN = (X,F ) has the effect
of reducing the state space of BN to those which have the
values of the variables in C0 and C1 set respectively to 0 and
1 and modifying the Boolean functions accordingly. This
results in a new Boolean network derived from BN defined
as follows.

Definition 3 (Boolean networks under control). Let C =
(C0,C1) be a control and BN = (X,F ) be a Boolean network.
The Boolean network BN under control C, denoted BN|C, is
defined as a tuple BN|C = (X̂, F̂ ), where X̂ = {x̂1, x̂2, . . . , x̂n}
and F̂ = {f̂1, f̂2, . . . , f̂n}, such that for all i ∈ {1, 2, . . . , n}:
(1) x̂i = 0 if i ∈ C0, x̂i = 1 if i ∈ C1, and x̂i = xi otherwise;
(2) f̂i = 0 if i ∈ C0, f̂i = 1 if i ∈ C1, and f̂i = fi otherwise.

The state space of BN|C, denoted S|C, is derived by fixing
the values of the variables in C to their respective values and
is defined as S|C = {s ∈ S | s[i] = 1 if i ∈ C1 and s[j] =
0 if j ∈ C0}. It is obvious that S|C ⊆ S. For any subset S′ of
S, we let S′|C = S′ ∩ S|C.

Example 1. Consider a Boolean network BN = (X,F ), where
X = {x1, x2, x3}, F = {f1, f2, f3}, and f1 = x2, f2 = x1
and f3 = x2 ∧ x3. Given a control C = (C0,C1), where C0 =
{2},C1 = ∅ (i.e. {x2 = 0}), C0 and C1 are mutually disjoint.
Suppose the network is in state (111), the application of C drives
the network from (111) to state (101). State (101) is called the
intermediate state w.r.t. C.

2.2 Dynamics of Boolean networks

In this section, we define several notions that can be inter-
preted on both BN and BN|C. We use the generic notion
BN = (X,F ) to represent either BN = (X,F ) or BN|C =
(X̂, F̂ ). We assume that a Boolean network BN = (X,F )
evolves in discrete time steps. It starts from an initial state s0
and its state changes in every time step based on the Boolean
functions F and the updating schemes. Different updating
schemes lead to different dynamics of the network [35], [36].
In this work, we are interested in the asynchronous updating

scheme as it allows biological processes to happen at different
classes of time scales and thus is more realistic. We define
asynchronous dynamics of Boolean networks as follows.

Definition 4 (Asynchronous dynamics of Boolean net-
works). Suppose s0 ∈ S is an initial state of BN. The asyn-
chronous evolution of BN is a function ξBN : N → ℘(S) such
that ξBN(0) = {s0} and for every j ≥ 0, if s ∈ ξBN(j)
then s′ ∈ ξBN(j + 1) is a possible next state of s iff either
hd(s, s′) = 1 and there exists i such that s′[i] = fi(s) = 1−s[i],
or hd(s, s′) = 0 and there exists i such that s′[i] = fi(s) = s[i].

It is worth noticing that the asynchronous dynamics is
non-deterministic. At each time step, only one node is ran-
domly selected to update its value based on its associated
Boolean update function. A different choice may lead to
a different next state s′ ∈ ξ(j + 1). Henceforth, when we
talk about the dynamics of a Boolean network, we shall
explicitly mean the asynchronous dynamics. We describe
the dynamics of a Boolean network as a transition system
(TS), defined as follows.

Definition 5 (Transition system of Boolean networks). The
transition system of a Boolean network BN, denoted as TS , is
a tuple (S,→BN), where the vertices are the set of states S and
for any two states s and s′ there is a directed edge from s to s′,
denoted s→ s′, iff s′ is a possible next state of s according to the
asynchronous evolution function ξ of BN (i.e. Definition 4).

Similarly, we denote the transition system of a Boolean
network under control, BN|C, as TS |C.

Example 2. The transition system TS of BN, given in Exam-
ple 1, is shown in Fig. 1(a). It depicts the asynchronous dynamics
of BN. According to Definition 4, the asynchronous dynamics is
non-deterministic, thus a state can have more than one out-going
edges. For instance, state (101) has three out-going edges. The
next state of (101) can be (001), (100), or (111).

The application of C = {x2 = 0} given in Example 1,
reshapes the transition system TS of BN in Fig. 1(a) to the
transition system under control TS |C of BN|C in Fig. 1(b). We
can see that the control results in a new transition system, where
only a subset of states and transitions are preserved. Therefore,
the attractors of TS and TS |C might differ. For this example,
only attractor A1 is preserved in TS |C.

2.3 Attractors and basins

A path ρ from a state s to a state s′ is a (possibly empty)
sequence of transitions from s to s′ in TS , denoted ρ = s→
s1 → . . . → s′. A path from a state s to a subset S′ of S is
a path from s to any state s′ ∈ S′. An infinite path ρ from
s, ρ = s → s1 → . . ., is a sequence of infinite transitions
from s. A state s′ ∈ S appears infinitely often in ρ if for any
i ≥ 0, there exists j ≥ i such that sj = s′. We assume every
infinite path ρ is fair – for any state s′ that appears infinitely
often in ρ, every possible next state s′′ of s′ also appears
infinitely often in ρ. For a state s ∈ S, reach(s) denotes the
set of states s′ such that there is a path from s to s′ in TS .

Definition 6 (Attractor). An attractor A of TS (or of BN) is a
minimal non-empty subset of states of S such that for every state
s ∈ A, reach(s) = A.
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Fig. 2. Different types of attractors of an asynchronous Boolean network:
(a) a singleton attractor, (b) a simple loop, and (c) a complex loop. We
omit selfloops for all the states.

Attractors are hypothesised to characterise the steady-
state behaviour of the network. Any state which is not part
of an attractor is a transient state. An attractor A of TS is
said to be reachable from a state s if reach(s) ∩ A 6= ∅.
The network starting at any initial state s0 ∈ S will even-
tually end up in one of the attractors of TS and remain
there forever unless perturbed. Under the asynchronous
updating scheme, there are singleton attractors and cyclic
attractors. Cyclic attractors can be further classified into:
(1) a simple loop, in which all the states form a loop and
every state appears only once per traversal through the loop;
and (2) a complex loop, which has an intricate topology
and includes several loops. Fig. 2 (a), (b) and (c) show
a singleton attractor, a simple loop and a complex loop,
respectively. For an attractor A of BN, we define its weak
basin as basWTS (A) = {s ∈ S | reach(s) ∩ A 6= ∅}; the strong
basin of A is defined as basSTS (A) = {s ∈ S | reach(s)∩A 6=
∅ and reach(s) ∩ A′ = ∅ for any other A′ of BN, A′ 6= A}.
Intuitively, the weak basin of A, basWTS (A), contains all the
states s from which there exists at least one path to A, and
there may exist paths from s to other attractors A′ (A′ 6= A)
of TS . The strong basin of A, basSTS (A), consists of all the
states from which there only exist paths to A.

Example 3. The network in Example 1 has three attractors
A1 = {000}, A2 = {110} and A3 = {111}, indicated as
dark grey nodes in Fig. 1(a). For attractor A1, its strong basin,
basSTS (A1), contains two states {000, 001}; its weak basin,
basWTS (A1), contains six states {000, 001, 101, 011, 100, 010}.

3 THE TARGET CONTROL PROBLEMS

We have studied the source-target control of Boolean net-
works [26], [27], [28], [29], [30], [32], [37], to identify control
paths that can drive the dynamics of the network from the
source attractor to the target attractor. When the source is
not given, to identify a subset of nodes, the control of which
can stir the dynamics from any state s ∈ S to the target
attractor At, is called target control of Boolean networks.
Target control neglects the values of the nodes in s, the
application of a target control C inhibits the nodes in C0

and overexpresses the nodes in C1.
For target control, when perturbations are applied in-

stantaneously, temporarily or permanently, we call it in-
stantaneous target control (ITC), temporary target control (TTC)
or permanent target control (PTC), respectively. Let BN be a
given Boolean network, S be the set of states of BN and At

be the target attractor of BN. We formally define the three
target control problems, ITC, TTC and PTC, as follows.

Definition 7 (Target control of Boolean networks).
1) Instantaneous target control (ITC): find a control C =

(C0,C1) such that the dynamics of BN always eventually
reaches At on the instantaneous application of C to any
initial state s, s ∈ S.

2) Temporary target control (TTC): find a control C =
(C0,C1) such that there exists a t0 ≥ 0 such that for all
t ≥ t0, the dynamics of BN always eventually reaches At on
the application of C to any initial state s, s ∈ S for t steps.

3) Permanent target control (PTC): find a control C =
(C0,C1) such that the dynamics of BN always eventually
reaches At on the permanent application of C to any initial
state s, s ∈ S. (We assume implicitly that At is also an
attractor of the transition system under control TS |C).

We define the concept of schema, which is crucial for the
development of the target control methods. Given a control
C = (C0,C1), the possible intermediate states with respect
to C, denoted S′ = C(S), form a schema, defined as follows.

Definition 8 (Schema). A subset S′ of S is a schema if there
exists a triple M = (C0,C1,D), where C0 ∪ C1 ∪ D =
{1, 2, . . . , n}, C0,C1 and D are mutually disjoint (possibly
empty) sets of indices of nodes of BN, such that S′|C0 = {0}|C0|,
S′|C1 = {1}|C1| and S′|D = {0, 1}|D|. C0,C1 and D are called
off-set, on-set and don’t-care-set of S′, respectively. The elements
in C0 ∪ C1 are called indices of support variables of S′.

Intuitively, for node xi, i ∈ C0, it has a value of 0 in any
state s ∈ S′; for node xi, i ∈ C1, it has a value of 1 in any
state s ∈ S′. The projection of S′ to the don’t-care-set D
contains all combinations of binary strings of |D| bits. Thus,
any schema S′ is of size 2|D|. Since the total number of nodes
n = |C0|+ |C1|+ |D| is fixed, a larger schema implies more
elements in D and fewer elements in C0 ∪ C1.

Example 4. Let us denote the values of the nodes in off-set,
on-set and don’t-care-set as ‘0’, ‘1’ and ‘∗’, respectively. For
attractor A1 in Fig. 1 (a), its strong basin, basSTS (A1) =
{000, 001}, forms a schema, represented as ‘00∗’. The weak
basin, basWTS (A1) = {000, 001, 010, 011, 101, 100}, can be par-
titioned into two schemata {000, 001, 100, 101} and {010, 011},
represented as ‘∗0∗’ and ‘01∗’, respectively.

Suppose A1 is the target attractor. {x1 = 0, x2 = 0} is
an ITC. The simultaneous inhibition of x1 and x2 can drive the
network from any state to either state (001) or A1. If the network
reachesA1, we are done. If the network reaches (001), the network
will spontaneously stabilise to A1.

The control set {x2 = 0} is both a ITC and a PTC. As
introduced in Example 2, this control reshapes the transition
system to Fig. 1 (b), which also means that the control drives
the network from any initial state to a state in Fig. 1 (b). If we use
temporary perturbations, they can be released once the network
evolves to the strong basin of A1. Based on the definition of the
strong basin, the network will eventually reach A1. If we apply
permanent perturbations, the network will surely reach A1 as A1

is the only attractor in the new transition system.

4 INSTANTANEOUS TARGET CONTROL

An instantaneous control C will surely guide the dynamics
of BN from any initial state s to the target attractor At if the
intermediate state s′ = C(s) is in the strong basin of At in
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TS . Thus, when the initial state can be any state s ∈ S, to
guarantee the inevitable reachability of the target attractor
At on the instantaneous application of C to any s ∈ S,
all possible intermediate states S′ = C(S) must fall in the
strong basin of the target attractor At. Based on the theorem
in [26], we can derive the following corollary.

Corollary 1. A control C = (C0,C1) is an instantaneous target
control from any initial state s ∈ S to a target attractor At iff
C(S) ⊆ basSTS (At).

Instantaneous control is only applied instantaneously,
thus, its impact on the transition system is transient. If the
instantaneous control does not drive the dynamics directly
to basSTS (At) but to any state s′ ∈ (S \ basSTS (At)), from s′,
there exist paths to some other attractor A,A 6= At, based
on the definition of strong basin. This does not ensure the
inevitable reachability of the target attractor. Therefore, for
an ITC C, its intermediate states S′ = C(S) must form a
subset of basSTS (At). For any possible intermediate state
s′ ∈ S′, s′[i] = 0 for i ∈ C0 and s′[i] = 1 for i ∈ C1,
which indicates that S′|C0 = {0}|C0| and S′|C1 = {1}|C1|.
Let D denote the indices of the nodes that are not in C0 or
C1. Then, S′|D = {0, 1}|D| because the values of the nodes
in the initial states S|D stay unchanged. In another word

Observation 1. If the initial state can be any state s ∈ S, for any
control C = (C0,C1), the set of intermediate states S′ = C(S)
forms a schema.

The notion of schema sheds light on the computation
of ITC. Each schema Wi of the strong basin of the tar-
get attractor, basSTS (At), returns a candidate target control
Ci = (C0i,C1i), where C0i and C1i are the off-set and on-
set of Wi. The size of control |Ci| equals (n − log2 |Wi|),
therefore, a larger schema results in a smaller control set.
Thus, we can partition the strong basin of the target at-
tractor, basSTS (At), into a set of mutually disjoint schemata
W = {W1,W2, . . . ,Wm}, such that W1 ∪W2 ∪ . . . ∪Wm =
basSTS (At). Each Wi ∈ W is one of the largest schemata
in basSTS (At) \ (W1 ∪ . . . ∪ Wi−1) and the indices of its
support variables in C0i and C1i form a candidate ITC
Ci = (C0i,C1i). In Ci, the specified input nodes can be
removed because input nodes do not have any predecessors
and the values of the specified input nodes are fixed. For
large networks, there may exist many valid control sets.
To restrict the number and the size of solutions, we set a
threshold ζ on the number of perturbations, keep ζ updated
with the minimal size of the computed control sets, and
only save the control sets with at most ζ perturbations.
Algorithm 1 realises the above idea in pseudocode.

In this way, the computation of ITC is thus reduced
to the computation of the strong basin of the target at-
tractor and the computation of schemata. The compu-
tation of strong basins can be achieved efficiently with
the procedure COMP STRONG BASIN, which implements a
decomposition-based approach towards the computation of
strong basins of Boolean networks (see [26], [30] for details).
The computation of schemata is based on BDDs, a symbolic
representation of large state space. The size of a BDD is
determined by both the set of states being represented and
the chosen ordering of the variables. In BDDs, a schema is
represented as a cube and each state is the smallest cube,

Algorithm 1 Instantaneous target control
1: procedure INSTANTANEOUS TARGET CONTROL(BN, At)
2: initialise L := ∅ to store computed control sets
3: I, Is, Ins :=COMP INPUT NODES(G) . compute in-

put nodes I , specified input nodes Is and non-specified input
nodes Ins

4: SB :=COMP STRONG BASIN(F,At)
5: W :=COMP SCHEMATA(SB), m := |W|
6: ζ := n . a threshold on the number of perturbations
7: for i = 1 : m do . traverse the set of schemata
8: Ci :=COMP SUPPORT VARIABLES(Wi) . Ci :=

(C0i,C1i)
9: Ci := (C0i \ Is,C1i \ Is) . remove specified input

nodes
10: if |Ci| ≤ ζ then
11: save Ci to L
12: ζ := min(|Ci|, ζ)

13: return L

also called a minterm. To compute the largest schema Si of
S is equivalent to the computation of the largest cube of S.
The partitioning of the strong basin into schemata is then
transformed into a cube cover problem in BDDs. A differ-
ent variable ordering may lead to a different partitioning.
Given a fixed ordering, the partitioning remains the same.
Although finding the best variable ordering is NP-hard,
there exist efficient heuristics to find the optimal ordering.
For our work, we compute a partitioning under one variable
ordering as provided by the CUDD package [38] and we call
this procedure COMP SCHEMATA.

5 TEMPORARY TARGET CONTROL

In this section, we develop a method for TTC. First, we
introduce the following corollary, which can be derived
from the theorem in [27].

Corollary 2. A control C = (C0,C1) is a temporary target
control to a target attractor At from any initial state s ∈ S iff
basSTS (At)∩S|C 6= ∅ and C(S) ⊆ basSTS |C(basSTS (At)∩S|C).

Below, we give an intuitive explanation of Corollary 2.
We know that the application of a control C results in a
new Boolean network BN|C and the state space is restricted
to S|C. To guarantee the inevitable reachability of At, by
the time we release the control, the network has to reach a
state s in the strong basin of At w.r.t. the original transition
system TS , i.e. basSTS (At), from which there only exist
paths to At. This requires the remaining strong basin in
S|C, i.e. (basSTS (At) ∩ S|C), is a non-empty set; otherwise,
it is not guaranteed to reach At. Furthermore, the condition
C(S) ⊆ basSTS |C(basSTS (At)∩ S|C) ensures that any possible
intermediate state s′ ∈ C(S) is in the strong basin of the
remaining strong basin (basSTS (At) ∩ S|C) in the transition
system under control TS |C, so that the network will always
evolve to the remaining strong basin. Once the network
reaches the remaining strong basin, the control can be re-
leased and the network will evolve spontaneously towards
the target attractor At. Based on the definition of the weak
basin, it is sufficient to search the weak basin basWTS (At) for
TTC.
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Algorithm 2 Temporary target control
1: procedure TEMPORARY TARGET CONTROL(BN, At)
2: initialise L := ∅ and Ω := ∅ to store valid and checked control sets, resp.
3: I, Ins :=COMP INPUT NODES(G) . compute input nodes I and non-specified input nodes Ins .
4: SB :=COMP STRONG BASIN(F,At) . strong basin of At in TS
5: WB :=COMP WEAK BASIN(F,At) . weak basin of At in TS
6: W :=COMP SCHEMATA(WB), m := |W|
7: generate a vector Θ of length m and set all the elements to false
8: ζ := n . a threshold on the number of perturbations.
9: for i = 1 : m do . traverse the set of schemata

10: if Θ[i] = true , then continue
11: Ci :=COMP SUPPORT VARIABLES(Wi) . Ci := (C0i,C1i)
12: Ce

i := (C0i ∩ Ins ,C1i ∩ Ins), Cr
i := (C0i \ I,C1i \ I) . essential control nodes and non-input nodes in Ci

13: k := 0, isValid := false
14: while isValid = false and k ≤ min(ζ − |Ce

i |, |Cr
i |) do

15: Csub
i :=COMP SUBSETS(Cr

i , k) . compute subsets of Cr
i of size k.

16: for Csub
j ∈ Csub

i do
17: Cj

i := Csub
j ∪ Ce

i , Φ := Cj
i (S) . Φ: intermediate states.

18: if Cj
i /∈ Ω then . Ci has not been checked.

19: isValid :=VERIFY TTC(F,Cj
i ,SB,Φ)

20: add Cj
i to Ω.

21: if isValid = true then
22: add Cj

i to L, ζ := min(ζ, |Cj
i |)

23: Θ[z] := true if Wz ⊆ Φ for z ∈ [i+ 1,m] . if a schema Wz is a subset of Φ, it will be skipped.
24: if isValid = false , then k := k + 1

25: return L

Algorithm 3 Verification of temporary target control
1: procedure VERIFY TTC(F,C,SB,Φ)
2: isValid := false
3: if Φ ⊆ SB then
4: isValid = true
5: else
6: SB|C :=COMP STATE CONTROL(C,SB) . com-

pute the remaining strong basin w.r.t. C in TS |C
7: F |C :=COMP FN CONTROL(C, F )
8: basSTS |C(SB|C) :=COMP STRONG BASIN(F |C,SB|C)

9: if Φ ⊆ basSTS |C(SB|C) then
10: isValid = true
11: return isValid

A noteworthy point is that temporary control needs to be
released once the network reaches a state in (basSTS (At) ∩
S|C). On one hand, although Corollary 2 guarantees that
partial of the strong basin of At in TS is preserved in TS |C,
it does not guarantee the presence of At in TS |C. In that
case, the control C has to be released at one point to recover
the original TS , which at the same time retrieves At. On the
other hand, in clinic, it is preferable to eliminate human in-
terventions to avoid unforeseen consequences. Concerning
the timing to release the control, since it is hard to interpret
theoretical time steps in diverse biological experiments, it
would be desired for biologists to estimate the timing based
on empirical knowledge and specific experimental settings.

Similar to ITC, the computation of TTC is also based
on the concept of schema. Each schema Wi of the weak
basin basWTS (At) gives a candidate TTC, Ci = (C0i,C1i), for
further optimisation and validation. A larger schema results

in a smaller control set. To explore the entire weak basin
basWTS (At), we partition it into a set of mutually disjoint
schemataW = {W1,W2, . . . ,Wm}, W1 ∪W2 ∪ . . . ∪Wm =
basWTS (At). Each Wi, i ∈ m is one of the largest schemata
in basWTS (At) \ (W1 ∪ . . . ∪Wi−1). For Wi, the indices of its
support variables in C0i and C1i form a candidate control
Ci = (C0i,C1i). Each candidate control Ci is primarily
optimised based on the properties of input nodes. Because
input nodes do not have any predecessors, it is reasonable to
assume that specified input nodes Is are redundant control
nodes, while non-specified input nodes Ins are essential for
control. For the remaining non-input nodes in Ci, denoted
Cr
i , we verify its subsets of size k based on Corollary 2 from
k = 0 with an increment of 1, until we find a valid solution.

Algorithm 2 implements the above idea in pseudocode.
It takes as inputs the Boolean network BN = (X,F ) and the
target attractor At. It first initialises two vectors L and Ω to
store valid controls and the checked controls, respectively.
(We use Ω to avoid duplicate control validations.) Then,
it computes input nodes I and the non-specified input
nodes Ins , Ins ⊆ I (line 3). The weak basin WB and
the strong basin SB of At of TS are computed using pro-
cedures COMP WEAK BASIN and COMP STRONG BASIN
developed in our previous work [26] (lines 4-5). The weak
basin WB is then partitioned into m mutually disjoint
schemata with procedure COMP SCHEMATA. Realisation of
this procedure relies on the function to compute the largest
cube provided by the CUDD package [38]. For each schema
Wi, the indices of its support variables computed by proce-
dure COMP SUPPORT VARIABLES form a candidate control
Ci (line 11). The essential control nodes Ce

i of Ci consist
of the non-specified input nodes and the non-input nodes
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Algorithm 4 Verification of permanent target control
1: procedure VERIFY PTC(F,C, At,Φ)
2: isValid := false
3: if Φ|C = At|C then
4: F |C :=COMP FN CONTROL(C, F )
5: basSTS |C(At) :=COMP STRONG BASIN(F |C, At)

6: if Φ ⊆ basSTS |C(At) then
7: isValid = true
8: return isValid

in Ci constitute a set Cr
i for further optimisation (line 12).

We search the subsets of Cr
i starting from size k = 0

with an increment of 1 and verify whether the union of
a subset Csub

j of Cr
i and the essential nodes Ce

i , namely
Cj
i = Csub

j ∪ Ce
i , is a valid temporary target control using

procedure VERIFY TTC in Algorithm 3. If Cj
i is valid, save

it to L. When all the subsets are traversed or a valid control
has been found, we proceed to the next schema Wi+1. In the
end, all the verified TTCs are returned.

The most time-consuming part of our method lies in
the verification process. As shown in Algorithm 3, for each
candidate control C, we need to reconstruct the associ-
ated transition relations F |C and compute the strong basin
of the remaining strong basin in TS |C, i.e. basSTS |C(SB|C)
(lines 6-8 of Algorithm 3). Even though we have developed
an efficient method for the strong basin computation, the
computational time of Algorithm 3 still increases when the
network size grows. To improve the efficiency, we propose
two heuristics: (1) skip a schema Wz (lines 10 and 23 of
Algorithm 2) if it is a subset of intermediate states Φ of a
pre-validated control Cj

i (line 23 of Algorithm 2); and (2)
set a threshold ζ on the number of perturbations, keep ζ
updated with the smallest size of valid TTCs Cj

i (line 22 of
Algorithm 2) and only compute control sets with at most ζ
perturbations.

6 PERMANENT TARGET CONTROL

In this section, we develop a method to solve the problem
of PTC. We first introduce the following corollary derived
from the theorem in [27].

Corollary 3. A control C = (C0,C1) is a permanent target
control from any initial state s ∈ S to a target attractor At iff At

is an attractor of TS |C and C(S) ⊆ basSTS |C(At).

Different from temporary control, permanent control
is applied for all the following time steps. A permanent
control need to preserve the target attractor. To guarantee
the inevitable reachability of the attractor, all possible inter-
mediate states should fall in the strong basin of the target
attractor At in the transition system under control, TS |C.

The algorithm for PTC can be derived from Algorithm 2
by replacing procedure VERIFY TTC with procedure VER-
IFY PTC in Algorithm 4. To avoid duplication, we only
explain procedure VERIFY PTC here. This procedure is
designed based on Corollary 3. Line 3 verifies whether the
target attractor is preserved or not. If the target is preserved,
we compute the transition relations under control F |C and
compute the strong basin ofAt in TS |C (lines 4-5). C is a PTC

granulocytes monocytes megakaryocyteserythrocytes

ITC 6 7 4 4
TTC 3 3 2 2
PTC 3 3 2 2
SMC 4 4 2 2

TABLE 1
The number of perturbations required by ITC, TTC, PTC and SMC of

the myeloid differentiation network.

if the set of intermediate states is a subset of basSTS |C(At)
(lines 6-7).

The most time-consuming step of the three algorithms
lies in the basin computation of the target attractor. As
introduced in our previous work [26], the basin compu-
tation is PSPACE-hard. Even though we developed the
decomposition-based method [26] for the basin computa-
tion, in the worst case, the complexity can still be expo-
nential in the size of the network. Nevertheless, in practice,
our algorithms tend to be quite efficient due to that real-life
biological networks have modular structures.

Example 5. In Example 4, we showed that the strong basin of A1

of BN, basSTS (A1), can be represented as a schema ‘00∗’. Based
on Algorithm 1, we know that its its support variables form an
ITC {x1 = 0, x2 = 0}.

The weak basin of A1, basWTS (A1), can be divided into two
schemata, represented as ‘∗0∗’ and ‘01∗’. ‘∗0∗’ contains more
states than ‘01∗’, which implies that ‘∗0∗’ can potentially give a
smaller TTC or PTC. Algorithms for TTC and PTC verify subsets
of the control derived from ‘∗0∗’ and ‘01∗’. Based on Corollary 2
and Corollary 3, {x2 = 0} is both a TTC and a PTC for A1. By
fixing x2 to 0, the transition system changes from Fig. 1 (a) to
Fig. 1 (b). The network is driven to a state in TS |C (see Fig. 1 (b))
and will eventually stable in A1.

7 EVALUATION

In this paper, we developed three methods, ITC, TTC and
PTC, for the target control of asynchronous Boolean net-
works. We apply our methods on a variety of biological net-
works and compare their performance with SMC [33]. SMC
predicts a set of temporary perturbations that can guide
the dynamics from any initial states to the desired target
attractor. It takes into account the functional information of
the network (network dynamics) and has high efficiency.

We discuss the results of the myeloid differentiation
network and the cardiac gene regulatory network in detail
and give an overview of the results of the other networks.
Our target control methods are implemented in our soft-
ware CABEAN [39], which contains a realisation of the
decomposition-based detection method [40], [41] for iden-
tifying attractors in Boolean networks efficiently.1 SMC is
implemented in Java. All the experiments are performed
on a high-performance computing (HPC) platform, which
contains CPUs of Intel Xeon Gold 6132 @2.6 GHz.

7.1 Control of the myeloid differentiation network
The myeloid differentiation network is designed to model
myeloid differentiation from common myeloid progenitors

1. These attractor detection methods were originally implemented in
the software tool ASSA-PBN [35], [42], [43].
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granulocytes monocytes

ITC {GATA2=0 GATA1=0 Fli1=0 EgrNab=0
C/EBPα=1 Gfi1=1}

{GATA2=0 GATA1=0 EgrNab=1 C/EBPα=1
PU1=1 cJun=1 Gfi1=0}

TTC
{C/EBPα=1 PU1=1 cJun=0} {EgrNab=1 C/EBPα=1 PU1=1}

{EgrNab=0 C/EBPα=1 PU1=1} {C/EBPα=1 PU1=1 Gfi1=0}
{C/EBPα=1 PU1=1 Gfi1=1}

PTC
{C/EBPα=1 PU1=1 cJun=0} {EgrNab=1 C/EBPα=1 PU1=1}

{EgrNab=0 C/EBPα=1 PU1=1} {C/EBPα=1 PU1=1 Gfi1=0}
{C/EBPα=1 PU1=1 Gfi1=1}

SMC

{GATA2=0 GATA1=0 {GATA2=0 GATA1=0
C/EBPα=1 EgrNab=0} C/EBPα=1 EgrNab=1}
{GATA2=0 GATA1=0 {GATA2=0 GATA1=0

C/EBPα=1 Gfi1=1} C/EBPα=1 Gfi1=0}
{GATA2=0 PU1=1 {GATA2=0 PU1=1

C/EBPα=1 EgrNab=0} EgrNab=1 C/EBPα=1}
{GATA2=0 PU1=1 {GATA2=0 PU1=1

C/EBPα=1 Gfi1=1} Gfi1=0 C/EBPα=1}
TABLE 2

The control sets computed by ITC, TTC, PTC and SMC for granulocytes and monocytes of the myeloid differentiation network.

megakaryocytes erythrocytes

ITC {GATA2=0 GATA1=0 EgrNab=1 C/EBPα=1
PU1=1 cJun=1 Gfi1=0}

{GATA1=1 EKLF=1 Fli1=0 PU1=0}

TTC

{GATA2=1 EKLF=0} {GATA2=1 EKLF=1}
{GATA1=1 EKLF=0} {GATA1=1 EKLF=1}
{GATA2=1 Fli1=1} {GATA2=1 Fli1=0}
{GATA1=1 Fli1=1} {GATA1=1 Fli1=0}
{Fli1=1 PU1=0 }

PTC
{GATA1=1 EKLF=0 } {GATA1=1 EKLF=1 }
{GATA1=1 Fli1=1} {GATA1=1 Fli1=0 }
{Fli1=1 PU1=0 }

SMC {GATA1=1 EKLF=0} {GATA1=1 EKLF=1}
{GATA1=1 Fli1=1} {GATA1=1 Fli1=0}

TABLE 3
The control sets computed by ITC, TTC, PTC and SMC for megakaryocytes and erythrocytes of the myeloid differentiation network.

to granulocytes, monocytes, megakaryocytes and erythro-
cytes [44]. This network has 11 nodes and 6 attractors, 4 of
which correspond to granulocytes, monocytes, megakary-
ocytes and erythrocytes. We apply ITC, TTC, PTC and SMC
to identify interventions to reach the four cell types.

Table 1 gives the number of perturbations required by
the four methods. The control with instantaneous pertur-
bations (ITC) requires more perturbations than the control
with temporary perturbations (TTC and SMC) and perma-
nent perturbations (PTC) as expected. For granulocytes and
monocytes, TTC and PTC find smaller control sets than
SMC. For megakaryocytes and erythrocytes, TTC, PTC and
SMC require the same number of perturbations.

Table 2 and Table 3 summarise the control sets identified
by the four methods. For each attractor, ITC only finds
one control set with more perturbations than the other
methods. Although SMC finds more control sets than TTC
for granulocytes and monocytes as shown in Table 2, SMC
requires four perturbations while TTC and PTC need only
three perturbations. Since our methods TTC and PTC only
compute the results within the threshold, they may identify
more solutions if we increase the threshold to four. For
megakaryocytes and erythrocytes in Table 3, TTC, PTC and
SMC require the same number of perturbations, but TTC
provides more control sets than PTC and SMC. For this
network, the results of PTC are either identical to TTC or
just a subset of the solutions identified by TTC. Potentially,

TTC is able to find smaller control sets than PTC, because
it does not need to preserve the target attractor during the
control. We will demonstrate this point in Section 7.3.

The total execution time of ITC, TTC, PTC and SMC for
computing target control of this network are 0.003, 0.026,
0.03 and 8.178 seconds, respectively. We can see that our
methods outperform SMC in efficiency.

7.2 Control of the cardiac gene regulatory network

The cardiac gene regulatory network integrates major genes
that play essential roles in early cardiac development and
FHF/SHF determination [45]. It has 15 nodes. This network
consists of three attractors, two of which correspond to FHF
and SHF, when the input node, exogenBMP2I, is set to 1 [45].
We apply ITC, TTC, PTC and SMC to identify interventions
that can lead the network to FHF and SHF. The results of
the four control methods are given in Table 4.

With instantaneous, temporary or permanent perturba-
tions, it is guaranteed to reach SHF by the control of the
non-initialised input node, exogenCanWntI. To reach FHF,
ITC requires seven perturbations, while TTC realises the
goal by the control of two nodes, including the input node
exogenCanWntI together with one of the nodes in {GATAs,
Tbx5, Nkx25, Mesp1, Tbx1, Foxc12}. The results of PTC and
SMC are subsets of TTC, which demonstrates the ability of
TTC in identifying more novel solutions. With temporary
and permanent perturbations, the number of perturbations
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SHF FHF

ITC {exogenCanWntI=1} {canWnt=0 Foxc12=0 Tbx1=0 GATAs=0 Tbx5=1
exogenCanWntI=0 exogenCanWntII=0 }

TTC

{exogenCanWntI=1}
{GATAs=1 exogenCanWntI=0 }
{Tbx5=1 exogenCanWntI=0}
{Nkx25=1 exogenCanWntI=0}
{Mesp1=1 exogenCanWntI=0}
{Tbx1=1 exogenCanWntI=0}
{Foxc12=1 exogenCanWntI=0}

PTC {exogenCanWntI=1}
{GATAs=1 exogenCanWntI=0}
{Nkx25=1 exogenCanWntI=0}
{Tbx5=1 exogenCanWntI=0}

SMC {exogenCanWntI=1}
{GATAs=1 exogenCanWntI=0 }
{Tbx5=1 exogenCanWntI=0}
{Nkx25=1 exogenCanWntI=0}

TABLE 4
The control sets computed by ITC, TTC, PTC and SMC for SHF and FHF of the cardiac gene regulatory network.

Network # # # singleton # cyclic
nodes edges attractors attractors

yeast 10 28 12 1
ERBB 20 52 3 0
HSPC-MSC 26 81 2 2
tumour 32 158 9 0
hematopoiesis 33 88 5 0
PC12 33 62 7 0
bladder 35 116 3 1
PSC-bFA 36 237 4 0
co-infection 52 136 30 0
MAPK 53 105 12 0
CREB 64 159 8 0
HGF 66 103 10 0
bortezomib 67 135 5 0
T-diff 68 175 12 0
HIV1 136 327 8 0
CD4+ 188 380 6 0
pathway 321 381 3 1

TABLE 5
An overview of the biological networks.

required to reach FHF is reduced from seven to two, which
can greatly reduce experimental costs and improve the
operability of the experiments.

The total execution time of ITC, TTC, PTC and SMC
for computing target control for the three attractors are
0.035, 0.128, 0.148 and 4.540 seconds, respectively. For this
network, our methods are more efficient than SMC.

7.3 Control of other biological networks

We apply the four target control methods, ITC, TTC, PTC
and SMC, to some other networks introduced below to
evaluate their performance. We give an overview of the
number of nodes, the number of edges and the number of
singleton and cyclic attractors of each network in Table 5.
Details on the networks, such as the Boolean functions, are
referred to the original works.
• The cell cycle network of the fission yeast is constructed

based on known biochemical interactions to recap reg-
ulations of the cell cycle of the fission yeast [46].

• The ERBB receptor-regulated G1/S transition protein
network combines ERBB signalling with G1/S transi-
tion of the mammalian cell cycle to identify new targets
for breast cancer treatment [47].

• The HSPC-MSC network of 26 nodes describes inter-
communication pathways between hematopoietic stem
and progenitor cells (HSPCs) and mesenchymal stromal
cells (MSCs) in bone marrow (BM) [48].

• The tumour network is built to study the role of
individual mutations or their combinations in the
metastatic process [49].

• The network of hematopoietic cell specification covers
major transcription factors and signalling pathways for
the development of lymphoid and myeloid [50].

• The PC12 cell differentiation network [51] is a compre-
hensive model for the clarification of the cellular deci-
sions towards proliferation or differentiation. It models
the temporal sequence of protein signalling, transcrip-
tional responses as well as the subsequent autocrine
feedbacks [51].

• The bladder cancer network of 35 nodes allows one to
identify the deregulated pathways and their influence
on bladder tumourigenesis [52].

• The model of mouse embryonic stem cells captures
the signal-dependent emergence of cell subpopulations
under different initial conditions [53].

• The model of immune responses is constructed to study
the immune responses against single and co-infections
with the respiratory bacterium and the gastrointestinal
helminth [54].

• The MAPK network is constructed to study the MAPK
responses to different stimuli and their contributions to
cell fates [55].

• The CREB network is a complex neuronal net-
work, whose output node is the transcription factor
adenosine 3’, 5’-monophosphate (cAMP) response el-
ement–binding protein (CREB) [56].

• The model for HGF-induced keratinocyte migration
captures the onset and maintenance of hepatocyte
growth factor-induced migration of primary human
keratinocytes [57].

• The model of bortezomib responses can predict re-
sponses to the lower bortezomib exposure and the
dose-response curve for bortezomib [58].

• The Th-cell differentiation network models regulatory
elements and signalling pathways controlling Th-cell
differentiation [59].

• The HIV-1 network models dynamic interactions be-
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Network The minimal number of perturbations
ITC TTC PTC SMC

yeast 10 5 5 5
ERBB 10 2 2 2
HSPC-MSC 2 2 2 2
hematopoiesis 5 3 3 ∗
PC12 12 3 3 3
bladder 14 2 2 4
PSC-bFA 11 1 2 ∗
co-infection 19 5 5 7
MAPK 24 4 4 5
CREB 3 3 3 ∗
HGF 22 4 4 ∗
bortezomib 3 1 1 ∗
T-diff 20 4 4 4
HIV1 3 3 3 ∗
CD4+ 7 3 3 3
pathway 2 2 2 2

TABLE 6
The minimal number of perturbations required by ITC, TTC, PTC and

SMC for several biological networks. Symbol ’*’ means that the method
failed to finish the computation within twelve hours.

tween human immunodeficiency virus type 1 (HIV-1)
proteins and human signal-transduction pathways that
are essential for activation of CD4+ T lymphocytes [60].

• The CD4+ T-cell network allows us to study down-
stream effects of CAV1+/+, CAV1+/− and CAV1−/−

on cell signalling and intracellular networks [61].
• The model of signalling pathways central to

macrophage activation integrates four crucial signalling
pathways that are triggered early-on in the innate im-
mune response [62].

Efficacy. Table 6 summarises the minimal number of per-
turbations required by the four methods for one of the
attractors of the networks. It is easy to observe that ITC
requires more perturbations than TTC, PTC and SMC due
to its instantaneous effect. ITC usually needs to control
10 to 20 nodes, whereas TTC, PTC and SMC can achieve
the inevitable reachability of the target attractor with at
most 7 perturbations. Moreover, it is hard to realise the
simultaneous and instantaneous perturbation of a number
of nodes, which makes the ITC less practical in application.
Thus, TTC, PTC and SMC, which employ temporary or
permanent perturbations, are preferable than ITC. For the
bladder cancer network and the MAPK network, TTC and
PTC identify smaller control sets than SMC. Compared to
PTC, TTC has the ability to further reduce the number of
perturbations as demonstrated by the model of mouse em-
bryonic stem cells (PSC-bFA) – the number of perturbations
required by TTC and PTC are 1 and 2, respectively.

Both TTC and SMC solve the target control problem
with temporary perturbations. To further compare these two
methods, Fig. 3 shows the number of solutions identified
by the two methods. The x-axis lists the names of the
networks and the y-axis denotes the number of control sets.
Blue bars and grey bars represent the control sets that only
appear in the results of TTC and SMC (TTC\ (TTC ∩ SMC),
SMC\ (TTC ∩ SMC)), respectively. Green bars represent the
intersections of the two methods. Equations above the bars
(|C| = k) denote the number of nodes contained in the
control set, i.e. the number of required perturbations.

Since neither of the methods guarantees the minimal

control, they may find control sets of different sizes for one
attractor. For comparison, we only consider the smallest
control sets. In Fig. 3, there is no grey bar because the
solutions identified by SMC are either also found by TTC
and thus belong to (TTC ∩ SMC), or require more pertur-
bations than TTC. For the cell cycle network of fission yeast
(yeast), the ERBB receptor-regulated G1/S transition protein
network (ERBB), the HSPC-MSC network (HSPC-MSC) and
the model of signalling pathways (pathway), there are only
green bars, which means that the results of TTC and SMC
are identical. For the bladder cancer network (bladder), the
co-infection network (co-infection) and the MAPK network
(MAPK), we can only see blue bars because TTC finds
smaller control sets than SMC. SMC failed to finish the
computation for several networks within twelve hours,
including the network of hematopoietic cell specification
(hematopoiesis), the model of mouse embryonic stem cells
(PSC-bFA), the CREB network, the model for HGF-induced
keratinocyte migration (HGF), the model of bortezomib
responses (bortezomib) and the HIV-1 network networks
(HIV1). For the PC12 cell differentiation network (PC12), the
Th-cell differentiation network (T-diff) and the CD4+ T-cell
network (CD4+), although TTC and SMC require the same
number of perturbations, our method TTC has the capability
to provide more unique solutions, which may give more
flexibility for practical applications.

Efficiency. Table 7 summarises the computational time for
computing the target control for all the attractors of the
networks rather than the selected target attractor. The reason
is that SMC computes the control for all the attractors in
one-go by generating the stable motif diagram, in which dif-
ferent sequences of stable motifs lead to different attractors.
SMC does not support the computation of target control for
only one attractor. Hence, for ITC, TTC and PTC, we also
take the total computational time for all the attractors of the
networks in order to have a fair comparison with SMC.

We can see that ITC is the most efficient one, however,
it requires more perturbations. TTC and PTC are more
efficient than SMC for most of the cases. The efficiency of
our methods are influenced by many factors, such as the
network size, the network density, the number of attractors
and the number of required perturbations. For the co-
infection network and the model of bortezomib responses,
TTC and PTC are able to identify target control efficiently
for some of the attractors, but failed for the other attractors.
One conjecture is that the target control of those attractors
require many perturbations, such that it takes a considerable
amount of time to verify the subsets of the schemata.

SMC failed to finish the computation for several net-
works within twelve hours, including the hematopoiesis,
PSC-bFA, CREB, HGF, bortezomib and HIV1 networks. For
the hematopoiesis network and the bortezomib network,
SMC failed in the identification of stable motifs, which has
been pointed out to be the most time-consuming part of
SMC [33]. The reason could be that the number of cycles
and/or SCCs in its expanded network is computationally
intractable. For the HGF-induced keratinocyte migration
network, SMC was blocked in the optimisation of stable
motifs due to that this network has 19 stable motifs and
most of the stable motifs contain more than 16 nodes. SMC
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Fig. 3. Comparison of TTC and SMC on the number of solutions.

Network Time (seconds)
ITC TTC PTC SMC

yeast 0.028 0.987 0.933 10.837
ERBB 0.055 0.117 0.163 6.400
HSPC-MSC 0.097 0.101 0.109 11.393
hematopoiesis 0.374 139.859 72.793 ∗
PC12 0.149 17.653 22.189 234.513
bladder 0.302 2.426 7.997 36.277
psc-bFA 36.77 3732.78 9296.740 ∗
co-infection 6294.29 ∗ ∗ 15097.511
MAPK 4.608 22.218 45.504 395.014
CREB 7.962 8.277 8.693 ∗
HGF 19.925 1437.29 201.363 ∗
bortezomib 15.605 ∗ ∗ ∗
T-diff 21.581 29738.5 ∗ 353.473
HIV1 302.8 323.666 379.127 ∗
CD4+ 549.878 1982.45 21358.400 27.836
pathway 445.251 4435.59 10038.600 42.180

TABLE 7
Computational time of ITC, TTC, PTC and SMC for several biological networks. Symbol ’*’ means that the method failed to finish the computation

within twelve hours.

failed to construct the expanded network representation
for the CREB, PSC-BFA and HIV-1 networks because some
of their Boolean functions depend on many parent nodes
(k ≥ 10). Detailed discussion on the complexity of SMC can
be found in [33].

From the above analysis, we can recommend TTC to
compute the target control sets for networks of small and
medium sizes (e.g., less than 100 nodes). For larger net-
works, SMC generally outperforms TTC. TTC works well on
networks which contain relatively small SCCs, while SMC
is more suitable for networks that have fewer cycles/SCCs
in their expanded network.

8 CONCLUSION

In this paper, we have developed three methods for the
target control of asynchronous Boolean networks with in-
stantaneous, temporary and permanent perturbations. We
compared their performance with SMC [33] on various
real-life biological networks. The results showed that ITC

requires more perturbations than TTC, PTC and SMC as it
uses instantaneous perturbations. Both TTC and SMC solve
the target control problem with temporary perturbations
and potentially they may require fewer perturbations than
PTC. Moreover, from Table 6 and Figure 3, our method TTC
has the potential to identify more solutions with even fewer
perturbations when compared to SMC. This requires further
statistical analysis on a large number of Boolean networks
in the future.

Regarding the computational time, our methods are
quite efficient and scale well for large networks. SMC ex-
plores both structures and Boolean functions of Boolean
networks, and is potentially more scalable for large net-
works as demonstrated by the CD4+ T-cell network and the
pathway network in Table 7. In contrast, our methods are
essentially based on the dynamics of the networks, and they
will suffer the state space explosion problem for networks
of several hundreds of nodes. We believe that our methods
and SMC complement each other. In the near future, we
aim to improve our methods by simultaneously exploring
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network structure and dynamics to achieve more efficient
computational methods for the control of large biological
networks. We will also apply our methods for the analysis
of real-life biological networks with the aim of identifying
potential drug targets for effective disease treatments.
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