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Abstract. We formally study two privacy-type properties, bidding-price-
secrecy and receipt-freeness, in online auction protocols. Privacy-type
properties are formalised as observational equivalences in the applied π
calculus. We analyse the receipt-free auction protocol by Abe and Suzuki.
Bidding-price-secrecy of the protocol is verified using ProVerif, whereas
receipt-freeness of the protocol is proved manually.

1 Introduction

Auctions are ways to negotiate the exchange of goods and commodities. In an
auction, a seller offers an item for bid, buyers submit bids, and the seller sells
the item to the buyer with the highest bid. Nowadays, with the widely use
of the Internet, online auctions are more and more often used as a convenient
way to trade. Real-life examples are well-known websites, like eBay, eBid, Ya-
hoo!auctions and so on. Online auction protocols are also the subject of an active
field of research [1–6].

For online auction systems, privacy is a fundamental property. In order to
protect the privacy of users, the following basic privacy-type properties are re-
quired, e.g., for the protocol proposed by Abe and Suzuki [4] :

Bidding-price-secrecy: Intuitively, a protocol preserves bidding-price-secrecy
if an adversary cannot derive the bidding price of any bidder.

Receipt-freeness: Intuitively, a protocol satisfies receipt-freeness if a bidder
cannot prove how he bids to an adversary.

We study the protocol AS02 proposed by Abe and Suzuki [4]. Abe and Suzuki
claim that their protocol satisfies the above two requirements for non-winning
bidders and provide an informal analysis. However, security protocols are noto-
riously difficult to design and analyse. Proofs of security protocols are known to
be error-prone, thus we do not want to rely on an informal analysis. In several
cases, formal verification found security flaws in protocols which were thought
to be secure [7, 8]. Formal verification has shown its strength in finding attacks
and proving correctness of security protocols. In this paper, we formally ver-
ify whether bidding-price-secrecy and receipt-freeness hold in their protocol. We
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model the protocol AS02 using the applied π calculus [9]. The applied π calcu-
lus provides an intuitive way to model concurrent systems, especially security
protocols. Moreover, the applied π calculus is supported by a verification tool
ProVerif [10], which can be used to verify some security properties automatically.
As suggested in [11], we use observational equivalence to express bidding-price-
secrecy and receipt-freeness in the applied π calculus. Previously, formalising of
privacy-type properties have already been successfully applied in the domain of
voting [11] (similar ideas were developed in a different formal framework [12]).
We formally verify whether bidding-price-secrecy hold for the protocol AS02
automatically using ProVerif, while receipt-freeness is verified manually. In the
protocol, the two properties hold except for the winning bidding price and the
winning bidder, respectively.

2 The applied π calculus

The applied π calculus is a language for modelling concurrent systems, especially
security protocols. The advantages of applied π are that it provides an intuitive
way to describe a protocol and cryptographic primitives can be defined by users.

Syntax. We briefly introduce the syntax of the applied π calculus (for more
details, see [9]). The calculus assumes an infinite set of names (which are used to
represent communication channels or other constants), an infinite set of variables
and a signature Σ consisting of a finite set of function symbols, which are used
to capture the cryptographic primitives. Terms are defined as names, variables,
and function symbols applied to other terms. An equational theory E is defined
as a set of equations on terms constructed over the signature Σ. The equivalence
relation induced by E is denoted as =E .

Systems are described as processes: plain processes and extended processes.
Plain processes are defined similar to processes in the π calculus. Extended
processes are new in variable restrictions and active substitutions. By giving
restrictions to names and variables, we bound a name or a variable to certain
processes. An active substitution {M/x} means a variable x can be replaced by
term M in every process it comes into contact with. It is usually generated when
a process outputs a term M . The process νx.({M/x} | P ) corresponds exactly
to “let x = M in P”. Active substitutions allow us to map an extended process
A to its frame ϕ(A) by replacing every plain process in A with 0 (null process,
process 0 does nothing). A frame is defined as an extended process built up
from 0 and active substitutions by parallel composition and restrictions. The
frame ϕ(A) can be viewed as an approximation of A that accounts for the static
knowledge A exposes to its environment, but not A’s dynamic behavior. We say
an extended process is closed if all its variables are either bounded or defined by
an active substitution.

Here are other notations used later. The domain of a frame ϕ, denoted as
dom(ϕ), is defined as the set of variables for which the frame ϕ defines a substitu-
tion. A context C[ ] is defined as an extended process with a hole. An evaluation
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context is a context whose hole is not in the scope of replication, a condition, an
input, or an output. A context C[ ] closes A when C[A] is closed.

Semantics. The operational semantics in the applied π including: structural
equivalence, denoted as ≡, internal reductions, denoted as →, labelled reduc-
tions, denoted as

α
−→. Structural equivalence is defined as the smallest equiva-

lence relation on extended processes. Intuitively, if two processes model the same
thing, the two processes are structural equivalent. Internal reductions mean a
process can be executed without contacting its environment, for example, two
parallel processes communicate with each other, or an if- statement is evaluated,
and then- or else- branch is taken. Labelled reductions are used to reason about
processes that interact with the context. The transition A

α
−→ B means process A

performs an α action and the resulting process is B. Action α is either reading a
term M from the context, or outputting a name or a variable of base type to the
context. Especially, when the output is a term M , out(u,M).P is rewritten into
νx.({M/x} | P ) by using structural equivalence rules, and then use νx.out(u, x)
as the action label.

In order to represent security protocols, adversaries need to be taken into con-
sideration. Following the Dolev-Yao model [13], an adversary has full control of
the network. An adversary can eavesdrop, replay, block and inject new messages.
An adversary can be modelled as an arbitrary process running in parallel with
the protocol, and can interact with the protocol in order to gain information.
Adversaries are represented as a context in which a process is running.

Observational equivalence. Observational equivalence means an adversary can-
not distinguish two processes. Intuitively, two processes are equivalent if they
output on the same channels, no matter what the context they are placed in.

Definition 1 (Observational equivalence [9]). Observational equivalence is
the largest symmetric relation R between closed extended processes with the same
domain such that A R B implies:

1. if A can send a message on channel c, then B can also send a message on
channel c;

2. if A →∗ A’ then, for some B’, there exists B →∗ B’, and A’ R B’;

3. C[A] R C[B] for all closing evaluation contexts C.

However, the definition of observational equivalence is hard to use in practice,
because of the quantification over contexts. Therefore, labelled bisimilarity is
introduced, which is easier to reason manually or automatically. Two notations
are used in labelled bisimilarity: static equivalence (≈s) and labelled bisimilarity
(≈ℓ). Static equivalence compares the static states of the processes (represented
by their frames), while labelled bisimilarity examines the processes’ dynamic
behavior. Labelled bisimilarity and observational equivalence coincide [9].
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3 AS02 sealed-bid online auction protocol

Sealed-bid auctions are a type of auction in which all bidders submit their bids
simultaneously without knowing what other bidders bid. The bidder with the
highest bid wins the auction and pays the price he submitted.

Abe and Suzuki propose a sealed-bid auction protocol in 2002 [4]. This proto-
col involves n bidders B1, . . . , Bn and k auctioneers A1, . . . , Ak. Before starting
the protocol, a price list is published. During the protocol, each bidder commits
‘yes’ to the price he wants to bid for, and commits ‘no’ to other prices in the
price list. Auctioneers work together to open the commitments of all bidders
from the highest price to the lower in the price list until find the winning bid(s).

In order to keep the privacy of bidders, the protocol has two physical as-
sumptions: bidding booth for bidders and one-way untappable channel from
every bidder to every auctioneer. The bidding booth enables a bidder to sub-
mit a bid free from control or observation of a coercer/buyer. The untappable
channel ensures no eavesdropper can see messages sent.

Before starting the protocol, one auctioneer publishes an increasing price list
p1, . . . , pm, a message Myes for “I bid”, a message Mno for “I do not bid”, a
large primes p = 2q +1, q, a generator g of order q subgroup of Z

∗
p. The protocol

consists of two phases: bidding phase and opening phase.

Bidding phase. A bidder in the bidding booth chooses a secret key x, publishes
his public key h = gx with a predetermined signature. Then the bidder chooses
a series of random numbers as secret seeds, r1, . . . , rm, one random number for
each price, and decides a price p to bid for. Then he generates a bit-commitment
for each price, using the following formula:

Commitℓ =







gMyes hrℓ (ℓ = p) Bidder bids for price ℓ

gMnohrℓ (ℓ = p) Bidder does not bid for price ℓ

Next, he publishes the sequence of the bit-commitments with his signature. Then
he proves to each auctioneer that he knows the secret key logg h = x and the
discrete logs logg Commitℓ by the interactive zero-knowledge proof. Finally, he

computes t-out-of-k1 secret shares ri
ℓ for each secret seed rℓ, and sends the se-

cret share ri
ℓ with his signature through the one-way untappable channel to the

auctioneer Ai.

Opening phase. Auctioneers together iterate the following steps for each price
ℓ = m,m − 1, . . . , 1 until the winning bid is determined.

Each auctioneer Ai publishes secret shares ri
ℓ (the ℓ-th secret share of bidder)

of all bidders. All auctioneers work together to reconstruct the secret seed rℓ for
each bidder, and check the equivalence of

Commitℓ = gMyes hrℓ

1 t is a threshold, k is the number of auctioneers, it means only more than t auctioneers
together can reconstruct the secret seeds.
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for all bidders. If there exists some bidders that the equivalences of those bidders
are satisfied, the auctioneers finish checking the current price and stop. In this
case, the price ℓ is the winning price, those bidders are winning bidders. If there
is no equivalence exists, which means there is no bidder bids for the price ℓ, the
auctioneers repeat the above process on the next lower price.

Informal reasoning of receipt-freeness. The protocol is claimed to be receipt-free,
relying on the chosen cryptographic primitive, chameleon bit commitment and
interactive zero-knowledge proof.

We use M to represent either Myes or Mno , the formula for computing
Commitℓ is of the following form:

Commitℓ = gM · hrℓ

Since h = gx, we have

Commitℓ = gM · (gx)rℓ = gM+xrℓ and log Commitℓ = M + xrℓ.

By using interactive zero-knowledge proof, a bidder B is guaranteed to know his
secret key x and discrete logs log Commitℓ. An interesting property of chameleon
bit commitment is that if bidder B bids for price ℓ,

log Commitℓ = Myes + xrℓ

he can easily cheat coercers by calculating a fake secret seed r′ℓ such that:

log Commitℓ = Mno + xr′ℓ and r′ℓ = (log Commitℓ − Mno)/x.

Using the fake secret seed, bidder can show that bit-commitment Commitℓ is
opened as message Mno , which means bidder did not bid for price ℓ. Using the
same method, a bidder can open a bit-commitment which he did not bid, as he
did bid. Since bidders have the ability to cheat coercers, and a coercer cannot
distinguish whether a bidder cheats or not, the protocol is receipt-free.

4 Modelling

We use the applied π calculus to model the AS02 protocol. In the protocol,
auctioneers working together to find the winning bid, and less than t auctioneers
cannot decide the winner, that guarantees t-out-of-k secrecy. In our modelling, we
consider all auctioneers together as one honest auctioneer. Thus, we simplify the
protocol to have only one honest auctioneer. The AS02 protocol uses interactive
zero knowledge proof to guarantee each bidder knows his secret key and discrete
logs of bit-commitments. However, it is not clear how a bidder and auction
interact with each other. We simply zero-knowledge proof by assuming that
each bidder knows his secret key and discrete logs of bit-commitments.
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Signature and equational theory. Signatures and equational theory capture cryp-
tographic primitives used in the protocol. Chameleon bit commitment is modeled
as function commit with three arities (random number for that price, public key
of bidder and message M to show whether bidder bids for that price).

fun commit/3 (*bit commitment*)

The desired property of chameleon bit commitment is captured by the following
equational theory

commit(r, pk(sk b),Myes) = commit(f(r), pk(sk b),Mno)
commit(r, pk(sk b),Mno) = commit(f(r), pk(sk b),Myes)

open(commit(r, pk,m), r, pk) = m

Mno and Myes are constants which represent “I do not bid” and “I bid”, re-
spectively. pk(sk b) is the public key of a bidder. r is the secret seed the bidder
chooses. f(r) is a function – given the secret seed, using function f, a bidder can
calculate a fake secret seed f(r). Because we assume each bidder knows his secret
key and discrete logs of bit-commitments, he can compute the fake secret seed
for each real secret seed, as explained in the previous section. We can model the
function f by just give one parameter, the real secret seed.

The first equivalence means that if a bidder chooses a secret seed r, bids
for a price, and calculates the bit commitment commit(r, pk(sk b),Myes), he can
compute a fake secret seed f(r), and by using this fake secret seed, the bit-
commitment can be opened as message Mno , which means “I do not bid”. The
second equivalence shows the opposite situation also holds. A bidder can also
open a bit-commitment as he bids for that price, but actually he does not.

In addition, we use function nextbidder to find the next bidder. The next
bidder of the current bidder is defined in the equations. Function nextprice is
used to find the next lower price in the price list. Function checksignature is used
to check whether the public signature key is the right one for the signed message,
and we use function getmsg to get the original message from a signed message.
Detailed equations could be found in the ProVerif code in [17].

Main process. The main process is represented in Fig. 1. This process first gen-
erates private channels: a private channel privchbj

for each bidder Bj , a pri-
vate channel untapchbj

for each bidder, a private channel synch shared between
bidders and the auctioneer. Note that ch and winnerch are public channels,
pb1

, . . . , pbn
are parameters, each of these parameters has to be instantiated

with a constant in the publish price list p1, . . . , pm. Secondly, the main process
generates a signature key sskbj

for each bidder, distributes the secret signature
key to each bidder through private channel privchbj

, and publishes the public
signature key of each secret signature key. Therefore, only each bidder knows
his own secret key, and everyone including intruder knows each bidder’s public
signature key. Finally, the main process launches n (number of bidders) copies
of bidder sub-processes and one auctioneer sub-process.
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Fig. 1. The main process.

P , ν privchb1 · ν privchb2 · . . . · ν privchbn ·
ν untapchb1 · ν untapchb2 · . . . · ν untapchbn ·
ν synch·
ν sskb1 · ν sskb2 · . . . · ν sskbn ·
let spkb1 = pk(sskb1) in

. . .
let spkbn = pk(sskbn) in

(out(privchb1 , sskb1) | . . . | out(privchbn , sskbn) |
out(ch, spkb1) | . . . | out(ch, spkbn) |
let pb = pb1 in let untapch = untapchb1 in

let privch = privchb1 in PB |
. . . |
let pb = pbn in let untapch = untapchbn in

let privch = privchbn in PB | PA)

PB , in(privch, sskb)·
ν skb · out(ch, sign(pk(skb), sskb))·
ν r1 · . . . · ν rm·
if p1 = pb

then let cmtp1 = commit(r1, pk(skb), Myes) in

else let cmtp1 = commit(r1, pk(skb), Mno) in

. . .
if pm = pb

then let cmtpm = commit(rm, pk(skb), Myes) in

else let cmtpm = commit(rm, pk(skb), Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), sskb))·
out(untapch, (r1, . . . , rm)) · sync·

Fig. 2. The bidder process.

Bidder process. Firstly, a bidder receives his secret signature key from his private
channel. Secondly, the bidder generates his secret key sk b, and chooses a series of
random numbers r1 . . . rm as secret seeds. Thirdly, the bidder computes each bit-
commitment cmtpℓ as described in Sect. 3. Finally, the bidder publishes the series
of bit-commitments cmtp1 , . . . , cmtpm with his signature, and sends the series of
secret seeds to the auctioneer through untappable channel. As we assume there
is only one honest auctioneer in the model, we do not need to model secret
shares. The applied π process for a bidder is given in Fig. 2. The keyword sync
represents a sub-process in which a bidder sends a token to the auctioneer and
waits the auctioneer’s response to synchronise with other bidders. Therefore,
sync represents the end of the bidder phase.

Auctioneer process. During the bidding phase, the auctioneer launches n copies
of sub-process readinfo to gather information of each bidder Bj , including series
of bit-commitments cmtp1

bj
, . . . , cmtpm

bj
, secret seeds ssp1

bj
, . . . , sspm

bj
, public signa-
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PA , let b = b1 in readinfo | . . . | let b = bn in readinfo |
in(synch, vb1) · . . . · in(synch, vbn)
| {z }

n

· sync·

if cmtpm

b1
= commit(sspm

b1
, pkb1 , Myes)

then out(winnerch, (pm, b1))·
if nextbidder(b1) = ⊥
then stop
else let b = nextbidder(b1) in let p = pm in checknextb

else if nextbidder(b1) = ⊥
then if nextprice(pm) = ⊤

then stop
else let b = b1 in let p = pm in checknextbnp

else let b = nextbidder(b1) in let p = pm in checknextbnp

Fig. 3. The auctioneer process.

ture key spkbj
, and public key pkbj

. The auctioneer also needs to synchronise
with all bidders. The auctioneer process is not allowed to continue, until all
bidders reach the end of the bidding phase. During the opening phase, the auc-
tioneer evaluates cmtpm

bj
= commit(sspm

bj
, pkbj

,Myes) for each bidder. If the two
values are equivalent, it means bidder Bj bids for that price, otherwise, bidder
Bj does not bid for that price. If the auctioneer finds some winners, he pub-
lishes the wining bid, and stops the process. Otherwise, the auctioneer repeats
the evaluation steps for each bidder at the next lower price. The sub-process
checknextb is used to check the evaluation of a bidder b at price p, if there are
already some winners before bidder b. The sub-process checknextbnp is used to
check the evaluation of a bidder b at price p, if there is no winner before bid-
der b. We use ⊥ and ⊤ to represent the end of the bidder list and price list,
respectively.

5 Analysis

After modelling the protocol in the previous section, now we formalise and anal-
yse the two privacy-type properties: bidding-price-secrecy and receipt-freeness.

5.1 ProVerif

ProVerif is a tool for verifying security properties in cryptographic protocols.
Given a security property as a query, ProVerif can take a protocol modelled as a
process in the applied π calculus as input, and gives whether the protocol satisfies
the security property as output. There are three possible outputs: ProVerif proves
the required property of the protocol, ProVerif finds an attack as a counter
example, ProVerif can neither prove the property nor disprove the property.

In ProVerif, the standard secrecy of a term M is defined as an adversary can-
not derive the term M . To check standard secrecy, we use query: not attacker : M .
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The positive query result means, no matter how the adversary interacts with the
protocol, M will never be part of adversary’s knowledge. Otherwise, ProVerif
gives a counterexample to show how an adversary derives the term M .

In ProVerif, the strong secrecy is defined as: for all closed substitutions σ
and σ′ of free variables in a process P , the process satisfies Pσ ≈ Pσ′ (≈ denotes
observational equivalence). To check strong secrecy of variables x1, . . . , xn, we
can use the query: noninterf x1, . . . , xn.
Intuitively, by replacing x1, . . . , xn with different values, we obtain different ver-
sions of the given process. A protocol satisfies strong secrecy iff these different
versions of the given process are observationally equivalent. ProVerif’s reasoning
about strong secrecy is sound but incomplete. If ProVerif reports that a process
does not satisfy strong secrecy, there are two possibilities: either the process does
not satisfy strong secrecy, or the process satisfies strong secrecy, but ProVerif
cannot prove it. The fundamental idea of observational equivalence checking in
ProVerif is to focus on pairs of processes sharing the same structure and differing
only in terms or destructors.

5.2 Bidding-price-secrecy

Bidding-price-secrecy guarantees the anonymity of the link between a bidder to
the price he bids for. According to the AS02 protocol, the winning bid is pub-
lished, therefore, bidding-price-secrecy for the winning bidder is not satisfied. In
the later sections, we refer to bidding-price-secrecy with respect to non-winning
bids. There are two levels of secrecy: standard bidding-price-secrecy and strong
bidding-price-secrecy.

Standard bidding-price-secrecy. Intuitively, standard bidding-price-secrecy means
no matter how an adversary interacts with the protocol, an adversary cannot
derive the bidding price of a non-winning bidder. Since all the prices are pub-
lished in the price list, standard bidding-price-secrecy is defined as an adversary
cannot derive the link between a non-winning bidder and the price he bids. In
order to show that an adversary cannot derive the bidding price of a non-winning
bidder, we can use standard secrecy query in ProVerif. We have a winning bidder
process in which a bidder submits the highest bid. And we have several other
bidder processes. Each of these processes has a variable p representing the price
the bidder bids for. The variable p can be any price in the price list, but can-
not be the highest price. By inquiring not attacker : p, we check whether an
adversary can derive the bidding price of a non-winning bidder. ProVerif gives
us positive result, which means the protocol satisfies the property of standard
bidding-price-secrecy.

Strong bidding-price-secrecy. Strong bidding-price-secrecy means an adversary
cannot distinguish between the case a bidder bids for price a and the case for price
c. In other words, if a bidder swaps his bidding price a to c, an adversary cannot
tell the difference. We use an observational equivalence property in applied π to
formalise strong bidding-price-secrecy.
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Similar formalisation has been used in the domain of voting. In [11], a similar
property called vote-privacy is formalised as process VA votes for a and process
VB votes for c is observationally equivalent to a process where VA votes for
c and VB votes for a. The idea is that even all other voters reveal how they
voted, an intruder cannot deduce the votes of VA and VB , given VA and VB

as a counterbalance to each other. Different from privacy in voting, in AS02
protocol, even all other bidders reveal how they bid, a bidder’s bidding price is
not revealed. Therefore, we do not need a counterbalance process. Instead, we
need a process in which a bidder bids for higher price to stop the auctioneer
process opening non-winning bids, so that non-winning bids are not revealed in
the opening phase. Therefore, strong bid-price-secrecy is formalised as follows:

Definition 2 (Strong bidding-price-secrecy). An auction protocol is strong
bidding-price-secret if for all bidders except the winning bidder satisfy:

S[BA{a/pb} | BB{d/pb} | A] ≈ℓ S[BA{c/pb} | BB{d/pb} | A]

with d > c and d > a.

S is defined as a context S , νñ · (PAσ1 | . . . | PAσn | ). The context is as an
auction process with a hole instead of two bidder processes and the auctioneer
process. In the context, PAσi are bidder processes, and ñ are channel names. A
is the auctioneer process. BA is a non-winning bidder process. BB is a bidder
process in which a bidder bids for a higher price d. The intuition is that an
adversary cannot distinguish between a non-winning bidder bids for price a or
price c, given another bidder bidding for a higher price d.

In order to make it possible to check in ProVerif, we need to do some mod-
ifications to the way the auctioneer process is presented. Because ProVerif is
sensitive with evaluations of statements in the if- then- else- constructs. Keeping
these evaluations, ProVerif reports false attacks, more detailed reasons could be
found in paper[10]. Therefore, in the ProVerif code, we do want the if- then- else-
constructs. Fortunately, we can simplify the process by cutting the if- then- else-
part of process, under our assumptions in the definition of strong bidding-price-
secrecy. Since there is a higher bid in the equivalence, the auctioneer process will
stop after checking the higher price, the remain process will not be executed,
therefore we can cut the remain process without affecting the checking result.

In order to be able to check noninterf in ProVerif, we modify the bidder pro-
cess by replacing if- then- else- instructions with choice[] instructions. Detailed
reasons of the modification could be found in []. ProVerif code could be found
on [17]. By requiring noninterf pb among p1, . . . , pd−1, we replace variable pb

with p1 to pd−1 (expect the price pd), and get d − 1 different versions of the
process. ProVerif giving a positive result means each pair of two versions are
observational equivalent, meaning a bidder swapping his bidding price is indis-
tinguishable to an adversary. In this way, we prove that the protocol satisfies
strong bidding-price-secrecy.
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5.3 Receipt-freeness

Receipt-freeness is defined as a bidder cannot prove to an adversary that he
bids in a certain way. Receipt-freeness is a stronger privacy-type property than
bidding-price-secrecy [11]. It is useful to protect bidders from coercers. Intu-
itively, bidding-price-secrecy protects a bidder’s privacy when the bidder does
not want to reveal his information, while receipt-freeness protects a bidder’s pri-
vacy when the bidder is willing to reveal his information or the bidder is coerced
to reveal his information.

Receipt-freeness in voting is formalised as an observational equivalence [11].
A protocol satisfies receipt-freeness if there exists a process V ′, in which a voter
votes for a candidate a but communicates with the adversary in order to feign
cooperation with him by telling the adversary he votes for the different candi-
date c the adversary wants him to vote. By proving the observational equiva-
lence, the adversary cannot tell the difference between a situation in which a
voter genuinely cooperates with him and the one in which the voter pretends to
cooperate but actually votes for another candidate. In order to model the ob-
servational equivalence, the situation that a voter is willing to provide his secret
information to the adversary needs to be modelled first:

Definition 3 (Process P ch [11]). Let P be a plain process and ch a channel
name. P ch is defined as:

– 0ch=̂0,
– (P |Q)ch=̂P ch|Qch,
– (νn.P )ch=̂νn.out(ch, n).P ch when n is name of base type,
– (νn.P )ch=̂νn.P ch otherwise,
– (in(u, x).P )ch=̂in(u, x).out(ch, x).P ch when x is a variable of base type,
– (in(u, x).P )ch=̂in(u, x).P ch otherwise,
– (out(u,M).P )ch=̂out(u,M).P ch,
– (!P )ch=̂!P ch,
– (if M = N then P else Q)ch=̂if M = N then P ch else Qch.

Delaune et al. also define process transformation A\out(ch,·), which is the process
A hiding the output on the public channel ch.

Definition 4 (Process A\out(ch,·) [11]). Let A be an extended process. We
define the process A\out(ch,·)) as νch.(A|!in(ch, x)).

In modelling online auction protocols, we also need to model the situation
a bidder wants to provide his secret information to an adversary. We use the
above definition directly in our model. Intuitively, a bidder, who is willing to
share information with the adversary, sends any input of base type, any freshly
generated names of base type to the adversary through a public channel ch. It
is assumed that public channels are under adversaries’ control.

Now, we can define receipt-freeness in AS02 auction protocol. We need a
winning bidder process BB bids for a higher price d in modelling receipt-free as
well, so that non-winning bids are not revealed. Intuitively, if a non-winning bid
has a strategy to cheat the adversary, and the adversary cannot tell the difference
between whether the bidder cheats or not, then the protocol is receipt-free.
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Definition 5 (Receipt-freeness). An auction protocol is receipt-free if there
exists a closed plain process B′ such that

1. B′\out(chc,·) ≈ℓ BA{c/pb},
2. S′[BA{a/pb}chc | BB{d/pb}] ≈ℓ S′[B′ | BB{d/pb}]

with d > c and d > a.

The context S′ is slightly different with the context defined for the strong
bidding-price-secrecy, as follows: S′ , νñ · (PAσ1 | . . . | PAσn | | A). The
context is as an auction process with a hole instead of two bidder processes.
According to the protocol, the auctioneer process stops after finding the win-
ning bid. Therefore, non-winning bids are not revealed. Since we have assumed
the auctioneer is honest, the information the auctioneer process reveals is the
opened bit-commitments of all bidders at the highest price and the winning bid.
Due to the existence of higher bid (BB{d/pb}) on both of the left and right sides
of the equivalence, the information the auctioneer process reveals is the same
on both sides of the equivalence. The auctioneer process only reads information
in bidding phase, and it processes the same on opening phase. The auctioneer
process has no influence to the equivalence. Therefore, we can add the auctioneer
process in the context S′. B′ is a process in which bidder BA bids for price a
but communicates with the adversary and tells the adversary he bids for price c.
The first equivalence says that ignoring the outputs B′ makes on the adversary
channel chc, B′ looks like a normal process BA bidding for price a. The second
equivalence says that the adversary cannot tell the difference between a situa-
tion in which BA obeys his order and bids for price c and the situation in which
he pretends to cooperate but actually bids for price a, provided there is some
bidding process BB bids higher, such that bidding process BA is not winner.

Fig. 4. The process BA{c/pb}.

BA{c/pb} , in(privch, sskb)·
ν skb·
out(ch, sign(pk(skb), sskb))·
ν r1 · . . . .ν ra · . . . · ν rc · . . . · ν rm·
let cmtp1 = commit(r1, pk(skb), Mno) in

. . .
let cmtpa = commit(ra, pk(skb), Mno) in

. . .
let cmtpc = commit(rc, pk(skb), Myes) in

. . .
let cmtpm = commit(rm, pk(skb), Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), sskb))·
out(untapch, (r1, . . . , ra, . . . , rc, . . . , rm)) · sync·
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Fig. 5. The process B′\out(chc,·).

B′\out(chc,·) , in(privch, sskb)·
ν skb·
out(ch, sign(pk(skb), sskb))·
ν r1 · . . . · ν ra · . . . · ν rc · . . . · ν rm·
let cmtp1 = commit(r1, pk(skb), Mno) in

. . .
let cmtpa = commit(ra, pk(skb), Mno) in

. . .
let cmtpc = commit(rc, pk(skb), Myes) in

. . .
let cmtpm = commit(rm, pk(skb), Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), sskb))·
out(untapch, (r1, . . . , ra, . . . , rc, . . . , rm)) · sync·

Fig. 6. The process BA{a/pb}.

BA{a/pb} , in(privch, sskb)·
ν skb·
out(ch, sign(pk(skb), sskb))·
ν r1 · . . . · ν ra · . . . · ν rc · . . . · ν rm·
let cmtp1 = commit(r1, pk(skb), Mno) in

. . .
let cmtpa = commit(ra, pk(skb), Myes) in

. . .
let cmtpc = commit(rc, pk(skb), Mno) in

. . .
let cmtpm = commit(rm, pk(skb), Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), sskb))·
out(untapch, (r1, . . . , ra, . . . , rc, . . . , rm)) · sync·
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Fig. 7. The process BA{a/pb}
chc.

BA{a/pb}
chc , in(privch, sskb) · out(chc, sskb)·

ν skb · out(chc, skb)·
out(ch, sign(pk(skb), sskb))·
ν r1 · . . . · ν ra · . . . · ν rc · . . . · ν rm·
out(chc, r1, . . . , ra, . . . , rc, . . . , rm)·
let cmtp1 = commit(r1, pk(skb), Mno) in

. . .
let cmtpa = commit(ra, pk(skb), Myes) in

. . .
let cmtpc = commit(rc, pk(skb), Mno) in

. . .
let cmtpm = commit(rm, pk(skb), Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), sskb))·
out(untapch, (r1, . . . , ra, . . . , rc, . . . , rm)) · sync·

Fig. 8. The process BB{d/pb}.

BB{d/pb} , in(privchb, bsskb)·
ν bskb·
out(ch, sign(pk(bskb), bsskb))·
ν br1 · . . . · ν bra · . . . · ν brc · . . . · ν brd · . . . · ν brm·
let bcmtp1 = commit(br1, pk(bskb), Mno) in

. . .
let bcmtpa = commit(bra, pk(bskb), Mno) in

. . .
let bcmtpc = commit(brc, pk(bskb), Mno) in

. . .
let bcmtpd = commit(brd, pk(bskd), Myes) in

. . .
let bcmtpm = commit(brm, pk(bskb), Mno) in

out(ch, sign((bcmtp1 , . . . , bcmtpm), bsskb))·
out(untapch, (br1, . . . , bra, . . . , brc, . . . , brd, . . . , brm)) · sync·
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B′ , in(privch, sskb) · out(chc, sskb)·
ν skb · out(chc, skb)·
out(ch, sign(pk(skb), sskb))·
ν r1 · . . . · ν ra · . . . · ν rc · . . . · ν rm·
out(chc, (r1, . . . , f(ra), . . . , f(rc), . . . , rm))·
let cmtp1 = commit(r1, pk(skb), Mno) in

. . .
let cmtpa = commit(ra, pk(skb), Mno) in

. . .
let cmtpc = commit(rc, pk(skb), Myes) in

. . .
let cmtpm = commit(rm, pk(skb), Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), sskb))·
out(untapch, (r1, . . . , ra, . . . , rc, . . . , rm))·

Fig. 9. The process B′.

To prove receipt-freeness of the protocol, we need to find a process B′ which
satisfies two equivalence in the definition of receipt-freeness. The idea is that a
bidder bids for price c but tells the adversary that he bids for price a. According
to the properties of chameleon bit commitment, the bidder can send a sequence
of fake secret seeds to the adversary, which is used to open the bit-commitments
as bidding for price c, and sends the series of real secret seeds to the auctioneer
through an untapped channel, which is used to open the bit-commitments as bid-
ding for price a, while the bit-commitments the bidder publishes are unchanged.
The adversary opens the bit-commitments as the bidder bids for price c, while
the auctioneer opens the bit-commitments as the bidder bids for price a. The se-
quence of secret seeds sent the adversary is r1, . . . , f(ra), . . . , f(rc), . . . , rm, while
the sequence of secret seeds sent to the auctioneer is r1, . . . , ra, . . . , rc, . . . , rm.
The process B′ is represented in Fig. 9. The bidder in this process communi-
cates with the adversary through channel chc, sends the adversary his secret
signature key ssk b, his secret key sk b. The bidder sends the adversary the se-
cret seeds r1, . . . , f(ra), . . . , f(rc), . . . , rm, while sending the auctioneer the secret
seeds r1, . . . , ra, . . . , rc, . . . , rm through an untappable channel. The untappable
channel ensures the adversary knows nothing about the differences.

To prove the first equivalence, we can simply consider that B′\out(chc,·) as pro-
cess B′ without communication on chc channel. The process B′\out(chc,·) can be
considered as a process BA{c/p}. Since the process B′\out(chc,·) is exactly the
same as the process BA{c/p}, the first equivalence is satisfied. To show the sec-
ond equivalence, we can informally consider all the executions of each side. Let
P = S′[BA{a/pb}chc | BB{d/pb}], let Q = S′[B′ | BB{d/pb}]. We denote sequence
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of names sk b, r1, . . . , rm, bsk b, br1, . . . , brm, by ñ.

P
in(privch,sskb)
−−−−−−−−−−→

in(privchb,bsskb)
−−−−−−−−−−−→

ν x1· out(chc,x1)
−−−−−−−−−−−→ P1 | {sskb/x1}

ν x2· out(chc,x2)
−−−−−−−−−−−→ P2 | {sskb/x1} | {skb/x2}
ν x3· out(ch,x3)
−−−−−−−−−−→
ν x4· out(chc,x4)
−−−−−−−−−−−→ νñ · (P3 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4})
ν x5· out(chc,x5)
−−−−−−−−−−−→ νñ · (P4 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4} | {r1,...,rm/x5})
ν x6· out(ch,x6)
−−−−−−−−−−→
ν x7· out(chc,x7)
−−−−−−−−−−−→ νñ · (P5 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4}
| {r1,...,rm/x5} | {sign((cmtp1 ,...,cmtpm ),sskb)/x6}
| {sign((bcmtp1 ,...,bcmtpm ),bsskb)/x7})

Q
in(privch,sskb)
−−−−−−−−−−→

in(privchb,bsskb)
−−−−−−−−−−−→

ν x1· out(chc,x1)
−−−−−−−−−−−→ Q1 | {sskb/x1}

ν x2· out(chc,x2)
−−−−−−−−−−−→ Q2 | {sskb/x1} | {skb/x2}
ν x3· out(ch,x3)
−−−−−−−−−−→

ν x4· out(chc,x4)
−−−−−−−−−−−→

ν x5· out(ch,x5)
−−−−−−−−−−→ νñ · (Q3 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(skb),sskb)/x4} | {sign(pk(bskb),bsskb)/x5})
ν x6· out(chc,x6)
−−−−−−−−−−−→ νñ · (Q4 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(skb),sskb)/x4} | {sign(pk(bskb),bsskb)/x5}
| {r1,...,f(ra),...,f(rc),...,rm/x6})

ν x7· out(ch,x7)
−−−−−−−−−−→

ν x8· out(chc,x8)
−−−−−−−−−−−→

ν x9· out(ch,x9)
−−−−−−−−−−→ νñ · (Q5 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(skb),sskb)/x4} | {sign(pk(bskb),bsskb)/x5}
| {r1,...,f(ra),...,f(rc),...,rm/x6}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x7}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x8}
| {sign((bcmtp1 ,...,bcmtpm ),bsskb)/x9})

ν x10· out(ch,x10)
−−−−−−−−−−−−→ νñ · (Q6 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(skb),sskb)/x4} | {sign(pk(bskb),bsskb)/x5}
| {r1,...,f(ra),...,f(rc),...,rm/x6}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x7}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x8}
| {sign((bcmtp1 ,...,bcmtpm ),bsskb)/x9}
| {r1,...,f(ra),...,f(rc),...,rm/x10})

As the adversary knows the bit-commitments the bidder submits, the public
key of the bidder, and the secret seeds, the adversary can open all the bit-
commitments.
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The adversary first checks whether the bidder is lying, by checking whether
x3 is equivalent to x4 and whether x7 is equivalent to x8. The only functions
an adversary can use are getmsg and open. By applying these two destructor
functions, an adversary can get another two terms, the public key of the bidder
and the series of opened messages, represented as x11 and x12, respectively.

x11 = getmsg(x3, x1) x12 = open(x7, x6, x11)

The frame obtained from process P is:

ϕ = νñ · ({sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}
| {sign(pk(skb),sskb)/x4} | {sign(pk(bskb),bsskb)/x5}
| {r1,...,rm/x6} | {sign((cmtp1 ,...,cmtpm ),sskb)/x7}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x8}
| {sign((bcmtp1 ,...,bcmtpm ),bsskb)/x9} | {r1,...,rm/x10}
| {getmsg(x3,x1)/x11} | {open(x7,x6,x11)/x12})

The frame obtained from process Q is:

ϕ′ = νñ · ({sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}
| {sign(pk(skb),sskb)/x4} | {sign(pk(bskb),bsskb)/x5}
| {r1,...,f(ra),...,f(rc),...,rm/x6}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x7}
| {sign((cmtp1 ,...,cmtpm ),sskb)/x8}
| {sign((bcmtp1 ,...,bcmtpm ),bsskb)/x9}
| {r1,...,f(ra),...,f(rc),...,rm/x10})
| {getmsg(x3,x1)/x11} | {open(x7,x6,x11)/x12})

The process BA bids for price a. The adversary opens the bit-commitments
cmtpa = commit(ra, pk(sk b),Myes) and cmtpc = commit(rc, pk(sk b),Mno) as:

open(cmtpa , ra, pk(sk b)) = Myes open(cmtpc , rc, pk(sk b)) = Mno

On the process Q, the process BA bids for price c. The adversary has a sequence
of secret seeds, in which two of them are fake: f(ra) and f(rc). According to the
equational theory of chameleon bit-commitments, the adversary open the bit-
commitments cmtpa = commit(ra, pk(sk b),Mno) = commit(f(ra), pk(sk b),Myes)
and
cmtpc = commit(rc, pk(sk b),Myes) = commit(f(rc), pk(sk b),Mno) as:

open(cmtpa , f(ra), pk(sk b)) = Myes open(cmtpc , f(rc), pk(sk b)) = Mno

The frame ϕ and the frame ϕ′ are statically equivalent. Other secret seeds are
the same in both P and Q. The adversary gets the same opening results on
both P and Q. The frames we obtained are statically equivalent for every step.
And the process P and process Q can both do the same action at every sate.
Therefore, the process P and Q satisfies the definition of labelled bisimilarity.
Now, we conclude that the protocol satisfies receipt-freeness.
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6 Conclusion

The main contribution of this paper is that we propose a formalisation of two
privacy-type properties in auction protocols: bidding-price-secrecy and receipt-
freeness, following the definition of privacy and receipt-freeness in paper[11].
We have modelled the AS02 protocol in the applied π calculus, formalised two
privacy-type properties: bidding-price-secrecy and receipt-freeness, and verified
that the AS02 protocol satisfies the two properties. Bidding-price-secrecy is con-
sidered at two levels: standard bidding-price-secrecy and strong bidding-price-
secrecy. Standard bidding-price-secrecy is modelled as a non-winning bidder’s
bidding price is not in an adversary’s knowledge. It is verified automatically
using ProVerif. Strong bidding-price-secrecy is modelled as an observational
equivalence, which is also verified automatically in ProVerif. Receipt-freeness
is modelled as observational equivalences as well and verified manually.

Coercion-resistance is a stronger privacy property, saying a voter cannot co-
operate with a coercer to prove to him that he voted in a certain way. It is
modelled by giving the coercer the ability to communicate with the coercee
and prepare information for the coercee to use [11]. In more details, coercion-
resistance is formalised in the applied π calculus by requiring the existence of
a process in which a coercee can do as he wants, in spite of the coercer, and
the coercer cannot distinguish whether the coercee is cheating. According to
this definition, it seems to us that the AS02 protocol is also coercion-resistant.
The information a coercer can generate in the bidder process is: the bidder’s se-
cret key sk b, the random number r1, . . . , ra, . . . , rc, . . . rm, the bit-commitments
cmtp1 , . . . , cmtpm . Since zero-knowledge proof ensures the bidder knows his own
secret key and the discrete logs of bit-commitments, a bidder can figure out
which price the coercer wants him to bid, and then calculate the fake secrete
seeds f(ra) and f(rc) to change the price the coercer calculated, and sends secret
seeds r1, . . . , f(ra), . . . , f(rc), . . . rm to the auctioneer.

Coercion-resistance is a complicated property to formalise. Several different
formalisations have been given [14–16], in addition to Delaune, Kremer and
Ryan’s work [11]. In the future, we would like to study coercion-resistance in
online auction protocols. Moreover, the winning bid is revealed in the AS02
protocol. Bidding-price-secrecy and receipt-freeness are only for non-winners.
In [6], Chen et al. propose another auction protocol which can ensure the winner’s
privacy also. We are also interested in formally verifying this protocol.
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