
A Formal Software Development Approach Based on

COOZ and Re�nement Calculus

Wang Yunfeng Li Bixin Pang Jun Zha Ming Zheng Guoliang �

National Key Laboratory for Novel Software Technology at Nanjing University

Nanjing, 210093, PR China

E-mail: zhenggl@nju.edu.cn

Abstract

Including Re�nement Calculus into COOZ complements its disadvantage during design and im-

plementation. The apartment between design and implement for construct and notation is removed

as well. Then the software can be developed smoothly in the same frame. There is not corespondent

object-oriented construct in existing Re�nement Calculus. The combination of COOZ and Re�ne-

ment Calculus can build an object-oriented frame, in which the speci�cation in COOZ is re�ned

stepwise to code by calculus. In the paper ,two development models are argued ,which are based

mainly on COOZ and Re�nement Calculus respectively. The �rst model is debated primarily. The

data re�nement and operation re�nement is analyzed by example; the two method of operation re-

�nement for OO formal speci�cation is discussed simply; the frame transition rule from COOZ to

C++ is argued.

1 Introduction

In early 90s, to extend speci�cation Z with object-oriented is a hot point in the �eld and several
extensions to Z is argued[1]. COOZ [2]is a object-oriented extension to Z that is based on the former
with more advantage and desirable technology. Such speci�cation can then be used as a basis for a
provably corrected development of the program.

The development can be conducted in small step, thus allowing the unavoidable complexity of
the �nal program to be introduced in manageable pieces. The process, called re�nement, by which
speci�cations are transformed into program has been extensively studied.

The extension from Dijkstra's language to the re�nement calculus was made by R.J.R Back
(1978)[3],then redeveloped independently by J.M.Morris [4], C.C.Morgan[5] .

Previous attempts to address in formal development fall into two categories. In the �rst, a special-
ized calculus is developed within Z or COOZ to allow algorithm re�nement. The second approach
involves a translation stage in which the Z speci�cation is transformed into another notation , which
is more amenable to re�nement. Both of the approaches seem somewhat wasteful, on one hand,
because the translation stage needs much e�ort but not contribute directly to development, and
on the other because so much work has gone into the development of various
avors of re�nement
calculus which already exist.

So, for re�nement of objected-oriented speci�cation, we hope to develop a approach which inte-
grate the Morgan's re�nement calculus seamlessly. Since Z can not support implement of the system
directly, that how to develop executable program from Z speci�cation has been a valuable research
�eld.

The advantage of COOZ is to specify a large scale software, but not support re�nement by
calculating and need to proof in re�nement. But the proof is very hard for OO speci�cation,

�This work supported by National Natural Science Foundation of China.

especially for the large an complex one. Thus its application is con�ned and it can not be taken as the
whole method for software development. Including Re�nement Calculus into COOZ complements
its disadvantage during design and implement. The apartment between design and implement for
construct and notation is removed as well. Then the software can be developed smoothly in the
same frame. There is not corespondent object-oriented construct in existing Re�nement Calculus.
The combine of COOZ and Re�nement Calculus can built a object-oriented frame, in which the
speci�cation in COOZ is re�ned stepwise to code by calculus.

In the paper ,two development model is argued ,which are based mainly on COOZ and Re�ne-
ment Calculus respectively. The �rst model is debated primarily. The data re�nement and operation
re�nement is analyzed by example; the two method of operation re�nement for OO formal speci-
�cation is discussed simply; the frame transition rule from COOZ to C++ is argued. For second
model ,a class model and the class data re�nement calculus is argued, which can be as a base of OO
extension for Re�nement Calculus.

2 COOZ and Re�nement Calculus Notation

� COOZ (Complete Object-Oriented Z)

COOZ[2], an object-oriented extension to Z, which stands for "Complete Object-Oriented Z", as a
way of combining formal methods with object- oriented techniques. A class schema (Figure1)includes
class name, class parameter, list of super class, object interface, local de�nition, state schema, ini-
tialization schema, method schema and class invariant.An example is given(Figure2), which models
the students in a exercise class. Where just the registering method Enroll �OK is given ,the others
are omitted.

ClassClassnameTypeParameters

SuperclassList

ObjectInterfaces

LocalDe�nitions

AnonymousStateSchema

InitializeSchema

MethodSchemas

Real � TimeandHistoryConstraints

Figure 1. Class Schema in COOZ

[Student]

max : N

max � 0

ClassStudent

� � �

y ;n : PStudent

y \ n = fg
#y [n � max

� � �

Enroll �OK

�ClassStudent

s? : Student

s?y [n

y 0 = y

n 0 = n [fs?g

Figure 2. class schema ClassStudent

The calculus includes a speci�cation statement in addition to the usual executable constructs.
This integration of speci�cation and exection in one languange is the key to a smooth development
process.

� Speci�cation statement

One program statement that is particularly important in the re�nement calculus is the speci�cation
statement, which provides a convenient way of embedding abstract speci�cation into programs. The
frame of the statement (x) is a variables list that can be updated, all other variables must remain
unchanged. The speci�cation statement is de�ned as:

wp[x : [pre; post];P] � (pre \ 8 x � post) P)

Abstract Speci�cation (COOZ)

Abstract Program(COOZ,Re�ne. Cal.)

Algorithm (Re�nement Calculus)

Executable Code(C++,...)

?

?

?

data re�nement calculus

op re�nement calculus

system transformation

a. Develpment Mode 1

Abstract Speci�cation (COOZ)

Abstract Program(OO Re�ne. Cal.)

Algorithm (OO Re�nement Calculus)

Executable Code(C++,...)

?

?

?

transformation

data re�nement calculus

op re�nement calculus

b. Develpment Mode 2

Figure 3. development model

� Data re�nement

Data re�nement can be viewed as a special case of program re�nement, in which the abstract
local variables of a program are replaced by the concrete set of variables, while the structure of
the program remains largely unchanged. It is also useful to have a direct data re�nement relation
between components of the abstract and concrete program. More recently still, the relational
approach has been generalized to allow the abstract and concrete state spaces to be related an
arbitrary program [6]This program is called a simulation if it converts from the abstract state space
the concrete, or a co-simulation if it converts from the concrete state space the abstract. In the
following discussion we assume that the state space of program S is variable to be re�ned (a) with
some globe variables (g) and the state space of program S' is the concrete variables (c) with g,
where a, c and g are all disjoint.We choose any predicate transformer sim that takes predicate on
the variables a, g to predicates on the variables c, g. For program P and P',P is data re�ned by P',
written as P � P 0.

Data re�nement de�nition 1: P � P 0 i� sim; P v P 0; sim
Where the operator ';' is functional compositional (of predicate transformers). In fact the above
sim is a co-simulation. If the sim is a simulation, then the data re�nement id de�ned as:

Data re�nement de�nition 2: P � P 0i� P ; sim� v sim�; P 0

3 Software Development Model 1

The development starts from the software speci�cation in COOZ. (see Figure 3 (a)) By re�nement
calculus of state schema and operation schema in the class, the abstract level is reduced stepwise
until the enough concrete speci�cation is archived. The model is based on COOZ frame. Firstly,
to specify the system in COOZ, transforming the operation schema into speci�cation statement,
then after the state schema re�ned , the operation re�ned is calculated by data re�nement calculus.
According to the re�nement law, the data re�ned speci�cation statement is operation re�ned and
the abstract program in COOZ frame is archived. At last , the abstract program is transformed
into a programming language code, such as C++.

� Data Re�nement

By data re�nement ,abstract class A is re�ned by class C, noted as A v C . But in Z and COOZ,
the process need to be proofed[10]. As the re�nement calculus included, the operation schema in
A can be noted as speci�cation statement, after state schema in a re�ned , the correct operation
in C can be calculated and no more proof. Morgan [7] extended the program de�nition by taking

both speci�cation and code as program. In the program, unexecutable code which will be re�ned
is noted by speci�cation statement. We extend that by allowing include mathematic data type
into the program, which is called abstract program. There is a directed corespondent relation be-
tween speci�cation statement and operation schema in COOZ. In operation schema, the changeable
variable is noted as 4Id list , for the predicates, the deference precondition is apart by a line and
the precondition and postcondition is apart by a key word if. So the operation schema can be
transformed into speci�cation statement automatically. The speci�cation statement is modi�ed:
for deferent preconditions, given the postcondition respectively. Then in a speci�cation statement,
there are several pairs [pre, post]. For example , The operation schema in Figure 2 Enroll-OK can
be transformed into a speci�cation statement:

n : [s? 62 y [n;n = n0 [fs?g] (3:1)
where n0 notes the reference to pre-state variable n. The concrete representation for the sets given
in the speci�cation of Figure 2 will consist of two arrays, one for students, and one for boolean
values, and a counter to say how much of the arrays is in use. It is intended that the values in the
second array will be true for those who have done the exercises ,and false for those who have not.
The arrays is modeled by total functions whose domain is the index set (1..max). Then the class
schema ClassStuden is re�ned as ClassStudent-1, the state schema in which is given as Figure 4:

cl : 1 : :max ! Student

ex : 1 : :max ! Bool

num : 0 : :max

((1 : : num)C cl) 2 (N 7 7� Student)

Figure 4.state schems of ClassStudent

classclassname : ancestor names

fpublic: constants
class attributes

methods signature g
classname :: classname()fini valg
methods implementation

classname ::� classname()f g

Figure 5. class frame of COOZ in form of
C++

The concrete state invariant says that there will be no duplicates in the �rst num elements of the
array of students. The retrieve relation ,relating the concret and abstract states, is as follow:

R � (y = fi : 1::num j (exi) = true � (cli)g) ^ fi : 1::num j (exi) = false � (cli)g
Following the data re�nement ,and with R and formula (3.1),the operation on state of Fig.5 can be
calculated.

n : [s? 62 y [n;n = n0 [fs?g]
� cl ; ex ;num : [9n �R ^ s? 62 y [n; 9n � R ^ n = n0 [fs?g]
= cl ; ex ;num : [(num < max) ^ (s? 62 f1::num(clig); (num = num0 + 1)^
(cl = cl0((num(s?))((ex = ex0((num(false))] (3.2)

>From formula (3.2), we can get the re�ned operation schema in ClassStudent-1 easily.

� Operation Re�nement

For OO formal speci�cation, the operation has two contents: The �rst is based on Re�nement
Calculus, by which following re�nement law, the speci�cation is re�ned stepwise into executable
code. The second is based on OO technology: following subtyping de�nition, re�ning the class by
subtype inheritance. Both of above can re�ne the class, but the �rst is about re�nement of the
implement, and the second is usually con�ned in speci�cation. Including re�nement calculus into
COOZ will combining the above methods, and will not distinguish the speci�cation and the code
in re�ning. For example, the data re�ned operation schema, i.e. the corespondent speci�cation
statement (3.2) is re�ned into executable code easily by re�nement law of Morgan:

(3:2) v num; cl [num + 1]; ex [num + 1] = num + 1; s ; false

� Program Frame Translation

The re�ned speci�cation in COOZ is composed by numbers of Class schema. It has a well core-
spondent relation with the class structure of an OO programming language such as C++. Taking

C++ as a target language, following shows how to transform the re�ned abstract program into the
programing language code. The following explains how to transform Class schema into the class
in C++. The general form of Class schema, it can be re�ned as Figure4, the class in C++, where
ancestor names ; constants ; class attributes ;methods signature; initial values ;methods implementation

in COOZ are transformed by Superclass List ,Local De�nitions,Anonymous State Schema ,inter-
face,Initialize Schema,Method Schemas respectively, the transform way is as :
ancestor-names are archived by putting the key word public ahead of every class name in Superclass

List

constants are archived by putting the key word const and constant type name ahead of every constant

name in the class.

class-attributes are archived by putting the state variable type ahead of every state variable in Anony-

mous State Schema

methods-signature is archived directly since massage name, massage parameter name, parameter

type ,and result type given in Object Interface.

initial-values is archived by rewriting Initialize Schema as speci�cation statement.

methods-implementation is archived by rewriting every operations schema as speci�cation statement

and putting message parameter in message interface ahead of them.

destruct function is left for extension .

Following the above, the Class schema can be translated into the class frame of C++ automati-
cally by the tools.

4 Software Development Model 2

The developing model 2 is based on re�nement calculus mainly. (see Figure 3(b)) The advantage
of COOZ is to specify a large scale software, but not support re�nement by calculating and need
to proof in re�nement. But the proof is very hard for OO speci�cation, especially for the large a
complex one. So �rstly ,the speci�cation in COOZ is transformed to abstract program in re�nement
calculus, then in the re�nement calculus frame ,it is re�ned stepwise into executable code by date
re�nement and operation re�nement. We extend the re�nement calculus by objects, classes [8].
Following gives a class model in re�nement calculus, de�nes the data re�nement calculus ,which can
be a basis for OO extension of re�nement calculus in development model 2.

� class model

Class A is re�ned by class C if any property of objects of class A is also a property of objects of
class C. This means that class C has all methods of class A with corresponding parameters. Firstly
,for list of variables a ,the initialization formula Ia , and list of method Ma we model a class A
as [Sa j Ia � Ma], where Sa represents states of class A. For class invariant Ivn, Sa is de�ned as
[Vara j 8 a � Inv] For predicate Q not containing free variable a ,it is de�ned as:

De�nition 4.1:[Sa j Ia �Ma]Q == (((Sa(Ia(< Ma > Q)
Where < Ma > Q likes wp[Ma;Q], which means west pre-condition for Q, but former is con�ned
in the class, it must holds the class invariant. Given Ma = a : [pre; post],class invariant Inv,

< Ma > Q = (pre ^ Inv) ^ (8 a � post) Inv ^Q)
De�nition 4.2: Class re�nement De�nition Given A and C are classes of the same type, Class A

is re�ned by class C, i.e. A v C , we mean
[Sa j Ia �Ma] v [Sc j Ic �Mc]

� Data re�nement between class

As explaining above, the data re�nement transforms an abstract block to a concrete one, here it
means transformation from a abstract class to the concrete one. We assume that the concrete
variable c do not appear in the abstract class A, and vice versa .The class re�nement has following
feature: The abstract variable declaration var a are replaced by concrete variable declaration var c.
The abstract initialization Ia is replaced by a concrete initialization Ic . The abstract method Ma

,referring to variable a not c, is replaced by the concrete method Mc referring variable c, more over
,the algorithmic structure of Ma is reproduced in Mc.

De�nition 4.3 : Data re�nement De�nition a class A is data re�ned by another class C ,abstract
variable a and concrete variable c,

sim; Ma v Mc; sim
We write this relation Ma � Mc, The data re�nement de�nition can be proofed that it guarantees
the re�nement between classes, i.e. it is sound.

Theorem 4.1 soundness of class data re�nement: for suitable sim ,and Ma �Mc then
[Sa j Ia �Ma] v [Sc j Ic �Mc]

The recent trend in formal program development is to calculus program from their speci�cations;
that contrasts with proving that a given program satis�es some speci�cation By De�nition 3,we can
calculate data re�nement rather than prove them. The following is a theorem for data re�nement
by calculus in the class:

Theorem 4.2 a : [pre; post] � c : [sim(pre); sim(post)]
The proof of above theorems is in [8].

5 Conclusion and Future Work

For formal methods, the main concern is to get a precise, concise and unambiguous formal
speci�cation. At present, the abstract description language is the key part of formal methods.In the
formal speci�cation of each class, the data is described with abstract data structure of COOZ, and
the operations are de�ned with pre and post conditions.

In fact, just the frame and the theory base of the two development models are researched. Many
concrete technologies need to be studied. software reuse is one main characteristic of object-oriented
method. In the re�nement of class, we should use the implemented class in the class library as far
as possible.

The model presented here requires the supports of tools, which include prototyping tools, man-
agement tools for class library, and re�nement tools for formal speci�cation. In fact, it is di�cult for
any software methods to be of practical use without the support of integrated CASE. The further
work is to provide necessary tools and appropriate environment. The work is being done now.

References

[1] S. Stepney, R. Barden and D. Cooper, editors. Object Orientation in Z. Workshops in Com-

puting , London: Springer-Verlag. 1992.

[2] Yuan Xiaodong, Hu Deqiang, Xu Hao, Li Yong and Zheng Guoliang. COOZ: an complete
object-oriented extension to Z. ACM Software Engineering Notes, 1998, Vol.23(4):78 81

[3] R.J.R.Back. On the Correctness of Re�nement in Program Development. PhD thesis, Depart-
ment of Computer Science, University of Helsinki, 1978. Report A-1978-4.

[4] J.M.Morris. A theoretical basis of stepwise re�nement and programming calculus. Science of

Computer Programming. 9(2)287-306,1987.

[5] C.C.Morgan. The speci�cation statement. ACM Transaction on Programming Language and

systems ,10(3):403-419,July 1988.

[6] P.H.B.Gardiner and C. Morgan. Data re�nement of predicate transformers. Theoretical Com-
puter Science,87:143-162,1991.

[7] C. C. Morgan. Programming from Speci�cations, second edn. Prentice Hall, 1994.

[8] Wang Yunfeng et.al. On re�nement of formal object-oriented speci�cation. In Xu Baowen et.al.
editors,proceedings of The Fifth International Conference for Young Computer Scientists. Nan-
jing ,China, International Academic Publisher,1999 .

