
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 1

Multi-grained Semantics-aware Graph Neural
Networks

Zhiqiang Zhong, Cheng-Te Li, Jun Pang

Abstract—Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs and have been increasingly
deployed in a multitude of different applications that involve node- and graph-wise tasks. Most existing studies solve either the
node-wise task or the graph-wise task independently while they are inherently correlated. This work proposes a unified model,
AdamGNN, to interactively learn node and graph representations in a mutual-optimisation manner. Compared with existing GNN
models and graph pooling methods, AdamGNN enhances the node representation with the learned multi-grained semantics and
avoids losing node features and graph structure information during pooling. Specifically, a differentiable pooling operator is proposed to
adaptively generate a multi-grained structure that involves meso- and macro-level semantic information in the graph. We also devise
the unpooling operator and the flyback aggregator in AdamGNN to better leverage the multi-grained semantics to enhance node
representations. The updated node representations can further adjust the graph representation in the next iteration. Experiments on 14

real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
The ablation studies confirm the effectiveness of AdamGNN’s components, and the last empirical analysis further reveals the ingenious
ability of AdamGNN in capturing long-range interactions.

Index Terms—Graph neural networks, multi-grained semantic, hierarchical structure, representation learning

F

1 INTRODUCTION

IN many real-world applications, such as social networks,
recommendation systems, and biological networks, data

can be naturally organised as graphs [10]. Nevertheless,
working with this powerful node and graph representations
remains a challenge, since it requires integrating the rich
inherent features and complex structural information. To
address this challenge, Graph Neural Networks (GNNs),
which generalise deep neural networks to graph-structured
data, have drawn remarkable attention from academia and
industry, and achieve state-of-the-art performances in a
multitude of applications [33], [44]. The current literature
on GNNs can be used for tasks with two categories. One is
to learn node representations to perform tasks such as link
prediction [42] and node classification [16], [35]. The other
is to learn graph representations for tasks, such as graph
classification [9], [38], [40].

On node-wise tasks, existing GNN models on learning
node representations rely on a similar methodology that
utilises a GNN layer to aggregate the sampled neighbouring
nodes’ features in a number of iterations, via non-linear
transformation and aggregation functions. Its effectiveness
has been widely proved, however, a major limitation of
these GNN models is that they are inherently flat as they

• Zhiqiang Zhong is with the Faculty of Science, Technology and Medicine,
University of Luxembourg, Esch-sur-Alzette, Luxembourg.
E-mail: zhiqiang.zhong@@uni.lu

• Cheng-Te Li is with the Institute of Data Science and the Department of
Statistics, National Cheng Kung University, Tainan, Taiwan.
E-mail: chengte@mail.ncku.edu.tw

• Jun Pang is with the Faculty of Science, Technology and Medicine, and the
Interdisciplinary Centre for Security, Reliability and Trust, University of
Luxembourg, Esch-sur-Alzette, Luxembourg.
E-mail: jun.pang@uni.lu

Corresponding authors: Cheng-Te Li and Jun Pang

only propagate information across the observed edges in
the original graph. Thus, they lack the capacity to encode
features in the high-order neighbourhood in the graphs [1],
[39]. For example, in an academic collaboration network,
flat GNN models could capture the micro semantic (e.g.,
co-authorships) between authors, but neglect their macro
semantics (e.g., belonging to different research institutes).

On the other hand, graph classification is to predict the
label associated with an entire graph by using the given
graph structure and initial node features. Nevertheless,
existing GNNs for graph classification are unable to learn
graph representations in a multi-grained manner, which is
crucial to encode better meso- and macro-level graph se-
mantics hidden in the graphs for practical applications such
as drug design [28], program analysis [19], and stock recom-
mendation [13]. To remedy this limitation, novel pooling ap-
proaches have been proposed, where sets of nodes are recur-
sively aggregated to form super nodes in the pooled graph.
DIFFPOOL [38] is a differentiable pooling operator but its
assignment matrix is too dense [4] to apply on large graphs.
G-U-NET [9], SAGPOOL [17], GXN [21] and ASAP [27] are
four recent methods that adopt the Top-k selection strategy
to address the sparsity concerns of DIFFPOOL. They score
nodes based on a learnable projection vector and select a
fraction of high scoring nodes as super nodes. However,
the pre-defined pooling ratio limits these models’ adaptivity
on graphs with different sizes, and the Top-k selection may
easily lose important node features or graph structure by
simply ignoring low scoring nodes. As shown in Figure 1
(Section 2), different numbers of k will significantly affect
the number of covered nodes of super nodes in the pooled
graph, which means the important nodes’ features could get
lost during the trivial pooling strategy. The hyper-parameter
k is also crucial for the final performance [9], thus reduces

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 2

their convenience in applications.
In the end, we argue that node- and graph-wise tasks are

inherently correlated with one another. That said, node rep-
resentations form graph representation, and graph represen-
tation can provide node representations with meso/macro-
level semantic information in the graph. Joint modelling
with node- and graph-wise tasks will allow GNNs to over-
come the limitation of flat propagation mode in capturing
multi-grained semantics, and the enriched node represen-
tation could further ameliorate the graph representation.
However, to the best of our knowledge, none of the existing
work simultaneously exploit node- and graph-wise tasks,
along with capturing multi-grained semantics hidden in the
graph, to learn representations of nodes and the graph.

In this work, we propose a novel framework, Adaptive
Multi-grained Graph Neural Networks (AdamGNN), which
integrates graph convolution, adaptive pooling and unpool-
ing operations into one framework to generate both node
and graph level representations interactively. Unlike the
above-mentioned GNN models, we treat node and graph
representation learning tasks in a unified framework so that
they can collectively optimise each other during training.
In modelling multi-grained semantics, the adaptive pooling
and unpooling operators preserve the important node fea-
tures and hierarchical structural features. More concretely,
as shown in Figure 2-(a), we employ (i) an adaptive graph
pooling (AGP) operators to generate a multi-grained struc-
ture based on the derived primary node representations by a
GNN layer, (ii) graph unpooling (GUP) operators to further
distribute the explored meso- and macro-level semantics to
the corresponding nodes of the original graph, and (iii) a
flyback mechanism to integrate all received multi-grained
semantic messages as the evolved node representations.
Besides, the attention-enhanced flyback aggregator provides
a reasonable explanation of the importance of messages
from different grains. Experimental results reveal the ef-
fectiveness of AdamGNN, and the ablation and empirical
studies confirm the effectiveness and flexibility of different
components in AdamGNN. At last, through case studies,
AdamGNN is shown to highlight variant-range node inter-
actions in different graph datasets.

Our contributions can be summarised as follows. (1) We
propose a novel framework, AdamGNN1, that adaptively
integrates multi-grained semantics into node representa-
tions and achieves mutual optimisation between node-wise
and graph-wise tasks in one unified process. (2) An adaptive
and efficient pooling operator is devised in AdamGNN to
generate the multi-grained structure without introducing
any hyper-parameters. (3) An attention-based flyback aggre-
gation can provide model explainability on how different
grains benefit the prediction tasks. (4) Extensive experi-
ments on 14 real-world datasets demonstrate the promising
performance of AdamGNN, along with providing insightful
explanations with case studies.

2 RELATED WORK

Graph neural networks. The existing GNN models can be
generally categorised into spectral and spatial approaches.

1. Code and data are available at: https://github.com/zhiqiangzho
ngddu/AdamGNN

10% 30% 50% 70% 90%
Ratio of selection

20%

40%

60%

80%

100%

R
at

io
 o

f c
ov

er
ed

 n
od

es

Top-K selection
Emails
Cora
ACM

Fig. 1. Ratio of covered nodes with various selection ratio.

The spectral approach utilises the Fourier transformation
to define convolution operation in the graph domain [3].
However, its incurred heavy computation cost hinders it
from being applied to large-scale graphs. Later on, a series
of spatial models drawn remarkable attention due to their
effectiveness and efficiency in node-wise tasks [6], [7], [8],
[10], [16], [23], [30], [32], [35], such as link prediction, node
classification and node clustering. They mainly rely on the
flat message-passing mechanism that defines convolution
by iteratively aggregating messages from the neighbouring
nodes. Recent studies have proved that the spatial approach
is a special form of Laplacian smoothing and is limited to
summarising each node’s local information [5], [22]. Besides,
they are either unable to capture global information or in-
capable of aggregating messages in a multi-grained manner
to support graph classification tasks.
Graph pooling. Pooling operation overcomes GNN’s weak-
ness in generating graph-level representation by recursively
merge sets of nodes to form super nodes in the pooled
graph. DIFFPOOL [38] is a differentiable pooling operator,
which learns a soft assign matrix that maps each node
to a set of clusters, treated as super nodes. Since this
assignment is rather dense that incurs high computation
cost, it is not scalable for large graphs [4]. Following this
direction, a Top-k selection based pooling layer (G-U-NET)
is proposed to select important nodes from the original
graph to build a pooled graph [9]. SAGPOOL [17] and
ASAP [27] further use attention and self-attention for cluster
assignment, GXN [21] uses mutual information estimation
for super node selection. They address the problem of spar-
sity in DIFFPOOL, however, such a manual-defined hyper-
parameter k is quite sensitive to the final performance [9],
thus limits the adaptivity of these models on graphs of
different sizes. In addition, as shown in Figure 1, different k
values will significantly affect the number of covered nodes
in the graph, which means the important node features
could get lost during the trivial pooling operation. Note that
nodes covered by a super node refer to nodes involved in
the super node’s aggregation tree.

Recently, EIGENPOOL [24] proposes a pooling operator
based on graph Fourier which does not rely on the Top-
k selection strategy, STRUCTPOOL [40] designs strategies

https://github.com/zhiqiangzhongddu/AdamGNN
https://github.com/zhiqiangzhongddu/AdamGNN

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 3

TABLE 1
Model comparison from various aspects: Node-wise Task (NT),

Graph-wise Task (GT), Pooling and/or Unpooling (P/U), Adaptive
Pooling (AP), Efficient Pooling (EP), Multi-grained Explanation (ME).

NT GT P/U AP EP ME
GCN [16] X
GraphSAGE [10] X
GAT [32] X
GIN [35] X X
PNA [7] X X
GCNII [6] X
GRAND [8] X
DIFFPOOL [38] X P
G-U-NET [9] X X P, U X
SAGPOOL [17] X P X
EIGENPOOL [24] X P X X
GXN [21] X X P, U X
STRUCTPOOL [40] X P
ASAP [27] X P X
AdamGNN X X P, U X X X

to involve both node and graph structures, and includes
conditional random fields technique to ameliorate the clus-
ter assignment. However, STRUCTPOOL treats the graph
assignment as a dense clustering problem, which gives rise
to a high computation complexity as in DIFFPOOL.
Discussion. Table 1 summarises the key advantages of the
proposed AdamGNN and compares it with a number of
state-of-the-art methods. Among the existing GNN models,
G-U-NET, GXN and AdamGNN support both node- and
graph-level tasks. However, (i) the Top-k selection strategy
of G-U-NET and GXN introduces a new hyper-parameter
and may lose important node features or graph structure;
(ii) G-U-NET and GXN generate super graph only with k
selected super nodes, which ruins multi-grained semantics
of the original graph; (iii) G-U-NET does not support mini-
batch because it needs to compute scores of all nodes in one
big batch to select super nodes; (iv) GXN requires positive
and negative node sets sampling which introduces addi-
tional operation and the random sampling strategy brings
unmanageable uncertainty on model performance [37]. On
the contrary, AdamGNN is a unified framework that adap-
tively integrates multi-grained semantics into node repre-
sentations, and achieves a mutual optimisation between
node- and graph-wise tasks. Besides, AdamGNN supports
efficient mini-batch pooling and unpooling, and also pro-
vides model explanation via the multi-grained semantics.
Therefore, we believe AdamGNN’s framework is more gen-
eral, effective and scalable than G-U-Net.

3 PROPOSED APPROACH

3.1 Preliminaries
A graph with n nodes can be formally represented as
G = (V, E ,X), where V = {v1, . . . , vn} is the node set,
E ⊆ V × V denotes the set of edges, and X ∈ Rn×π
represents nodes’ features (π is the dimensionality of node
features). Besides, V and E can be summarised in adjacency
matrix A ∈ {0, 1}n×n.

For node-wise tasks, the goal is to learn a mapping
function fn : G → Z, where Z ∈ Rd, and each row
zi ∈ Z corresponds to node vi’s representation. For graph-
wise tasks, similarly it aims to learn a mapping fg : D → Z,

where D = {G1,G2, . . . } is a set of graphs, each row zi ∈ Z
corresponds to the graph Gi’s representation. The mapping
function’s effectiveness fn and fg is evaluated by applying
Z to different downstream tasks.

Primary node representation. We use Graph Convolution
Network (GCN) [16] as an example primary GNN encoder
to obtain the node representation:

H(`+1) = ReLU(D̂−
1
2 ÂD̂

1
2H(`)W(`)), (1)

where Â = A + I, D̂ =
∑
j Âij and W(`) ∈ Rn×d is a

trainable weight matrix for layer `. H(`) is the generated
node representation of layer ` which is defined as the
primary node representations H = H(`). Node represen-
tations are generated based on each target node’s local
neighbours, which are aggregated via learning based on the
adjacency matrix A. GCN cannot capture meso/macro-level
knowledge, even with stacking multiple layers. Hence we
term such generated node representations as primary node
representations.

3.2 Adaptive Graph Pooling for Multi-grained Structure
Generation
The proposed model, AdamGNN, adaptively generates a
multi-grained structure to realise the collective optimisation
between the node and graph level tasks within one unified
framework. The key idea is that apply an adaptive graph
pooling operator to present the multi-grained semantics
of G explicitly and improve the node representation gen-
eration with the derived meso/macro information. While
AdamGNN is usually performed under multiple levels of
granularity (T different grains), in this section, we present
how level t’s super graph is adaptively constructed based
on graph of level t−1, i.e., Gt−1 = (Vt−1, Et−1,Xt−1).

Ego-network formation. We initially consider the graph
pooling as an ego-network selection problem, i.e., each ego
node can determine whether to aggregate its local neigh-
bours to form a super node, resolving the dense issue of
DIFFPOOL by avoiding to use a dense assignment matrix. As
shown in Figure 2-(b)-(i), each ego-network cλ contains the
ego and its local neighbours N λ

i within λ-hops., i.e., N λ
i =

{vj | d(vi, vj) ≤ λ}, where d(vi, vj) means the shortest-
path length between vi and vj . Thus an ego-network can be
formally presented as: cλ(vi) = {vj | ∀vj ∈ N λ

i }, and a set
of ego-networks Cλ = {cλ(v1), . . . , cλ(vn)} can be generated
from G. We will investigate the impact of the ego-network
size in the ablation studies of Section 4.2

Super node determination. Given G with n nodes has n
ego-networks, forming a super graph with all ego-networks
will blur the useful multi-grained semantics and lead to a
high computation cost. We select a fraction of ego-networks
from Cλ to organise the multi-grained semantics of G. We
make the selection based on a closeness score φi that eval-
uates the representativeness of the ego vi to its local neigh-
bours vj ∈ cλ(vi). We first create a function to calculate the
closeness score φij between vi and vj :

φij = fMetric
φ (vi, vj)× fNN

φ (vi, vj)

= Sigmoid(HT[j] ·H[i])

× Softmax(−→a T σ(WH[j] ‖WH[i])),

(2)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 4

Level t+1

Level t

(a) AdamGNN Flowchart (b) AGP & GUP

(i)

(iv)

𝐿𝐿oss

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 = 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝐀𝐀,𝐀𝐀′)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐾𝐾𝐾𝐾 = 𝐾𝐾𝐿𝐿(𝑃𝑃||𝑄𝑄)

+

+

AGP

AGP
GUP

Flyback Aggregator

GNN

GNN

GNN

GUP (iii)

(ii)

Fig. 2. (a) An illustration of AdamGNN with 3 levels. AGP: adaptive graph pooling, GUP: graph unpooling. (b) An example of performing adaptive
graph pooling on a graph: (i) ego-network formation, (ii-iii) super node generation, (iv) maintaining super graph connectivity.

where ‖ is the concatenation operator, −→a ∈ R2π is the
weight vector and σ is an activation function (LeakReLU)
to avoid the vanishing gradient problem [12] during the
model training process. Consequently, nodes with similar
features and structure information to the ego will contribute
to higher closeness scores. fMetric

φ (vi, vj) = Sigmoid(HT[j]·
H[i]) is a metric function on dot product similarity, Sigmoid
ensures the proper range of output values. However, we
observed in our practical experiments that, due to the
local-smoothing speciality of the GNN encoder [22], ego
nodes often have high fMetric

φ (vi, vj) to many local neigh-
bours, leading to egos’ closeness scores with less differences.
Thus, we further add another component fNN

φ (vi, vj) =
exp(−→a T σ(WH[j]‖WH[i]))∑

vr∈Nλj
exp(−→a T σ(WH[j]‖WH[r]))

to supercharge φij to mag-

nify the closeness difference between nodes. Compared with
fMetric
φ , the neural function fNN

φ is enhanced with trainable
parameters W to be able to capture the complex relationship
pattern between ego vi’ and node vj ’s representations. The
output of fNN

φ lies in (0, 1) as a valid probability for ego-
network selection. In the end, we produce the representa-
tiveness of the ego vi as:

φi =
1

|N λ
i |

∑
vj∈Nλi

φij , (3)

where |N λ
i | indicates the number of nodes in N λ

i .
After obtaining ego-networks’ closeness scores, we pro-

pose an adaptive approach to select a fraction of ego-
networks to form super nodes without pre-defined hyper-
parameters (cf. the Top-k selection strategy [9]). Our key
intuition is that a high diameter ego-network could be com-
posed of multiple low diameter ego-networks. Therefore,
we intend first to find these low diameter ego-networks,
then recursively aggregate them to form a super node
that contains these ego-networks. Specifically, we form ego-
networks by selecting a fraction of egos N̂p as: N̂p = {vi |
φi > φj , ∀vj ∈ N 1

i }, where N 1
i means the neighbour

nodes of node vi within the first hop. Note that each node
may belong to various ego-networks since they may play
different roles in different groups. Therefore, we allow over-
lapping between different selected ego-networks and utilise

N 1
i instead of N λ

i . If we adopt N λ
i here, the selected ego

node vi cannot be involved in other ego-networks anymore.
Following this, we can select a fraction of ego-networks to
form super nodes at granularity level t.

Proposition 1. Let G be a connected graph with n nodes, and
a total number of n ego-networks can be formed from the graph
G, i.e., Cλ = {cλ(v1), cλ(v2), . . . , cλ(vn)}. Each ego-network
cλ(vi) will be assigned with a closeness score φi. Then, there exist
at least one ego-network cλ(vi) that satisfies φi > φj , ∀vj ∈ N 1

i .

Proof of Proposition 1. For G = (V, E ,X) with n nodes. n
ego-networks can be generated by following the procedures,
cλ(vi) = {j | ∀j ∈ N λ

i }, and each ego-network will be
given a closeness score φi as Equation 3. We assume that
these cluster closeness scores are not all the same, thus
there exists at least one maximum φmax. Hence, the clusters
with closeness score φmax satisfy the requirements of ego-
network selection requirement that:

φmax > φj , ∀vj ∈ N 1
max, (4)

where N 1
max = {vj | if d(vi, vj) = 1}. So, for any con-

nected G with n nodes, there exists at least one cluster
that satisfies the requirements of our ego-network selection
approach.

Proposition 1 ensures that our super node determination
method can find at least one ego-network to generate a
super graph for any graph. It guarantees the generality of
our strategy.

Meanwhile, we would also retain nodes that do not
belong to any selected ego-networks, denoted as N̂r , to
maintain the graph structure: N̂r = {vj | vj /∈ cλ(vi),∀vi ∈
N̂p}. In this way, a super node formation matrix St ∈
Rn×(|N̂p|+|N̂r|) can be formed, where (|N̂p| + |N̂r|) is num-
ber of nodes of the generated super graph, rows of St
corresponds to the n nodes of Gt−1, and columns of St
corresponds to the selected ego-networks (N̂p) plus the
remaining nodes (N̂r). We have St[i, j] = φij if node vj
belongs to the selected ego-network cλ(vi) and St[i, j] = 1
if node vj is a remaining node corresponds to node vi in
the super graph; otherwise St[i, j] = 0. The weighted super

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 5

node formation matrix St can better maintain the relation
between different super nodes in the pooled graph.
Maintaining super graph connectivity. After selecting the
ego-networks and retaining nodes in level t−1, as shown in
Figure 2-(b)-(iii-iv), we construct the new adjacent matrix
At for the super graph using Ât−1 and St as follows:
At = ST

t Ât−1St. This formula makes any two super nodes
connected if they share any common nodes or any two
nodes are already neighbours in Gt−1. In addition, At will
retain the edge weights passed by St−1 that involves the re-
lation weights between super nodes. Eventually, we obtain
a generated super graph Gt at granularity level t.
Super node feature initialisation. All nodes in the super
graph Gt need initial feature vectors to support the graph
convolution operation. Recall that we have the closeness
score as calculated in Eq. 2, between node vj to the ego
vi. However, this is not equivalent to the contribution of
node vj ’s feature to the super node feature, since we need
to compare the relationship strength between ego vi and vj
with the relation between other vr ∈ cλ(vi). Therefore, we
further propose a super node feature initialisation method
through a self-attention mechanism [32]. Specifically, it can
be described as:

Xt[i] = Ht−1[i] +
∑

vj∈cλ(vi)\vi

αijHt−1[j], (5)

where Ht−1 is the generated node representation by the
(t − 1)-th primary GNN layer, i.e., at level t − 1 with
a similar method as Equation 1, αij describes the im-
portance of node vj to the initial feature of cλ(vi) at
level t. And αij can be learned as follows: αij =

exp(−→a1
T σ(W(φijHt−1[j])‖Ht−1[i]))∑

vr∈cλ(vi)
exp(−→a1

T σ(W(φirHt−1[r])‖Ht−1[i]))
) where −→a1 ∈ R2π

is the weight vector. For the remaining nodes N̂r that do not
belong to any super nodes, we keep their representations of
Ht−1 as initial node features.

3.3 Graph Unpooling
Different from existing graph pooling models [4], [17], [27],
[38], [40] which only coarsen graphs to generate graph
representations, we aim to mutually utilise node-wise and
graph-wise tasks to better encode multi-grained semantics
into both node and graph representations under a unified
framework. We design a mechanism to allow the learned
multi-grained semantics to enrich the node representations
of the original graph G as shown in Figure 2-(a). Vice
versa, the updated node representation can further amelio-
rate the graph representation in the next training iteration.
A reasonable unpooling operation that passes macro-level
information to original nodes has not been well studied in
the literature. For instance, Gao et al. [9] directly relocate
the super node back into the original graph and utilise
other GNN layers to spread its message to other nodes.
However, these additional aggregation operations cannot
allow each node to receive meaningful information since
some nodes may be distant from super nodes, in such case
these operations can exacerbate local-smoothing [22].

We implement the unpooling process by devising a top-
down message-passing mechanism, which endows GNN
models with meso/macro level knowledge. Specifically,

since St records how nodes of Gt−1 form the super nodes
of Gt, so we utilise St to restore the generated ego-network
representation at level t to that at level t−1 until we arrive
at the original graph G, i.e., t→ 0, as follows:

Ĥt = (HT
t S

T
t S

T
t−1 . . .S

T
1)

T, (6)

where Ĥt ∈ Rn×d. At the end of each iteration, nodes in the
original graph G will receive high-level semantic messages
from the different levels, i.e., {Ĥ1, . . . , ĤT }. As illustrated
in Figure 2-(b)-(iv-i), the graph unpooling process can be
treated as an inverse process of adaptive graph pooling
process.

3.4 Flyback Aggregation
Since the super graphs at different granularity levels present
multi-grained semantics and how each node utilises the
received semantic information with its flat representation
is a challenging question. And nodes of the same graph may
need different granularity levels’ information. Therefore,
we propose a novel attention mechanism to integrate the
derived representations at different levels, given by:

Z = H+
∑
∀t

βt Ĥt, (7)

where the attention score βt estimates the impor-
tance of the message from level t, given by: βt[i] =

exp(−→a2
T σ(WĤt[i])‖H[i])))∑

j∈T exp(−→a2
T σ(WĤj [i])‖H[i])))

where −→a2 ∈ R2π is the weight

vector. We term this process as the flyback aggregation,
which considers the attention scores of different levels and
allows each node to decide whether/how to utilise semantic
information from different granularity levels. We will verify
the effectiveness of flyback aggregation in the ablation study
of Section 4.2 and discuss the explainability in Section 4.3.

3.5 Training Strategy
Till now, there are still two challenges when training the
model. The first is how to highlight the difference among
nodes’ representations from different ego-networks. Nodes
belonging to neighbouring ego-networks receive closely re-
lated messages from super nodes, since their super nodes
are connected in the super graph, and local smoothing
makes their representation vectors similar. Representations
of proximal nodes could be further closer to each other in the
representation latent space. To address this problem and en-
hance the discrimination capability between ego-networks,
we exploit a self-optimisation strategy [34], which makes
nodes in different ego-networks distinguishable. Specifi-
cally, we use the Student’s t-distribution (Q) as a kernel
to measure the similarity between representation vectors

of vj and ego vi: qij = (1+‖Z[j]−Z[i]‖2/µ)−
µ+1
2∑

i′ (1+‖Z[j]−Z[i′]‖2/µ)−
µ+1
2

, where

vj ∈ cλ(vi), vi′ are other ego nodes, µ are the degrees of
freedom of Student’s t-distribution. Following this, qij can
be integrated the probability of assigning node vj to ego
vi. In this paper, we set µ = 1 the same as [34]. After, we
propose to learn better node representations by matching
Q to the auxiliary target distribution (P), and we choose
the proposition of [34] which first raises qi to the second
power and then normalises by frequency per ego-network:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 6

pij =
q2ij/gi∑
i′ (q

2
îj
/gi′)

, where gi =
∑
j qij . Therefore, apart from

the task-related loss function Ltask, we further define a KL
divergence loss as:

LKL = KL(P ‖ Q) =
∑
vj

∑
vi

pij log
pij
qij
, (8)

The second challenge is to avoid the over-smoothing
problem that nodes of a graph tend to have indistinguish-
able representations. GNN is proved as a special form of
Laplacian smoothing [5], [22] that naturally assimilates the
nearby nodes’ representations. AdamGNN will further ex-
acerbate this problem because it distributes semantic infor-
mation from one super node representation to all nodes of
the ego network. Therefore, we introduce the reconstruction
loss, which can alleviate the over-smoothing issue and drive
the node representations to retain the structure information
of G by differentiating non-connected nodes’ representa-
tions. Specifically, the reconstruction loss is defined as:

LR = − 1

n

∑
(Aij · log(A′ij)+(1−Aij) · log(1−A′ij)), (9)

where A′ = Sigmoid(ZTZ). Therefore, the overall loss func-
tion consists of the training task LTask , the self-optimising
task LKL, and the reconstruction task LR, given by:

L = LTask + γLKL + δLR, (10)

where LTask is a flexible task-specific loss function, and
γ and δ are two hyper-parameters that we will discuss
in Section 4.1. Note that for link prediction task we have
L = LR + γLKL, since LTask equals to LR. Moreover, we
will demonstrate the effectiveness of each component of loss
function L in the ablation study of Section 4.2.

3.6 Algorithm
We have presented the idea of AdamGNN and the design
details of each component in Section 3. Given a graph G,
we first apply a primary GNN encoder to generate the
primary node embedding (line 1). Then we construct a
multi-grained structure with t-th level (line 3-13) with the
proposed adaptive graph pooling operator. Meanwhile, we
also propose a method to define the initial features of pooled
super nodes (line 14-19). The graph connectivity of the
pooled graph is maintained by line 20. We apply GNN
encoder on the pooled graph to summarise the relationships
between super nodes (line 21) to learn macro grained se-
mantics of t-th granularity level. The learned multi-grained
semantics will be further distributed to the original graph
following an unpooling operator (line 22). Last, the flyback
aggregator generates the meso/macro level knowledge from
different levels as the node representations of G (line 24),
and additional READOUT operators [7] produce the node
representations as to the graph representation (line 25).
Model scalability. According to the design for AdamGNN
framework, we can find that the primary node represen-
tation learning module of each level and the adaptive
graph pooling and unpooling operators are categorised as
a local network algorithm [29], which only involves local
exploration of the network structure. Therefore, our de-
sign enables AdamGNN to scale to representation learning
on large-scale networks and to be friendly to distributed

Algorithm 1: Adaptive Multi-grained GNNs

Input: graph G = (V, E ,X).
Output: node representations Z, graph

representations Zg
1 H = ReLU(D̂−

1
2 ÂD̂

1
2XW) ;

2 for t← {1, 2, . . . , T} do
3 for vi ← {v1, v2, . . . , vn} do
4 for vj ∈ N λ

i do
5 φij = fMetric

φ (vi, vj)× fNN
φ (vi, vj);

6 end
7 φi =

1
|Nλi |

∑
vj∈Nλi

φij ;
8 end
9 for vi ← {v1, v1, . . . , vn} do

10 N̂p = {vi | φi > φj , ∀vj ∈ N 1
i };

11 end
12 N̂r = {vj | vj /∈ cλ(vi),∀vi ∈ N̂c} ;
13 Generate the super-node formation matrix: St ;
14 for vi ∈ N̂r do
15 Xt[i] = Ht−1[i] ;
16 end
17 for vi ∈ N̂p do
18 Xt[i] = Ht−1[i] +

∑
vj∈cλ(vi)\vi αijHt−1[j];

19 end
20 At = ST

t Ât−1St ;

21 Ht = ReLU(D̂
− 1

2
t ÂtD̂

1
2
t XtWt) ;

22 Ĥt = (HT
t S

T
t S

T
t−1 . . .S

T
1)

T ;
23 end
24 Z = H+

∑T
t βt Ĥt ;

25 Zg = READOUT({Z, Ĥ1, . . . , ĤT }) ∈ Rd ;

computing settings [26]. We present instances that utilise a
multi-GPU computing framework to accelerate the training
process of AdamGNN in Section 4.3.

4 EXPERIMENTS

4.1 Experimental Setup
We evaluate our proposed model, AdamGNN, on 14 bench-
mark datasets, and compare with 16 competing methods
over both node- and graph-wise tasks, including node clas-
sification, link prediction and graph classification.

TABLE 2
Data statistics for node-wise tasks and the split for the semi-supervised
node classification task. N.A. means a dataset does not contain node

attributes or does not support semi-supervised settings.

Dataset #Nodes #Edges #Features #Classes #Train-#Val-#Test
ACM 3,025 13,128 1,870 3 60-500-1,000
Citeseer 3,327 4,552 3,703 6 120-500-1,000
Cora 2,708 5,278 1,433 7 140-500-1,000
DBLP 4,057 3,528 334 4 80-500-1,000
Emails 799 10,182 N.A. 18 180-309-310
Pubmed 19,717 88,648 500 3 60-500-1,000
Wiki 2,405 1,2178 4973 17 481-962-962
Ogbn-arxiv 169,343 1,166,243 128 40 N.A.

Datasets. To validate the effectiveness of our model on
real-world applications, we adopt datasets come from dif-
ferent domains with different topics and relations. We use
8 datasets for node-wise tasks (data statistics are sum-
marised in Table 2). Ogbn-arxiv [14], ACM [2], Cora [16],

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 7

TABLE 3
Data statistics for graph classification.

Dataset #Graphs #Nodes (avg) #Edges (avg) #Features #Classes
NCI1 4,110 29.87 32.3 37 2
NCI109 4,127 29.68 32.13 38 2
D&D 1,178 284.32 715.66 89 2
MUTAG 188 17.93 19.79 7 2
Mutagenicity 4,337 30.32 30.77 14 2
PROTEINS 1,113 39.06 72.82 32 2

Citeseer [16] and Pubmed [16] are paper citation graph
datasets. DBLP [2] is an author graph dataset from the
DBLP dataset. Emails [18] is an email communication graph
dataset. Wiki [36] is a webpage graph dataset.

For the graph classification task, we adopt 6 bioinfor-
matics datasets [40] (data statistics are summarised in Ta-
ble 3). D&D and PROTEINS are dataset containing proteins
as graphs. NCI1 and NCI109 involve anticancer activity
graphs. The MUTAG and Mutagenicity consist of chemical
compounds divided into two classes according to their
mutagenic effect on a bacterium. Note that all datasets can
be downloaded with our published code automatically.

Competing methods. For node-wise tasks, we adopt 10
competing methods that include 7 GNN models with flat
message-passing mechanism, and 2 state-of-the-art methods
that contain a hierarchical structure: MLP [11], GCN [16],
GraphSAGE [10], GAT [32], GIN [35], PNA [7], GCNII [6],
GRAND [8], GXN [21] and G-U-NET [9]. For the graph
classification task, except for GIN, PNA, GXN and G-U-NET
which support graph-wise tasks, we adopt extra 7 compet-
ing methods that involve the state-of-the-art models: 3WL-
GNN [25], SORTPOOL [43], DIFFPOOL [38], SAGPOOL [17],
EIGENTPOOL [24], STRUCTPOOL [40] and ASAP [27]. Note
that we already carefully discussed these competing meth-
ods in Section 2; therefore, we do not repeat the method
description to save page space. The competing model imple-
mentations can be found in our published project on Github.

Evaluation settings. For the node-wise tasks, we follow the
supervised node classification (Sup-NC) settings of PNA [7],
i.e., using two sets of 10% labelled nodes as validation and
test sets, with the remaining 80% labelled nodes used as
the training set. Meanwhile, we follow the semi-supervised
node classification (Semi-NC) settings of GCN [16], and the
data split is shown in Table 2. That said, for Cora, Citeseer
and Pubmed, we use the fixed splits and for other datasets,
we randomly assign 20 labelled nodes for each class for
training, and 500 and 1000 nodes for validation and testing,
respectively. Note that since the Email does not have a
sufficient number of nodes for classic Semi-NC setting, we
choose 10 labelled nodes for each class for training, and
the rest data is evenly separated as validation and test sets.
Wiki is imbalanced, where some classes only have very
few labelled nodes, e.g., class 12 has 9 labelled nodes and
class 4 has 10 labelled nodes, which cannot support Semi-
NC settings. Therefore, we follow Sup-NC settings to split
Wiki for the Semi-NC experimental parts but use only 20%
labelled nodes for training and the remaining nodes for
validation and testing, respectively. Ogbn-arxiv follows the
fixed split of OGB leaderboard [14]. For the Link Prediction
(LP) task, we follow the settings of [39], i.e., using two sets
of 10% existing edges as validation and test sets, with the
remaining 80% edges used as the training set. Note that, an

equal number of non-existent links are randomly sampled
and used for every set. We present the average performance
of 10 times experiments with random seeds. The AUC score
evaluates link prediction, and node classification tasks are
evaluated by accuracy. We conduct the experiments with
random parameter initialisation with 10 random seeds and
report the average performance.

For the graph-wise task, i.e., graph classification (GC) task,
we perform all experiments following the pooling pipeline
of SAGPOOL [17]. 80% of the graphs are randomly selected
as training, and the rest two 10% graphs are used for
validation and testing, respectively. We conduct the experi-
ments using 10-fold cross-validation and report the average
classification accuracy on 10 random seeds.
Model configuration. For all methods, we set the embed-
ding dimension d = 64 and utilise the same learning
rate = 0.01, Adam optimiser, number of training epochs
= 1000 with early stop (100). In terms of the neural net-
work layers, we report the one with better performance of
GCNII with better performance among {8, 16, 32, 64, 128};
for other models, we report the one with better performance
between 2− 4; For all models with hierarchical structure
(including AdamGNN), we use GCN as the GNN encoder
for fair comparision. In terms of the number of levels that
is required by hierarchical models, we present the one with
better performance, between 2−5. On other hyper-parameter
settings of competing methods, we employ the default val-
ues of each competing method as shown in the paper’s offi-
cial implementation. Particularly, for AdamGNN, by tuning
the hyper-parameters based on the validation set, we have
γ = 0.1 and δ = 0.01 for Eq. 10 for the experiments to
let loss values lie in a reasonable range, i.e., (0, 10). We
employ Pytorch and PyTorch Geometric to implement all
models. Experiments were conducted with GPU (NVIDIA
Tesla V100) machines.

4.2 Experimental Evaluation and Ablation Study

Performance on node-wise tasks. We compare AdamGNN
with 7 GNN models and one pooling-based model, i.e.,
G-U-NET, since other pooling approaches do not provide
an unpooling operator and thus cannot support node-
wise tasks. Results on node classification (with supervised
and semi-supervised settings) are summarised in Table 4.
They show that AdamGNN can outperform most compet-
ing methods with up to 10.47% and 5.39% improvements
on semi-supervised and supervised settings, respectively.
AdamGNN brings the most significant improvement in
Wiki data with semi-supervised settings, and the competing
method that only adopts node features, i.e., MLP, achieve
terrible accuracy, 17.46%. We argue that because the node
features and node labels are weakly correlated in this
dataset, multi-grained semantics provided by AdamGNN
help to ameliorate the performance.

Link prediction results in Table 5 show that AdamGNN
can significantly outperform the 7 competing methods by
up to 25.3% improvement in terms of AUC. It indicates the
versatility of AdamGNN on different node-wise tasks and
exhibits the usefulness of modelling multi-grained seman-
tics into node representations. Similar to node classification
task, AdamGNN again brings the most significant AUC

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 8

TABLE 4
Results in accuracy (%) for supervised and semi-supervised node classification on eight datasets. ‡ indicates the results from OGB

leaderboard [14]. The bold numbers represent the top-2 results.

Models ACM Citeseer Cora Emails DBLP Pubmed Wiki Ogbn-arxiv
Sup Semi Sup Semi Sup Semi Sup Semi Sup Semi Sup Semi Sup Semi Sup

MLP [11] 87.08 76.14 70.87 63.27 76.12 57.82 N.A. N.A. 79.17 66.55 83.41 71.83 20.42 17.46 55.50‡

GCN [16] 92.25 86.14 76.13 71.13 88.90 81.50 85.03 77.32 82.68 72.22 86.04 79.02 57.36 46.19 71.74‡

GraphSAGE [10] 92.48 87.18 76.75 71.19 88.92 81.17 85.80 78.19 83.20 72.20 86.01 79.14 57.24 49.21 71.49‡

GAT [32] 91.69 87.52 76.96 72.43 88.33 83.00 84.67 77.35 84.04 73.24 86.21 79.01 58.07 50.27 72.06
GIN [35] 90.66 85.98 76.39 70.27 87.74 82.19 87.18 79.23 82.54 73.42 87.10 79.11 66.29 49.88 71.76
PNA [7] 93.97 89.81 72.67 67.81 88.78 79.54 81.25 73.23 86.21 72.40 87.63 76.61 21.67 19.58 72.37
GCNII [6] 93.05 87.80 76.37 73.37 88.07 85.43 82.51 72.90 84.48 72.82 84.48 80.01 60.24 56.18 72.74‡
GRAND [8] 93.05 86.90 76.88 75.25 87.82 85.41 52.53 71.94 85.47 70.46 86.63 82.06 59.58 27.94 70.97
G-U-NET [9] 93.42 89.34 75.59 72.97 87.68 84.40 89.16 80.48 85.27 73.86 87.67 79.06 71.33 54.18 71.78
GXN [21] 92.95 87.70 75.93 71.07 86.90 83.10 88.68 77.91 84.66 71.27 86.02 78.01 68.90 51.89 70.02
AdamGNN 94.37 90.72 78.92 73.03 90.92 84.66 91.88 83.23 88.36 74.60 89.81 80.48 73.37 62.06 72.65

TABLE 5
Results in AUC for link prediction on seven datasets.

Models ACM Citeseer Cora Emails DBLP Pubmed Wiki
GCN [16] 0.975 0.887 0.918 0.930 0.904 0.941 0.523
GraphSAGE [10] 0.972 0.884 0.908 0.923 0.889 0.905 0.577
GAT [32] 0.968 0.910 0.912 0.930 0.889 0.947 0.594
GIN [35] 0.787 0.808 0.878 0.859 0.820 0.927 0.501
PNA [7] 0.978 0.974 0.731 0.932 0.908 0.896 0.538
GCNII [6] 0.968 0.969 0.871 0.926 0.890 0.933 0.709
G-U-NET [9] 0.890 0.918 0.932 0.936 0.934 0.962 0.734
GXN [21] 0.862 0.894 0.909 0.915 0.911 0.934 0.516
AdamGNN 0.988 0.975 0.948 0.957 0.965 0.969 0.920

TABLE 6
Results in accuracy (%) for graph classification on six datasets.

Models NCI1 NCI109 D&D MUTAG Mutagenicity PROTEINS
GIN [35] 76.17±1.12 77.31±1.42 78.05±1.89 75.11±2.64 77.24±2.26 75.37±1.62
3WL-GNN [25] 79.38±1.73 78.34±1.90 78.32±2.44 78.34±3.39 81.52±2.23 77.92±2.09
PNA [7] 78.96±1.01 79.06±1.15 75.47±2.52 81.91±2.59 81.72±1.46 77.72±2.25
SORTPOOL [43] 72.25±1.33 73.21±2.21 73.31±2.43 71.47±2.31 74.65±3.35 70.49±2.37
DIFFPOOL [38] 76.47±0.96 76.17±1.11 76.16±1.69 73.61±3.94 76.30±0.37 71.90±2.75
G-U-NET [9] 77.56±1.92 77.02±2.30 73.98±2.63 76.60±5.03 78.64±3.11 72.94±3.68
SAGPOOL [17] 75.76±1.29 73.67±2.32 76.21±1.56 75.27±1.92 77.09±1.17 75.27±0.57
EIGENPOOL [24] 77.54±1.82 77.20±1.81 78.25±1.78 76.21±2.74 78.60±1.24 75.19±1.95
GXN [21] 74.18±2.20 71.39±1.90 74.92±2.04 74.10±4.36 75.53±1.83 72.26±2.24
STRUCTPOOL [40] 77.61±1.08 78.39±1.23 80.10±1.77 77.13±3.93 80.94±1.67 78.84±1.70
ASAP [27] 78.21±1.75 78.16±1.62 79.50±1.80 80.17±1.77 81.52±1.24 78.92±1.45
AdamGNN 79.77±1.29 79.36±1.03 81.51±1.56 80.11±2.58 82.04±1.73 77.04±0.78

improvement on the Wiki dataset, i.e., achieving 29.76%
improvement compared with the flat GNN models.

Performance on graph-wise task. Experimental results are
summarised in Table 6. It is apparent that our AdamGNN
achieves the best performance on 4 of the 6 datasets, and
consistently outperforms most of competing pooling-based
techniques by 1.76% improvement. For the datasets MU-
TAG and PROTEINS, our results are still competitive since
PNA and ASAP only slightly outperform AdamGNN. Nev-
ertheless, AdamGNN is still better than other baselines. This
is because our model involves adaptive pooling and unpool-
ing operators to update node- and graph-wise information
interactively, and further enhance the representations of
nodes and graphs during the training process.

Ablation study of different loss functions. The loss func-
tion of our AdamGNN consists of three parts, i.e., LTask ,
LR and LKL. We examine how each part contributes to
the performance. Table 7 provides the results. For the link
prediction task, we have L = LR+γLKL, since LTask equals
to LR. Thus, two comparison experiments are missing in
link prediction. From the results, we can see that LR can

TABLE 7
Comparison of AdamGNN with different loss functions on three tasks.

NC task follows the supervised settings.

DBLP Citeseer Mutagenicity
(LP) (NC) (GC)

AdamGNN w/ LTask 0.956 76.63 79.04
AdamGNN w/ LTask+LKL - 77.17 78.94
AdamGNN w/ LTask+LR - 77.64 80.65
AdamGNN (Full model) 0.965 78.92 82.04

significantly improve the performance over three tasks. This
is because it can eliminate the over-smoothing problem
caused by the received messages from different granularity
levels. Meanwhile, LKL can slightly improve the results of
node-wise tasks as well.

TABLE 8
Comparison of AdamGNN with and without flyback aggregation in

terms of graph classification accuracy on NCI1, NCI109 and
Mutagenicity datasets.

AdamGNN NCI1 NCI109 Mutagenicity
No flyback aggregation 75.54 77.49 79.89
Full model 79.77 79.36 82.04

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 9

Ablation study of the flyback aggregation. Experimental
results of node-wise tasks confirm that capturing multi-
grained semantics in AdamGNN can help to learn more
meaningful node representations. Here, we further study
whether flyback aggregator can improve graph representa-
tions. Specifically, we aim to see how the flyback aggregator
contributes to graph classification performance by removing
and keeping it. The results are summarised in Table 8. It is
clear that the node representations enhanced by the flyback
aggregation can indeed improve the graph representation in
the classification task.

TABLE 9
Comparison of AdamGNN with different number of granularity levels in

terms of different tasks. NC task follows the supervised settings.

Levels (T) DBLP Wiki ACM Citeseer Emails Mutagenicity
LP LP NC NC NC GC

1 0.951 0.912 92.60 77.68 86.83 78.16
2 0.958 0.913 93.38 74.67 91.88 82.04
3 0.959 0.917 94.37 76.15 90.61 81.58
4 0.965 0.920 90.84 78.92 - 81.01

Ablation study of number of granularity levels. As it has
been proved that the existing GNN models will have worse
performance when the neural network goes deeper [22],
here we examine how AdamGNN can be benefited from
more granularity levels. By varying the number of granu-
larity levels, we report the performance of AdamGNN on
link prediction, supervised node classification and graph
classification, as summarised in Table 9. We can observe
that increasing the number of granularity levels can improve
both link prediction and node classifications. As for graph
classification, 2 levels would be a proper choice.

TABLE 10
Comparison of AdamGNN with different primary GNN encoder, follow

the semi-supervised node classification settings.

Models Cora Citeseer Pubmed
GCN 81.50 71.13 79.02
AdamGNN w/ GCN 84.66 73.03 80.48
PNA 79.54 67.81 76.61
AdamGNN w/ PNA 81.21 70.90 78.73
GCNII 85.43 73.37 80.01
AdamGNN w/ GCNII 85.81 74.13 81.37

Ablation study of different primary GNN encoders. We
adopted GCN as the default primary GNN encoder in
model presentation (Section 3) and previous experiments.
Here, we present more experimental results by endowing
AdamGNN with advanced GNN encoders in Table 10. The
table demonstrates that advanced GNN encoders can still
benefit from the multi-grained semantics of AdamGNN.
For instance, GCNII can stack lots of layers to capture
long-range information; however, it still follows a flat
message-passing mechanism hence naturally ignoring the
multi-grained semantics. AdamGNN further ameliorates
this problem for better performance.
Ablation study of Ego-network size (λ). The size of an
ego-network as defined in Section 3 is captured by λ. We
present an ablation study to investigate the influence of
λ on AdamGNN’s performance, results are summarised
in Figure 3. The figure indicates that λ has no significant
influence on the model performance. We simply adopt λ=1
throughout the paper.

1 2 3 4
Ego-network size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Node classification

Cora
wiki

1 2 3 4
Ego-network size

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

Link prediction

ACM
Emails

1 2 3 4
Ego-network size

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

Graph classification

NCI1
MUTAG

Fig. 3. Ablation study of Ego-network size λ in terms of different tasks.
NC task follow the supervised settings.

4.3 More Model Analysis

Running time comparison. We present the average epoch
training time of different node and graph classification
models in Table 11 and Table 12, respectively. In terms of
node classification task, AdamGNN requires more training
time due to the computation cost of αij and βt, similar to
any attention-mechanism enhanced models [31]. However,
AdamGNN is designed as a local network algorithm, main-
taining good scalability; hence it can be easily accelerated by
mini-batch and multi-GPUs computing frameworks [15]. It
will significantly mitigate the computational issues. On the
other hand, AdamGNN follows the sparse design similar to
SAGPOOL, ASAP, striking a balance between performance
improvement and maintaining proper time efficiency. DIFF-
POOL and STRUCTPOOL employ a dense mechanism that is
not easily scalable to larger graphs [4], and G-U-NET uses
convolution operations, which bring additional computa-
tion cost, to distribute the received information to the graph.

TABLE 11
Average one epoch running time (in seconds) for supervised node

classification task. (×2) means accelerated by 2 GPUs [15].

Models ACM Citeseer Cora
GCN 0.008 0.008 0.009
GAT 0.010 0.011 0.011
GCNII 0.045 0.040 0.041
G-U-NET 0.076 0.064 0.069
AdamGNN (×1) 0.087 0.072 0.074
AdamGNN (×2) 0.059 0.050 0.052
AdamGNN (×3) 0.050 0.047 0.048

TABLE 12
Average one epoch running time (in seconds) for graph classification

task.

Models NCI1 NCI109 PROTEINS
DIFFPOOL 6.23 3.22 3.65
SAGPOOL 1.95 1.55 0.45
G-U-NET 4.58 4.45 1.46
EIGENPOOL 3.88 3.54 1.38
ASAP 2.04 1.83 1.09
STRUCTPOOL 6.31 6.04 1.34
AdamGNN 3.62 3.24 1.03

Messages from different levels. We aim to figure out
the importance of received messages from different gran-
ularity levels since messages from different levels contain
the meso/macro-level knowledge encoded by super nodes.
Here we consider the node classification on the ACM and
DBLP as an example. Specifically, ACM’s paper nodes are
labelled with 3 topics: database (DB), data mining (DM) and
wireless communication (WC); DBLP’s author nodes have 4

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 10

ACM

DBLP

N
od

e
ID

N
od

e
ID

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

Fig. 4. Visualisation of attention weight for messages at different gran-
ularity levels. Dark colours indicate higher weights.

research areas: AI, DB, DM and computer vision. The node
classification task on these two datasets is predicting the
paper/scholar’s research area. The attention scores of nodes
that highlight the importance of different levels’ messages
are plotted in Figure 4. We can find different distributions
of attention weights over different granularity levels for
various areas’ classifications. The relatively general topics,
i.e., AI and WC, receive messages from different levels with
relatively indistinguishable weights, i.e., higher attention
scores of nodes are distributed across levels. The DM topic
in two datasets has different attention patterns: it receives
messages from level 1 with the greatest attention in ACM
but receives greatest attention messages from level 3 in
DBLP. This is because DM is not closely related to the other
two topics of ACM dataset, Scholars of DM-related papers
are less possible collaborate with researchers from DB or
WC. DM papers are close to each other in the network.
Thus DM papers only need to receive level 1 granularity se-
mantic information summarised from neighbouring nodes.
In contrast, DBLP’s other 3 topics are close to DM. DM-
related scholars may cite any other scholars’ papers, and
information related to DM is scattered over author nodes
in DBLP network. Therefore, DM researchers tend to be
characterised by level 3 semantics from a wide range.

0 1 2 3 4 5
Granularity level

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
nu

m
be

r o
f n

od
es

0 1 2 3 4 5
Granularity level

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
nu

m
be

r o
f e

go
-n

od
es

ACM
Citeseer

Cora
Emails

DBLP
Pubmed

wiki

Fig. 5. Visualisation of different granularity levels.

Visualisation of different granularity levels. To better
understand the process of learning multi-grained semantics,
we report the relative numbers of nodes (i.e., node ratio
concerning the original graph) at different granularity levels
generated by AdamGNN in 7 datasets, as shown in Figure 5.
In particular, we set the max number of granularity levels
as 5, and level 0 indicates the original graph. We train

TABLE 13
Performance comparison for 1-shot-NC task on Karate-club dataset.

Model 1-Layer 2-Layers
GCN 65.26 69.74
AdamGNN (1-level) 88.65 97.91

AdamGNN with semi-supervised node classification and
report the relative number of nodes and selected ego-nodes
at each level. In the right, we can find out that the number
of ego-nodes can stay stable after 1−2 times of our adaptive
pooling which indicates that AdamGNN can effectively find
a compact structure that contains multi-grained semantics.
In the left, we can see that the number of nodes of each
level stabilises after 3− 4 times of our adaptive pooling
which illustrates AdamGNN will maintain the graph size
at a proper level to avoid dense super graph.

Fig. 6. Visualisation of the adjacency matrices stacking the 1-st (green),
2-nd (blue), and 3-rd (yellow) granularity levels on the Wiki dataset.

Visualisation of adjacency matrices at different granular-
ity levels. One of the fundamental limitations of existing
GNNs is the inability of capturing long-range node interac-
tions in the graph [20]. We find that AdamGNN can provide
a possible solution to overcome this limitation. AdamGNN
allows nodes to receive messages from far-away nodes with
the support of the adaptive multi-grained structure. That
said, the learned multi-grained structure can be regarded as
a kind of short-cuts to let far-away nodes be aware of each
other. We visualise these short-cut connections at different
levels on the Wiki dataset in Figure 6. Figure-level 0 plots
the original adjacency matrix, Figure-level 1 exhibits the
learned short-cuts by the first pooled super graph (in green).
Similarly, figure-levels 2 and 3 present the derived short-
cuts by further stacking the adjacency matrices of the second
(in blue) and third (in yellow) pooled graphs, respectively.
We can clearly see that the original graph of the Wiki dataset
is very sparse, and AdamGNN adds short-cuts between
nodes with the help of the learned multi-grained structure.
In this way, AdamGNN allows nodes to capture global
information with few adaptively pooled graphs.

Exploration of short-cuts of AdamGNN. To explore the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 11

Adjacency Matrix– Level 1
(with Short-cuts)

Adjacency Matrix – Level 0

Example node

: Labelled training nodes Example node

Fig. 7. Visualisation of network structure and adjacency matrix at
different granularity levels of Karate-club dataset

short-cuts derived by AdamGNN, we perform another
empirical analysis on one additional network, i.e., the
Karate [41] club network. We choose 1-shot NC as target task,
where we randomly select one sample from each class as
training set, an equal number nodes as validation set and the
rest nodes for test. Network structure, experimental results
is summarised in Table 13 and two adjacency matrices are
shown in Figure 7. Short-cuts derived by the first pooled
super graph are depicted in green in the level 1 adjacency
matrix. We find that AdamGNN outperforms GCN on 1-
shot NC task with up to 40.5% performance improvements.
The two figures in the right part of Figure 7 clearly demon-
strate that the short-cuts derived by AdamGNN make the
example node aware of far-away nodes.

Target node

AGP

Pooled node

Aggregation in AdamGNNAggregation in
Vanilla GNNs

Aggregation rooted tree
Of 1 layer Vanilla GNN

Aggregation rooted tree
of AdamGNN

𝑣𝑣𝑎𝑎

𝑣𝑣𝑎𝑎

𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎

Target node

GUP

Level 1

Level 0

Fig. 8. A toy example of the aggregation schemas of vanilla GNNs (left)
and AdamGNN (right).

Comparing aggregation mechanisms. To demonstrate the
internal aggregation mechanism of AdamGNN and figure
out the reason that it leads to performance improvements
as shown in Section 4.2, we give a toy example of the
aggregation schemas in vanilla GNNs and AdamGNN. As
shown in Figure 8, 1-layer vanilla GNN can only capture
limited information as presented in the left rooted tree.
Nevertheless, thanks to the adaptive hierarchical structure
learned by AdamGNN, target nodes can receive multi-
grained semantics as well as endowed with the ability to
capture information from nodes from a long-range. For in-
stance, node va’s message cannot be obtained by target node
with a few-layers vanilla GNN, but AdamGNN allows the
target node to receive va’s information with 1 granularity
level. The level 1’s graph allows the super node to receive
a message from node va and pass it to the target nodes by
flyback aggregator.

5 CONCLUSION

To summarise, we proposed AdamGNN, a method that
integrates multi-grained semantics into node representa-
tions and realises collective optimisation between node- and
graph-wise tasks in one unified process. We have designed
an adaptive and efficient pooling operator with a novel
ego-network selection approach to encode the multi-grained
structural semantics, and a training strategy to overcome
the over-smoothing problem. Extensive experiments con-
ducted on 14 real-world datasets showed the promising
effectiveness of AdamGNN on node- and graph-wise down-
stream tasks. One future direction is to appropriately apply
the adaptive multi-grained structure on heterogeneous net-
works for node and graph level tasks.

ACKNOWLEDGMENTS

This work is supported by the Luxembourg National Re-
search Fund through grant PRIDE15/10621687/SPsquared,
and supported by Ministry of Science and Technology
(MOST) of Taiwan under grants 110-2221-E-006-136-MY3,
110-2221-E-006-001, and 110-2634-F-002-051.

REFERENCES

[1] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. L. Reutter, and J. P.
Silva, “The logical expressiveness of graph neural networks,” in
Proceedings of the 2020 International Conference on Learning Represen-
tations (ICLR). OpenReview.net, 2020.

[2] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural
deep clustering network,” in Proceedings of the 2020 International
Conference on World Wide Web (WWW). ACM, 2020, pp. 1400–
1410.

[3] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proceedings of the
2014 International Conference on Learning Representations (ICLR).
OpenReview.net, 2014.

[4] C. Cangea, P. Velickovic, N. Jovanovic, T. Kipf, and P. Liò,
“Towards sparse hierarchical graph classifiers,” CoRR, vol.
abs/1811.01287, 2018.

[5] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks
from the topological view,” in Proceedings of the 2020 AAAI Confer-
ence on Artificial Intelligence (AAAI). AAAI, 2020.

[6] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and
deep graph convolutional networks,” in Proceedings of the 2020
International Conference on Machine Learning (ICML). JMLR, 2020.

[7] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Velickovic, “Princi-
pal neighbourhood aggregation for graph nets,” in Proceedings of
the 2020 Annual Conference on Neural Information Processing Systems
(NeurIPS). NeurIPS, 2020.

[8] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang,
E. Kharlamov, and J. Tang, “Graph random neural networks for
semi-supervised learning on graphs,” in Proceedings of the 2020 An-
nual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2020.

[9] H. Gao and S. Ji, “Graph u-nets,” in Proceedings of the 2019
International Conference on Machine Learning (ICML). JMLR, 2019.

[10] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in Proceedings of the 2017 Annual
Conference on Neural Information Processing Systems (NIPS). NIPS,
2017, pp. 1025–1035.

[11] S. Haykin, “Neural networks: A comprehensive foundation,”
Knowledge Engineering Review, 1999.

[12] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” Int. J. Uncertain.
Fuzziness Knowl. Based Syst., vol. 6, no. 2, pp. 107–116, 1998.

[13] Y.-L. Hsu, Y.-C. Tsai, and C.-T. Li, “Fingat: Financial graph atten-
tion networks for recommending top-k profitable stocks,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2022 12

[14] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open graph benchmark: Datasets for machine
learning on graphs,” in Proceedings of the 2020 Annual Conference on
Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

[15] T. Kaler, N. Stathas, A. Ouyang, A. Iliopoulos, T. B. Schardl, C. E.
Leiserson, and J. Chen, “Accelerating training and inference of
graph neural networks with fast sampling and pipelining,” CoRR,
2021, abs/2110.08450.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of the 2017 Inter-
national Conference on Learning Representations (ICLR). OpenRe-
view.net, 2017.

[17] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in
Proceedings of the 2019 International Conference on Machine Learning
(ICML). JMLR, 2019.

[18] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[19] B. Li, X. Fan, J. Pang, and J. Zhao, “A model to slice java programs
hierarchically,” Journal of Computer Science and Technology, vol. 19,
no. 6, pp. 848–858, 2004.

[20] G. Li, M. Müller, G. Qian, I. C. Delgadillo, A. Abualshour, A. K.
Thabet, and B. Ghanem, “Deepgcns: Can gcns go as deep as cnns?”
in Proceedings of the 2019 IEEE International Conference on Computer
Vision (ICCV). IEEE, 2019, pp. 9267–9276.

[21] M. Li, S. Chen, Y. Zhang, and I. W. Tsang, “Graph cross networks
with vertex infomax pooling,” in Proceedings of the 2020 An-
nual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2020.

[22] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in Proceedings of the
2018 AAAI Conference on Artificial Intelligence (AAAI). AAAI, 2018,
pp. 3538–3545.

[23] H. Liu, Y. Yang, and X. Wang, “Overcoming catastrophic forget-
ting in graph neural networks,” in Proceedings of the 2021 AAAI
Conference on Artificial Intelligence (AAAI). AAAI, 2021.

[24] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in Proceedings of the 2019 ACM
Conference on Knowledge Discovery and Data Mining (KDD). ACM,
2019, pp. 723–731.

[25] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Prov-
ably powerful graph networks,” in Proceedings of the 2019 An-
nual Conference on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2019, pp. 2153–2164.

[26] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “GCC: graph contrastive coding for graph neural
network pre-training,” in Proceedings of the 2020 ACM Conference
on Knowledge Discovery and Data Mining (KDD). ACM, 2020, pp.
1150–1160.

[27] E. Ranjan, S. Sanyal, and P. P. Talukdar, “ASAP: adaptive structure
aware pooling for learning hierarchical graph representations,”
in Proceedings of the 2020 AAAI Conference on Artificial Intelligence
(AAAI). AAAI, 2020.

[28] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “Graphaf:
a flow-based autoregressive model for molecular graph genera-
tion,” in Proceedings of the 2020 International Conference on Learning
Representations (ICLR). OpenReview.net, 2020.

[29] S. Teng, “Scalable algorithms for data and network analysis,”
Foundations and Trends in Theoretical Computer Science, vol. 12, no.
1-2, pp. 1–274, 2016.

[30] V. Thost and J. Chen, “Directed acyclic graph neural networks,” in
Proceedings of the 2021 International Conference on Learning Represen-
tations (ICLR). OpenReview.net, 2021.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the 2017 Annual Conference on Neural Information
Processing Systems (NIPS). NIPS, 2017, pp. 5998–6008.

[32] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proceedings of the 2018
International Conference on Learning Representations (ICLR). Open-
Review.net, 2018.

[33] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-
prehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2020.

[34] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embed-
ding for clustering analysis,” in Proceedings of the 2016 International
Conference on Machine Learning (ICML). JMLR, 2016, pp. 478–487.

[35] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proceedings of the 2019 International
Conference on Machine Learning (ICML). JMLR, 2019.

[36] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Proceedings
of the 2015 International Joint Conferences on Artifical Intelligence
(IJCAI). IJCAI, 2015, pp. 2111–2117.

[37] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang, “Under-
standing negative sampling in graph representation learning,” in
Proceedings of the 2020 ACM Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 2020, pp. 1666–1676.

[38] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” in Proceedings of the 2018 Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2018, pp. 4805–
4815.

[39] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural
networks,” in Proceedings of the 2019 International Conference on
Machine Learning (ICML). JMLR, 2019.

[40] H. Yuan and S. Ji, “Structpool: Structured graph pooling via
conditional random fields,” in Proceedings of the 2020 International
Conference on Learning Representations (ICLR). OpenReview.net,
2020.

[41] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of Anthropological Research, 1977.

[42] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proceedings of the 2018 Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2018, pp. 5171–
5181.

[43] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Proceedings
of the 2018 AAAI Conference on Artificial Intelligence (AAAI). AAAI,
2018.

[44] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A
survey,” IEEE Transactions on Knowledge and Data Engineering, 2020.

Zhiqiang Zhong is currently a Postdoctoral Re-
searcher at the Department of Computer Sci-
ence, Aarhus University, Aarhus, Denmark. He
received his Ph.D. degree (2022) from University
of Luxembourg. His principal research interest is
in Graph Machine Learning, Biomedicine Design
and Social Network Analysis.

Cheng-Te Li is an Associate Professor at In-
stitute of Data Science, National Cheng Kung
University (NCKU), Tainan, Taiwan. He received
his Ph.D. degree (2013) from Graduate Institute
of Networking and Multimedia, National Taiwan
University. Before joining NCKU, He was an As-
sistant Research Fellow (2014-2016) at CITI,
Academia Sinica. Dr. Li’s research targets at
Machine Learning, Deep Learning, Data Mining,
Social Media Analysis, Recommender Systems,
and Natural Language Processing. He has a

number of papers published at top conferences, including KDD, WWW,
ICDM, CIKM, SIGIR, IJCAI, ACL, EMNLP, and NAACL.

Jun Pang is currently a Senior Researcher at
Faculty of Science, Technology and Medicine &
Interdisciplinary Centre for Security, Reliability
and Trust, University of Luxembourg, Luxem-
bourg. He received his Ph.D. degree from Vrije
Universiteit Amsterdam in 2004. His research
interests include formal methods, social media
mining, computational systems biology, security
and privacy.

http://snap.stanford.edu/data

	introduction
	Related Work
	Proposed Approach
	Preliminaries
	Adaptive Graph Pooling for Multi-grained Structure Generation
	Graph Unpooling
	Flyback Aggregation
	Training Strategy
	Algorithm

	Experiments
	Experimental Setup
	Experimental Evaluation and Ablation Study
	More Model Analysis

	Conclusion
	References
	Biographies
	Zhiqiang Zhong
	Cheng-Te Li
	Jun Pang

