
Extending A Key-Chain Based Certified Email
Protocol with Transparent TTP

Zhiyuan Liu
University of Luxembourg &

Shandong University

Jun Pang
University of Luxembourg

Chenyi Zhang
University of Luxembourg &

University of New South Wales

Abstract—Cederquist et al. proposed an optimistic certified
email protocol, which employs key chains to reduce the storage
requirement of the trusted third party (TTP). We extend their
protocol to satisfy the property of TTP transparency, using exist-
ing verifiably encrypted signature schemes. An implementation
with the scheme based on bilinear pairing makes our extension
one of the most efficient certified email protocols satisfying strong
fairness, timeliness, and TTP transparency.

I. INTRODUCTION

Certified email (CEM) protocols, as an extension of regular
email services, require that both senders and receivers be
responsible for their roles in the email services. That means, as
a protocol successfully runs to the end, neither the sender can
deny the dispatch of the email, nor can the receiver deny the
receipt. Such requirements are usually implemented by a non-
repudiable evidence of origin (EOO) that is to be acquired by
the receiver, and a non-repudiable evidence of receipt (EOR)
that is to be acquired by the sender. Both the EOO and the
EOR may serve as evidences in case of a dispute, in order to
prove the participation of the other party.

As a special class of fair exchange protocols [1], a CEM
protocol is supposed to guarantee fairness with respect to
non-repudiable evidences. Informally, at the end of a fair
protocol run, either both parties acquire all the evidences, or
no party gets an evidence. A trusted third party (TTP) might
be introduced to take charge of the whole procedure and to
provide undeniable records of submission (of the sender) and
delivery (of the receiver). However in this way, a TTP may
easily become a bottleneck, if she has to be involved in a
large number of CEM services. A better solution, so called
optimistic protocols [2], helps to release this burden from a
TTP. In the optimistic protocols, a TTP is only required to
be involved in case of unexpected events, such as a network
failure or one party’s misbehaviour, to restore fairness. In
such situations, a TTP may digitally sign some pieces of
information, which will be used later as evidences to guarantee
that the protocol ends in a fair state. If both the signer and
the receiver behave correctly and there is no presence of
significant network delays, a CEM protocol terminates suc-
cessfully without intervention of the TTP. A typical structure
of an optimistic CEM protocol consists of an exchange sub-
protocol, an abort sub-protocol and a recover sub-protocol.
The exchange sub-protocol is executed by the communicating
parties to deliver an email as well as exchanging undeniable

evidences. The other sub-protocols are launched by a party to
contact a TTP to deal with awry situations.

TTP transparency states that if a TTP has been contacted
to help in a protocol, the resulting evidences will be the
same as those obtained in the case where the TTP has
not participated. In other words, by simply looking at the
evidences, it is impossible to detect whether the TTP has been
involved or not. Transparent TTPs are important and useful
in practice, for instance, to avoid bad publicity. Besides, in
many situations, an institution does not necessarily keep the
up-to-date signatures or affidavits from all trusted services
(especially when a TTP, who is trusted by the two parties
involved in the protocol, may not be trusted by an external
judge who is to verify the presented evidences). Moreover, this
property also ensures privacy of the participants for asking for
help from TTPs. In the context of CEM protocols, the use of a
transparent TTP was first proposed by Micali [3], followed by
a number of works [4], [5], [6], [7], [8], [9], [10], [11], [12],
in which different cryptographic schemes are used to achieve
TTP transparency, such as interactive proof of knowledge on
the encrypted signatures, Schnorr-like signature schemes, and
RSA-based encryption schemes.

In this paper, we focus on the development of a CEM
protocol with a transparent TTP. Our starting point is the key-
chain based protocol of Cederquist et al. [13]. The use of
key chains is to reduce TTP’s storage requirement. Our study
exposes a weakness in the original protocol, for which we
propose a fix. Later we extend Cederquist et al.’s protocol to
satisfy the transparency of TTP, adopting a recently introduced
verifiably encrypted signature scheme [14]. We are able to
show, by a detailed comparison, that our protocol is one of
the most efficient CEM protocols satisfying TTP transparency,
in addition to the other important properties such as strong
fariness, effectiveness, and timeliness.

Structure of the paper. We shortly explain security properties
for CEM protocols in Sect. II. The CEM protocol using
key chains is briefly described in Sect. III. Our extension
with transparent TTP and its security analysis are detailed
in Sect. IV. We compare our proposed protocol with some
state-of-the-art CEM protocols supporting TTP transparency
in Sect. V. We conclude the paper in Sect. VI.



II. SECURITY REQUIREMENTS

A CEM protocol needs to protect a participant who is
honest, i.e., his behaviour strictly follows the protocol speci-
fications. To this point, for the sake of readability, we write
Alice for the sender and Bob for the receiver of an email.
We assume the communication channels are resilient, in the
sense that every message is guaranteed to reach its destination
eventually. The following properties are typically required by
an optimistic CEM protocol.1

Effectiveness. If no error occurs then the protocol successfully
runs till the end without any intervention from TTP.

Timeliness. Both Alice and Bob have the ability to eventually
finish the protocol anywhere during the protocol execution.
This is to prevent endless waiting of an honest party in case
of unexpectancies.

Fairness. Honest Alice (Bob) will get her (his) evidences,
provided that the other party gets the evidence from her (him).2

The evidences can be used to convince an adjudicator (who
is not TTP) that Bob has received the mail, in Alice’s case,
or that Alice is the true sender of the message, in Bob’s
case. A protocol satisfies strong fairness if every judgement
on Bob’s (Alice’s) non-repudiation can be made solely and
independently from Alice’s (Bob’s) evidences, i.e., it does not
necessarily involve TTP, nor the participation of Bob (Alice).
If besides Alice’s (Bob’s) evidences, either TTP or Bob (Alice)
needs to be contacted during the adjudication, the protocol
only satisfies weak fairness.

TTP transparency. The evidence that each participant obtains
is of the same format regardless of whether TTP is involved
in the protocol execution or not.

III. A CERTIFIED EMAIL PROTOCOL USING KEY CHAINS

We describe the certified email protocol proposed by Ced-
erquist et al. [13]. It makes use of key chains to reduce
TTP’s storage requirement. Once a key chain is initialized
between two communication parties, the initiator can use any
key within it to encrypt messages. Each exchange that uses the
protocol is called a protocol round, and one initialisation phase
followed by a number of protocol rounds is called a protocol
session. Each protocol session belongs to a unique pair of
communication parties. We focus on the main idea of the
protocol, with its details available in the original paper [13].

We use {M}sk to denote a message m encrypted with a
symmetric key k, and (M)P to denote party P ’s signature on
message M .3

A. Key chain generation
In optimistic CEM protocols, communicating parties will

request TTP for help if the exchange process is disrupted.
To achieve (strong) fairness, the TTP often needs to store
sufficient amount of information, to have the ability to decrypt,

1There are more properties, such as confidentiality, stateless TTP, account-
ability, and high performance, which we do not discuss in this paper.

2Note that only honest participants need to be protected.
3In practice a signature is always applied on a hashed value.

Fig. 1. A key chain.

retrieve or send out information for the protocol to finally reach
a fair state. In most existing CEM protocols, the initiator uses
either TTP’s public key [7] or a separate key [9] to encrypt the
email for each exchange. This first method normally requires
asymmetric key operations, which are more expensive than
symmetric key operations. The second method gives TTP
burden of storing information of exchanges, such as involved
parties, a hash value of email content and so on [15].

To reduce the TTP’s burden of storing too much infor-
mation, the protocol [13] uses key chains. A chain of keys
is a sequence of keys K ′0, . . . ,K

′
n (see Fig. 1), such that

K ′i := H(Gi(K0)) for each i ≥ 0, where K0 is the seed,
H : κ → κ is a publicly known one-way collision-resistant
hash function and G : κ → κ is a publicly known acyclic
function (κ is a key domain). H and G functions are non-
commutative, i.e., given an H(Ki) for which Ki is unknown,
it is infeasible to compute H(G(Ki)).

B. Initialisation
To initialise a session, the initiator Alice (A) sends the

key chain seed K0 and the identity of the potential responder
Bob (B), together with a nonce nc to the TTP (T ). TTP will
check whether there already exists an entry 〈A,B,K0, ?〉 in
her database indicating whether the key chain has been estab-
lished. If yes, TTP just ignores this request. Otherwise, TTP
will choose a session identity sid, send a cert := (A,B, sid)T
to Alice, and store 〈A,B,K0, sid〉 in her database.

C. Exchange sub-protocol
The ith protocol round in a protocol session sid is described

below. The round number i is initially 0 and can arbitrarily
grow, Alice increments i after each round.

1ex. A→ B : A,B, T, i, sid, h(K ′i), {M}sK′
i
,EOOM , cert

2ex. B → A : EORM
3ex. A→ B : K ′i
4ex. B → A : EORK′

i

where EOOM := (B, T, i, sid, h(K ′i), {M}sK′
i
)A, EORM :=

(EOOM )B , EORK′ := (A,K ′i, {M}sK′
i
)B and h is just an

ordinary hash function.
At first, Alice sends out message 1ex to Bob. After receiving

this, Bob checks the correctness of the signature on EOOM
and cert. If both are correct, Bob then commits himself to
receiving the email by sending out message 2ex. When Alice
receives 2ex, she checks the signature on EORM . If correct,
Alice will send out K ′i to Bob. Upon receiving the key, Bob
checks whether this key matches the hash value of the key that
he received in message 1ex. If yes, Bob decrypts the email



and sends out a confirmation EORK′ to indicate that he has
received the key and the email.

D. Recovery sub-protocol
Both Alice and Bob have the right to run recovery sub-

protocol by showing EORM . The recovery sub-protocol is
mainly run with the aim of acquiring key K ′i or evidence
EORK′ with the help of TTP. Typically, Alice runs the
recovery sub-protocol when she sends out key K ′i while not
receiving message 4ex, and Bob runs it when he sends out
EORM while not receiving K ′i.

After receiving a recovery request from a party p ∈ {A,B}
of the form:

1r. P → T : fr, A,B, h(K ′i), h({M}sK′
i
), i, sid,EORM

where fr is a flag used to identify the recovery request,
TTP checks several things such as correctness of signatures,
identities, entries for the key chain. If all checks succeed,
TTP can retrieve K0 and check whether h(H(Gi(K0)))
matches h(K ′i). If yes, TTP checks the status of round
status(i), indicating whether the exchange i has been resolved
or aborted. Essentially, if status(i) has not been set, TTP
will set it as h({M}sK′

i
) and send back a recovery token

(A,B, h({M}sK′
i
),K ′i, i, sid)T to the requester. If the round

is aborted (status(i) = a), TTP will send back an abort token
(A,B, h({M}sK′

i
),⊥, i, sid)T . If the status is different from

h({M}sK′
i
) or any of the above tests fails, TTP will send back

an error message in the form of (error, (error,mr)T ), where
mr is the content of the message in step 1r. This error message
indicates a misbehaviour and P can quit the protocol round.

E. Abort sub-protocol
Only Alice can abort, provided that the protocol has not

yet been recovered. Typically, Alice aborts if she does not
receive message 2ex. To abort an exchange, Alice sends TTP
the following message:

1a. A→ T : fa, A,B, i, sid, h({M}sK′
i
), abrt

where fa is a flag used to identify the abort request and
abrt is Alice’s signature on the abort request. After receiving
this request, TTP checks several things such as correctness of
signatures, identities, entries for the key chain, and status(i) to
make decisions. If status(i) has not been initialised, TTP will
set it as aborted (status(i) := a) and send back an abort token.
If the round is recovered, TTP checks whether status(i) =
h({M}sK′

i
). If yes, TTP will send back a recovery token.

Otherwise, an error message of the form (error, (error, abrt)T )
is sent back.

F. Evidences and dispute resolution
When a disputation occurs, two parties can provide evi-

dences to an external judge. For each protocol round i, EOO
(evidence of origin) desired by Bob consists of

A,B, T,M, i, sid,K ′i,EOOM .

EOR (evidence of receipt) desired by Alice consists of

A,B, T,M, i, sid,K ′i, cert,EORM ,EORK′

if it is obtained by running the exchange sub-protocol. If Alice
uses the recovery/abort sub-protocol, then EORM and EORK′

will be replaced by the recovery token. In this case, EOR has
the form of

A,B, T,M, i, sid,K ′i, cert, (A,B, h({M}sK′
i
),K ′i, i, sid)T .

As already remarked [13], the protocol is not TTP transparent,
due to the fact that an observer can tell whether TTP was
involved by simply checking EOR.

G. A vulnerability of the protocol

We found a vulnerability in the protocol. This vulnerability
is mainly due to the form of EORK′ that does not include any
information about the current protocol round i. An EORK′ in
such form can be reused in different protocol rounds, which
causes problems on fairness.

Bi+1 A Bi

EOOMi := (B, T, i, sid, h(K ′
i+1), {M}s

Ki+1
)A

A, B, T, i, sid, h(K ′
i+1),

EOOMi , {M}s
Ki+1

, cert

EOOMi+1 := (B, T, i + 1, sid, h(K ′
i+1), {M}s

Ki+1
)A

A, B, T, i + 1, sid, h(K ′
i+1),

EOOMi+1 , {M}s
Ki+1

, cert

EORMi
:= (EOOMi)B

EORMi

EORMi+1 := (EOOMi+1)B

Recover

EORMi+1

K ′
i+1

EORK′
i+1

:= (A, K ′
i+1, {M}s

K′
i+1

)B

EORK′
i+1

msc

1

Fig. 2. A vulnerability on the CEM protocol using key chains.

Fig. 2 depicts a situation where dishonest Alice breaks
strong fairness of honest Bob by reusing EORK′ . This attack
requires multiple protocol rounds, which is sketched as fol-
lows. Alice first initiates an exchange i by sending out 1ex, in
which she uses K ′i+1 instead of K ′i to encrypt the message, and
gets the corresponding EORM , then does nothing for round i.
Alice initiates another round i + 1 with Bob, and behaves
honestly in order to acquire correct EORM and EORK′ for
round i + 1. Alice does this just because EORK′ in both
rounds i and i + 1 have exactly the same form, which is
(A,K ′i+1, {M}sK′

i+1
)B . At this moment, Alice has acquired all

the necessary evidences for round i, leaving Bob in an unfair
state. If Bob initiates a recovery sub-protocol, TTP will send
back nothing but an error message because of the mismatch
between h(K ′i) and h(K ′i+1). As a result, for round i, strong
fairness is broken. To fix this problem, we revise EORK′ to be
of the form (A, i,K ′i, {M}sK′

i
)B , which includes the protocol

round i.



IV. TRANSPARENT TRUSTED THIRD PARTY

We present a solution to extend the protocol in the previous
section to support transparency of TTP. Our approach requires
the usage of a verifiably encrypted signature scheme to encode
Bob’s commitment to receive the email in message 2ex.
Notations. We write (M)B|T for Bob’s verifiably encrypted
(partial) signature on M , by using the public key of TTP
to encrypt Bob’s signature on M . Everyone can verify that
(M)B|T is authentic, but only TTP and Bob are able to extract
the complete signature (M)B out of (M)B|T .
Exchange sub-protocol. The modified exchange sub-protocol
is as follows:
1ex. A→ B : A,B, T, i, sid, h(K ′i), {M}sK′

i
,EOOM , cert

2ex. B → A : EOR
1
2
M

3ex. A→ B : K ′i
4ex. B → A : EORM

where EOR
1
2
M is (EOOM )B|T . After receiving EORM , Bob

sends out his partial signature on EOOM to show his commit-
ment to receive the email. If Alice further sends Bob the key
K ′i, Bob will deliver a full signature back to Alice as EOR.
Abort and recovery sub-protocols. Alice is allowed to abort
provided that she has sent out message 1ex, but has not
received message 2ex from Bob. Once honest Alice and Bob
contact TTP, they are not allowed to continue the exchange
sub-protocol any longer.

Alice is allowed to launch the recovery sub-protocol pro-
vided she has sent out message 3ex, but has not received
message 4ex. Similarly, Bob can launch the recovery sub-
protocol if he has sent out message 2ex, but has not received
message 3ex. The first message of the recovery sub-protocol
for Alice is

1rA. A→ T : fr, A,B, h(K ′i), h({M}sK′
i
), i, sid,EOR

1
2
M ,EOOM

where fr is a flag used to identify the recovery request. The
first message of the recovery sub-protocol for Bob is

1rB . B → T : fr, A,B, h(K ′i), h({M}sK′
i
), i, sid,EORM ,EOOM

On receipt of a message for recovery, TTP needs to
check (1) the correctness of (verifiably encrypted) signatures
on EOOM and EORM (EOR

1
2
M ), (2) the identity of TTP,

and (3) whether there is an entry in its database matching
〈A,B, ?, sid〉. If all the above checks succeed, TTP will
retrieve K0 and (4) check whether h(H(Gi(K0))) matches
h(K ′i). If yes, TTP will check status(i) for round i.
• If status(i) has not been initialised, TTP will set

status(i) := h({M}sK′
i
). Whenever necessary TTP con-

verts EOR
1
2
M into EORM . After that, TTP sends out the

following messages.

2r. T → B : K ′i, (K
′
i)T

3r. T → A : EORM

• If status(i) = h({M}sK′
i
), then TTP performs step 2r

and step 3r (again).

• If status(i) = a, TTP sends out the abort token to the
one that launched the protocol.

2r. T → A(B) : abrt, (abrt)T

If any of the tests (1), (2), (3) and (4) fails, TTP ignores the
recovery request and sends back an error message.

2r. T → A(B) : error, (error,mr)T

where mr is the whole message received in step 1rA or 1rB .
Evidences and dispute resolution. When a disputation occurs,
two parties can provide evidences to an external judge. For
each protocol round i, EOO (evidence of origin) desired by
Bob consists of

A,B, T,M, i, sid,K ′i,EOOM .

EOR (evidence of receipt) desired by Alice consists of

A,B, T,M, i, sid,K ′i, cert,EORM .

A. Security Analysis

As a special feature, the key chain provides an opportunity
for Alice and TTP to have a predefined infinite list of symmet-
ric keys. We assume that K0, the seed of the chain, is a secret
between Alice and TTP during related protocol executions. We
restrict our attention to a single protocol round. For multiple
rounds a weakness related to key chains has been identified
and fixed in Sect. III, but the same vulnerability does not apply
in the revised protocol in which EORK′

i
is no longer used. In

the following we informally justify that the revised protocol
satisfies the claimed security properties.
Non-repudiation and fairness. If in round i Alice possesses
EORM , we need to show that Bob must receive {M}sK′

i
, K ′i

and EOOM in the same round i. There are three cases.
1) Alice receives EORM from Bob in message 4ex, i.e.,

only the exchange sub-protocol is initialised and it
successfully runs to the end, during which Bob obtains
EOOM , {M}sK′

i
and K ′i.

2) Alice receives EORM from message 3r by launching the
recovery sub-protocol herself, i.e., sending out 1rA. Then
Alice must possess EOR

1
2
M from Bob’s message 2ex,

which means Bob must have received 1ex and obtained
both EOOM and {M}sK′

i
. Also in the recovery sub-

protocol, TTP must have sent message 2r from which
Bob obtains K ′i.

3) Alice receives EORM from message 3r by Bob launch-
ing the recovery sub-protocol. Then Bob must have
received 1ex and have shown EOOM to TTP, i.e., Bob
obtains both EOOM and {M}sK′

i
, and in message 2r

Bob receives K ′i from TTP.
Furthermore, in case of a dispute, EORM alone from Alice is
sufficient to prove that Bob has received M .

If in round i Bob possesses M , EOOM and K ′i, we need to
show that (1) Alice must receive EORM in the same round i,
and (2) Alice is the true sender of M . We know Bob can only
receive {M}sK′

i
and EOOM from 1ex. There are two cases.



1) Bob receives K ′i from Alice, then the exchange sub-
protocol runs at least up to message 3ex. Bob may send
4ex to Alice which contains EORM . If Bob does not
send out 4ex, Alice can always get EORM from TTP by
launching the recovery sub-protocol.

2) Bob receives K ′i from TTP in the recovery sub-protocol.
No matter who lauched the recovery sub-protocol, Alice
gets EORM in message 3r (from TTP).

As to the authenticity of the message M , Bob is able to
convince every third party that M is indeed from Alice by
verifying Alice’s signature on EOOM , after extracting M
from {M}sK′

i
with Ki. Note that K ′i is also verified as its

hashed value is contained in EOOM too. Since presenting
(M,EOOM ,K

′
i) is sufficient for Bob to prove that M is

originally from Alice, together with the above EORM case
for Alice, the protocol satisfies strong fairness.

Effectiveness. Suppose both Alice and Bob are honest, so that
they faithfully follow the protocol in round i, and no error
occurs, e.g., there is no significant network delays. It is obvious
that only the exchange sub-protocol is launched, and it will
stop at a state in which Alice obtains EORM , and Bob obtains
both M and EOOM .

Timeliness. In round i Alice can always launch the abort
sub-protocol after she sends out message 1ex, so that TTP
will send back either an abort token or EORM depending on
whether a recovery message has already arrived at TTP or
not. Bob can launch the resolve sub-protocol any time after
he receives message 1ex and will get either an abort token or
K ′i, depending on the communication between Alice and TTP.
The resilient channels between TTP, Alice and Bob guarantees
that the above procedures terminate in a timely manner.

Transparency of TTP. If the exchange sub-protocol success-
fully runs to the end, Alice’s evidence is EORM , and Bob’s
evidences are M , EOOM and K ′i.
• Suppose the recovery sub-protocol is launched by Al-

ice, then Alice must have message 2ex which contains
EOR

1
2
M , and Bob must have message 1ex which contains

{M}sK′
i

and EOOM . If TTP successfully verifies EOOM

and EOR
1
2
M , TTP will convert EOR

1
2
M into EORM and

send it back to Alice. Consequently TTP sends K ′i to Bob.
In this case both Alice and Bob have the same evidences
as only the exchange sub-protocol is launched.

• Suppose the recovery sub-protocol is launched by Bob,
then Bob must have message 1ex. If TTP successfully
verifies EOOM and EORM , TTP will forward EORM to
Alice, and send K ′i to Bob, so that they get the same
evidences in this case too.

In the next section, we discuss a particular signature scheme
and our motivation to implement it in our protocol.

B. Verifiably Encrypted Signature Schemes

There is a variety of fair exchange protocols with verifiably
encrypted signatures (sometimes also called convertible sig-
natures) existing in the literature. Some of the earliest, such

as Asokan et al. [16], Bao et al. [17], Boyed and Foo [18],
and Camenisch and Damgård [19], apply interactive proof
of knowledge on the encrypted signatures, such that more
message exchanges are required in the protocols. Several
later approaches use Schnorr-like signature schemes to wrap
up signatures, such as by Ateniese and Nita-Rotaru [6], or
RSA-based encryption schemes, such as by Markowitch and
Kremer [4]. The GPS+RSA scheme used in [4] has been
shown an attack by Cathalo et al. [20]. Another attack on
fairness proposed by Bao [21] is applicable on a few of the
signature schemes discussed in [22]. More recently, pairing
algorithms for solving the Decision Diffie-Hellman problem in
Gap Diffie-Hellman groups have been introduced to generate
verifiably encrypted signatures [23], [14]. We briefly sketch
the scheme of [14] as follows.

Let G1 be a cyclic additive group generated by P with
prime order q, and G2 be a cyclic multiplicative group with
the same order q. Let e : G1 × G1 → G2 be a pairing
operation satisfying bilinearity, i.e., e(aX, bY ) = e(X,Y )ab

for all X,Y ∈ G1 and a, b ∈ Zq . The signature scheme is
as follows. Suppose G1, G2, P , e, q and H are all publicly
available, where H : {0, 1}∗ → {0, 1}λ is a cryptographic
hash function and λ is the (private) key length. A user sets
up x ∈ Zp as his secret key, and X = x · P for the
corresponding public key. A signature on message M is S =

1
H(M)+x ·P . To verify the signature, one only needs to check
if e(H(M) · P +X,S) = e(P, P ), note that e(H(M) · P +
x ·P, 1

H(M)+x ·P ) = e(P, P )(H(M)+x)· 1
H(M)+x , by bilinearity.

To produce a verifiably encrypted signature, suppose TTP has
private key y ∈ Zq and public key Y = y · P ∈ G1, the new
signature on M becomes S′ = 1

H(M)+x ·Y , with TTP’s public
key replacing G1’s group generator P . To verify one only
needs to check if e(H(M)·P+X,S′) = e(P, Y ). TTP is able
to get the true signature S by computing y−1 · S′, where y−1

is the inverse of TTP’s private key y (in G2). Note that when
applying this scheme to our extended protocol, both e(P, P )
and e(P, Y ) can be precomputed, thus reduces computation
cost for a whole session.

We choose the algorithm in [14] since it requires fewer
pairing operations than that of [23]. Moreover, there exist effi-
cient pairing algorithms that implements pairing operations on
elliptic curve-based point groups consuming time comparable
to that of the RSA signatures of the same security level. It was
studied in [24] that one 256-bit (prime field) pairing operation
takes about 15 million clock cycles on a Core 2 Duo proces-
sor, which is the most expensive operation in the signature
scheme.4 According to [25], a 3072-bit RSA encryption (with
a small exponent) takes about 620, 000 and a decryption takes
about 28.6 million cycles on a Core 2 Duo processor.5 In

4One 256-bit (prime field) pairing operation takes roughly 43 times as much
as that of one point scalar multiplication [24], therefore, we ignore low cost
operations such as point scalar multiplication and inverse operation in such
signature schemes.

5If we implement the exponentiation algorithm by using Chinese Remainder
Theorem, it will take roughly 22 million cycles with the mpz_powm_sec()
function on a Core 2 Duo processor [25], which is still of comparable speed.



Protocol Scheme Fairness Timeli. #msg #op

IS02 [5] generic strong∗ No 3 4
Micali03 [7] generic strong∗ weak 3 4
Wang06 [9] generic weak Yes 3 2
MK01 [4] RSA-based strong∗ Yes 4 7
AN02 [6] RSA-based strong No 4 7

NZB04 [8] RSA-based strong∗ No 4 4
MLCL06 [10] RSA-based strong∗ No 4 8

HL08 [12] RSA-based strong No 4 6
LCLQ08 [11] bilinear pair strong No 4 5
Our protocol bilinear pair strong Yes 4 3

TABLE I
AN OVERVIEW OF CEM PROTOCOLS SATISFYING TTP TRANSPARENCY.

practice, 3072-bit RSA signatures are of comparable security
strength to 256-bit pairing-based signatures.

V. RELATED WORK

Our protocol supports TTP transparency, i.e., on the com-
pletion of a protocol run, the final structure and contents of
the evidences possessed by both parties do not reveal whether
TTP has intervened in the protocol or not. There are a number
of CEM protocols in the literature (e.g. [4], [5], [6], [7], [8],
[9], [10], [11], [12]) that supports the transparency of TTP,
as listed in Tab. I. The protocol presented in this paper is
the only one that satisfies strong fairness, timeliness and TTP
transparency with a relatively low cost, to our knowledge.

In the above table, if the correctness of a protocol does not
depend on any class of signature schemes, we write down that
the protocol is generic. In such cases, the particular signature
scheme is irrelevant, and the usage of verifiably encrypted
signature or convertible signature is not required. We use
“strong∗” to indicate that it is claimed in the paper that the
protocol satisfies strong fairness, but there exist attacks in the
literature showing that the claim is invalid. All the protocols
in the table satisfy TTP transparency, but they differ on other
security properties such as timeliness and fairness. We also
make comparisons on the number of messages as well as the
computational costs as required by the protocols. We write
“#msg” for the number of messages in the exchange sub-
protocol and “#op” for the amount of computation equivalent
to the number of RSA signature operations, i.e., we interpret
other cryptographic operations as the number of RSA signa-
tures referring to the best existing algorithms in the literature.

A. Timeliness

Only three protocols support timeliness (those of Wang [9],
Markowitch and Kremer [4] and ours). In most cases the lack
of timeliness is due to the fact that Alice is not allowed to
abort after the first message. This design may trap Alice in a
handicapped state, waiting forever on Bob’s reply, without any
effective ways to escape. Micali’s protocol [7] satisfies weak
timeliness by using a cut-off time, which indicates a deadline
moment to resolve in a protocol run, in order to prevent endless
waiting. However, this might cause problems if Alice and Bob
cannot correctly estimate time differences between their local

clocks and TTP’s clock. Furthermore, in a real situation such
mechanisms might enforce Bob to contact TTP as early as
possible instead of replying to Alice if Bob is keen to proceed
the current run.

B. Fairness

All the protocols except Wang’s satisfy (or claim to satisfy)
strong fairness. Wang’s protocol [9] is not strongly fair, since
when Alice is presenting Bob’s EOR from the second message,
the adjudicator has to contact either TTP or Bob in order to
confirm that Alice has not aborted in the current run. If Alice
has successfully aborted before Bob launches the recovery sub-
protocol, and Alice has received the second message, Bob
will not be able to obtain the key if Alice refuses to send
out the third message. Micali’s protocol [7] and Imamoto and
Sakurai’s protocol [5] are vulnerable to replay attack if Bob
colludes with an outsider [26]. Both protocols in the work of
Markowitch and Kremer [4] are shown to be unfair by the
work of Gürgens et. al [15], in the way that if Bob colludes
with an outsider, he is able to gain access to the message M
without sending EORM back to Alice, by recovering the other
protocol run with the outsider.6 Moreover, the GPS scheme
used by the second protocol in [4] has been proved insecure
by Cathalo et al. [20]. Nenadić et al.’s protocol applies a
particular RSA based verifiable encryption scheme, which has
been shown by Ma et al. [10] that Bob is able to send an invalid
partial signature which is undetectable by Alice and which is
not recoverable by TTP. However the protocol in [10] is also
identified with a similar attack by Hwang and Lai [12]. So far
there exist no attacks on the fairness of Ateniese’s protocol [6],
Hwang et al.’s protocol [12] and Liang et al.’s protocol [11].

C. Efficiency

We concentrate on the amount of computation that involves
in the exchange sub-protocol. The overloads of the abort and
recovery sub-protocols are not considered, since those events
are supposed to occur rarely. We define one operation as one
3072-bit RSA signature operation. As to the RSA scheme,
the most time-consuming operation is modular exponentiation,
and the ratio of the time taken for a modular exponentiation
operation to the time taken for a single modular multiplication
is linearly proportional to the exponent’s bit length [27].
Therefore, we ignore single modular multiplications and the
less time consuming algorithms such as symmetric encryp-
tion/decryption and hashing in protocols. As to pairing op-
eration, just as Sect. IV-B states, in practice one 256-bit
pairing operation can be faster than generating one 3072-
bit RSA signature. As a conservative estimation we assume
that verifying one pairing-based signature, the most time-
consuming operation, also takes one operation. We omit the
time used to generate a pairing-based signature as well as that
used to verify an RSA-based signature in the analysis. For
generic protocols we assume the RSA 3072-bit signature is

6This attack does not work on our key-chain based approach, because every
key-chain is uniquely associated to a pair of sender and receiver. Bob and the
colluding party are unable to recover from TTP unless Alice is involved.



used. In practice, they may choose faster schemes such as
those of 256-bit elliptic curve cryptography (ECC) signatures.

From Tab. I, we conclude that the first three generic schemes
are the most efficient, since they only need three messages in
the exchange sub-protocol and at most 4 operations in compu-
tation. Nevertheless, none of them achieves TTP transparency,
strong fairness and timeliness at the same time. As to the other
four RSA based protocols, the number of operations varies
from 4 to 8. In our protocol, it takes time equivalent to only
3 operations, since only 3 pairings are required (Bob needs to
verify Alice’s signature in message 1ex, Alice needs to verify
Bob’s signature in message 4ex and Bob’s encrypted signature
in message 2ex). A signing operation in pairing-based scheme
takes negligible amount of time. From Tab. I, only our protocol
achieves all the three desirable properties – strong fairness,
TTP transparency and timeliness – with a relatively low cost.

VI. CONCLUSION

We have proposed a TTP transparent CEM protocol, as an
extension of Cederquist et al.’s protocol using key chains. To
achieve this, we used a verifiably encrypted signature scheme
based on bilinear pairing. Comparing to the existing CEM
protocols, ours is among the most efficient ones satisfying ef-
fectiveness, strong fairness, timeliness, and TTP transparency.

The security analysis of the protocol in the paper is carried
out in an informal way. In fact, the vulnerability on the original
key chain based protocol [13] was found by a model checking
exercise in Mocha [28]. We have verified strong fairness and
timeliness of our protocol. In the future, we will study how
to specify TTP transparency and formally check it. Another
possible future work is to prove that it is impossible for an
optimistic three-message CEM protocol to satisfy both strong
fairness and strong timeliness.

Acknowledgement. We want to thank Sjouke Mauw for discus-
sions on CEM protocols and David Galindo for discussions on
verifiably encrypted signature schemes. Especially, we thank
Johann Großschädl for experimental results on comparing
efficiency of pairing operations and RSA signature operations.

REFERENCES

[1] J. A. Onieva, J. Zhou, and J. Lopez, “Multiparty nonrepudiation: A
survey,” ACM Computing Surveys, vol. 41, no. 1, pp. 1–43, 2008.

[2] N. Asokan, M. Waidner, and M. Schunter, “Optimistic protocols for fair
exchange,” in Proc. 4th ACM Conference on Computer and Communi-
cations Security (CCS). ACM, 1997, pp. 7–17.

[3] S. Micali, “Certified email with invisible post offices,” 1997, an invited
presentation at the RSA’97 conference.

[4] O. Markowitch and S. Kremer, “An optimistic non-repudiation protocol
with transparent trusted third party,” in Proc. 4th Conference on Infor-
mation Security (ICISC), ser. LNCS, vol. 2200. Springer, 2001, pp.
363–378.

[5] K. Imamoto and K. Sakurai, “A certified e-mail system with receiver’s
selective usage of delivery authority,” in Proc. 3rd Conference on
Cryptology in India (INDOCRYPT). Springer, 2002, pp. 326–338.

[6] G. Ateniese and C. Nita-Rotaru, “Stateless-recipient certified e-mail sys-
tem based on verifiable encryption,” in Proc. The Cryptographer’s Track
at RSA Conference 2002 (CT-RSA), ser. LNCS, vol. 2271. Springer,
2002, pp. 182–199.

[7] S. Micali, “Simple and fast optimistic protocols for fair electronic
exchange,” in Proc. 22th Annual Symposium on Principles of Distributed
Computing (PODC). ACM, 2003, pp. 12–19.

[8] A. Nenadić, N. Zhang, and S. Barton, “Fair certified e-mail delivery,” in
Proc. 19th ACM Symposium on Applied Computing (ACM-SAC). ACM,
2004, pp. 391–396.

[9] G. Wang, “Generic non-repudiation protocols supporting transparent off-
line TTP,” Journal of Computer Security, vol. 14, no. 5, pp. 441–467,
2006.

[10] C. Ma, S. Li, K. Chen, and S. Liu, “Analysis and improvement of fair
certified e-mail delivery protocol,” Computer Standards & Interfaces,
vol. 28, no. 4, pp. 467–474, 2006.

[11] X. Liang, Z. Cao, R. Lu, and L. Qin, “Efficient and secure protocol
in fair document exchange,” Computer Standards & Interfaces, vol. 30,
no. 4, pp. 167–176, 2008.

[12] R.-J. Hwang and C.-H. Lai, “Efficient and secure protocol in fair
e-mail delivery,” WSEAS Transactions on Information Science and
Applications, vol. 5, pp. 1385–1394, 2008.

[13] J. Cederquist, M. Torabi Dashti, and S. Mauw, “A certified email
protocol using key chains,” in Proc. 3rd Symposium on Security in
Networks and Distributed Systems (SSNDS). IEEE, 2007, pp. 525–
530.

[14] F. Zhang, R. Safavi-Naini, and W. Susilo, “Efficient verifiably encrypted
signature and partially blind signature from bilinear pairings,” in Proc.
5th Conference on Cryptology in India (INDOCRYPT), ser. LNCS, vol.
2904. Springer, 2003, pp. 71–84.

[15] S. Gürgens, C. Rudolph, and H. Vogt, “On the security of fair non-
repudiation protocols,” International Journal of Information Security,
vol. 4, no. 4, pp. 253–262, 2005.

[16] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange
of digital signatures,” in Proc. 6th Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT), ser. LNCS,
vol. 1403. Springer, 1998, pp. 591–606.

[17] F. Bao, R. H. Deng, and W. Mao, “Efficient and practical fair exchange
protocols with off-line ttp,” in Proc. IEEE Symposium on Security and
Privacy (S&P), 1998, pp. 77–85.

[18] C. Boyd and E. Foo, “Off-line fair payment protocols using convertible
signatures,” in Proc. 4th Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT), ser. LNCS, vol.
1514. Springer, 1998, pp. 271–285.

[19] J. Camenisch and I. Damgård, “Verifiable encryption, group encryption,
and their applications to separable group signatures and signature sharing
schemes,” in Proc. 6th Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), ser. LNCS, vol.
1976. Springer, 2000, pp. 331–345.

[20] J. Cathalo, B. Libert, and J.-J. Quisquater, “Cryptanalysis of a verifiably
committed signature scheme based on GPS and RSA,” in Proc. 4th
Conference on Information Security (ICISC), ser. LNCS, vol. 3225.
Springer, 2004, pp. 52–60.

[21] F. Bao, “Colluding attacks to a payment protocol and two signature
exchange schemes,” in Proc. 10th Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT), ser.
LNCS, vol. 3329. Springer, 2004, pp. 137–144.

[22] G. Ateniese, “Efficient verifiable encryption (and fair exchange) of
digital signatures,” in Proc. 6th ACM conference on Computer and
Communications Security (CCS), 199, pp. 138–146.

[23] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Proc. 22th
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), ser. LNCS, vol. 2656. Springer, 2003, pp. 416–432.

[24] P. Grabher, J. Großschädl, and D. Page, “On software parallel implemen-
tation of cryptographic pairings,” in Proc. 13th Workshop on Selected
Areas in Cryptography (SAC), ser. LNCS, vol. 5381. Springer, 2009,
pp. 35–50.

[25] J. Großschädl, “Personal communications,” 2010.
[26] S. Gürgens and C. Rudolph, “Security analysis of (un-) fair non-

repudiation protocols,” in Proc. 1st Conference on Formal Aspects of
Security (FASec), ser. LNCS, vol. 2629. Springer, 2002, pp. 229–232.

[27] D. Boneh, “Twenty years of attacks on the RSA cryptosystem,” Notice of
the American Mathematical Society, vol. 46, no. 2, pp. 203–212, 1999.

[28] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,
and S. Tasiran, “Mocha: Modularity in model checking,” in Proc. 10th
Conference on Computer Aided Verification (CAV), ser. LNCS, vol.
1427. Springer, 1998, pp. 521–525.


