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Abstract. We present a probabilistic leader election algorithm for
anonymous, bidirectional, asynchronous rings. It is based on an algo-
rithm from Franklin [22], augmented with random identity selection,
hop counters to detect identity clashes, and round numbers modulo 2.
As a result, the algorithm is finite-state, so that various model checking
techniques can be employed to verify its correctness, that is, eventually
a unique leader is elected with probability one. We also sketch a formal
correctness proof of the algorithm for rings with arbitrary size.

1 Introduction

Leader election is the problem of electing a unique leader in a distributed net-
work. It is required that all processes execute the same local algorithm.' Leader
election is a fundamental problem in distributed computing and has numerous
applications. For example, it is an important tool for breaking symmetry in a
distributed system. Moreover, by choosing a process as the leader, it is possible
to execute centralized algorithms in a decentralized environment. Leader elec-
tion can also be used to recover from token loss for token-based algorithms, by
making the leader responsible for generating a new token when the current one
is lost.

There is a broad range of leader election algorithms. These algorithms vary
in communication mechanism (asynchronous vs. synchronous), process names
(unique identities vs. an anonymous network), network topology (e.g. ring,
acyclic graph, complete graph). Here we focus on asynchronous communication
with reliable channels but no message order preservation, and a bidirectional
ring topology.

A classic leader election algorithm for unidirectional rings was given by
Chang and Roberts [12]. It requires that each process has a unique identity,

! Else, the problem would be trivial: let one process perform the event “leader”, while
all other processes perform the event “not leader”.
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with a total ordering on identities; the process with the largest identity be-
comes the leader. The basic idea is that each process sends a message around
the ring bearing its identity, where only the message with the largest identity
completes the round trip. This algorithm requires O(n?) messages in the worst
case, but O(nlogn) on average. Franklin [22] developed a leader election algo-
rithm for bidirectional rings with a worst-case message complexity of O(nlogn).
The algorithm proceeds in election rounds, and each process is either active or
passive. At the start of an election round, each active process sends its identity
to its nearest active neighbours, and in return it receives such messages from
these neighbours. An active process only progresses to the next election round
if its own identity is larger than the two incoming identities. Peterson [41] and
Dolev, Klawe and Rodeh [15] independently adapted Franklin’s algorithm for
unidirectional rings.

Sometimes the processes in a network cannot be distinguished by means
of unique identities. Firstly, there is no concept of identity, e.g. Lego Mind-
Storms robots. Secondly, as the number of processes in a network increases, it
may become difficult to keep the identities of all processes distinct; or a net-
work may accidentally assign the same identity to different processes. Thirdly,
identities cannot always be sent around the network, for instance for reasons
of efficiency; this is for instance the case in the leader election algorithm used
within the IEEE 1394 (FireWire) standard, see [37]. In a so-called anonymous
(or uniform) network, processes do not carry an identity. Angluin [1] showed
that there does not exist a terminating deterministic algorithm for electing a
leader in an anonymous, asynchronous network.

Itai and Rodeh [31, 32] studied how to break the symmetry in anonymous
networks using probabilistic algorithms. They presented a probabilistic algo-
rithm, based on the Chang-Roberts algorithm, to elect a leader in an anony-
mous unidirectional ring, under the assumption that all processes know the ring
size.? At the start of an election round, active processes select a random iden-
tity from a finite domain, which they send around the ring. Active processes
with the largest identity start a new election round if they detect a name clash,
meaning that another process selected the same identity in the current round.
Since the size of the ring is known, each process can recognise its own message
by means of a hop counter, included in each message. The Itai-Rodeh algorithm
terminates with probability one, and all its terminal states are correct, mean-
ing that exactly one leader is elected. The average-case message complexity is
O(nlogn).

In the Itai-Rodeh algorithm, an old message that has been overtaken by
other messages in the ring, could in principle result in a situation where no leader
is elected. To overcome this problem, successive election rounds are numbered,
and each process and message is supplied with a round number. Thus an old
message can be recognized and ignored. Fokkink and Pang [20, 21] showed that
in case of FIFO channels, round numbers can be omitted from the Itai-Rodeh

2 The latter assumption is essential; see e.g. [44, Sect. 9.4.1].
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algorithm. They analysed the resulting algorithm using the probabilistic model
checker PRISM [28].

In Sect. 2, we present a probabilistic leader election algorithm for anony-
mous bidirectional rings, based on Franklin’s algorithm. As in the Itai-Rodeh
algorithm, it is assumed that all processes know the ring size, and at the start
of an election round, active processes select a random identity from a finite
domain. We do not impose any assumption on the channel behaviour, i.e. the
order of messages is not necessarily preserved between any pair of processes.
Once again, each process can recognise its own message by means of a hop
counter that is included in each message. However, instead of an infinite range
of round numbers, we only need to keep track of round numbers modulo 2. This
means that our probabilistic leader election algorithm is finite-state, and thus
can be verified using explicit state space exploration (see Sect. 4). Furthermore,
it implies that infinite executions, in which no leader is ever elected, violate
“global fairness ” (i.e., if in an infinite execution a transition from one global
state of the system to another one v — +’ can be taken infinitely often, then it
is taken infinitely often); see Sect. 7.

We modelled our probabilistic version of Franklin’s algorithm in the process
algebraic language pCRL [8], and analysed for up to ring size six that a unique
leader is elected. For ring size five, in case of a domain of three process identities,
and for ring size six, in case of a domain of two process identities, we used the
distributed version of the uCRL toolset [7] to store the generated state space
over a cluster of computers. Moreover, we sketched a formal correctness proof
for the algorithm in Sect. 4.

The model checker CADP [17] provided counter-examples to show that: (1)
round numbers cannot be omitted from the probabilistic Franklin algorithm
altogether (see Sect. 3), and (2) in case of a probabilistic version of the Dolev-
Klawe-Rodeh algorithm, round numbers modulo 2 do not suffice (see Section 8).
We used several optimizations, described in Sect. 5, to increase the efficiency
of model checking of the probabilistic Franklin algorithm, notably confluence
reduction. Moreover, using the probabilistic model checker PRISM, we made a
performance comparison of two versions of the probabilistic Franklin algorithm:
one in which fresh identities are chosen at the start of each election round, and
one in which fresh identities are only chosen at the detection of an identity clash
(see Sect. 6).

Related Work

Higham and Myers [27] present a leader election algorithm for anonymous,
unidirectional rings of known size; their algorithm is similar to the algorithm
of Itai and Rodeh, augmented with a time-out mechanism.

Fischer and Jiang [19] give a self-stabilizing leader election algorithm for
anonymous, unidirectional rings, based on a leader oracle {27, which for some
point onwards is guaranteed to return the same leader to all processes (see also
Sect. 7).
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Several papers [11, 29, 33, 18] present leader election algorithms for anony-
mous rings of prime size, in the presence of a central demon, which acts as a
scheduler.?

Leader election is related to token circulation for solving mutual exclusion
problem, where having a token is interpreted as a permission to enter the crit-
ical section. A self-stabilizing token circulation algorithm guarantees eventual
circulation of a unique token, even if the system is started from a global state
where several tokens are present. Israeli and Jalfon [30] propose a self-stabilizing
token circulation algorithm in an anonymous, bidirectional, asynchronous ring,
in the presence of a centralized demon. In their algorithm, tokens move to the
left or to the right with probability %, and merge when they meet, eventually
reducing the number of tokens to one. However, without knowledge of ring size,
the processes can never be sure whether a single token is left.

Mayer, Ofek, Ostrovsky and Yung [39] show that on an anonymous ring,
leader election is equivalent to providing a self-stabilizing round-robin to-
ken management scheme. Angluin, Aspnes, Fischer and Jiang [2] give a self-
stabilizing leader election algorithm for anonymous, unidirectional, asynchronous
rings of unknown size. Beauquier, Gradinariu and Johnen [5] present a random-
ized self-stabilizing leader election algorithm under an arbitrary scheduler (no
fairness assumption is required) on anonymous, unidirectional rings of known
size, in the shared variables model. Both algorithms are based on token circu-
lation.

Several other papers present self-stabilizing token circulation algorithms for
anonymous, unidirectional rings: the algorithm of Herman [26] works on syn-
chronous rings of odd size; Duchon, Hanusse and Tixeuil [16] present algorithms
for synchronous rings of arbitrary size; Beauquier, Gradinariu and Johnen [4]
and Datta, Gradinariu and Tixeuil [13] use several types of tokens and assume
the synchronous communication model of shared variables, while the algorithm
of Rosaz [42] uses the same idea in asynchronous message passing systems; the
algorithms of Kakugawa and Yamashita [35] for asynchronous rings and Johnen
[34] for shared memory settings run under unfair distributed schedulers. Of these
papers, [4, 35, 34] require knowledge of ring size.

Mayer, Ostrovsky and Yung [40] give a randomized compiler for anonymous
rings that transforms a self-stabilizing algorithm based on bidirectional com-
munication to one that requires unidirectional, synchronous communication.

2 Franklin’s Algorithm for Anonymous Rings

We consider a ring consisting of processes pg,...,pn—1 for n > 2. Processes
are anonymous, meaning that they do not carry a unique identity. Message-
passing communication between processes is asynchronous, message order is

3 Dijkstra [14] noted that such a leader election algorithm cannot exist if the ring
size is a composite number.
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not preserved between any pair of processes. Channels are bidirectional, so that
a process p; can send messages to its neighbours p(;1)modn and P(i—1) modn; @
sent message is included in the message queue of its destination. It is assumed
that receiving a message, processing it, and possibly sending a subsequent mes-
sage take zero time. Channels are reliable, and the message queues are guided by
a fair scheduler, meaning that every sent message will eventually be processed
at its destination.

Each process is either active or passive. In our probabilistic version of
Franklin’s algorithm, an active process p; maintains three parameters:

- 4d; € {1,...,k}, for some k > 2, is its identity, not necessarily unique;
- state; ranges over {active, leader};
- bit; € {T, F} represents the number of the current election round modulo 2.

Passive processes simply pass on messages (increasing their hop counter by one).
All messages are of the form (id, hop, bit), travelling in both clockwise and
counter-clockwise direction, where:

- id stores the identity of the process that originally sent the message;

- bitis a bit that represents the election round of this process modulo 2 (at the
time that it sent the message);

- hop € {1,...,n} is a counter, which initially has the value 1, and which is
increased by one every time it is passed on by a process.

At the start of an election round, each active process p; randomly selects an
identity id € {1,...,k}, and sends a message with its identity to each of its
two neighbours; initially, this message is of the form (id;, 1, bit;). Next, p;
receives such messages that originate from its two nearest active neighbours.
Upon receipt of these messages, p; determines whether it stays active for the
next election round, by comparing three identities. If either of the messages
it received has a larger identity than its own identity, then it becomes passive.
Otherwise, it starts a new election round with a new identity. If a process gets a
message with the hop counter equal to the network size n, the process becomes
the leader (state; := leader).

We now provide a more precise description of the algorithm. Initially, all
processes p; are active (state; = active), and their bit bit; is set to T

— At the start of an election round with round number bit, an active process
selects an identity id € {1,...,k} and sends the message (id, 1, bit) in both
directions.

— Upon receipt of a message (id, hop, bit), a passive process passes on the
message in the same direction, increasing the hop counter by one, i.e.,
(id, hop + 1, bit).

— Upon receipt of a message (id, hop, bit) with bit; = bit, an active process p;
executes the following steps:

— if hop = n, then p; becomes the leader (state; := leader);
— if hop < n, then p; stores the message, and waits for a message with the
bit bit; from the opposite direction.
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— An active process p; stores messages that carry a bit —bit;, to process them
in the round with the appropriate bit.

— Upon receipt of messages with a bit bit; from both directions, p; checks
whether either of these messages carries an identity larger than its own iden-
tity. If this is the case, then p; becomes passive; otherwise, p; starts a new
election round, with an inverted bit as round number (bit; := —bit;) and a
new identity.

3 Round Numbers Modulo 2 are Needed

Initially, we thought that our probabilistic version of the Franklin algorithm
could maybe do without round numbers altogether. However, a model checking
verification using the pCRL toolset [8] showed us that this is not true.* Fig. 3
shows a scenario where no leader is elected for a ring of size three and three
identities. In this figure, black processes are active and white processes are
passive.
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Fig. 1. Probabilistic Franklin algorithm without round numbers is flawed.

Initially, all processes are active; two processes select the same identity w,
and one selects an identity v < wu; all processes send a message with their
identity in both directions (Fig. 3(a)). At the receipt of a message from both
neighbours, the processes with identity u select a new identity w < v, and send
messages carrying this new identity (Fig. 3(b)). The two messages (u, 1) are
overtaken by two messages with identity w. As w < v, process v proceeds to a
next election round, in which it selects the identity v again, and sends messages
(v,1) in both direction (Fig. 3(c)). Upon the receipt of messages (v,1) and
(w, 1), the processes with identity w become passive (Fig. 3(d)). Finally, the

4 Lamport [36] actually advocates that all distributed algorithms should be model
checked before publication.
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outdated messages (u, 1) make the process with identity v passive as well; all
processes have become passive now.

4 Correctness Analysis

We say that an execution of the algorithm has terminated if each process is
either passive or elected as the leader, and there are no remaining messages in
the channels. We argue that the probabilistic Franklin algorithm for anonymous
bidirectional rings terminates with probability one, and upon termination a
unique leader has been elected.

For a start, we modelled the probabilistic Franklin algorithm with round
numbers modulo 2 in the uCRL framework [8], with channels that have an un-
bounded capacity, each implemented as a buffer, and its correctness has been
verified for rings with a size up to six processes. The input language for yCRL
is based on process algebra and abstract data types. Our uCRL specification is
available at [3]. Tables 1(a) and 1(b) provide state space generation results for
domains of two and three identities, respectively. To carry out the verification
for six processes (in case of two identities) and five processes (in case of three
identities), a distributed version of the yCRL toolset was used. The result-
ing state space was reduced using branching bisimulation equivalence [46, 25],
which eliminates internal and communication transitions (i.e., only “leader”
transitions are not abstracted away), while maintaining the branching struc-
ture of the state space. In case of the distributed version of the uCRL toolset,
we applied a distributed reduction algorithm from [9].

Table 1. State space generation statistics

(a) State space for two identities (b) State space for three identities
|# Procs” States| Transitions| |# Procs” States|’I‘ransiti0ns
2 657 1,368 2 1,525 3,564
3 15,445 43,968 3 55,009 168,102
1 380,609] 1,396,512 1 2,005,777 8,182,002
5 9,819,065 44,242,920 5 84,381,157 401,681,445

6 260,753,105|1,393,967,976

The pCRL specification language does not allow to express probabilities.
Still we could verify that although there are infinite executions, with probability
one, eventually always a leader is elected. This is because branching bisimulation
equivalence abstracts away from infinite executions that violate global fairness.
That is, after minimization modulo this equivalence, such executions have been
eliminated. The minimized state space of our algorithm consisted of only two
states s; and sy, where the initial state s; can perform a leader action to ss,
which is a terminated state.
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We now sketch a formal correctness proof of the probabilistic Franklin al-
gorithm.

Proposition 1. If channels are FIFO, the probabilistic Franklin algorithm be-
haves correctly, even if processes and messages do not keep track of round num-
bers at all. That is, upon termination, exactly one leader has been elected.

Proof. In case of FIFO channels, it is guaranteed that in each election round,
an active process always receives messages from the left and the right that
were created in this election round (cf. [20, 21]). Therefore round numbers are
redundant.

In each election round, active processes with the largest identity in that
round do not become passive. And an active process can only become the leader
if all other processes have become passive. From this it follows that upon ter-
mination there is a unique leader. O

We now focus on showing that in the probabilistic Franklin algorithm, round
numbers modulo 2 suffice to enforce FIFO behaviour of these channels.

Lemma 1. After initialization, and before a leader is elected, the following in-
variant holds for the algorithm. Between each pair of active processes p, p' there
are ezactly two messages m, m’.

— If m, m’ travel in opposite directions, p, p’, m, m’ all carry the same bit as
round number.

— If m, m’ travel in the same direction, p, p' have opposite bits, and m, m’
have opposite bits.

Proof. Fig. 2 depicts three cases (a symmetric variant of Fig. 2(a) is omitted)
consisting of a triple of adjacent active processes, wherein the middle process
with the bit b € {T, F'} receives two incoming messages from its neighbours
(Figs. 2(a), 2(d), 2(g)). If neither of the messages it received has a larger identity
than its own identity, then it starts a new election round with the bit —b (Figs.
2(b), 2(e), 2(h)). Otherwise, it becomes passive (Figs. 2(c), 2(f), 2(i)). In all six
cases, the invariant holds. 0O

Theorem 1. In the probabilistic Franklin algorithm (with reliable, but not nec-
essarily FIFO channels), upon termination, exactly one leader has been elected.

Proof. From the invariant in Lemma 1 it follows that in the probabilistic
Franklin algorithm with round numbers modulo 2, channels behave as FIFO
queues. Namely, if there are two messages travelling to an active process in the
same direction, they have opposite bits. So the active process can recognize
which of these two messages was created in its current election round. Hence,
the theorem follows from Prop. 1. 0O

Theorem 2. The probabilistic Franklin algorithm terminates with probability
one.
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Fig. 2. Illustration of the invariant

Proof. When there are ¢ > 2 active processes in the ring, these processes all
remain active only if they all the time choose the same identity. Otherwise,
at least one active process will become passive. The probability that all active
processes select the same identity in one election round is (%)f_l, where k is the
number of possible identities. Thus, the probability for all ¢ active processes to
choose the same identity m times in a row is (%)m(efl). As k > 2, the probability
that the number of active processes eventually decreases is one.

On average, the probabilistic Franklin algorithm takes O(nlogn) messages
to terminate. (On average, in each election round about % of the active processes
become passive, so there are in the order of log n rounds; and each election round
takes 2n — 2 messages.)

5 Optimisation Techniques for Generating the State Space

To obtain a smaller state space, we simplified the algorithm described in Sect. 2:
every round a node could decide to read always first a message from the left
neighbour, and then from the right neighbour. This does not really influence
the behaviour of the algorithm, because a node only take visible actions after
receiving a message from both sides. We modelled this version of the algorithm
in the pCRL toolset, and verified it up to six processes® in the following manner.

First the parallel operators are eliminated by the linearisation algorithm
from [24]. Next it is symbolically reduced by static analysis: constant propa-
gation (replace provably constant parameters by their initial value) [23], and
dead variable analysis (reset variables that are not used anymore to a default
value). The number of states and transitions of the state space that have been
generated in this way are presented as the “normal” strategy in Tables 2 and
3.

5 A distributed version of the uCRL toolset [7] was used for six processes (in case
of two identities) and five processes (in case of three identities) with the “normal”
state space generation strategy.
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For more efficient state space generation, we applied symbolic confluence
reduction [10]. To this end, a theorem prover can be used to automatically detect
and mark confluent 7’s, i.e. internal transitions and hidden communications that
are not causally related, for instance, because they occur at different parallel
components. Confluence can then be exploited on a symbolic level by giving
priority to confluent 7’s, marked by the theorem prover. This reduction keeps
only the confluent 7’s going out of a state, and all the other transitions going
out of the state are removed. This symbolic prioritization is implemented in
the Confelm tool [6] from pCRL. We used it to remove confluent 7-summands,
marked by the theorem prover Confcheck [45] from pCRL.

We also experimented with an on-the-fly 7-reduction [10, 38]. It is based
on Tarjan’s algorithm for decomposition of a graph into its strongly connected
components [43]. In this reduction, for each state a representative state is com-
puted, which it can reach by means of confluent 7-transitions. To compute
the representative of a state, a depth-first search traversal via the confluent 7-
transitions is made, until a state with a known representative is encountered, or
a ‘terminal’ strongly connected component of confluent 7-transitions is found.
(Terminal means that there are no outgoing confluent 7-transitions.) In the for-
mer case the known representative is returned, and in the latter case the state
where the terminal strongly connected component was entered is returned. In
the state space generation algorithm from [6], only representatives of states are
generated.

After generation of the (partially reduced) state space, we performed a full
reduction modulo branching bisimulation. The resulting state space consisted
of only two states s; and ss, where the initial state s; can perform a leader
action to so, which is a terminated state.

| Strategy |# Proc.| 2 | 3 | 4 | 5| 6|
: s. |385] 7,613[152,065] 3,162,337] 67,758,317

norma t.  |664]17,880|459,488|11,736,100| 298,484,184
s.  |205] 2,875 40,881 606,783 9,280,633

confelm t.  [340| 6,342(114,384| 2,069,040 37,381,488
confelm | ext. s.|165] 1,819] 21,409] 263,963 3,348,345

+ int. s.|181| 2,343| 30,039| 395,723 5,350,021
on-the-fly t.[276| 4,086 60,576| 902,820| 13,449,324

Table 2. State space for the probabilistic Franklin algorithm with 2 identities.

Tables 2 and 3 show state space generation results of the simplified algo-
rithm (states and transitions) for domains of two and three identities, respec-
tively, with the different reduction strategies. For the on-the-fly 7-reduction, the
number of states generated in the end (external states) differs from the number
of states that are internally computed (internal states).
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| Strategy |# Proc.| 2 | 3 | 4 | 5|
s. 877]26,299] 802,489] 25,919,965

normal t.  |1,680]65,853|2,560,848|100,868,445
s. 469| 9,874] 214,957| 4,952,449

confelm t. 876(23,310| 637,884 17,778,660
confelm ext. s.| 385| 6,400| 116,785 2,242,609
+ int. s.| 433| 8,518 170,131 3,524,305
on-the-fly t.| 732[15,570| 353,508| 8,137,080

Table 3. State space for the probabilistic Franklin algorithm with 3 identities

6 Performance Comparison with PRISM

In Sect. 2, we presented the probabilistic Franklin algorithm in which an active
process chooses a fresh identity at the start of each election round (Algorithm
A). There is one variant of this algorithm (Algorithm B) in which an active
process only chooses a fresh identity at the start of a new election round if
either of the two messages it received in the previous election round carried an
identity equal to its own identity.

The probabilistic model checker PRISM [28] has the ability to automat-
ically compute precise quantitative results based on exhaustive analysis of a
formal model. For both versions, we used PRISM version 3.1.1 to calculate the
probabilities of electing a unique leader within ¢ “discrete time steps” (up to
150), where each such step corresponds to one transition in the algorithm. The
experimental results presented in Fig. 3 indicate that Algorithm A has a much
better performance than Algorithm B. Note that when ¢ moves to infinity, both
algorithms elect a unique leader with probability one.

5 three processes, four identities 5 four processes, two identities
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Fig. 3. The probability of electing a unique leader with deadlines.

7 Global Fairness

Fischer and Jiang [19] give a leader election algorithm for anonymous, unidi-
rectional rings, without requiring global knowledge of ring size. Instead, they
require a leader oracle £27, which can by each process be asked who is the leader,
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and which for some point onwards is guaranteed to return the same answer to
all processes. Under the assumption of what they call global fairness (i.e., if in
an infinite execution a transition from one global state of the system to another
one v — 7' can be taken infinitely often, then it is taken infinitely often), they
prove that their algorithm always terminates successfully.

Fischer and Jiang [19, p403] write: “We leave open the question of whether
such an algorithm exists without the help of £27.” Actually, in the absence of
global knowledge of ring size, it is straightforward to provide a negative answer
to this question. Namely, if such a leader election algorithm existed, then upon
successful termination, the leader could start a traversal to determine the correct
ring size. However, for anonymous rings, each ring size computation algorithm
has a positive probability of computing the wrong ring size (see [44, Sect. 9.4.1]).

On the other hand, under the assumption of global knowledge of ring size,
our probabilistic version of Franklin’s algorithm provides a positive answer to
the question of Fischer and Jiang, in the case of bidirectional rings. Namely,
owing to the fact that our algorithm is finite-state, each globally fair infinite
execution should at some point reach a configuration in which one active pro-
cess selects a larger identity than all other active processes, meaning that the
execution will terminate with this process as leader. But this contradicts with
the fact that the execution is infinite. In other words, in our algorithm each
infinite execution is not globally fair.

We note that this argumentation does not apply to the Itai-Rodeh algorithm,
due to the presence of an infinite range of round numbers. As a consequence,
in that algorithm no infinite execution visits a configuration infinitely often.

8 Probabilistic Dolev-Klawe-Rodeh Algorithm

The Dolev-Klawe-Rodeh algorithm is an adaptation of Franklin’s algorithm
to unidirectional rings. In an election round, an active process p compares its
identity with the identities of the two closest active processes on its left. The
process p proceeds to the next election round only if the identity of the closest
active process on its left is the largest of these three identities. A natural ques-
tion is whether the idea of round numbers modulo 2 would also apply to that
algorithm. We therefore modelled a probabilistic version of the Dolev-Klawe-
Rodeh algorithm with round numbers modulo 2 in uCRL. We detected by a
model checking analysis using yCRL and CADP toolsets that this algorithm is
flawed, in the sense that no leader may be elected. This is due to the fact that
in the probabilistic Dolev-Klawe-Rodeh algorithm, round numbers modulo 2 do
not enforce FIFO behaviour of channels. This is depicted in Fig. 4.

In Fig. 4, a scenario is depicted in which a message (2, two,2,T) is over-
taken by a newer message (0, two, 2,T). In this picture, processes carry a round
number modulo 2 (T or F'). Moreover, messages carry a value (the first param-
eter), a hop counter (the third parameter), and a round number modulo 2 (the
fourth parameter). The second parameter in a message, one or two, keeps track
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(2,0me,1,T)

~
(2,0me,1,T)

2(T)

(2, one, 1,F)//‘»

2(F) =]

(2, 0ne, 1,1& (1,0ne,1,F)
2(F)
(2,0n6,1, F)
(2, 0me, 1, F) 2(T)

(2,two,2, T)/'
(2,two, 2, F)/f:v
{0,0me,1,T)

o(T) =

(0,0me, 1,T)

w~_
{2,two,2,T)

(2,0me, 1, F) 2(T)

(2,two, 2, F)

(2,two,2, F)
2(F)

N~ —
(1,two,2, F)

{0,two0,2,T) _—~ 2(T)
(2,0ne,1,F)
(2,two, 2,T)
(2,two,2, F)
(0,0me, 1,T)

Fig. 4. Probabilistic Dolev-Klawe-Rodeh with round numbers modulo 2 is flawed.

whether a message is travelling from its originator to the next active process,
or has been forwarded by an active process, respectively.
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