
Formal Analysis of an eHealth Protocol

Naipeng Dong⋆, Hugo Jonker, and Jun Pang

Faculty of Sciences, Technology and Communication,
University of Luxembourg, Luxembourg

Abstract. Given the sensitive nature of health data, security and pri-
vacy of eHealth systems is of prime importance. Properties like secrecy,
authentication, anonymity, and untraceability need to be satisfied. How-
ever, only satisfying these properties is not sufficient in case users can re-
veal private information to the adversary. For instance, a pharmaceutical
company may bribe or coerce a pharmacist to reveal information which
breaks a doctor’s privacy. Therefore, new privacy properties are required:
enforced prescribing-privacy, independency of prescribing-privacy, and
independency of enforced prescribing-privacy. In this paper, we identify
and formalise these new properties. Moreover we take an eHealth proto-
col (DLVV08), which is proposed for practical use, as a case study, and
study to what extent all these properties are satisfied by the DLVV08
protocol. Finally, we address found ambiguities and flaws and propose
suggestions for fixing them.

1 Introduction

Generally speaking, the term of eHealth means applying communicating elec-
tronic components (such as: the Internet, smart cards, digital medical equip-
ment, etc.) to support and improve health care [1]. Nowadays, eHealth systems
are more and more involved in everyday life. The use of electronic components
raises security and privacy issues due to the sensitive nature of health data. To
ensure security and privacy in ehealth, much research has been done. In the
literature, security and privacy are often seen as an access control problems [2–
4]. Seldom attention has been drawn to security and privacy of communication
between components in eHealth systems. Even access control policy is perfectly
applied, security and privacy may be violated during communication. For exam-
ple, a message containing the medical history of a patient may be intercepted in
transit. Therefore, in this paper, we consider security and privacy of the involved
parties with respect to an outsider, the Dolev-Yao adversary [5], who controls
the communication network (i.e. the adversary can observe, block, create and
alter information).

Security and privacy of communication are mainly achieved by employing
cryptographic communication protocols. However, it is well known that designing
cryptographic protocols is error-prone. The claims of an eHealth protocol must
be verified before the protocol is used in practice. Without verifying that a

⋆ Supported by a grant from the Fonds National de la Recherche (Luxembourg).



protocol satisfies its security claims, subtle flaws may go undiscovered. Time
and again, formal analysis has uncovered flaws in protocols that claimed to
be secure (e.g., voting systems [6, 7] have been broken [8, 9]). To be able to
verify whether a protocol satisfies security and privacy requirements, a necessary
step is to give explicit formal definitions of security and privacy properties.
Many security and privacy properties have been defined: secrecy, authentication,
anonymity and untraceability. We refer to these properties as regular security and
privacy properties. However, it is not sufficient to only satisfy these properties.
In case a user may be bribed or coerced to reveal her information, she may
harm privacy of herself or others. For example, a pharmaceutical company may
bribe doctors to prescribe only their medicines. Therefore, we consider not only
privacy with respect to a Dolev-Yao adversary, but also privacy in the presence
of an active coercer – someone who is bribing or threatening parties to reveal
their privacy. We refer to these properties as enforced privacy properties. This
includes enforced prescribing-privacy (preventing doctor bribes), independency
of prescribing-privacy (preventing other party bribes to break a doctor’s privacy),
and independency of enforced prescribing-privacy (preventing both doctor bribes
and other party bribes to break a doctor’s privacy).

We take the DLVV08 eHealth protocol as a case study [10], for two rea-
sons: first, the protocol claims to satisfy several security and privacy properties
of patients and doctors, including enforced prescribing-privacy and prescribing-
privacy independent of pharmacist; second, the protocol was proposed for ac-
tual use for the Belgian health care system, therefore, the analysis has prac-
tical merit. We analyse the following properties of the protocol: standard se-
crecy of patients’ secret information, standard secrecy of doctors’ secret infor-
mation, authentication of a patient, authentication of a doctor, patient and doc-
tor anonymity, patient and doctor untraceability, enforced prescribing-privacy,
prescribing-privacy independent of pharmacist and enforced prescribing-privacy
independent of pharmacist. We address ambiguities and flaws found during the
verifications, propose ways to fix them and update the protocol to satisfy all
these properties.

We use the applied pi calculus [11] to formally define these security and
privacy properties and model the DLVV08 protocol. The applied pi calculus
is suitable for modelling concurrent systems, flexible to define cryptographic
primitive and supported by the model checker ProVerif [12]. Once the properties
are formally defined, we can verify them automatically on models of protocols
using ProVerif.

Contributions. We identify enforced privacy requirements in eHealth systems
and formally defined them in the applied pi calculus. Then, we model a practi-
cal protocol in the applied pi which involves non-trivial cryptographic primitives.
Next, we analyse enforced privacy properties of the protocol, as well as regular
security and privacy properties, address ambiguities and flaws, and propose sug-
gestions for fixing them.

2



Organisation. In the next section, we briefly introduce notations used in the
applied pi calculus. After that, privacy properties are formally defined in the ap-
plied pi calculus in Section 3. This includes prescribing-privacy, enforced prescribing-
privacy, pharmacist-enforced privacy and doctor enforced privacy. Next, we briefly
describe the DLVV08 protocol in Section 5, and describe, in details, the mod-
elling of the protocol in Section 6. Then we present the analysis of security and
privacy properties of the protocol in Section 7, as well as fixing ambiguities
and flaws. Next, we update the protocol to satisfy the analysed properties in
Section 8. Finally, we present conclusions and future works in Section 9.

2 The applied pi calculus

The applied pi calculus is a language designed for modelling and analysing secu-
rity protocols [11]. It assumes an infinite set of names, an infinite set of variables
and a set of functions. Names are used to model channels and data, variables
are used to model received data, and functions are used to model cryptographic
primitives in our protocol model. The applied pi calculus defines a term as a
name, or a variable, or a function applied on other terms. Terms are used to
model messages. The equational theory E defines the equations on terms.

A protocol is modelled as different principals running in parallel. The be-
haviour of a principal is modelled as processes. A process is defined as in Figure 1.
A process is defined as either be an empty process, or sub-processes running in
parallel, or replication of a sub-process, or restrict a name to a process, or a con-
ditional statement evaluation, or an input action, or an output action. Extended
processes add variable restrictions and active substitution.

P, Q, R ::= plain processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M =E N then P else Q conditional
in(u, x).P message input
out(u, M).P message output

A, B, C ::= extented processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M /x} active substitution

Fig. 1. Applied pi calculus grammar

3



Semantics of the applied pi calculus are broken down into three parts: first,
structural equivalence, which defines equivalence relations between two processes
which only differ in structure; second, internal reduction (→), which defines sub-
process communication rules, and if-then-else evaluation rules; third, labelled
reduction (

α
−→), which defines reduction rules to model the communication be-

tween the adversary (the context) and the protocol. For more details, see [11].

Notation and terminology. In this paper, we use the following notation and
terminology: we use “P{M /x}” to denote syntactical replacing x with M in
process P , and it is the same as “let x=M in P”. We use =E to denote term
equivalence relations introduced by equational theory E. A name or a variable is
free if it is not delimited by restriction and by inputs. The set of free names, the
set of free variable, the set of bound names and the set of bound variables of a
process A are denoted as fn(A), fv(A), bn(A) and bv(A), respectively. A process
is closed if it does not contain free variables. A context is defined as a process
with a hole, and we can put any process in the hole. An evaluation context is a
context whose hole is not in the scope of a replication, a conditional, an input, or
an output. A term is ground when it does not contain variables. The frame of a
process is the static knowledge revealed to the adversary, which is defined as an
extended process composed by parallel compositions of active substitutions and
restrictions. The domain of a frame is the set of variables in active substitutions
(domain of frame ψ is denoted as dom(ψ)). The start symbol in → ∗ denotes
that the number of → is zero or more .

The applied pi calculus defines relations on processes which can be used to
model some security and privacy properties. One of the relations is observa-
tional equivalence. The intuition is that two processes are not distinguishable
for the adversary. In practice, observational equivalence is hard to use, because
of the quantification over contexts. Therefore, labelled bisimilarity is introduced.
Labelled bisimilarity is easier to reason manually and automatically. Note that
labelled bisimilarity and observational equivalence coincide [11].

Two notations are used in labelled bisimilarity: static equivalence (≈s) and
labelled bisimilarity (≈ℓ). Static equivalence compares the static states of pro-
cesses (represented by their frames), while labelled bisimilarity examines their
dynamic behaviour.

Definition 1 (Static equivalence [11]). Two closed frames ψ and φ are stat-
ically equivalent, ψ ≈s φ, if

1. dom(ψ)=dom(φ)
2. ∀ terms M and N , (M =E N) in ψ ⇔ (M =E N) in φ.

Definition 2 (Labelled bisimilarity [11]). Labelled bisimilarity (≈ℓ) is de-
fined as the largest symmetric relation R on closed extended processes, such that
process A R B implies:

1. A ≈s B;
2. if A→ A′ then B →∗ B′ and A′ R B′ for some B′;
3. if A

α
−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅; then B →∗ α

−→→∗

B′ and A′ R B′ for some B′.

4



The adversary. As in the applied pi calculus, the adversary (Dolev-Yao ad-
versary [5]) controls the whole network: listening, blocking, creating, injecting
messages, and applying cryptographic primitives. Notice that normally dishon-
est users are considered as part of the adversary. However, users who are coerced
or bribed are not part of the adversary, for the reason that the adversary does
not fully trust the coerced or bribed users unless they can prove his information.

3 Enforced privacy properties

A protocol EHP is modelled as roles running in parallel in the applied pi calculus.
An eHealth protocol EHP is a n-role protocol of the form:

EHP = νm̃.init .(!R1 | . . . |!Rn).

Particularly, there is a doctor role Rdr of the form:

Rdr = νIddr .initdr .!Pdr , where Pdr = νpresc.maindr ,

a patient role Rpt of the form:

Rdr = νIdpt .initpt .!Ppt ,

and a pharmacist role Rph . For instance, the DLVV08 protocol, which contains
mainly five roles, is modelled as follows.

DLV = νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii)

Processes Rpt , Rdr , Rph , Rmpa , Rhii model behaviour of patients, doctors, phar-
macists, medicine prescription administrators, and health insurance institutions,
respectively. The replication ! in front of each process represents unbounded
number of instantiations of each role. Process νm̃.init generates and distributes
initial knowledge of the whole process. Processes init initpt and initpt are se-
quential. We define context C as honest instances of roles running in parallel.
For instance, a context in the DLVV08 protocol is:

Cdlv = νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | ).

3.1 Prescribing-privacy

A doctor’s prescription behaviour needs to be protected. Straightforwardly, if
a doctor’s prescription is private, the adversary cannot tell the doctor’s pre-
scription behaviour. In some cases, for example DLVV08 protocol, a doctor’s
prescription is revealed by the doctor. To protect a doctor’s prescription in
these cases, one need to hide the link between a doctor and his prescription.
We refer to prescribing-privacy as unlinkability of a doctor (indicated by a doc-
tor identity) and his prescription. In case that the prescription is revealed in

5



the doctor process, it is not suitable to model the unlinkability as the equiva-
lence of two processes, one in which a doctor prescribes a, and one in which the
doctor prescribes b, because obviously when the prescription is revealed in the
doctor process Pdr{a/presc} 6≈ℓ Pdr{b/presc}. Intuitively, prescribing-privacy
is modelled as: given two honest users A and B prescribing two prescriptions a

and b, when the adversary saw the two prescriptions a and b, the adversary does
not know which doctor (A or B) prescribed which prescription.

Definition 3 (Prescribing-privacy). Let EHP be an eHealth protocol. Let
Rdr = νIddr .initdr .!Pdr be the doctor role. The protocol EHP satisfies prescribing-
privacy if

C[initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc}) |
initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})]

≈ℓ C[initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}) |
initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})],

where C is a context which models the honest participants; process initdr{A/Iddr}
represents the process initdr with a variable Iddr replaced by a free name A; pro-
cess maindr{A/Iddr , a/presc}) denotes the process maindr with two free vari-
ables Iddr and presc, replaced by free names A and a, respectively; B is a free name
representing an honest doctor; b is a free name representing a prescription.

3.2 Enforced prescribing-privacy

Enforced privacy properties have been studied in other domains, for exam-
ple, receipt-freeness and coercion-resistance (coercion-resistance implies receipt-
freeness) in voting [13, 14], receipt-freeness in online auction [15]. It is also re-
quired in eHealth, for instance, a pharmaceutical company may bribe doctors
to favour their medicines. To prevent doctors being bribed to favour certain
medicines, doctor’s privacy should be enforced by eHealth protocols (enforced
prescribing-privacy).

Before defining enforced prescribing-privacy, we need to briefly introduce two
definitions proposed in [13]. First, the process of a bribed user, in which the user
actively communicates with the adversary (publishing his information) and tries
to prove to the adversary his privacy, is defined as follows:

Let P be a plain process and chc a channel name. P chc, the process that
shares all of P ’s secrets, is defined as:

– 0chc =̂ 0,
– (P | Q)chc =̂ P chc | Qchc,
– (νn.P )chc =̂ νn.out(ch, n).P chc when n is a name of base type,
– (νn.P )chc =̂ νn.P chc otherwise,
– (in(u, x).P )chc =̂ in(u, x).out(ch, x).P chc when x is a variable of base type,
– (in(u, x).P )chc =̂ in(u, x).P chc otherwise,
– (out(u,M).P )chc =̂ out(u,M).P chc,
– (!P )chc =̂ !P chc,

6



– (if M =E N then P else Q)chc =̂ if M =E N then P chc else Qchc.

Second, a process erasing the output on a channel is defined as follows: Let P
be an extended process. P \out(ch,·) is defined as P \out(ch,·) := νch.(P |!in(ch, x)).

Similar to receipt-freeness in voting, enforced prescribing-privacy is defined
as the existence of a way for a bribed/coerced doctor to lie about his prescription,
while the adversary cannot tell whether the doctor lied. It is modelled as the
existence of a process P ′, in which the bribed/coerced doctor can lie about
his prescription, while the adversary cannot distinguish P ′ from the process in
which the doctor genuinely reveal all his secret information to the adversary. This
intuition is modelled as two equivalences. In the first equivalence, left hand side is
C [P ′], right hand side is the coerced doctor behaviour P chc. It represents that the
adversary cannot distinguish the doctor behaviour in P ′ and P chc. In the second
equivalence, left hand side is a process which is process P ′ erasing the doctor’s
communication with the adversary, right hand side is a doctor process in which
the doctor prescribed differently from the adversary’s order. It represents that
the behaviour of P ′ in his communication partner’s view (left hand side) looks
the same as an honest doctor process in which the doctor prescribed differently
form the adversary’s expecting.

Definition 4 (Enforced prescribing-privacy). Let EHP be an eHealth pro-
tocol. Let Rdr = νIddr .initdr .!Pdr be the doctor role. The protocol EHP satisfies
enforced prescribing-privacy, if there exists a process P ′

dr such that:

C[(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))]
≈ℓ C[((initdr{A/Iddr})

chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})
chc)) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}))],

(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}

\out(chc,·)
))

≈ℓ (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})),

where initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}) is a closed plain process. In

the definition, C is a context which models the honest participants; Iddr and
presc are free variables; A and B are free names, representing doctor identities
known by the adversary; a and b are two free names, representing two different
prescriptions; chc is a channel not appeared in any process.

3.3 Independency of prescribing-privacy

eHelath systems involves more than two roles. Some of them is able to access to
sensitive data. However, not every role can be trusted, for example, pharmacists
may be bribed by the adversary [10]. The untrusted role may reveal his infor-
mation to the adversary such that privacy of other roles is broken. For instance,
in eHealth, pharmacists may have sensitive data which can be revealed to help
the adversary break a doctor’s privacy. To prevent a party (not a doctor) help
break a doctor’s privacy, eHealth systems require that even if the party reveals
his information, the adversary should not be able to break a doctor’s privacy.

7



This property is named as independency of prescribing-privacy, which is defined
as follows.

Definition 5 (Independency of prescribing-privacy). Let EHP be an eHealth
protocol. Let Rdr = νIddr .initdr .!Pdr be the doctor role. Let Ri be a role in the
protocol (Ri is not Rdr ). The protocol EHP satisfies independency of prescribing-
privacy if

C[!Ri
chc | (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}))]
≈ℓ C[!Ri

chc | (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})) |
(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))],

where C is a context which models the honest participants; Iddr and presc are
free variables; A and B are free names, representing doctor identities known by
the adversary; a is a free name, representing a prescription; chc is a channel
not appeared in any process.

3.4 Independency of enforced prescribing-privacy

Enforced prescribing-privacyassumes that a doctor reveals her information and
independency of prescribing-privacy assumes a third party reveals his informa-
tion to the adversary. It is nature to consider that the adversary is able to
bribe/coerce both doctors and a third party to obtain more information. Since
the adversary obtains more information, the doctor’s privacy is potentially bro-
ken. To address this privacy problem, it requires a new privacy property: in-
dependency of enforced prescribing-privacy, which means a doctor’s privacy is
preserved even if the doctor and a third party reveal their information to the ad-
versary. It can be considered as the combination of enforced prescribing-privacy
and independency of prescribing-privacy.

Definition 6 (Independency of enforced prescribing-privacy). Let EHP
be an eHealth protocol. Let Rdr = νIddr .initdr .!Pdr be the doctor role. Let Ri be
a role in the protocol (Ri is not Rdr ). The protocol EHP satisfies independency
of enforced prescribing-privacyif there exists a process R′

dr , such that:

C[!(Ri)
chc | ((initdr{A/Iddr})

chc.(!Pdr{A/Iddr} | P ′
dr{A/Iddr})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))]
≈ℓ C[!(Ri)

chc | ((initdr{A/Iddr})
chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})

chc)) |
(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}))],

(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}

\out(chc,·)
))

≈ℓ (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})),

and (initdr{A/Iddr})
chc.(!Pdr{A/Iddr} | P ′

dr{A/Iddr})) is a closed plain process.
In the definition, C is a context which models the honest participants; Iddr and
presc are free variables; A and B are free names, representing doctor identities
known by the adversary; a and b arefree names, representing prescriptions; chc
is a channel not appeared in any process.

8



4 Anonymity and untraceabiltity

Anonymity and untraceability have been formally studied in the literature (e.g., [16–
21]), which can be lifted to the eHealth domain.

4.1 Anonymity and strong anonymity

Anonymity is a property that protect users’ identities. We model anonymity as
indistinguishability of processes initiated by two different users.

Definition 7 (Doctor anonymity). A well-formed eHealth protocol EHP sat-
isfies doctor anonymity for a doctor A if there exists another doctor B, such that

C[initdr{A/Iddr}.!Pdr{A/Iddr}] ≈ℓ C[initdr{B/Iddr}.!Pdr{B/Iddr}].

A stronger notion of anonymity is defined in [20], capturing the situation that the
adversary cannot even find out whether a user (with identity A) has participated
in a session of the protocol or not.

Definition 8 (Strong doctor anonymity [20]). A well-formed eHealth pro-
tocol EHP satisfies strong doctor anonymity, if

EHP ≈ℓ νm̃.init .
(

!R1 | . . . |!Rn | (initdr{A/Iddr}.!Pdr{A/Iddr})
)

.

Similarly, we can define anonymity and strong anonymity for patient and other
roles in an eHealth protocol, by simply replacing the doctor role with a different
role.

4.2 Untraceability and strong untraceability

Untraceability is a property preventing the adversary from tracing a user. It is
defined as the adversary cannot tell whether two executions are initiated by the
same user.

Definition 9 (Doctor untraceability). A well-formed eHealth protocol EHP
satisfies doctor untraceability if, for any two doctors A and B 6= A,

C[initdr{A/Iddr}.(Pdr{A/Iddr} | Pdr{A/Iddr})]
≈ℓ C[(initdr{A/Iddr}.Pdr{A/Iddr}) | (initdr{B/Iddr}.Pdr{B/Iddr})].

A stronger notion of untraceability is proposed in [20] that captures the ad-
versary’s inability to distinguish the situation in which one user executes the
protocol multiple times from a situation in which no user executes the protocol
more than once.

Definition 10 (Strong doctor untraceability [20]). A well-formed eHealth
protocol EHP satisfies strong doctor untraceability, if

EHP ≈ℓ νm̃.init .
(

!R1 | . . . |!Ri−1 |!Ri+1 |!Rn |!(νIddr .initdr .Pdr )
)

.

Similarly, we can define untraceability and strong untraceability for patient and
other roles in an eHealth protocol, by simply replacing the doctor role with a
different role.

9



5 DLVV08 protocol

The DLVV08 protocol works as follows: a doctor prescripts medicine to a patient;
the patient obtains medicine from a pharmacist according to the prescription;
the pharmacist forwards prescriptions to the medicine prescription administrator
(MPA), the administrator checks the prescriptions and refunds the pharmacist;
the medicine administrator sends invoices to the patient’s health insurance in-
stitute (HII) and get refunded.

5.1 Cryptographic primitives

To ensure users’ security and privacy, the DLVV08 protocol employees several
special cryptographic primitives, for instance, bit-commitments, zero-knowledge
proofs, digital credentials (for anonymous authentication), signed proofs of knowl-
edge, and verifiable encryptions.

Bit-commitments. The bit-commitments scheme consists of two phases, com-
mitting phase and opening phase. On the committing phase, a message sender
makes a commitment on a message, which can be considered as putting the mes-
sage into a box, and sending the box to the receiver. Later in the opening phase,
the sender sends the key of the box to the receiver. The receiver opens the box
and obtains the message.

Zero-knowledge proofs. A zero-knowledge proof is a cryptographic scheme which
can be used for one party (prover) to prove to another party (verifier) that
a statement is true, without leaking secret information of the prover. A zero-
knowledge proof scheme can be interactive or non-interactive. We consider the
non-interactive zero-knowledge proofs in this paper.

Digital credentials. A digital credential is like a certificate, which can be used to
prove that the owner qualifies some requirements. Unlike some paper certificates
such as passport which gives out the owner’s identity, a digital credential could
be used to authenticate the owner anonymously. For example, a digital credential
can be used to prove that a driver is old enough to drive without showing the
age of the driver.

Anonymous authentication. Anonymous authentication is a scheme for authen-
ticating a user anonymously. In the scheme, a user’s digital credential is used as
the public key in the public key authentication structure. A verifier can check
whether a message is signed correctly by the prover, while the verifier cannot
identify the prover. Thus, this ensures anonymous authentication. The proce-
dure of an anonymous authentication is actually a zero-knowledge proof, with
the digital credential being the public information of the prover.

Verifiable encryptions. A verifiable encryption is a zero-knowledge proof as well.
A prover encrypts a message, and uses zero-knowledge proofs to prove that
the encrypted message satisfies some properties without showing the original
message.

10



Signed proofs of knowledge. Signed proofs of knowledge is using proofs of knowl-
edge as a digital signature scheme (for details see [22]). Intuitively, a prover signs
a message using some secret information, which can be considered as a secret
signing key. And the prover uses proofs of knowledge to convince the verifier
that he has the secret signing key corresponding to the public key.

5.2 Settings

Roles in the DLVV08 protocol are equipped with initial knowledge. A doctor has
an anonymous doctor credential. A patient has an anonymous patient creden-
tial. Doctor credentials and patient credentials are issued by trusted authorities
(medical certification authority and central government-approved certification
authority, respectively). Pharmacists, MPA, and HII are public entities, each
of which has an authorised public key certificate issued by trusted authorities
(government-approved certification organisations). Besides of credentials, a doc-
tor has an identifier (doctor identity), a doctor pseudonym; a patient has an
identifier (patient identity), a social security status, a health expense account
maintained by his HII, and a patient pseudonym; a pharmacist has an identi-
fier (pharmacist identity) and a corresponding MPA; an MPA have an identifier
(MPA identity); and an HII has an identifier (HII identity).

5.3 Description of the DLVV08 protocol

The DLVV08 protocol consists of four sub-protocols: doctor-patient sub-protocol,
patient-pharmacist sub-protocol, pharmacist-MPA sub-protocol, and MPA-HII
sub-protocol.

Doctor-patient sub-protocol The doctor authenticates himself to a patient
using the authorised doctor credential. The patient verifies the doctor creden-
tial. If the verification passes, the patient authenticates himself to the doctor
using the patient credential, sends the patient bit-commitments on the patient’s
identity to the doctor, and proves to the doctor that the patient’s identity used
in the patient credential is the same as in the patient bit-commitments. After
verifying the patient credential, the doctor generates a prescription, computes
a prescription identity, computes the doctor bit-commitments. Then the doctor
combines these computed messages with the received patient bit-commitments;
signs these messages using a signed proof of knowledge, which proves that the
doctor’s pseudonym used in the doctor credential is the same as in the doctor bit-
commitments. Together with the proof, the doctor sends the open information
of the doctor bit-commitments.

Patient-Pharmacist sub-protocol The pharmacist authenticates himself to
the patient. The patient verifies the authentication and obtains, from the au-
thentication, the pharmacist’s identity and the pharmacist’s MPA. Then the

11



patient anonymously authenticates himself to the pharmacist, and proves his so-
cial security status. Next, the patient computes verifiable encryptions vc1, vc2,
vc3, vc′3, vc4, vc5, where

– vc1 encrypts the patient’s HII using the MPA’s public key and proves that
the HII encrypted in vc1 is the same as the one in the patient’s credential.

– vc2 encrypts the doctor’s pseudonym using the MPA’s public key and proves
that the doctor’s pseudonym encrypted in vc2 is the same as the one in the
doctor commitment embedded in the prescription.

– vc3 encrypts the patient’s pseudonym using the public safety organisation’s
public key and proves that the pseudonym encrypted in vc3 is the same as
the one in the patient’s commitment.

– vc′3 encrypts the patient’s HII using the social security organisation’s public
key and proves that the content encrypted in vc′3 is the same as the HII in
the patient’s credential.

– vc4 encrypts the patient’s pseudonym using the MPA’s public key and proves
that the patient’s pseudonym encrypted in vc4 is the same as the one in the
patient’s credential.

– vc5 encrypts the patient’s pseudonym using his HII’s public key and proves
that the patient’s pseudonym encrypted in vc5 is the same as the one in the
patient’s credential.

– c5 encrypts vc5 using the MPA’s public key.

The patient sends the received prescription to the pharmacist and proves to
the pharmacist that the patient’s identity in the prescription is the same as in
the patient credential. The patient sends vc1, vc2, vc3, vc

′
3, vc4, c5 as well. The

pharmacist verifies the correctness of all the received messages. If every mes-
sage is correctly formated, the pharmacist charges the patient, and delivers the
medicine. Then the pharmacist generates an invoice and sends it to the patient.
The patient computes a receipt ReceiptAck : signing a message (consists of the
prescription identity, the pharmacist’s identity, vc1, vc2, vc3, vc′3, vc4, vc5) using
a signed proof of knowledge and proving that he knows the patient credential.
This receipt proves that the patient has received his medicine. The pharmacist
verifies the correctness of the receipt.

Pharmacist-MPA sub-protocol The pharmacist and the MPA first authenti-
cate each other using public key authentication. Then the pharmacist sends the
received prescription and the receipt ReceiptAck , together with vc1, vc2, vc3,
vc′3, vc4, c5, to the MPA. The MPA verifies correctness of the received informa-
tion. Then, the MPA decrypts vc1, vc2, vc4 and c5, which provide the patient’s
HII, the doctor’s pseudonym, the patient’s pseudonym, and vc5.

MPA-HII sub-protocol The MPA and the patient’s HII first authenticate
each other using public key authentication. Then the MPA sends the receipt
ReceiptAck to the patient’s HII as well as the verifiable encryption vc5 which

12



encrypts the patient’s pseudonym with the patient’s HII’s public key. The pa-
tient’s HII checks the correctness of ReceiptAck , decrypts vc5 and obtains the
patient’s pseudonym. From the patient pseudonym, the HII obtains the identity
of the patient; then updates the patient’s account and pays the MPA. The MPA
pays the pharmacist when he receives the payment.

Notice that the description of the protocol is slightly different from the orig-
inal protocol in [10]. We do not care about the revocability, reimbursement and
statistics property, therefore, we do not care about two roles mentioned in the
paper: public safety organisation and social security organisation.

5.4 Ambiguities

The DLVV08 protocol leaves the following things open:

a1 whether a zero-knowledge proof is transferable;
a2 whether the encryption is probabilistic;
a3 whether a patient/doctor use a fresh identity and pseudonym in each session;
a4 whether a credential is fresh in each session;
a5 what a patient’s social security status is and how it changes;
a6 how many HIIs and whether a patient’s HII is changeable;
a7 whether a patient/doctor can obtain a credential by demanding;
a8 which kind of communicating channels are used;
a9 how a patient’s health expense account changes;
a10 whether a pharmacist has a fixed MPA.

To discover security problems, we make the following assumptions:

s1 the zero-knowledge proofs used are non-interactive and transferable;
s2 the encryption is not probabilistic;
s3 a patient/doctor uses the same identity and pseudonym in every session;
s4 a patient/doctor has the same credential in every session and no one tries to

misuse his credential;
s5 a patient’s social security status is the same in every session;
s6 there are many HIIs, different patients may have different HIIs and a patient’s

HII is not changeable;
s7 a patient/doctor’s credential can be obtained by demanding;
s8 the communicating channels are public;
s9 each patient has one health expense account and the account does not change;
s10 a pharmacist can communicate with any MPA as he likes.

5.5 Claimed privacy properties

The DLVV08 protocol is claimed to satisfy the following privacy properties:

– Secrecy of patient and doctor information: No other party should be able to
know a patient or a doctor’s information, unless the information is intended
to be revealed in the protocol.

13



– Authentication: All parties should properly authenticate each other.
– prescribing-privacy: The protocol protects a doctor’s prescription behaviour.
– enforced prescribing-privacy: The protocol prevents bribery between doctors

and pharmaceutical companies.
– independency of prescribing-privacy: Pharmacists should not be able to pro-

vide evidence to pharmaceutical companies about doctors’ prescription.
– patient anonymity: No party should be able to determine a patient’s identity.
– patient untraceability: Prescriptions issued to the same patient should not

be linkable to each other.

6 Modelling the DLVV08 protocol

We model the DLVV08 protocol in the applied pi calculus. Since the description
of the protocol is not clear in some details, before modelling the protocol, a
few ambiguities need to be settled. Next we explain the modelling of a few
cryptographic primitives, since security and privacy properties rely heavily on
these cryptographic primitives in the protocol. Then, we illustrate the modelling
of the protocol.

6.1 Modelling cryptographic primitives

The cryptographic primitives are modelled in the applied pi calculus using func-
tions and equational theory. All functions and equational theory are shown in
Appendix A.

Bit-commitments. The bit-commitments scheme is modelled as two functions:
function commit, modelling the committing phase, and function open, modelling
the opening phase. Function commit creates a commitment with two parameters:
a message m and a random number r. A commitment can only be opened with
the correct opening information r, thus reveals the message m.

fun commit/2.
reduc open(commit(m, r), r) = m.

Note that key word fun is used to declaim function in Proverif and key word
reduc is used to declaim the equational theory in ProVerif.

Zero-knowledge proofs. Non-interactive zero-knowledge proofs can be modelled
as function zk(secrets, pub info) (a function with two parameters: a tuple of se-
crete information secrets, and a tuple of public information pub info) inspired
by [23]1. The verifying information and the secret information satisfies a rela-
tion. Since the secret information is only known by the prover, only the prover
can construct the zero-knowledge proof. To verify a zero-knowledge proof is to

1 We define each zero-knowledge specifically, comparing to that in [23], because there
is limited number of zero-knowledge proofs

14



check whether the relation between the secret formation and the verifying for-
mation is satisfied. The verification of a zero-knowledge proof is modelled as
function VerifyZk(zk(secrets, pub info), verif info), in which two parameters are:
a zero-knowledge proof to be verified zk(secrets, pub info) and the verification
information verif info.

We specify each verification rule in this paper. Since the pub info and verif info
happens to be the same in all the zero-knowledge proofs verifications in this pa-
per, the generic structure of verification rule is as

VerifyZk(zk(x, f(x, y)), f(x, y)) = true,

where x denotes secret information and y denotes public information.
For example, let c be a secret used to compute both a = f(c) and b =

g(c). To prove that the same value was used in both computations, the prover
constructs the zero-knowledge proof zk(c, (a, b)). To verify a given proof z, the
verifier executes VerifyZkEx(z, getpublic(z)), defined as:

VerifyZkEx(zk(x, (f(x), g(x)), (f(x), g(x))) ) = true.

When the proof z is constructed as zk(x, (f(x), g(x))), the proof is verified.
Otherwise the verification fails. Since x is secret and cannot be derived from a
and b, the adversary cannot forge a proof which satisfies the verification.

fun zk/2.
fun true/0.

reduc VerifyZk(zk(x, f(x, y)), f(x, y)) = true.
reduc getpublic(zk(x, y)) = y.

Digital credentials. A digital credential is issued by trusted authorities. We as-
sume the procedure of issuing a credential is perfect, which means that the
adversary cannot forge a credential nor obtain one by impersonation. We model
digital credentials as a private function (declaimed by key word private fun
in ProVerif) which is only usable by honest users. In the DLVV08 protocol,
a credential can have several attributes; we model these as parameters of the
credential function.

private fun drcred/2.
private fun ptcred/5.

There are two credentials in the DLVV08 protocol: a doctor credential which
is modelled as Creddr = drcred(Pnymdr , Iddr ), and a patient credential which is
modelled as Credpt = ptcred(Idpt , Pnympt , Hii, Sss, Acc).

Anonymous authentication. The procedure of anonymous authentication is a
zero-knowledge proof using the digital credential as public information. The
anonymous authentication of a doctor is modelled as

Authdr = zk((y, z), drcred(y, z)),

15



and the verification of the authentication is modelled as Vfy-zkAuthdr
(Authdr , drcred(y, z)).

The equational theory for the verification is

reduc Vfy-zkAuthdr
(zk((y, z), drcred(y, z)), drcred(y, z)) = true.

The verification implies that the creator of the authentication is a doctor, because
only doctors can use the function drcred, and thus create a valid proof. The
adversary can observe a credential drcred(y, z), but does not know secrets y, z,
and thus cannot forge a valid zero-knowledge proof. If the adversary forges a zero-
knowledge proof with fake secret information y′ and z′, the fake zero-knowledge
proof will not pass verification. For the same reason, a validated proof proves
that the credential belongs to the creator of the zero-knowledge proof.

Similarly, an anonymous authentication of a patient is modelled as

Authpt = zk( (Idpt , Pnympt , Hii, Sss, Acc),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

and the verification rule is modelled as

reduc Vfy-zkAuthpt
( zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

Verifiable encryptions. A verifiable encryption is modelled as a zero-knowledge
proof. The encryption is embedded in the zero-knowledge proof as public func-
tion. The receiver can obtain the cipher text from the proof. For example, a
patient wants to prove that he encrypted a secrete s using a public key k to a
pharmacist, while the pharmacist does not know the corresponding secrete key
for k. The pharmacist cannot open the cipher text to test whether it uses the
public key k to encrypt. However, the zero-knowledge proof can prove that the
cipher text is encrypted using k, while not revealing s.

The general structure of the verification of a verifiable encryption is

VerifyVenc(zk(secrets, (pub info, cipher)), verif info) = true,

where secrets is private information, pub info and micipher consist public infor-
mation, verif info is the verification information.

Signed proofs of knowledge. A signed proof of knowledge is a scheme which signs
a message, and proves a property of the signer. For the DLVV08 protocol, this
proof only concerns equality of attributes of credentials and commitments (e.g.
the identify of this credential is the same as the identity of that commitment).

To verify a signed proof of knowledge, the verifier must know which creden-
tials/commitments are considered. Hence, this information must be obtainable
from the proof, and thus is included in the model. In general, a signed proof of
knowledge is modelled as function

spk(secrets, pub info,msg),

16



which models a signature using private value(s) secrets on the message msg, with
public information pub info as settings.

What knowledge is proven, depends on the specific instance of the proof and
is captured by the verification functions for the specific proofs. For example, to
prove that a user knows a) all fields of a (simplified) credential, b) all fields of
a commitment to an identity, and c) that the commitment concerns the same
identity as the commitment, he generates the following proof:

spk( (Idpt , Pnympt , rpt),
(ptcred(Idpt , Pnympt), commit(Idpt , rpt)),
msg).

These proofs are verified by checking that the signature is correct, given the
signed message and the verification information. Generically, this is modelled as
VerifySpk (spk (x, f(x, y),m) , f(x, y),m) = true, although the specific verification
function depends on the specific proof to be verified. E.g., the above example
proof can be verified as follows:

reduc VerifySpk( spk( (Idpt , Pnympt , rpt),
(ptcred(Idpt , Pnympt), commit(Idpt , rpt)),
msg ),

( ptcred(Idpt , Pnympt), commit(Idpt , rpt) ),
msg

) = true.

Consequently, the spk-related functions are generically modelled as follows.

fun spk/3.
reduc VerifySpk(spk(x, f(x, y),m), f(x, y),m) = true.
reduc getSpkVinfo(spk(x, y, z)) = y.
reduc getSpkMsg(spk(x, y, z)) = z.

6.2 Modelling the DLVV08 protocol

Settings Below lists the raw knowledge of each role.

– A doctor is initialised with: an identity Iddr , a pseudonym Pnymdr , and a
credential Creddr = drcred(Pnymdr , Iddr ).

– A patient is initialised with: an identity Idpt , a pseudonym Pnympt , an HII
Hii, a social security status Sss, a health expense account Acc and a cre-
dential
Credpt = ptcred(Idpt , Pnympt , Hii, Sss, Acc).

– A pharmacist is initialised with: a secret key skph , a public key pkph , and
an identity Idph .

– An MPA is initialised with: a secret key skmpa , a public key pkmpa , and an
identity Idmpa .

– An HII is initialised with: a secret key skhii , a public key pkhii , and an
identity Idhii .

17



Besides, there is a public key of social security organisation pksso as a global
public information.

The adversary initially knows the set of doctor identities, the set of patient
identities,the set of pharmacist identities, the set of MPA identities, the set of
HII identities and all public keys: pkph of each pharmacist, pkmpa of each MPA,
pkhii of each HII and pksso of social security organisation.

Modelling Doctor-Patient sub-protocol This sub-protocol is to prescribe
medicines for a patient. It contains two steps: first, doctor and patient anony-
mously authentications each other, second, the doctor sends prescription to the
patient. The communication in the doctor-patient sub-protocol are as in Fig-
ure 6.2.

Idpt , Pnympt , Hii, Sss, Acc

pt

Iddr , Pnymdr

dr

anonymous authtication (Authdr )

verify authentication,
commit on Idpt (Comtpt)

anonymous authentication (Authpt),
commitment (Comtpt),
PtProof (zk: link between Authpt , Comtpt)

verify authentication,
commit on Pnymdr ,
prescibe medicine presc,
compute prescription iden-
tity

PrescProof (spk: prove the link between
Authdr , Comtdr , presc and the patient),
open information to commitment

verify PrescProof ,
open Comtdr

msc [DLVV08] I. Doctor-Patient sub-protocol

Fig. 2. Doctor-Patient sub-protocol

Each step in Figure 6.2 is modelled as follows:

18



1. The doctor anonymously authenticates (Authdr ) himself to the patient using
his credential Creddr = drcred(Pnymdr , Iddr ).

Authdr = zk((Pnymdr , Iddr ),Creddr )

2. The patient reads in the doctor authentication rcv Authdr , obtains the doc-
tor credential

c Creddr = getpublic(rcv Authdr )

and verifies the authentication as follows:

Vfy-zkAuthdr
(rcv Authdr , c Creddr ).

If the verification succeeds, according to the rule

reduc Vfy-zkAuthdr
( zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )),

drcred(Pnymdr , Iddr )) = true,

the patient
– anonymously authenticates (Authpt) himself to the doctor using his cre-

dential Credpt = ptcred(Idpt , Pnympt , Hii, Sss, Acc),

Authpt = zk( (Idpt , Pnympt , Hii, Sss, Acc),Credpt );

– generates a nonce rpt and sends the patient bit-commitments,

Comtpt = commit(Idpt , rpt);

– generates a proof PtProof which proves that the patient identity used
in the patient credential is the same as in the patient bit-commitments,
thus links the patient bit-commitments and the patient credential. The
proof is modelled as:

PtProof = zk( (Idpt , Pnympt , Hii, Sss, Acc),
(Comtpt ,Credpt)).

3. The doctor reads in the patient authentication rcv Authpt and the proof
rcv PtProof , obtains the patient credential from the patient authentication

c Credpt = getpublic(rcv Authpt),

obtains the patient commitment and the patient credential from the patient
proof and tests whether the credential matches the one embeded in the
patient authentication

(c Comtpt ,=c Credpt) = getpublic(rcv PtProof )2,

2 The (=B) = f(C) notation tests whether f(C) (applying function f on term C)
matches B and aborts if not.

19



then verifies the two proofs as follows: 3:

Vfy-zkAuthpt
(rcv Authpt , c Credpt)

Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt))

If the verification succeeds, according to the following rules respectively,

reduc Vfy-zkAuthpt
(zk(Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

reduc Vfy-zkPtProof (zk((Idpt , Pnympt , Hii, Sss, Acc),
(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc))),
commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

the doctor generates a prescription4 presc, generates a nonce rdr , computes
a commitment

Comtdr = commit(Pnymdr , rdr ),

and a prescription identity

PrescriptID = hash(presc, c Comtpt ,Comtdr ).

Next, the doctor signs the message (presc, PrescriptID , Comtdr , c Comtpt)
using a signed proof of knowledge PrescProof . This proof proves that the
pseudonym used in the credential Creddr is the same as in the commitment
Comtdr , thus linking the prescription to the credential.

PrescProof = spk( (Pnymdr , rdr , Iddr ),
(Comtdr ,Creddr ),
(presc,PrescriptID ,Comtdr , c Comtpt)).

The doctor sends to the patient the message PrescProof together with the
open information of the doctor commitment rdr .

4. The patient reads in the prescription as rcv PrescProof , obtains messages:
the prescription c presc, prescription identity c PrescriptID , doctor commit-
ment c Comtdr , and tests the patient commitment signed in the receiving
message

(c presc, c PrescriptID , c Comtdr ,= commit(Idpt , rpt))
= getSpkMsg(rcv PrescProof ),

verifies the proof rcv PrescProof as follows:

Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc, c PrescriptID ,
c Comtdr , commit(Idpt , rpt))),

3 Note that the equal notion in (c Comtpt , = c Credpt) is a test, if the second field
of the message obtaining from getpublic(rcv PtProof ) is the same as c Credpt , then
continue the process, otherwise, stop.

4 Notice that a medical examination of the patient is not part of the DLVV08 protocol.

20



according to the following rule,

reduc Vfy-spkPrescProof( spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID , commit(Pnymdr , rdr ),
commit(Idpt , rpt))),

drcred(Pnymdr , Iddr ), presc,PrescriptID ,
commit(Pnymdr , rdr ),
commit(Idpt , rpt)) = true.

(R1)
if the verification succeeds, the patient obtains c Pnymdr by opening the
doctor commitment

c Pnymdr = open(c Comtdr , rcv rdr ).

From above, we can model the behaviour of doctor and patient, as Pdr and
Ppt p1 shown in Figure 3 and Figure 4, respectively. In applied pi, the doctor-
patient sub-protocol is modelled as a doctor process and a patient process run-
ning in parallel, Pdr | Ppt p1.

let Pdr =
out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
in(ch, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

νpresc;
νrdr ;
let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr )) in

out(ch, (spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr )).

Fig. 3. The doctor process Pdr .

Modelling Patient-Pharmacist sub-protocol This sub-process is used for
a patient to obtain medicines from a pharmacist. It contains mainly five steps:
first the patient and the pharmacist authenticate each other, second, the patient
sends prescription to the pharmacist, third, the pharmacist sends invoice to
the patient, fourth, the patient sends back a receipt to the pharmacist. The
communication of this sub-protocol is shown in Figure 6.25.

5 The dashed arrows are out of the scope of the protocol, thus, the message exchanging
are not modelled.

21



let Ppt p1 =
in(ch, rcv Authdr );
let c Creddr = getpublic(rcv Authdr ) in

if Vfy-zkAuthdr
(rcv Authdr , c Creddr ) = true then

νrpt ;
out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

zk((Idpt , Pnympt , Hii, Sss, Acc),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)))));

in(ch, (rcv PrescProof , rcv rdr ));
let (c presc, c PrescriptID , c Comtdr , = commit(Idpt , rpt))

= getSpkMsg(rcv PrescProof ) in

if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc,
c PrescriptID , c Comtdr , commit(Idpt , rpt))) = true then

let c Pnymdr = open(c Comtdr , rcv rdr ) in 0.

Fig. 4. The patient process Ppt in Doctor-Patient sub-protocol.

Each step in Figure 6.2 is modelled as follows:

1. A pharmacist authenticates to the patient using public key authentication

sign((Idph , cph Idmpa), skph).

Note that the pharmacist does not authenticate anonymously. The authen-
tication is modelled as signing a message using the pharmacist’s secret key.
Since the patient can obtain the pharmacists’s MPA identity from the phar-
macist authentication. We put the pharmacist’s MPA identity and the phar-
macist identity as messages.

2. The patient reads in the pharmacist’s authentication rcv Authph , verifies the
authentication using the public key of pharmacist rcvpt pkph ,

Vfy-sign(rcv Authph , rcvpt pkph),

according to the following rule,

reduc Vfy-sign(sign(x , y), pk(y)) = true. (R2)

if the verification succeeds, the pharmacist obtains the pharmacist’s identity
from the authentication.

cpt Idph = getsignmsg(rcv Authph , rcvpt pkph)

Then the patient anonymously authenticates himself to the pharmacist, and
proves his social security status using the proof PtAuthSss.

PtAuthSss = zk( (Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss))

22



Idpt , Pnympt , Hii, Sss, Acc

pt

skph , Idmpa , pkph

ph

public key authentication

verify authentication
obtain MPA identity from it

anonymous authenticate PtAuthSss (prove Sss)

compute verifiable encryptions vc1,
vc2, vc3, vc′

3, vc4, vc5, encryption c5

(encrypt patient information for
MPA, HII and SSO)

PrescProof , vc1, vc2, vc3, vc
′

3, vc4, c5,
PtSpk (spk: link between PrescProof , PtAuthSss)

verify
PrescProof ,vc1,vc2,
vc3,vc

′

3,vc4,PtSpk

bill

payment

deliver medicine

invoice

ReceiptAck (spk: prove ability to construct Credpt)

msc [DLVV08] II. Patient-Pharmacist

23



The patient computes the following verifiable encryptions. These verifiable
encryptions are used to inform the MPA the patient’s HII, the doctor’s
pseudonym, the patient’s pseudonym, inform the HII the patient’s pseudonym
and inform the social safety organisation the patient pseudonym and the pa-
tient HII. The verifiable encryptions prove that the message encrypted is
the message should be encrypted, without showing the message to those
who cannot open the cipher text.

vc1 : (enc(Hii, pkmpa),proof that this is the same Hii as in Credpt)
vc2 : (enc(c Pnymdr , pkmpa),

proof that this is the same c Pnymdr as in rcv PrescProof )
vc3 : (enc(Pnympt , pksso),proof that this is the same Pnympt as in Comtpt)
vc′3 : (enc(Hii, pksso),proof that this is the same Hii as in Credpt)
vc4 : (enc(Pnympt , pkmpa),proof that this is the same Pnympt as in Credpt)
vc5 : (enc(Pnympt , pkhii),proof that this is the same Pnympt as in Credpt)
c5 : (enc(vc5, pkmpa))

The verifiable encryptions are modelled as zero-knowledge proofs:

let ptSecrets = (Idpt , Pnympt , Hii, Sss, Acc)
let Credpt = ptcred(Idpt , Pnympt , Hii, Sss, Acc)

vc1 = zk(ptSecrets , (Credpt , enc(Hii, pkmpa)))
vc2 = zk((c Pnymdr , rcv rdr ), (rcv PrescProof , enc(c Pnymdr , pkmpa)))
vc3 = zk(ptSecrets , (Credpt , enc(Pnympt , pksso)))
vc′3 = zk(ptSecrets , (Credpt , enc(Hii, pksso)))
vc4 = zk(ptSecrets , (Credpt , enc(Pnympt , pkmpa)))
vc5 = zk(ptSecrets , (Credpt , enc(Pnympt , pkhii)))
c5 = enc(vc5, pkmpa)

The patient computes a signed proof of knowledge PtSpk which proves that
the patient identity embedded in the prescription is the same as in his patient
credential:

PtSpk = spk( (Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),
nonce)

The patient sends the prescription rcv PrescProof , the signed proof PtSpk ,
and vc1, vc2, vc3, vc

′
3, vc4, c5 to the pharmacist.

3. The pharmacist reads in messages: rcv PtAuthSss, rcvph PrescProof , rcvph PtSpk ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4; verifies the correctness of them as
follows:
– rcv PtAuthSss (the received anonymous authentication and proof of so-

cial security status),

(cph Credpt , cph Sss) = getpublic(rcv PtAuthSss)
Vfy-zkPtAuthSss(rcv PtAuthSss, (cph Credpt , cph Sss))

24



using the following rule

reduc Vfy-zkPtAuthSss( zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss),

ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss) = true.

– rcvph PrescProof (the prescription), using the rule R1,

(cph Comtdr , cph Creddr ) = getSpkVinfo(rcvph PrescProof )
(cph presc, cph PrescriptID ,= cph Comtdr , cph Comtpt)

= getSpkMsg(rcvph PrescProof )
Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , cph presc, cph PrescriptID ,

cph Comtdr , cph Comtpt))

– rcvph PtSpk (the proof that the patient identity in the patient credential
is the same as in the patient bit-commitments),

c msg = getSpkMsg(rcvph PtSpk)
Vfy-spkPtSpk(rcvph PtSpk , (cph Credpt , cph Comtpt , c msg))

according to the following rule:

reduc Vfy-spkPtSpk( spk((Idpt , Pnympt , Hii, Sss, Acc, rpt),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),
nonce),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
commit(Idpt , rpt), nonce) = true.

– rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4 (verifiable encryptions),

(= c Credpt , c Enc1) = getpublic(rcv vc1)
(= rcvph PrescProof , c Enc2) = getpublic(rcv vc2)

(= cph Credpt , c Enc3) = getpublic(rcv vc3)
(= cph Credpt , c Enc′3) = getpublic(rcv vc′3)
(= cph Credpt , c Enc4) = getpublic(rcv vc4)

Vfy-zkVEncHii(rcv vc1, (cph Credpt , c Enc1, pkmpa))
Vfy-zkVEncDrnymMpa(rcv vc2, (rcvph PrescProof , c Enc2, pkmpa))
Vfy-zkVEncPtnym(rcv vc3, (cph Credpt , c Enc3, pksso))
Vfy-zkVEncHii(rcv vc′3, (cph Credpt , c Enc′3, pksso))
Vfy-zkVEncPtnym(rcv vc4, (cph Credpt , c Enc4, pkmpa))
⋆ Notice that, for simplicity, the verification functions of vc1 and vc′

3 are

merged into one function Vfy-zkVEncHii, since the reduction of these two

functions share the same structure. Similarly, the verification functions of

vc3 and vc4 are merged into Vfy-zkVEncPtnym.

25



according to the following rules:

reduc Vfy-zkVEncHii( zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Hii, pkx ))),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Hii, pkx ), pkx ) = true.

(R3)

reduc Vfy-zkVEncDrnymMpa( zk((Pnymdr , rdr ),
(spk((Pnymdr , rdr , Iddr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ))),
spk((Pnymdr , rdr , Iddr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ), pkx ) = true.
(R4)

reduc Vfy-zkVEncPtnym( zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , pkx ))),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),
enc(Pnympt , pkx ), pkx ) = true.

(R5)

If all the verifications succeed, the pharmacist charges the patient, and de-
livers the medicine. Payment and delivery are out of the protocol’s scope.
Then the pharmacist generates an invoice and sends it to the patient. The
invoice is a function of prescription identity,

invoice = invoicePrescriptID .

4. The patient computes a receipt: a signed proof of knowledge ReceiptAck
which proves that he knows the patient credential, as follows:

ReceiptAck = spk( (Idpt , Pnympt , Hii, Sss, Acc),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),
(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5)).

5. The pharmacist reads in the receipt rcv ReceiptAck and verifies its correct-
ness as

Vfy-spkReceiptAck( rcv ReceiptAck , (cph Credpt ,
(cph PrescriptID , Idph ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, rcv c5))),

26



according to the rule:

reduc Vfy-spkReceiptAck( spk((Idpt , Pnympt , Hii, Sss, Acc),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),
(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5)),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5) = true.

(R6)

From the modelling of each message exchanging in this sub-protocol, the
behaviour of the patient and the pharmacist of this sub-protocol is obvious as
Ppt p2 in Figure 5 and Pph p1 Figure 6, respectively. Thus, this sub-protocol is
modelled as Ppt p2 | Pph p1.

Modelling Pharmacist-MPA sub-protocol The pharmacist-MPA sub-protocol
is used for the pharmacist to report the received prescriptions to the MPA. There
are two steps: first the pharmacist and the MPA authenticate each other, second,
the pharmacist forwards prescription, encrypted patient information and the re-
ceipt to MPA. The communication of this sub-protocol is shown in Figure 6.2.

As the pharmacist mostly forwards the information supplied by the patient,
this protocol greatly resembles the patient-pharmacist protocol described above.
Each step in Figure 6.2 is modelled in details as follows:

1. The pharmacist authenticates himself to MPA by sending

sign((Idph , cph Idmpa), skph).

2. MPA stores this authentication in rcvmpa Authph , which the MPA verifies
against the pharmacist’s public key,

Vfy-sign(rcvmpa Authph , rcvmpa pkph).

If the verification succeeds, according to the rule R2, the MPA then authen-
ticates itself to the pharmacist by sending sign(Idmpa , skmpa).

3. The pharmacist verifies the MPA authentication rcv Authmpa ,

Vfy-sign(rcv Authmpa , pkmpa).

If the verification succeeds, according to the rule R2, the pharmacist sends
the following to the MPA: prescription rcvph PrescProof , received receipt
rcv ReceiptAck , and verifiable encryptions rcv vc1, rcv vc2, rcv vc3, rcv vc′3,
rcv vc4, rcv c5.

4. The MPA verifies the correctness of the information it received. The verifi-
cation functions are the same as used in the process of pharmacist.

(cmpa Comtdr , cmpa Creddr ) = getSpkVinfo(rcvmpa PrescProof )
(cmpa presc, cmpa PrescriptID ,= cmpa Comtdr , cmpa Comtpt)

= getSpkMsg(rcvmpa PrescProof )
Vfy-spkPrescProof(rcvmpa PrescProof , (cmpa Creddr , cmpa presc, cmpa PrescriptID ,

cmpa Comtdr , cmpa Comtpt))

27



let Ppt p2 =
in(ch, rcv Authph);
if Vfy-sign(rcv Authph , rcvpt pkph) = true then

let (= cpt Idph , cpt Idmpa) = getsignmsg(rcv Authph , rcvpt pkph) in

let cpt pkmpa = key(cpt Idmpa) in

out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss)));

νnonce;
let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, cpt pkmpa))) in

let vc2 = zk((c Pnymdr , rcv rdr ), (rcv PrescProof ,
enc(c Pnymdr , cpt pkmpa))) in

let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , pksso))) in

let vc′

3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, pksso))) in

let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , cpt pkmpa))) in

let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , cpt pkhii))) in

let c5 = enc(vc5, cpt pkmpa) in

out(ch, (rcv PrescProof ,
spk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),

nonce),
vc1, vc2, vc3, vc

′

3, vc4, c5));
in(ch, rcv Invoice);
let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),

(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5)) in

out(ch,ReceiptAck).

Fig. 5. The patient process Ppt in Patient-Pharmacist sub-protocol.

28



let Pph p1 =
out(ch, sign((Idph , cph Idmpa), skph));
in(ch, rcv PtAuthSss);
let (cph Credpt , cph Sss) = getpublic(rcv PtAuthSss) in

if Vfy-zkPtAuthSss(rcv PtAuthSss, (cph Credpt , cph Sss)) = true then

in(ch, (rcvph PrescProof , rcvph PtSpk ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5));
let (cph Comtdr , cph Creddr ) = getSpkVinfo(rcvph PrescProof ) in

let (cph presc, cph PrescriptID , = cph Comtdr , cph Comtpt)
= getSpkMsg(rcvph PrescProof ) in

if Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , cph presc, cph PrescriptID ,
cph Comtdr , cph Comtpt)) = true then

let c msg = getSpkMsg(rcvph PtSpk) in

if Vfy-spkPtSpk(rcvph PtSpk ,
(cph Credpt , cph Comtpt , c msg)) = true then

let (= cph Credpt , c Enc1) = getpublic(rcv vc1) in

if Vfy-zkVEncHii(rcv vc1, (cph Credpt , c Enc1, rcvph pkmpa)) = true then

let (= rcvph PrescProof , c Enc2) = getpublic(rcv vc2) in

if Vfy-zkVEncDrnymMpa(rcv vc2, (rcvph PrescProof ,
c Enc2, rcvph pkmpa)) = true then

let (= cph Credpt , c Enc3) = getpublic(rcv vc3) in

if Vfy-zkVEncPtnym(rcv vc3, (cph Credpt , c Enc3, pksso)) = true then

let (= cph Credpt , c Enc′

3) = getpublic(rcv vc′

3) in

if Vfy-zkVEncHii(rcv vc′

3, (cph Credpt , c Enc′

3, pksso)) = true then

let (= cph Credpt , c Enc4) = getpublic(rcv vc4) in

if Vfy-zkVEncPtnym(rcv vc4,
(cph Credpt , c Enc4, rcvph pkmpa)) = true then

out(ch, invoice(cph PrescriptID));
in(ch, rcv ReceiptAck);
if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt , cph PrescriptID ,
Idph , rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5)) = true then0.

Fig. 6. The pharmacist process Pph in Patient-Pharmacist sub-protocol.

29



skph , Idph , pkph

ph

skmpa , Idmpa , pkmpa

mpa

public key authentication

public key authentication

forward
PrescProof , vc1, vc2, vc3, vc′

3, vc4, c5,
ReceiptAck

verify PrescProof , vc1, vc2,
vc3, vc′

3, vc4, c5, ReceiptAck

Pnympt := dec(vc4, pkmpa)
Hii := dec(vc1, pkmpa)
Pnymdr := dec(vc2, pkmpa)
vc5 := dec(c5, pkmpa)

msc [DLVV08] III. Pharmacist-MPA sub-protocol

Fig. 7. Pharmacist-MPA sub-protocol

30



(= cmpa Credpt , cmpa Enc1) = getpublic(rcvmpa vc1)
(= rcvmpa PrescProof , cmpa Enc2) = getpublic(rcvmpa vc2)
(= cmpa Credpt , cmpa Enc3) = getpublic(rcvmpa vc3)
(= cmpa Credpt , cmpa Enc′3) = getpublic(rcvmpa vc′3)
(= cmpa Credpt , cmpa Enc4) = getpublic(rcvmpa vc4)

Vfy-zkVEncHii(rcvmpa vc1, (cmpa Credpt , cmpa Enc1, pkmpa))
Vfy-zkVEncDrnymMpa(rcvmpa vc2, (rcvmpa PrescProof , cmpa Enc2, pkmpa))
Vfy-zkVEncPtnym(rcvmpa vc3, (cmpa Credpt , cmpa Enc3, pksso))
Vfy-zkVEncHii(rcvmpa vc′3, (cmpa Credpt , cmpa Enc′3, pksso))
Vfy-zkVEncPtnym(rcvmpa vc4, (cmpa Credpt , cmpa Enc4, pkmpa))

Vfy-spkReceiptAck(rcvmpa ReceiptAck , (cmpa Credpt , cmpa PrescriptID ,
cmpa Idph , rcvmpa vc1, rcvmpa vc2, rcvmpa vc3, rcvmpa vc4, rcvmpa c5))

If the verifications succeed, according to rules R1, R3, R4, R5, R3 and
R5, respectively, the MPA decrypts rcvmpa vc1, rcvmpa vc2, rcvmpa vc4 and
rcvmpa c5, obtains the patient’s HII, the doctor pseudonym, the patient
pseudonym and rcvmpa vc5 as follows:

cmpa Hii = dec(rcvmpa vc1, skmpa)
cmpa Pnymdr = dec(rcvmpa vc2, skmpa)
cmpa Pnympt = dec(rcvmpa vc4, skmpa)

rcvmpa vc5 = dec(rcvmpa c5, skmpa).

The storing information to database is beyond our concern.

let Pph p2 =
out(ch, (sign((Idph , cph Idmpa), skph), Idph));
in(ch, rcv Authmpa);
if Vfy-sign(rcv Authmpa , rcvph pkmpa) = true then

out(ch, (rcvph PrescProof ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5,
rcv ReceiptAck))

Fig. 8. The pharmacist process Pph in Pharmacist-MPA sub-protocol.

Modelling MPA-HII sub-protocol. This protocol covers the exchange of
information between the pharmacist’s MPA and the patient’s HII. The goal
of this protocol is for the MPA to be reimbursed by the patient’s HII. The
communication of this sub-protocol consists of two steps: first, the MPA and

31



let Pmpa p1 =
in(ch, (rcvmpa Authph , cmpa Idph));
let rcvmpa pkph = key(cmpa Idph) in

Vfy-sign(rcvmpa Authph , rcvmpa pkph) = true

let (= cmpa Idph , = Idmpa)
= getSpkMsg(rcvmpa Authph , rcvmpa pkph) in

out(ch, sign(Idmpa , skmpa));
in(ch, (rcvmpa PrescProof , rcvmpa vc

1
, rcvmpa vc

2
, rcvmpa vc

3
,

rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
, rcvmpa ReceiptAck));

let (cmpa Comtdr , cmpa Creddr ) = getSpkVinfo(rcvmpa PrescProof ) in

let (cmpa presc, cmpa PrescriptID , = cmpa Comtdr , cmpa Comtpt)
= getSpkMsg(rcvmpa PrescProof ) in

if Vfy-spkPrescProof(rcvmpa PrescProof , (cmpa Creddr , cmpa presc,
cmpa PrescriptID , cmpa Comtdr , cmpa Comtpt)) = true then

let (= cmpa Credpt , cmpa Enc
1
) = getpublic(rcvmpa vc

1
) in

if Vfy-zkVEncHii(rcvmpa vc
1
,

(cmpa Credpt , cmpa Enc
1
, pkmpa)) = true then

let cmpa Hii = dec(cmpa Enc
1
, skmpa) in

let (= rcvmpa PrescProof , cmpa Enc
2
) = getpublic(rcvmpa vc

2
) in

if Vfy-zkVEncDrnymMpa(rcvmpa vc
2
,

(rcvmpa PrescProof , cmpa Enc
2
, pkmpa)) = true then

let cmpa Pnymdr = dec(cmpa Enc
2
, skmpa) in

let (= cmpa Credpt , cmpa Enc3) = getpublic(rcvmpa vc
3
) in

if Vfy-zkVEncPtnym(rcvmpa vc
3
,

(cmpa Credpt , cmpa Enc
3
, pksso)) = true then

let (= cmpa Credpt , cmpa Enc′

3
) = getpublic(rcvmpa vc′

3
) in

if Vfy-zkVEncHii(rcvmpa vc′

3
,

(cmpa Credpt , cmpa Enc′

3
, pksso)) = true then

let (= cmpa Credpt , cmpa Enc
4
) = getpublic(rcvmpa vc

4
) in

if Vfy-zkVEncPtnym(rcvmpa vc
4
,

(cmpa Credpt , cmpa Enc
4
, pkmpa)) = true then

let cmpa Pnympt = dec(cmpa Enc
4
, skmpa) in

if Vfy-spkReceiptAck(rcvmpa ReceiptAck , (cmpa Credpt ,
cmpa PrescriptID , cmpa Idph , rcvmpa vc

1
, rcvmpa vc

2
, rcvmpa vc

3
,

rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
))

= true then 0.

Fig. 9. The MPA process Pmpa in Pharmacist-MPA sub-protocol.

32



the HII authenticate each other, second, the MPA forwards the receipt and the
encrypted patient pseudonym to the HII. Note that reimbursement is not in the
scope of the protocol. The communication is as shown in Figure 6.2.

skmpa , Idmpa , pkmpa

mpa

skhii , Idhii , pkhii

hii

public key authentication

public key authentication

forward ReceiptAck , vc5

verify ReceiptAck , vc5

Pnympt := dec(vc5, pkhii)

obtain Idpt and Acc,
update Acc

reimbursement

msc [DLVV08] VI. MPA-PtHII sub-protocol

Fig. 10. MPA-PtHII sub-protocol

As shown in Figure 6.2, the detailed modelling of each step is as follows:

1. The MPA authenticates to the HII using public key authentication,

sign(Idmpa , skmpa).

2. The HII stores the authentication in rcvhii Authmpa and verifies it as follows:

Vfy-sign(rcvhii Authmpa , pkmpa).

If the verification succeeds according to rule R2, the HII authenticates to
the MPA using public key authentication,

sign(Idhii , skhii).

3. The MPA stores the authentication in rcvmpa Authhii and verifies it as fol-
lows:

Vfy-sign(rcvmpa Authhii , pkhii).

33



If the verification succeeds according to rule R2, the MPA sends the re-
ceipt rcvmpa PrescProof and the patient pseudonym encrypted for the HII
rcvmpa vc5.

4. The HII receives them as rcvhii ReceiptAck and chii vc5, and verifies their
correctness as follows:

chii Credpt = getSpkVinfo(rcvhii ReceiptAck)
(chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc′3, chii vc4, chii c5)

= getSpkMsg(rcvhii ReceiptAck)
Vfy-spkReceiptAck(rcvhii ReceiptAck , (chii Credpt , chii PrescriptID , chii Idph ,

chii vc1, chii vc2, chii vc3, chii vc′3, chii vc4, chii c5))

(= chii Credpt , chii Enc5) = getpublic(chii vc5)
Vfy-zkVEncPtnym(chii vc5, (chii Credpt , chii Enc5, pkhii))

If the verifications succeed, according to rules R6 and R5, respectively, the
HII decrypts chii vc5 and obtains the patient’s pseudonym.

chii Pnympt = dec(chii Enc5, skhii).

Afterwards, the HII pays the MPA and updates the patient account. As
before, handling payment and storing information are beyond the scope of the
DLVV08 protocol and therefore, we do not model this stage.

Following the modelling of each step, the behaviour of MPA and HII in
this sub-protocol is modelled as Pmpa p2 in Figure 11 and Phii in Figure 12,
respectively.

let Pmpa p2 =
out(ch, (sign(Idmpa , skmpa), Idmpa));
in(ch, rcvmpa Authhii);
let cmpa pkhii = key(cmpa Hii) in

if Vfy-sign(rcvmpa Authhii , cmpa pkhii) = true then

if getsignmsg(rcvmpa Authhii , cmpa pkhii) = cmpa Hii then

out(ch, (rcvmpa ReceiptAck , dec(rcvmpa c
5
, skmpa)));

in(ch, rcvmpa Invoice).

Fig. 11. The MPA process Pmpa in MPA-HII sub-protocol.

The protocol In summary, the DLVV08 protocol is modelled as five roles Rdr ,
Rpt , Rph , Rmpa , and Rhii running in parallel.

DLV = νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii)

where νm̃ represents global secrets sksso and private channels chhp, chhm, chpm,
chmp, chphpt, chmh; process init initialise the settings of the protocol and the

34



let Phii =
in(ch, (rcvhii Authmpa , rcvhii Idmpa));
let chii pkmpa = key(rcvhii Idmpa) in

if Vfy-sign(rcvhii Authmpa , chii pkmpa) = true then

out(ch, sign(Idhii , skhii));
in(ch, (rcvhii ReceiptAck , chii vc5));
let chii Credpt = getSpkVinfo(rcvhii ReceiptAck) in

let (chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc′

3, chii vc4,
chii c5) = getSpkMsg(rcvhii ReceiptAck) in

if Vfy-spkReceiptAck(rcvhii ReceiptAck , (chii Credpt ,
chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc′

3,
chii vc4, chii c5)) = true then

let (= chii Credpt , chii Enc5) = getpublic(chii vc5) in

if Vfy-zkVEncPtnym(chii vc5, (chii Credpt , chii Enc5, pkhii)) = true

then

let chii Pnympt = dec(chii Enc5, skhii) in

out(ch, invoice(chii PrescriptID)).

Fig. 12. The HII process Phii .

communication partner of each user.

init := let pksso = pk(sksso) in out(ch, pksso);

Each role is modelled as Ri:=init i; !Pi. We notice that the patient process, phar-
macist process and MPA process has two parts. Since the DLVV08 protocol
works as four sub-protocols executing in order, as shown in Figure 6.2, Thus, we
compose Ppt p1 and Ppt p2 to obtain Ppt , compose Pph p1 and Pph p2 to obatin
Pph , and compose Pmpa p1 and Pmpa p2 to obtain Pmpa . In details, each role is
modelled as follows:

7 Analysis

We first analyse security and privacy properties of patients and doctors includ-
ing standard secrecy, authentication, anonymity and untraceablity. We find that
with the assumptions in Section 5.4, the DLVV08 protocol does not satisfy se-
crecy of a patient’s social security status and a doctor’s pseudonym; does not
satisfies patient authentication; does not satisfy doctor anonymity; and does
not satisfy patient and doctor untraceability. Then we analyse the enforced pri-
vacy properties and find that the protocol does not satisfy enforced prescribing-
privacy and pharmacist independency of enforced prescribing-privacy.

7.1 Analysis of security and privacy properties

Patient and doctor secrecy The DLVV08 protocol is claimed to satisfy the
requirement: any party involved in the prescription processing work flow should

35



Dr Pt Pharmacist MPA PtHII

Pt-Dr

Pt-Ph

Ph-MPA

MPA-HII

msc

Fig. 13. The overview of DLVV08 protocol

Rdr := νIddr ;
νPnymdr ; } initdr
!(Pdr )

Fig. 14. Process Rdr .

36



Rpt := νIdpt ;
νPnympt ; νSss; νAcc;

in(chhp, Hii); let cpt pkhii = key(Hii) in

ff

initpt

!(in(chphpt, rcv pkph);
let rcvpt pkph = rcv pkph in let Idph = host(rcv pkph) in

(. . .
let c Pnymdr = open(c Comtdr , rcv rdr ) in

)

Ppt p1

in(ch, rcv Authph);
. . .)

)

Ppt p2

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

Ppt

Fig. 15. Process Rpt .

Rph := νskph ;
let pkph = pk(nskph) in

let Idph = host(pkph) in

(!out(ch, pkph) |!(out(chphpt, pkph)) |
!(in(chmp, rcvph pkmpa);

let cph Idmpa = host(rcvph pkmpa) in

(. . .
if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt ,

cph PrescriptID , Idph , rcv vc1, rcv vc2, rcv vc3,
rcv vc′

3, rcv vc4, rcv c5)) = true then

9

>

>

=

>

>

;

Pph p1

out(ch, (sign((Idph , cph Idmpa), skph), Idph));
. . .)

ff

Pph p2

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

Pph

Fig. 16. Process Rph .

Rmpa := νskmpa ;
let pkmpa = pk(skmpa) in

let Idmpa = host(pkmpa) in

(!out(ch, pkmpa) |!out(chmp, pkmpa) |
!(. . .
if Vfy-spkReceiptAck(rcvmpa ReceiptAck , (cmpa Credpt ,

cmpa PrescriptID , cmpa Idph , rcvmpa vc
1
, rcvmpa vc

2
,

rcvmpa vc
3
, rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
))

= true then

9

>

>

>

>

=

>

>

>

>

;

Pmpa p1

out(ch, (sign(Idmpa , skmpa), Idmpa));
. . .)

ff

Pmpa p2

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

Pmpa

Fig. 17. Process Rmpa .

Rhii := νskhii ;
let pkhii = pk(skhii) in

let Idhii = host(pkhii) in

(!out(ch, pkhii) |!out(chhp, Idhii) |!(Phii))

Fig. 18. Process Rhii .

37



DLV =
νsksso ; νchhp; νchmp; νchphpt;
let pksso = pk(sksso) in

out(ch, pksso);
(!(Rdr ) |!(Rpt) |!(Rph) |!(Rmpa) |!(Rhii))

Fig. 19. The DLVV08 protocol.

not know the information of a patient and a doctor unless the information is
intended to be revealed in the protocol. In [10], this requirement is considered
as an access control requirement. Moreover, it seems that the involved parties
are assumed to be honest, although it is not clear whether the assumption is
made. We argue that the requirement may not be satisfied when a involved
party is dishonest. A user who should not access to a piece of information, may
obtain the information by observing the Internet and manipulating the protocol.
Thus, we consider secrecy of patient and doctor information respecting to the
the Dolev-Yao adversary, who controls the whole Internet.

Private information of patients and doctors, which is considered for this re-
quirement in the protocol, are as follows: patient identity (Idpt), doctor identity
(Iddr ), patient pseudonym (Pnympt), doctor pseudonym (Pnymdr ), patient social
security status (Sss), patient’s health insurance institute (Hii). We notice that,
besides of the above information, a patient also has another piece of information:
health expense account Acc. We verify it as well. The requirement is modelled as
standard secrecy of these information. When a protocol satisfies standard secrecy
of a piece of information, the information is secret respecting to the Dolev-Yao
adversary.

To verify secrecy of information, we need to model honest parties in the
protocol. Obviously, if a protocol intends to reveal a piece of information to a
party and the party is dishonest (revealing the information), the information is
not secret. Thus, those parties are considered to be honest in the model. Since
the prescription precessing goes through the whole protocol, the requirement
should be satisfied over the whole protocol. We model one honest patient, one
honest doctor, one honest pharmacist, one honest MPA and one honest HII in
the protocol. The patient has private information Idpt , Pnympt , Sss, Hii, and
Acc. The doctor has private information Iddr and Pnymdr . We use ‘attack: M ’
to query standard secrecy of M in ProVerif [12].

Verification result. A patient’s identity, pseudonym, health expense account,
health insurance institute and identity of a doctor (Idpt , Pnympt , Hii Acc, Iddr )
satisfy standard secrecy. A patient’s social security status Sss and a doctor’s
pseudonym Pnymdr do not satisfy standard secrecy. The Sss is revealed during
the communication between the patient and the pharmacist. Although the pro-
tocol intends to reveal Sss to the pharmacist, other parties such as the doctor
and the HII should not know it according to the access control of the protocol.
However, if the doctor observes the Internet, he can access to the patient’s so-

38



cial security status. The Pnymdr is revealed during the communication between
the patient and the doctor. According to the access control matrix in [10], a
patient should not access to the doctor’s pseudonym. However, in the protocol,
the doctor first makes a commitment of his pseudonym and later sends to the
patient the open information to the commitment. Thus, the patient knows the
doctor’s pseudonym. Other parties who are not supposed to know the doctor’s
pseudonym can access to it as well, if these parties observe the Internet.

Patient and doctor authentication The protocol claims that all parties
should be able to properly authenticate each other. Comparing to authentica-
tions of pharmacists, MPA and HII, patient and doctor authentication are our
focus, because patients and doctors use anonymous authentication. In this part,
only patient and doctor authentications during the patient-doctor sub-protocol
are explained in details. Authentications between patients and pharmacists are
sketched.

The authenticate of a patient, means that when a doctor finishes his process
and believes that he prescribed medicines for a patient, then the patient did ask
the doctor for prescription. Similarly, the authentication of a doctor means that
when a patient believes he visited a doctor, the doctor did prescribe medicines
for the patient. Authentications are modelled as correspondence properties in
ProVerif [24]. Non-injective correspondence ‘ev:EndEvent =⇒ ev:StartEvent ’
means that if the EndEvent is executed, there must be an event StartEvent ex-
ecuted before. Injective correspondence ‘evinj:EndEvent =⇒ evinj:StartEvent ’
means that if the event EndEvent is executed, there must be exactly one event
StartEvent executed before. The difference between non-injective correspondence
and injective correspondence is that, non-injective correspondence allows mes-
sage replaying, while injective correspondence does not. It is not clear in [10]
which type of authentication is required. We use injective correspondence prop-
erty to model doctor and patient authentication, with the following thinking
in mind: when a patient obtains a prescription from a doctor, the prescription
should be generated only for this execution; when a doctor prescribes medicines
for a patient, the patient should be a real one instead of the adversary replying
a patient’s information.

To verify the authentication of a patient, we add an event

EndDr(c Credpt , c Comtpt)

at the end of the doctor process, meaning that the doctor believes that he pre-
scribed medicines for a patient who has a credential c Credpt and make a com-
mitment c Comtpt , and add an event

StartPt(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt))

in the patient process, meaning that the patient process, in which the patient
uses
ptcred(Idpt , Pnympt , Hii, Sss, Acc), and commit(Idpt , rpt), is executed, i.e. the

39



patient did ask for prescription. Then we query

evinj : EndDr(x, y) ==> evinj : StartPt(x, y),

meaning that when the event EndDr is executed, there is an unique event StartPt

has been executed before. This model means that when the doctor believes that
he prescribed medicines for a patient identified by c Credpt and c Comtpt , the
patient who created c Credpt and c Comtpt did ask for a prescription.

To authenticate a doctor, we add event

EndPt(c Creddr , c Comtdr , c presc, c PrescriptID)

at the end of the patient process, add event

StartDr(drcred(Pnymdr , Iddr ), commit(Pnymdr , rdr ), presc,PrescriptID)

at the doctor process, and query

evinj : EndPt(x, y, z, t) ==> evinj : StartDr(x, y, z, t).

This means that when a patient believes that he obtains a prescription (indicated
by c presc and c PrescriptID) from a patient c Comtdr , the doctor did prescribe
the medicines and made the commitment.

Note that an authentication here not only authenticates a patient or a doctor
but also authenticates the communication messages belonging to the patient or
the doctor. This is guaranteed by putting the communication messages as the
parameters of events.

Verification result. The doctor authentication (injective and non-injective) suc-
ceeds. The non-injective patient authentication succeeds and injective patient
authentication fails. The injective patient authentication fails, because when the
adversary observes messages from a patient, the adversary can block the mes-
sages and replay old patient messages to impersonate a patient. The failure of
patient authentication allows the adversary to replace a patient’s authentication
message with a fake one, thus the doctor prescribes medicines for a wrong pa-
tient. At the end of the the patient-doctor communication, the protocol does not
clearly say that the patient checks the prescription information. If the patient
does not check whether the patient commitment in the prescription is the same
as his commitment, the patient cannot obtain medicines later from the pharma-
cist because of the patient commitment error in the protocol. Even we assume
that the patient checks the prescription information, thus can find errors in the
prescription immediately, the patient and the doctor have to run the protocol
again.

We also verified the authentications of patients and pharmacists during the
communication between a patient and a pharmacist. The patient authentication
satisfies non-injective bu not injective correspondence property. This means that
the messages received by a pharmacist are from a patient, but not necessarily

40



from the current communication with the patient. The pharmacist authentica-
tion does not satisfy non-injective nor injective correspondence property. This
means that the adversary can record messages from a pharmacist, pretend to be
that pharmacist.

checked Security&Auth property initial model cause(s) improv

Secrecy of Idpt

√

Secrecy of Pnympt

√

Secrecy of Sss × revealed session
Secrecy of Hii

√

Secrecy of Acc
√

Secrecy of Iddr

√

Secrecy of Pnymdr × revealed session
Auth doctor to patient (inject)

√

Auth doctor to patient (non-inject)
√

Auth patient to doctor (inject) × replay attack add challenge
Auth patient to doctor (non-inject)

√

Auth pharmacist to patient (inject) × adv. can reply 1st message, compute 2nd message sign the
Auth pharmacist to patient (non-inject) × adv. can reply 1st message, compute 2nd message sign the
Auth patient to pharmacist (inject) × replay attack add challenge
Auth patient to pharmacist (non-inject)

√

Table 1. Verification results of security and authentication of patient and doctor prop-
erties of the DLVV08 protocol.

(Strong) patient and doctor anonymity The DLVV08 protocol claims that
no party should be able to determine the identity of a patient6. In this paper,
not only the identity of a patient but also the identify of a doctor is considered.
Earlier, it is verified that a patient’s identity and a doctor’s identity are not
revealed in the protocol. In some cases, the adversary can distinguish a process
initiated by one user from a process initiated by another user, although the users’
identities are not revealed. This reduces the anonymous group. If the adversary
can distinguish one user from the rest, i.e., the anonymous group is only one,
then the user’s privacy is revealed to some extend. Anonymity requires that the
chance of a user executing a process is the same as other users executing the
process.

Patient and doctor anonymity Doctor anonymity is defined as in Definition 7.
To verify the property, is to check the satisfaction of the equivalence relation in
the defintion. We model an equivalence as a bi-processes, which can be verified
automatically in ProVerif. A bi-process models two processes which have the
same structure, only differ on messages. The two processes are written as one
process. The different parts of the two processes are modelled using choice[x, y],

6 Notice patient anonymity is claimed as patient untraceability in the DLVV08 paper.

41



which means in the first process using x to replace choice[x, y] while using y to
replace choice[x, y]. For example, to verify the anonymity of doctor, we model
two processes, the first one is initiated by A, the second one is initiated by
B.This can be verified using bi-processes using ProVerif. The bi-process for doctor
anonymity is as follows:

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | (νPnymdr ; let Iddr = choice[A, B] in !Pdr )

Similar to doctor anonymity, patient anonymity is defined as

C[initpt{A/Idpt}.!Ppt{A/Idpt}] ≈ℓ C[initpt{B/Idpt}.!Ppt{B/Idpt}].

This can be verified in ProVerif using the following bi-process:

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | ( let Idpt = choice[A, B] in
νPnympt ; νSss; νAcc;
in(chhp, Hii);
let cpt pkhii = key(Hii) in !Ppt)

Strong patient and doctor anonymity Strong doctor anonymity is defined as in
Definition 8. This definition for DLVV08 protocol is as follows:

DLV ≈ℓ νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | R
′
dr ),

where
R′

dr :=νnPnymdr ; let Pnymdr = nPnymdr in !(Pdr{B/Iddr}),

in which B is a public doctor identity known by the adversary and never appears
in other processes of the equivalences. Process R′

dr represents a doctor process,
the initiator of which is known to the adversary.

Similarly, the definition of strong patient anonymity for DLVV08 protocol is
as follows:

DLV ≈ℓ νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | R
′
pt),

where
R′

pt := νPnympt ; νSss; νAcc;
in(chhp, Hii); let cpt pkhii = key(Hii) in
!(Ppt{B/Idpt}),

in which B is a public patient identity known by the adversary and never appears
in other processes of the equivalences. Process R′

pt represents a patient process,
the initiator of which is known to the adversary.

To verify the anonymity of doctor, we model two processes, the first one
models a normal protocol, the second one contains an additional process in
which the doctor identity is a free name (meaning known by the adversary).This
can be verified using bi-processes using ProVerif. The bi-process for verifying
strong doctor anonymity is as

free B;
νm̃.init .( !Rpt |!Rdr |!Rph |!Rmpa |!Rhii |

(νA; νnPnymdr ; let Pnymdr = nPnymdr in
!(let Iddr = choice[A, B] in Pdr )))

42



Similarly, the bi-process for verifying patient anonymity is written as

free B;
νm̃.init .( !Rpt |!Rdr |!Rph |!Rmpa |!Rhii |

(νA; νPnympt ; νSss; νAcc;
in(chhp, Hii); let cpt pkhii = key(Hii) in
!(let Idpt = choice[A, B] in Ppt)))

Verification result. The verification shows that patient anonymity and strong pa-
tient anonymity are satisfied and doctor anonymity nor strong doctor anonymity
is not satisfied.

The verification of strong doctor anonymity fails because the adversary can
distinguish a process initiated by an unknown doctor and a known doctor. The
way to distinguish them are as follows: given a doctor process, in which the
doctor’s identity is A and the doctor’s pseudonym is Pnymdr , thus the doctor cre-
dential is drcred(Pnymdr , A), since Pnymdr and drcred(Pnymdr , A) are revealed, the
adversary knows them. The adversary also knows a public doctor identity B, thus
the adversary can fake a zero-knowledge proof zk((Pnymdr , B), drcred(Pnymdr , A)).
If the zero-knowledge proof passes the corresponding verification Vfy-zkAuthdr

by
the patient, the doctor process is executed by the doctor B, otherwise, not. Thus,
the adversary can tell the initiator of a process. Intuitively, when processes have
different doctor pseudonyms are initiated by different doctors.

For the same reason, doctor anonymity fails. Both of them can be fixed using
the assumption s4’.

(Strong) patient and doctor untraceability Even a user’s identity is not
revealed, the adversary may be able to distinguish whether two execution of the
protocol is executed by the same user, thus traces the behaviour of a user. The
DLVV08 protocol claims that prescriptions issued to the same patient should
not be linkable to each other. In other words, the situation in which a patient
executes the protocol twice should be indistinguishable with the situation in
which two different patients execute the protocol individually. To satisfy this
requirement, patient untraceability7 is required.

Patient and doctor untraceability As in Definition 9, doctor untraceabiltiy can
be verified in ProVerif using the bi-process:

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii |
( νnPnymdr ; νwPnymdr ;

((let Iddr = A in let Pnymdr = nPnymdr in Pdr ) |
(let Iddr = choice[A, B] in let Pnymdr = choice[nPnymdr , wPnymdr ] in Pdr ))))

7 Notice that patient untraceablility is claimed as patient unlinkability in DLVV08
paper, we use different terminology.

43



Similar to the definition of doctor untraceability, patient untraceability is
defined as

C[initpt{A/Idpt}.(Pdr{A/Idpt} | Pdr{A/Idpt})]
≈ℓ C[(initpt{A/Idpt}.Pdr{A/Idpt}) | (initpt{B/Idpt}.Pdr{B/Idpt})].

It is verified in ProVerif as the following bi-process:

νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii |
( νnPnympt ; νnSss; νnAcc; νwPnympt ; νwSss; νwAcc;

in(chhp,nHii); in(chhp,wHii);
let cpt npkhii = key(nHii) in
let cpt wpkhii = key(wHii) in
(let Hii = nHii in let cpt pkhii = cpt npkhii in let Idpt = A in
let Pnympt = nPnympt in let Sss = nSss in let Acc = nAcc in Ppt) |

(let Hii = choice[nHii ,wHii ] in let cpt pkhii = choice[cpt npkhii , cpt wpkhii ] in
let Idpt = choice[A, B] in let Pnympt = choice[nPnympt , wPnympt ] in
let Sss = choice[nSss, wSss] in let Acc = choice[nAcc,wAcc] in Ppt)))

Strong patient and doctor untraceability Strong untraceability is modelled as
a patient executing the protocol repeatedly is indistinguishable to different pa-
tients executing the protocol each once. Strong doctor untraceability is defined as
in Definition 10. Strong doctor untraceability is modelled for DLVV08 protocol
as

DLV ≈ℓ νm̃.init .(!Rpt |!R
′
dr |!Rph |!Rmpa |!Rhii),

where

R′
dr :=νIddr ; νPnymdr ;Pdr

Similarly strong patient untraceability for DLVV08 protocol is modelled as:

DLV ≈ℓ νm̃.init .(!R′
pt |!Rdr |!Rph |!Rmpa |!Rhii),

where

R′
pt :=

νIdpt ; νPnympt ; νSss; νAcc;
in(chhp, Hii);
let cpt pkhii = key(Hii) in
(in(chphpt, rcv pkph);
let rcvpt pkph = rcv pkph in
let Idph = host(rcv pkph) in Ppt)

To verify untraceability of patients and doctors, we model the equivalences
as bi-processes in ProVerif. The bi-process for verifying patient untraceability is

44



modelled as

νm̃.init .( !Rdr |!Rph |!Rmpa |!Rhii |
!(νnIdpt ; νnPnympt ; νnSss; νnAcc;
in(chhp,nHii);
!(νwIdpt ; νwPnympt ; νwSss; νwAcc;
let Idpt = choice[nIdpt , wIdpt ] in
let Pnympt = choice[nPnympt , wPnympt ] in
let Sss = choice[nSss, wSss] in
let Acc = choice[nAcc, wSss] in
in(chhp,wHii);
let Hii = choice[nHii ,wHii ] in
let cpt pkhii = key(Hii) in
Ppt)))

Similarly, the bi-process for verifying patient untraceability is modelled as:

νm̃.init .(!Rpt |!Rph |!Rmpa |!Rhii | !(νnIddr ; νnPnymdr ;
!(νwIddr ; νwPnymdr ;
let Iddr = choice[nIddr , wIddr ] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in Pdr )))

Verification result. Both doctor untraceability and patient untraceability fail the
verification.

Strong doctor untraceability fails because the adversary can distinguish two
processes initiated by one doctor or by two doctors. Since the doctor’s pseudonym
is revealed in the DLVV08 protocol and we assume a doctor uses the same
pseudonym in all sessions, when two doctor pseudonyms are the same, the two
processes are initiated by the same doctor, otherwise, not. Doctor untraceability
fails for the same reason. Both of them can be fixed by revising the assumption
s3’.

Strong patient untraceability fails. The adversary can distinguish two pro-
cesses initiated by two patients and by one patient, because of the following
reasons. First, the social security status is revealed, and we assume that a pa-
tient uses the same status in all sessions and different patients have different
status. Therefore, the adversary distinguish two processes initiated by one pa-
tient (with two identical statuses) and initiated by two patients (with two dif-
ferent statuses), thus, the adversary can trace a patient. Second, we assume a
patient uses the same patient pseudonym and the same patient HII in all ses-
sions. Since the public key of social safety organisation is public information, the
adversary can distinguish two process initiated by one patient (with two identical
cipher texts enc(Pnympt , pksso) and two indentical enc(Hii, pksso)) and initiated
by two patients (with two different cipher texts enc(Pnympt , pksso) and two dif-
ferent enc(Hii, pksso)). Thus, the adversary can trace a patient by comparing the
encryptions (enc(Pnympt , pksso), and enc(Hii, pksso)). Third, the patient creden-
tial is not freshly generated, and we assume a patient uses the same credential
in all sessions. The adversary can trace a patient by the patient’s credential.

45



Fourth, the adversary can distinguish two processes using the same HII and two
processes using different HIIs. A patient is traceable if all other patients have
different HIIs. Patient untraceability fails for the same reason. Both of them can
be fixed by applying assumptions revising the assumptions (s5’, s2’, s4” and
s6’).

Prescribing-privacy The definition of prescribing-privacy is defined in Sec-
tion 3. To verify the prescribing-privacy is to check the satisfaction of the equiv-
alence in the definition:

C[(initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})) |
(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}))]

≈ℓ C[(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})) |
(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))].

The context C in the DLVV08 protocol is as follows,

C = νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | ).

Thus, the equivalence is modelled as a bi-process in ProVerif, as follows:

free A;
free B;
free a;
νm̃.init .( !Rpt |!Rdr |!Rph |!Rmpa |!Rhii |

(νnPnymdr ; νwPnymdr ;
let Iddr = choice[A, B] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = a in maindr ) |
(νnPnymdr ; νwPnymdr ;
let Iddr = choice[B, A] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = b in maindr ))

Verification result. The verification results shows that prescribing-privacy is not
satisfied, for the reason that the adversary can distinguish a prescription is pre-
scribed by doctor A or doctor B. Since we assume two doctors have two different
identities (public) and two different pseudonyms (originally private, but pub-
lished later), two doctors have different credentials. By comparing the credential
related to the prescription, the adversary can tell which doctor prescribed it.
This can be fixed by revising the assumption s4’.

7.2 Analysis of enforced privacy properties

With the original assumption, the DLVV08 protocol does not satisfy prescribing-
privacy. We conjecture that independency of enforced prescribing-privacy im-
plies independency of prescribing-privacy and enforced prescribing-privacy, each

46



of which also implies prescribing-privacy. Thus, the protocol does not satisfies
enforced prescribing-privacy, independency of prescribing-privacyand indepen-
dency of enforced prescribing-privacy. Therefore, when we talk about verification
of enforced prescribing-privacy, independency of prescribing-privacyand indepen-
dency of enforced prescribing-privacyin this section (Section 7.2), we refer it as
the DLVV08 protocol with assumption s4’.

Enforced prescribing-privacy Enforced prescribing-privacymeans a doctor
cannot prove his prescription to the adversary. Enforced prescribing-privacyhas
two assumptions: first, the doctor reveals all his private information to the ad-
versary, second, the adversary does not interfere the protocol. The definition of
enforced prescribing-privacy, in Section 3.2, is modelled as the existence of a
process P ′

dr , such that the following two equivalences are satisfied,

C[(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))]
≈ℓ C[((initdr{A/Iddr})

chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})
chc)) |

(initdr{B/Iddr}.(!maindr{B/Iddr , b/presc}))],
and,

(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}

\out(chc,·)
))

≈ℓ (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})).

Due to the existence in the definition, we cannot verify enforced prescribing-
privacy directly using ProVerif. We can use ProVerif to verify equivalences, but
cannot use it to prove the existence of a process.

However, we find an intuitive flaw in the DLVV08 protocol which shows that
the protocol does not satisfy enforced prescribing-privacy. A doctor is able to
prove to the adversary of his prescription using the following steps:

– A doctor communicates with the adversary (e.g., a pharmaceutical company)
to agree with a bit-commitment the doctor is going to use. Therefore, it links
a doctor and the bit-commitments.

– The doctor uses the agreed bit-commitment in the communication between
the doctor and the patient. Therefore, it links the bit-commitment to a
prescription.

– Later, when the patient uses this prescription to get medicine from the phar-
macist, the adversary can observe the prescription being used. Therefore, it
proves the doctor really prescript the medicine. The pharmaceutical com-
pany can pay the doctor.

Formally, we show, using ProVerif, that when a doctor reveals his informa-
tion to the adversary, prescribing-privacy is broken. To prove that there is no
alternative precesses for a doctor to cheat the adversary, we assume there exists
a process P ′

dr which satisfies the definition of enforced prescribing-privacy, and
find contradictions.

47



Proof. Assume there exists a process P ′
dr which satisfies the definition of enforced

prescribing-privacy, i.e.,

C[(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))]
≈ℓ C[((initdr{A/Iddr})

chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})
chc))],

(eq1)
and,

(initdr{A/Iddr}.(P
′
dr{A/Iddr}

\out(ch,·)
))

≈ℓ (initdr{A/Iddr}.(maindr{A/Iddr , b/presc})).
(eq2)

For the first equivalence eq1, if M =E N on the left hand side, then M =E N
on the right hand side.

On the right hand side of eq1, there exists an output of a prescription proof
PrescProof r, from process

initdr{A/Iddr})
chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})

chc).

The adversary can obtain the prescription and the doctor commitment from the
prescription proof.

(a,PrescriptIDr,Comtdr , c Comtpt
r) = getSpkMsg(PrescProof r)

On the left hand side of eq1, there should also exists an output of a prescription
proof PrescProof from which the adversary can obtain a prescription a and a
doctor commitment Comtdr .

On the right hand side, there is

Comtdr = commit(Pnymdr , nonce)

where Pnymdr and nonce are revealed to the adversary on chc channel. On the
left hand side, the only process which can output messages on chc channel is
P ′

dr{A/Iddr}. Thus, the only process which can generate the doctor commitment
Comtdr on the left hand side is P ′

dr{A/Iddr}. Thus, the process which outputs
the prescription proof PrescProof on the left hand side is P ′

dr{A/Iddr}. Thus,
the prescription in process P ′

dr{A/Iddr} is a.
However, on the right hand side of the second equivalence eq2, there is a

prescription proof output from process maindr{A/Iddr , b/presc}. The adver-
sary obtains prescription b from the prescription proof. To satisfy equivalence

eq2, the process (P ′
dr{A/Iddr}

\out(ch,·)
) should also output a prescription proof

PrescProof ′ where the prescription needs to be b. Since (P ′
dr{A/Iddr}

\out(ch,·)
)

outputs PrescProof ′, (P ′
dr{A/Iddr} should also output PrescProof ′. There should

only be one prescription proof observable to the adversary from process (P ′
dr{A/Iddr}.

Thus, PrescProof ′ = PrescProof . Thus, b = a.
Intuitively, a doctor cannot lie about a prescription and his pseudonym,

since they are public information. The only thing the doctor may be able to
lie about is the link of doctor and his prescription. Since the link between the

48



commitment of doctor pseudonym and the prescription is obvious, if the doc-
tor tells the adversary that he prescribed a, while the adversary observes that
the bit-commitments are linked to B. The adversary can tell the P ′

dr{A/Iddr})
from (maindr{A/Iddr , a/presc})

chc)). Therefore there does not exist such pro-
cess P ′

dr{A/Iddr}).

Prescribing-privacy independent of pharmacist The DLVV08 protocol
claims that pharmacists should not be able to provide evidence to pharmaceutical
companies about doctor’s prescription behaviour. This requirement is captured
by the property prescribing-privacy independent of pharmacist. Following the
definition of independency of prescribing-privacyin Definition 5, the prescribing-
privacy independent of pharmacist of the DLVV08 protocol is defined as follows:

C[!Rph
ch | (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}))]
≈ℓ C[!Rph

ch | (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})) |
(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))],

where the context C is defined as

C = νm̃.init .(!Rpt |!Rdr |!Rph |!Rmpa |!Rhii | ).

To verify the equivalence, we verify the bi-process

νm̃.init .( !Rpt |!Rmpa |!Rhii |!Rph |!(Rph)chc |
(νnPnymdr ; νwPnymdr ;
let Iddr = choice[A, B] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = a in maindr ) |
(νnPnymdr ; νwPnymdr ;
let Iddr = choice[B, A] in
let Pnymdr = choice[nPnymdr , wPnymdr ] in
let presc = b in maindr ))

The verification result shows that the protocol satisfies pharmacist-independent
doctor-privacy.

Pharmacist independency of enforced prescribing-privacy The DLVV08
protocol intends to prevent bribery between doctors and pharmaceutical com-
panies and prevent pharmacists revealing information to harm a doctor. This re-
quirement is captured by the property pharmacist-independent enforced prescribing-
privacy. Following the definition of independency of enforced prescribing-privacyin
Definition 6, enforced prescribing-privacy independent of pharmacist is defined
as the existence of a process P ′

dr , such that the following equivalences are satis-

49



fied:

C[!(Rph)chc | ((initdr{A/Iddr})
chc.(!Pdr{A/Iddr} | P ′

dr{A/Iddr})) |
(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))]

≈ℓ C[!(Rph)chc | ((initdr{A/Iddr})
chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})

chc)) |
(initdr{B/Iddr}.(!maindr{B/Iddr , b/presc}))],

and,

(initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}

\out(ch,·)
))

≈ℓ (initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})).

Same as in enforced prescribing-privacy, we cannot proof enforced prescribing-
privacy independent of pharmacist using ProVerif because of the existence quan-
tification in the definition. However, the DLVV08 protocol can be verified by find-
ing a flaw which shows that the protocol does not satisfy pharmacist-independent
enforced prescribing-privacy. One intuitive flaw is the same flaw in enforced
prescribing-privacy. Intuitively, when a doctor can prove his prescription without
pharmacist showing information to the adversary, the doctor can prove it with
pharmacist showing information to the adversary, given that the pharmacist gen-
uinely cooperate with the adversary. Since the protocol does not satisfies enforced
prescribing-privacy, it does not satisfies enforced prescribing-privacyindependent
of pharmacists.

checked privacy property initial model cause(s) improvement revised model

prescribing-privacy × s4 s4’
√

enforced presc.-priv. × (with s4’ ) s8’
√

independency of presc.-priv.
√

(with s4’)
√

independency of enforced presc.-priv. ×(with s4’) s8’ ×
patient anonymity

√ √

strong patient anonymity
√ √

doctor anonymity × s4 s4’
√

strong doctor anonymity × s4 s4’
√

patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

strong patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

doctor untraceability × s3 s3’
√

strong doctor untraceability × s3 s3’
√

Table 2. Verification results of the DLVV08 protocol with original and revised as-
sumptions.

7.3 Other flaws

In the protocol, if sending invoice or sending reception is blocked, the pharmacists
won’t get the reimbursement. Therefore the channels used in the protocol needs
to be unblockable channels.

50



8 Addressing the flaws of the DLVV08 protocol

In order to guarantee that the DLVV08 protocol satisfies the above mentioned
properties, we propose some suggestions for fixing them.

8.1 Addressing the flaws of regular security and privacy properties

Fix secrecy. A patient’s social security status and a doctor’s pseudonym do not
satisfy secrecy respecting to Dolev-Yao adversary. A patient’s social security sta-
tus is revealed because of the message which intends to prove the social security
status to the doctor. To fix secrecy of a patient’s social security status, it requires
that prove only reveals the social security status to the pharmacist. Since how a
social security status is represented and what the pharmacist needs to verify, are
not clear, we cannot give explicit suggestions. For example, if the social security
status is a number, and the pharmacist only needs to verify that the number is
higher than a certain threshold, the patient can prove it using zero-knowledge
proof without revealing the number; if the pharmacist needs to verify the exact
value of the status, one way to fix its secrecy is that the pharmacist and the
patient agree on a session key and the status is encrypted using the key.

A doctor’s pseudonym is revealed because of the doctor commited it and
later sends the open information. One way to fix it is that the open information
is encrypted using an agreed session key.

Fix authentications. A doctor cannot authenticate a patient. To fix it, one way is
to add a challenge from the doctor, when the patient authenticate to the doctor,
the patient needs to include the challenge in the proof. It assures that the proof
is freshly generated. Thus it prevents relaying of old messages.

Fix doctor anonymity. The essential reason that the (strong) doctor anonymity
is not satisfied, is that the adversary can fake an anonymous authentication of a
doctor. To fix the doctor anonymity, one way is that a doctor uses a freshly gener-
ated doctor credential in each session and proves that he knows the randomness
s4’. We model it as adding a random number to the credential parameters. To
ensure the adversary cannot replay an old credential, we modify the anonymous
authentication proof by adding a proof that the doctor knows the random num-
ber. The intuition is that by adding randomness, the adversary cannot apply
dictionary guess to the doctor identity.

Fix doctor untraceability. The essential reason that the (strong) doctor untrace-
ability is not satisfied, is that a doctor’s pseudonym is revealed and is used for
all sessions. One way to fix doctor untraceablity is to make sure that a doctor’s
pseudonym is freshly generated in each session s3’.

Fix patient untraceability. The essential reasons that the (strong) patient un-
traceability is not satisfied, are that 1) a patient’s social security status is re-
vealed and is the same in all sessions; 2) a patient’s pseudonym and HII are the

51



same in all sessions, thus, the encryptions of them are the same in all sessions;
3) a patient’s credential is the same in all sessions; 4) a patient’s HII is the same
in all sessions. There are several ways to fix the first problem, for example, make
sure the social security status is not revealed, the social security status is differ-
ent in each session, or any two patients have the same social security status. It
is not clear what exactly the status is and how many types of statuses there are,
we choose to assume that a patient’s social security status is different in each
session s5’. If we assume two patients have the same social security status, it
reduces the untraceability of a patient to only among those who share the same
status. To fix the second problem, one way is that the encryption to be proba-
bility encryption s2’, thus, even a patient uses the same pseudonym in different
sessions, the patient is not traceable because of the cipher texts. To fix the third
problem, one way is to make sure that the patient credential to be freshly gen-
erated s4”. To fix the fourth problem, we refer to patient untraceabbility with
respect to those who share the same HII s6’. It is not realistic that a patient
changes his HII every time he executes the protocol.

Update the assumptions to satisfy privacy properties. There are several ways to
fix each flaw which is found during verifying security and privacy properties.
We choose one solution for fixing each flaw and update the protocol. Note that
we do not fix secrecy and authentication problems, because it is clear to what
extend of secrecy and authentication the protocol should satisfy.

The following lists the changes in the assumptions:

s2’ The encryptions are probabilistic.

s3’ A doctor’s pseudonyms are freshly generated for each execution.

s4’ A doctor’s credential and anonymous authentication are freshly generated
for each execution.

s4” A patient’s credential and anonymous authentication are freshly generated
for each execution.

s5’ A patient’s social security status changes in each execution.

s6’ All patients share the same HII. Each HII has large amount of patients, such
that patients of the same HII form a group, hiding a particular patient. A
patient is untraceable only respect to the group. A patient’s HII must be a
trust party, which does not reveal the link between the patient’s pseudonym
and the patient’s identity.

s8” The channels used in the protocol are unblockable.

We verified the following privacy properties: (strong) doctor and patient
anonymity, (strong) doctor and patient untraceability, prescribing-privacy, of
the protocol with the updated assumptions. The way to verify each property
is the same as described in the previous section. The results show that the
protocol with updated assumptions satisfies the properties (doctor and patient
anonymity, doctor and patient untraceability, prescribing-privacy).

52



8.2 Fix enforced prescribing-privacy.

Try chameleon bit-commitments To fix the enforced prescribing-privacy, we bor-
row the solution from voting, using chameleon bit-commitments to hide the
prescription. This solution assumes that there is an untappable channel built
between a patient and a doctor, as well as between a patient and a pharmacist.
The untappable channels are used to send the random number used in chameleon
bit-commitments. The model of the protocol with chameleon bit-commitments
is shown in Section D in Appendix.

However, we did not find a way for a bribed doctor to cheat, because the ad-
versary can always detect whether a bribed doctor lied. Suppose the adversary
asks the bribed doctor to prescribe a, while the doctor prescribed b. The doctor
reveals his commitment ChCommit(b, r), lying to the adversary of the random
number fake(ChCommit(b, r), a). The adversary can fake the prescription proof
since the bribed doctor needs to reveal his pseudonym, identity and random
numbers used. Thus the adversary can alter the prescription commitment to
ChCommit(c, fake(ChCommit(b, r), a)). When the pharmacist received this com-
mitment and the real random number r, the pharmacist cannot open it. Thus,
the adversary detect that the bribed doctor lied. Essentially, this solution does
not work because the adversary can block and change a prescription proof.

We show using ProVerif that the most intuitive doctor process P ′
dr in Fig-

ure 46 does not satisfy enforced prescribing-privacy.

Fix using untappable channels. We assume that after authentication of in each
sub-protocol, the two communication parties establish an untappable channel.
All other information are send through untappable channels.

s8’ The communication channels are untappable, except that communication
channels for authentications remain public.

We show that there exists a process P ′
dr , which satisfies the two equivalences

in the enforced prescribing-privacy definition 4. The equivalences are verified
using ProVerif.

We also show that under this assumption (untappable channel), even without
assumption s4’, i.e. with the original assumptions, the protocol still satisfies
enforced prescribing-privacy.

However, the model which satisfies enforced prescribing-privacy does not sat-
isfy prescribing-privacy independent of pharmacist .

The proof is similar to the proof of the dissatisfaction of enforced proscribing
privacy. To prove that there is no alternative precesses for a doctor to cheat the
adversary, we assume there exists a process P ′

dr which satisfies the definition of
independency of enforced prescribing-privacy, and then find contradictions.

53



Proof. Suppose, there exists a process P ′
dr which satisfies the definition of inde-

pendency of enforced prescribing-privacy, i.e.,

C[!Pchc

ph | (initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr})) |

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc}))]
≈ℓ C[!Pchc

ph | ((initdr{A/Iddr})
chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})

chc))

(initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc}))]
(eq1)

and,

(initdr{A/Iddr}.(P
′
dr{A/Iddr}

\out(ch,·)
))

≈ℓ (initdr{A/Iddr}.(maindr{A/Iddr , b/presc}))
(eq2)

Because of the first equivalence eq1, if M =E N on the left hand side, then
M =E N on the right hand side.

On the right hand side, there exists a prescription proof PrescProof r in
process (maindr{A/Iddr , a/presc})

chc)). This prescription proof eventually is
revealed to the adversary on the chc channel by a pharmacist. The adversary
can obtain a prescription a and a doctor commitment Comtdr from it using

(a,PrescriptIDr,Comtdr , c Comtpt
r) = getSpkMsg(PrescProof r).

The adversary can also obtain the doctor credential Creddr and the same doctor
commitment Comtdr from the prescription proof using

(Comtdr ,Creddr ) = getSpkVinfo(PrescProof r).

On the left hand side, there should also exist an output of a prescription
proof PrescProof l on the chc channel by a pharmacist, such that the adversary
can obtain a and Comtdr

(a,PrescriptID l,Comtdr , c Comtpt
l) = getSpkMsg(PrescProof l),

and obtain Comtdr and Creddr by applying

(Comtdr ,Creddr ) = getSpkVinfo(PrescProof l).

On the left hand side, there is

Comtdr = commit(Pnymdr , nonce)

where Pnymdr , nonce are revealed to the adversary on chc channel, and

Creddr = drcred(A, Pnymdr , ndr )

where Pnymdr and ndr are revealed to the adversary on chc channel.
On the right hand side, the only process which can output on chc channel is

P ′
dr{A/Iddr}, thus, the process generating nonce ndr is P ′

dr{A/Iddr}. Thus, the

process computing PrescProof l is P ′
dr{A/Iddr}. Since the pharmacist received

54



prescription is the prescription a doctor did prescribe, thus, the doctor initiated
process P ′

dr{A/Iddr} prescribes a.
However, on the second equivalence eq2, on the right hand side the doctor

prescribes b, thus, on the left hand side the process P ′
dr{A/Iddr}

\out(ch,·)
gener-

ates b. Thus, in process P ′
dr{A/Iddr} the prescription proof is PrescProof ′ where

the prescription is b.s
We assume pharmacists genuinely forwards all their information to the adver-

sary. To satisfy the second equivalence, the pharmacist should output PrescProof ′

(with b) on chc channel, while according to the first equivalence, the pharmacist
should output PrescProof l (with a) on the chc channel.

Intuitively, all information sent over untappable channels are received by
pharmacists and can be genuinely revealed to the adversary by the pharmacists
(do not lie by assumption). Hence, there still exist links between a doctor, his
nonces, his commitment, his credential and his prescription, when the doctor is
bribed/coerced to reveal the nonces used in the commitment and the credential
to the adversary. A doctor is linked to the nonce he used in his commitment.
A doctor’s commitment is linked to his prescription in the prescription proof. A
doctor’s prescription proof is sent over untappable channels first to a patient and
later from the patient to a pharmacist, thus a malicious pharmacist can reveal the
prescription proof to the adversary through a different channel (see Def. 6). If a
bribed doctor lied about his prescription, the adversary can detect it by checking
the doctor’s corresponding prescription proof revealed by the pharmacist. The
untappable channel assumption makes the protocol satisfy enforced prescribing-
privacy while not satisfy independency of enforced prescribing-privacy because
untappalbe channel enable a bribed doctor to lie and we assume pharmacist does
not lie.

9 Conclusion

In this paper, we identify enforced privacy requirements in eHealth protocols,
study enforced prescribing-privacy, define independency of prescribing-privacy,
and independency of enforced prescribing-privacy. All these properties are for-
malised in the applied pi calculus. We take the DLVV08 protocol as a case study.
We model the protocol in the applied pi calculus and analyse security and pri-
vacy properties of the protocol. We address ambiguities and flaws in the protocol
and propose solutions for fixing them.

References

1. Oh, H., Rizo, C., Enkin, M., Jadad, A.: What is ehealth?: a systematic review of
published definitions. World Hosp Health Serv 41(1) (2005) 32–40

2. Louwerse, K.: The electronic patient record; the management of access – case
study: Leiden University hospital. International Journal of Medical Informatics
49(1) (1998) 39–44

55



3. Reid, J., Cheong, I., Henricksen, M., Smith, J.: A novel use of rBAC to protect
privacy in distributed health care information systems. In: Proc. 8th Australian
Conference on Information Security and Privacy. Volume 2727 of LNCS., Springer
(2003) 403–415

4. Currim, F., Jung, E., Xiao, X., Jo, I.: Privacy policy enforcement for health in-
formation data access. In: Proc. 1st ACM Workshop on Medical-grade Wireless
Networks, ACM Press (2009) 39–44

5. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–207

6. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).
In: Proc. 26th Symposium on Theory of Computing, ACM Press (1994) 544–553

7. Lee, B., Kim, K.: Receipt-free electronic voting through collaboration of voter and
honest verifier. In: Proc. Japan-Korea Joint Workshop on Information Security
and Cryptology. (2000) 101–108

8. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryp-
tion. In: Proc. 19th Conference on the Theory and Application of Cryptographic
Techniques. Volume 1807 of LNCS., Springer (2000) 539–556

9. Lee, B., Kim, K.: Receipt-free electronic voting with a tamper-resistant random-
izer. In: Proc. 4th Conference on Information and Communications Security. Vol-
ume 2513 of LNCS., Springer (2002) 389–406

10. Decker, B., Layouni, M., Vangheluwe, H., Verslype, K.: A privacy-preserving
ehealth protocol compliant with the belgian healthcare system. In: Proc. 5th Eu-
ropean PKI workshop on Public Key Infrastructure. (2008) 118–133

11. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th ACM Symposium on Principles of Programming Languages, ACM
Press (2001) 104–115

12. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proc. 14th IEEE Computer Security Foundations Workshop, IEEE CS (2001)
82–96

13. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4) (2009) 435–487

14. Jonker, H.L., Mauw, S., Pang, J.: A formal framework for quantifying voter-
controlled privacy. Journal of Algorithms in Cognition, Informatics and Logic
64(2-3) (2009) 89–105

15. Dong, N., Jonker, H.L., Pang, J.: Analysis of a receipt-free auction protocol in the
applied pi calculus. In: Proc. 7th Workshop on Formal Aspects in Security and
Trust. Volume 6561 of LNCS., Springer (2011) 223–238

16. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. 4th European
Symposium on Research in Computer Security. Volume 1146 of LNCS., Springer
(1996) 198–218

17. van Deursen, T., Mauw, S., Radomirović, S.: Untraceability of RFID protocols. In:
Proc. 2nd Workshop on Information Security Theory and Practices. Smart Devices,
Convergence and Next Generation. Volume 5019 of LNCS., Springer (2008) 1–15

18. Backes, M., Hriţcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: Proc. 21st IEEE Computer Security
Foundations Symposium, IEEE CS (2008) 195–209

19. Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for elec-
tronic voting protocols. In: Proc. 30th IEEE Symposium on Security and Privacy,
IEEE CS (2009) 251–266

20. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: CSF. (2010) 107–121

56



21. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: Proc. 23rd IEEE Computer Security Foun-
dations Symposium, IEEE CS (2010) 122–136

22. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press (2000)

23. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: Proc.
IEEE Symposium on Security and Privacy. (2008) 202–215

24. Blanchet, B.: From secrecy to authenticity in security protocols. In: Proc. Static
Analysis, 9th International Symposium. (2002) 342–359

57



A Functions and equational theory

fun true/0.
fun hash/3.
fun pk/1.
fun enc/2.
fun commit/2.
fun sign(/, 2 ).
private fun drcred/2.
private fun ptcred/5.
fun zk/2.
fun spk/3.
fun invoice/1.
fun key/1.
fun host/1.

Fig. 20. Functions.

58



reduc dec(enc(m, pk(sk)), sk) = m.
reduc open(commit(x, y), y) = x.
reduc Vfy-sign(sign(x , y), pk(y)) = true.
reduc getsignmsg(sign(x , y), pk(y)) = x.
reduc getpublic(zk(x, y)) = y.
reduc getSpkMsg(spk(x, y, z)) = z.
reduc getSpkVinfo(spk(x, y, z)) = y.
equation key(host(x)) = x.
equation host(key(x)) = x.
reduc Vfy-zkAuthdr

(zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )),

drcred(Pnymdr , Iddr )) = true.
reduc Vfy-zkAuthpt

(zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

reduc Vfy-zkPtProof(zk((Idpt , Pnympt , Hii, Sss, Acc),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc))),

commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)) = true.

reduc Vfy-spkPrescProof(spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID , commit(Pnymdr , rdr ),
commit(Idpt , rpt))),

drcred(Pnymdr , Iddr ), presc,PrescriptID ,
commit(Pnymdr , rdr ),
commit(Idpt , rpt)) = true.

reduc Vfy-zkPtAuthSss(zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss),

ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss) = true.

reduc Vfy-spkPtSpk(spk((Idpt , Pnympt , Hii, Sss, Acc, rpt),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),

nonce),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),

commit(Idpt , rpt), nonce) = true.
reduc Vfy-zkVEncHii(zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, pkx ))),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, pkx ), pkx ) = true.
reduc Vfy-zkVEncDrnymMpa(zk((Pnymdr , rdr ),

(spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ))),
spk((Pnymdr , rdr , Iddr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ), pkx ) = true.
reduc Vfy-zkVEncPtnym(zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , pkx ))),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , pkx ), pkx ) = true.

reduc Vfy-spkReceiptAck(spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),

(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5)),
ptcred(Idpt , Pnympt , Hii, Sss, Acc),

c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5) = true.

Fig. 21. Equational theory.

59



B Modelling of the protocol with revised assumptions

According to the revised assumptions s2’, s3’, s4’, s4”, s5’ and s6’, we revise the
following parts of the model. Figure 22 shows the parts differing from Figure 20.
Figure 23 shows the parts differing from Figure 21.

fun penc/3.
private fun drcred/3.
private fun ptcred/6.

Fig. 22. Functions with revised assumptions.

Roles Rph , Rmpa and Rhii are the same as in Figure 16, Figure 17 and Fig-
ure 18, respectively.

Processes Pph p1, Pph p2, Pmpa p1, Pmpa p2, and Phii are the same as in Fig-
ure reffig:proph1, Figure reffig:proph2, Figure reffig:prompa1, Figure reffig:prompa2
and Figure reffig:prohii, respectively.

60



reduc pdec(penc(m, pk(sk), r), sk) = m.
reduc Vfy-zkAuthdr

(zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr )),

drcred(Pnymdr , Iddr , ndr )) = true.
reduc Vfy-zkAuthpt

(zk((Idpt , Pnympt , Hii, Sss, Acc, npt),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt))),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt))) = true.

reduc Vfy-zkPtProof(zk((Idpt , Pnympt , Hii, Sss, Acc, npt)),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt)))),

commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt))) = true.

reduc Vfy-spkPrescProof(spk((Pnymdr , rdr , Iddr , ndr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID , commit(Pnymdr , rdr ),
commit(Idpt , rpt))),

drcred(Pnymdr , Iddr , ndr ), presc,PrescriptID ,
commit(Pnymdr , rdr ),
commit(Idpt , rpt)) = true.

reduc Vfy-zkPtAuthSss(zk((Idpt , Pnympt , Hii, Sss, Acc, npt),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt), Sss),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt), Sss) = true.

reduc Vfy-spkPtSpk(spk((Idpt , Pnympt , Hii, Sss, Acc, rpt , npt),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt), commit(Idpt , rpt)),

nonce),
ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

commit(Idpt , rpt), nonce) = true.
reduc Vfy-zkVEncHii(zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r

′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Hii, pkx , r′))),
ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Hii, pkx , r′), pkx ) = true.
reduc Vfy-zkVEncDrnymMpa(zk((Pnymdr , rdr , r

′),
(spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

penc(Pnymdr , pkx , r′))),
spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

penc(Pnymdr , pkx , r′), pkx ) = true.
reduc Vfy-zkVEncPtnym(zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r

′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt), penc(Pnympt , pkx , r′))),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Pnympt , pkx , r′), pkx ) = true.

reduc Vfy-spkReceiptAck(spk((Idpt , Pnympt , Hii, Sss, Acc, npt),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5)),
ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5) = true.

Fig. 23. Equational theory with revised assumptions.

61



DLV =
νsksso ; νchhp; νchmp; νchphpt;
let pksso = pk(sksso) in

out(ch, pksso);
(!(Rdr ) |!(Rph) |!(Rmpa) |!(Rhii) |
(in(chhp, Hii); let cpt pkhii = key(Hii) in !Rpt))

Fig. 24. The DLVV08 protocol with revised assumptions.

Rdr := νIddr ;
!(νPnymdr ;Pdr )

Fig. 25. Process Rdr with revised assumptions.

Rpt := νIdpt ;
νPnympt ; νAcc;

¯

initpt
!(νSss; in(chphpt, rcv pkph);
let rcvpt pkph = rcv pkph in let Idph = host(rcv pkph) in

(. . .
let c Pnymdr = open(c Comtdr , rcv rdr ) in

)

Ppt p1

in(ch, rcv Authph);
. . .)

)

Ppt p2

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

Ppt

Fig. 26. Process Rpt with revised assumptions.

let Pdr =
νndr ;
out(ch, zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr )));
in(ch, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

νpresc;
νrdr ;
let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr , ndr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr )).

Fig. 27. The doctor process Pdr with revised assumptions.

62



let Ppt =
in(ch, rcv Authdr );
let c Creddr = getpublic(rcv Authdr ) in

if Vfy-zkAuthdr
(rcv Authdr , c Creddr ) = true then

νrpt ;
νnpt ;
out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc, npt),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt)),

zk((Idpt , Pnympt , Hii, Sss, Acc, npt),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt)))));

in(chdp, (rcv PrescProof , rcv rdr ));
let (c presc, c PrescriptID , c Comtdr , = commit(Idpt , rpt))

= getSpkMsg(rcv PrescProof ) in

if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc, c PrescriptID ,
c Comtdr , commit(Idpt , rpt))) = true then

let c Pnymdr = open(c Comtdr , rcv rdr ) in

in(ch, rcv Authph);
if Vfy-sign(rcv Authph , rcvpt pkph) = true then

let (= cpt Idph , cpt Idmpa) = getsignmsg(rcv Authph , rcvpt pkph) in

let cpt pkmpa = key(cpt Idmpa) in

out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc, npt),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt), Sss)));

νnonce;
νr′;
let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r

′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Hii, cpt pkmpa , r′))) in

let vc2 = zk((c Pnymdr , rcv rdr , r
′), (rcv PrescProof ,

penc(c Pnymdr , cpt pkmpa , r′))) in

let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r
′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Pnympt , pksso , r′))) in

let vc′

3 = zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r
′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Hii, pksso , r′))) in

let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r
′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Pnympt , cpt pkmpa , r′))) in

let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc, npt , r
′),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

penc(Pnympt , cpt pkhii , r
′))) in

let c5 = penc(vc5, cpt pkmpa , r′) in

out(chptph, (rcv PrescProof ,
spk((Idpt , Pnympt , Hii, Sss, Acc, npt),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt), commit(Idpt , rpt)),

nonce),
vc1, vc2, vc3, vc

′

3, vc4, c5));
in(chphpt, rcv Invoice);
let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc, npt),

ptcred(Idpt , Pnympt , Hii, Sss, Acc, npt),

(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5)) in

out(chptph,ReceiptAck).

Fig. 28. The patient process Ppt with revised assumptions.

63



C Fixing enforced prescribing-privacy with untappable

channels

C.1 Based on protocol with assumption s4’

The following model is based on the assumptions s4’ and s8’. Other assumptions
follow the original ones. We only show the parts need to be revised. The parts
of the model not mentioned in this section follow the original model.

Functions and equational theory which are different from in Figure 20 or
Figure fig:eqtheory are shown in Figure 29. Roles Rdr , Rpt , Rph , Rmpa and Rhii

private fun drcred/3.
reduc Vfy-zkAuthdr

(zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr )),

drcred(Pnymdr , Iddr , ndr )) = true.
reduc Vfy-spkPrescProof(spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID , commit(Pnymdr , rdr ),
commit(Idpt , rpt))),

drcred(Pnymdr , Iddr , ndr ), presc,PrescriptID ,
commit(Pnymdr , rdr ),
commit(Idpt , rpt)) = true.

reduc Vfy-zkVEncDrnymMpa(zk((Pnymdr , rdr , ),
(spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ))),
spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID ,
commit(Pnymdr , rdr ), cph Comtpt)),

enc(Pnymdr , pkx ), pkx ) = true.

Fig. 29. Functions and equational theory (Fixing enforced prescribing-privacy with
untappable channels with s4’).

are the same as in Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18,
respectively.

64



DLV =
νsksso ; νchhp; νchmp; νchphpt;
νchdp; νchptph; νchpm; νchhm; νch′phpt; νchmh;
let pksso = pk(sksso) in

out(ch, pksso);
(!(Rdr ) |!(Rpt) |!(Rph) |!(Rmpa) |!(Rhii))

Fig. 30. The DLVV08 protocol (Fixing enforced prescribing-privacy with untappable
channels with s4’).

let Pdr =
νndr ;
out(ch, zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr )));
in(ch, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

νpresc;
νrdr ;
let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr , ndr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(presc,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr )).

Fig. 31. The doctor process Pdr (Fixing enforced prescribing-privacy with untappable
channels with s4’).

65



let Ppt =
in(ch, rcv Authdr );
let c Creddr = getpublic(rcv Authdr ) in

if Vfy-zkAuthdr
(rcv Authdr , c Creddr ) = true then

νrpt ;
out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

zk((Idpt , Pnympt , Hii, Sss, Acc),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)))));

in(chdp, (rcv PrescProof , rcv rdr ));
let (c presc, c PrescriptID , c Comtdr , = commit(Idpt , rpt))

= getSpkMsg(rcv PrescProof ) in

if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc, c PrescriptID ,
c Comtdr , commit(Idpt , rpt))) = true then

let c Pnymdr = open(c Comtdr , rcv rdr ) in

in(ch, rcv Authph);
if Vfy-sign(rcv Authph , rcvpt pkph) = true then

let (= cpt Idph , cpt Idmpa) = getsignmsg(rcv Authph , rcvpt pkph) in

let cpt pkmpa = key(cpt Idmpa) in

out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss)));

νnonce;
let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, cpt pkmpa))) in

let vc2 = zk((c Pnymdr , rcv rdr ), (rcv PrescProof ,
enc(c Pnymdr , cpt pkmpa))) in

let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , pksso))) in

let vc′

3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, pksso))) in

let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , cpt pkmpa))) in

let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , cpt pkhii))) in

let c5 = enc(vc5, cpt pkmpa) in

out(chptph, (rcv PrescProof ,
spk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),

nonce),
vc1, vc2, vc3, vc

′

3, vc4, c5));
in(ch′phpt, rcv Invoice);
let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),

(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5)) in

out(chptph,ReceiptAck).

Fig. 32. The patient process Ppt (Fixing enforced prescribing-privacy with untappable
channels with s4’).

66



let Pph =
out(ch, sign((Idph , cph Idmpa), skph));
in(ch, rcv PtAuthSss);
let (cph Credpt , cph Sss) = getpublic(rcv PtAuthSss) in

if Vfy-zkPtAuthSss(rcv PtAuthSss, (cph Credpt , cph Sss)) = true then

in(chptph, (rcvph PrescProof , rcvph PtSpk ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5));
let (cph Comtdr , cph Creddr ) = getSpkVinfo(rcvph PrescProof ) in

let (cph presc, cph PrescriptID , = cph Comtdr , cph Comtpt)
= getSpkMsg(rcvph PrescProof ) in

if Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , cph presc, cph PrescriptID ,
cph Comtdr , cph Comtpt)) = true then

let c msg = getSpkMsg(rcvph PtSpk) in

if Vfy-spkPtSpk(rcvph PtSpk ,
(cph Credpt , cph Comtpt , c msg)) = true then

let (= cph Credpt , c Enc1) = getpublic(rcv vc1) in

if Vfy-zkVEncHii(rcv vc1, (cph Credpt , c Enc1, rcvph pkmpa)) = true then

let (= rcvph PrescProof , c Enc2) = getpublic(rcv vc2) in

if Vfy-zkVEncDrnymMpa(rcv vc2, (rcvph PrescProof ,
c Enc2, rcvph pkmpa)) = true then

let (= cph Credpt , c Enc3) = getpublic(rcv vc3) in

if Vfy-zkVEncPtnym(rcv vc3, (cph Credpt , c Enc3, pksso)) = true then

let (= cph Credpt , c Enc′

3) = getpublic(rcv vc′

3) in

if Vfy-zkVEncHii(rcv vc′

3, (cph Credpt , c Enc′

3, pksso)) = true then

let (= cph Credpt , c Enc4) = getpublic(rcv vc4) in

if Vfy-zkVEncPtnym(rcv vc4,
(cph Credpt , c Enc4, rcvph pkmpa)) = true then

out(ch′phpt, invoice(cph PrescriptID));
in(chptph, rcv ReceiptAck);
if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt , cph PrescriptID ,
Idph , rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5)) = true then

out(ch, (sign((Idph , cph Idmpa), skph), Idph));
in(ch, rcv Authmpa);
if Vfy-sign(rcv Authmpa , rcvph pkmpa) = true then

out(chpm, (rcvph PrescProof ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5,
rcv ReceiptAck))

Fig. 33. The pharmacist process Pph (Fixing enforced prescribing-privacy with untap-
pable channels with s4’).

67



let Pmpa =
in(ch, (rcvmpa Authph , cmpa Idph));
let rcvmpa pkph = key(cmpa Idph) in

Vfy-sign(rcvmpa Authph , rcvmpa pkph) = true

let (= cmpa Idph , = Idmpa)
= getSpkMsg(rcvmpa Authph , rcvmpa pkph) in

out(ch, sign(Idmpa , skmpa));
in(chpm, (rcvmpa PrescProof , rcvmpa vc

1
, rcvmpa vc

2
, rcvmpa vc

3
,

rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
, rcvmpa ReceiptAck));

let (cmpa Comtdr , cmpa Creddr ) = getSpkVinfo(rcvmpa PrescProof ) in

let (cmpa presc, cmpa PrescriptID , = cmpa Comtdr , cmpa Comtpt)
= getSpkMsg(rcvmpa PrescProof ) in

if Vfy-spkPrescProof(rcvmpa PrescProof , (cmpa Creddr , cmpa presc,
cmpa PrescriptID , cmpa Comtdr , cmpa Comtpt)) = true then

let (= cmpa Credpt , cmpa Enc
1
) = getpublic(rcvmpa vc

1
) in

if Vfy-zkVEncHii(rcvmpa vc
1
,

(cmpa Credpt , cmpa Enc
1
, pkmpa)) = true then

let cmpa Hii = dec(cmpa Enc
1
, skmpa) in

let (= rcvmpa PrescProof , cmpa Enc
2
) = getpublic(rcvmpa vc

2
) in

if Vfy-zkVEncDrnymMpa(rcvmpa vc
2
,

(rcvmpa PrescProof , cmpa Enc
2
, pkmpa)) = true then

let cmpa Pnymdr = dec(cmpa Enc
2
, skmpa) in

let (= cmpa Credpt , cmpa Enc3) = getpublic(rcvmpa vc
3
) in

if Vfy-zkVEncPtnym(rcvmpa vc
3
,

(cmpa Credpt , cmpa Enc
3
, pksso)) = true then

let (= cmpa Credpt , cmpa Enc′

3
) = getpublic(rcvmpa vc′

3
) in

if Vfy-zkVEncHii(rcvmpa vc′

3
,

(cmpa Credpt , cmpa Enc′

3
, pksso)) = true then

let (= cmpa Credpt , cmpa Enc
4
) = getpublic(rcvmpa vc

4
) in

if Vfy-zkVEncPtnym(rcvmpa vc
4
,

(cmpa Credpt , cmpa Enc
4
, pkmpa)) = true then

let cmpa Pnympt = dec(cmpa Enc
4
, skmpa) in

if Vfy-spkReceiptAck(rcvmpa ReceiptAck , (cmpa Credpt ,
cmpa PrescriptID , cmpa Idph , rcvmpa vc

1
, rcvmpa vc

2
, rcvmpa vc

3
,

rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
))

= true then

out(ch, (sign(Idmpa , skmpa), Idmpa));
in(ch, rcvmpa Authhii);
let cmpa pkhii = key(cmpa Hii) in

if Vfy-sign(rcvmpa Authhii , cmpa pkhii) = true then

if getsignmsg(rcvmpa Authhii , cmpa pkhii) = cmpa Hii then

out(chmh, (rcvmpa ReceiptAck , dec(rcvmpa c
5
, skmpa)));

in(chhm, rcvmpa Invoice).

Fig. 34. The MPA process Pmpa (Fixing enforced prescribing-privacy with untappable
channels with s4’).

68



let Phii =
in(ch, (rcvhii Authmpa , rcvhii Idmpa));
let chii pkmpa = key(rcvhii Idmpa) in

if Vfy-sign(rcvhii Authmpa , chii pkmpa) = true then

out(ch, sign(Idhii , skhii));
in(chmh, (rcvhii ReceiptAck , chii vc5));
let chii Credpt = getSpkVinfo(rcvhii ReceiptAck) in

let (chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc′

3, chii vc4,
chii c5) = getSpkMsg(rcvhii ReceiptAck) in

if Vfy-spkReceiptAck(rcvhii ReceiptAck , (chii Credpt ,
chii PrescriptID , chii Idph , chii vc1, chii vc2, chii vc3, chii vc′

3,
chii vc4, chii c5)) = true then

let (= chii Credpt , chii Enc5) = getpublic(chii vc5) in

if Vfy-zkVEncPtnym(chii vc5, (chii Credpt , chii Enc5, pkhii)) = true

then

let chii Pnympt = dec(chii Enc5, skhii) in

out(chhm, invoice(chii PrescriptID)).

Fig. 35. The HII process Phii (Fixing enforced prescribing-privacy with untappable
channels with s4’).

C.2 Based on the original assumptions

The following models are based on the assumption s8’. Other assumptions follow
the original ones. Most of the parts are the same as in the previous sub-section.
We only list the different parts.

The functions and equational theory are the same as in the original model as
in Figure 20 or Figure fig:eqtheory. The framework of the DLVV08 protocol is the
same as in the previous sub-section as in Figure 30. Roles Rdr , Rpt , Rph , Rmpa

and Rhii are the same as in Figure 14, Figure 15, Figure 16, Figure 17 and Fig-
ure 18, respectively. Processes Ppt p1, Ppt p2, Pph p1, Pph p2, Pmpa p1, Pmpa p2,
and Phii are the same as in Figure 4, Figure 5, Figure reffig:proph1, Figure ref-
fig:proph2, Figure reffig:prompa1, Figure reffig:prompa2 and Figure reffig:prohii,
respectively.

69



initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc}chc) =
let Iddr = A in

νPnymdr ;
(!Pdr |
(out(chc, Iddr );
out(chc, Pnymdr );
νndr ;
out(chc, ndr );
out(ch, zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr )));
in(ch, (rcv Authpt , rcv PtProof ));
out(chc, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

out(chc, a);
νrdr ;
out(chc, rdr );
let PrescriptID = hash(a, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr , ndr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(a,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr ));
out(chc, (spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(a,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr )))).

Fig. 36. The doctor process Pchc

dr (Fixing enforced prescribing-privacy with untappable
channels with s4’).

70



initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′

dr{A/Iddr}) =
let Iddr = A in

νPnymdr ;
(!Pdr |
(out(chc, Iddr );
out(chc, Pnymdr );
νndr ;
out(chc, ndr );
out(ch, zk((Pnymdr , Iddr , ndr ), drcred(Pnymdr , Iddr , ndr )));
in(ch, (rcv Authpt , rcv PtProof ));
out(chc, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

out(chc, a);
νrdr ;
out(chc, rdr );
let PrescriptID = hash(b, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr , ndr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(b,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr ));
out(chc, (spk((Pnymdr , rdr , Iddr , ndr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , ndr )),
(a, hash(a, c Comtpt , commit(Pnymdr , rdr )), commit(Pnymdr , rdr ), c Comtpt)),

rdr )))).

Fig. 37. The doctor process P ′

dr (Fixing enforced prescribing-privacy with untappable
channels with s4’).

let Pdr =
out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
in(ch, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

νpresc;
νrdr ;
let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr )).

Fig. 38. The doctor process Pdr (Fixing enforced prescribing-privacy with untappable
channels with original assumptions).

71



initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc}chc) =
let Iddr = A in

νPnymdr ;
(!Pdr |
(out(chc, Iddr );
out(chc, Pnymdr ); out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
in(ch, (rcv Authpt , rcv PtProof ));
out(chc, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

out(chc, a);
νrdr ;
out(chc, rdr );
let PrescriptID = hash(a, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(a,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr ));
out(chc, (spk((Pnymdr , rdr , Iddr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(a,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr )))).

Fig. 39. The doctor process Pchc

dr (Fixing enforced prescribing-privacy with untappable
channels with original assumptions).

72



initdr{A/Iddr}.(!Pdr{A/Iddr} | P ′

dr{A/Iddr}) =
let Iddr = A in

νPnymdr ;
(!Pdr |
(out(chc, Iddr ); out(chc, Pnymdr ); out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
in(ch, (rcv Authpt , rcv PtProof ));
out(chc, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

out(chc, a);
νrdr ;
out(chc, rdr );
let PrescriptID = hash(b, c Comtpt , commit(Pnymdr , rdr )) in

out(chdp, (spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(b,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr ));
out(chc, (spk((Pnymdr , rdr , Iddr ),

(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(a, hash(a, c Comtpt , commit(Pnymdr , rdr )), commit(Pnymdr , rdr ), c Comtpt)),

rdr )))).

Fig. 40. The doctor process P ′

dr (Fixing enforced prescribing-privacy with untappable
channels with original assumptions).

73



D Fixing enforced prescribing-privacy with chameleon

bit-commitments

The following model is based on the model with assumption s4’

fun ChCommit/2.
fun fake/2.
reduc chopen(ChCommit(m, r), r) = m;

chopen(ChCommit(m, r), fake(ChCommit(m, r), n)) = n.

Fig. 41. Additional functions and equations (Fixing enforced prescribing-privacy with
chameleon bit-commitments).

The functions and equational theory consist of two parts as shown in Fig-
ure 41 and Figure 29. The framework of the DLVV08 protocol is the same as
in Figure 30. Roles Rdr , Rpt , Rph , Rmpa and Rhii are the same as in Figure 14,
Figure 15, Figure 16, Figure 17 and Figure 18, respectively. Processes Pmpa p2,
and Phii are the same as in Figure reffig:prompa2 and Figure reffig:prohii, re-
spectively.

let Pdr =
νnoncedr ;
out(ch, zk((Pnymdr , Iddr , noncedr ), drcred(Pnymdr , Iddr , noncedr )));
in(ch, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

νpresc;
νr;
let commitpr = ChCommit(presc, r) in

νrdr ;
let PrescriptID = hash(commitpr , c Comtpt , commit(Pnymdr , rdr )) in

out(ch, (spk((Pnymdr , rdr , Iddr , noncedr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr , noncedr )),
(commitpr ,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr ));
out(chdp, r).

Fig. 42. The doctor process Pdr (Fixing enforced prescribing-privacy with chameleon
bit-commitments).

74



let Ppt =
in(ch, rcv Authdr );
let c Creddr = getpublic(rcv Authdr ) in

if Vfy-zkAuthdr
(rcv Authdr , c Creddr ) = true then

νrpt ;
out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

zk((Idpt , Pnympt , Hii, Sss, Acc),

(commit(Idpt , rpt),
ptcred(Idpt , Pnympt , Hii, Sss, Acc)))));

in(ch, (rcv PrescProof , rcv rdr ));
let (rcv PrescCommit , c PrescriptID , c Comtdr , = commit(Idpt , rpt))

= getSpkMsg(rcv PrescProof ) in

if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , rcv PrescCommit , c PrescriptID ,
c Comtdr , commit(Idpt , rpt))) = true then

let c Pnymdr = open(c Comtdr , rcv rdr ) in

in(chdp, xr);
let c presc = chopen(rcv PrescCommit , xr) in

in(ch, rcv Authph);
if Vfy-sign(rcv Authph , rcvpt pkph) = true then

let (= cpt Idph , cpt Idmpa) = getsignmsg(rcv Authph , rcvpt pkph) in

let cpt pkmpa = key(cpt Idmpa) in

out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss)));

νnonce;
let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, cpt pkmpa))) in

let vc2 = zk((c Pnymdr , rcv rdr ), (rcv PrescProof ,
enc(c Pnymdr , cpt pkmpa))) in

let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , pksso))) in

let vc′

3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Hii, pksso))) in

let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , cpt pkmpa))) in

let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc),

enc(Pnympt , cpt pkhii))) in

let c5 = enc(vc5, cpt pkmpa) in

out(ch, (rcv PrescProof ,
spk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt)),

nonce),
vc1, vc2, vc3, vc

′

3, vc4, c5));
out(chptph, xr);
in(ch, rcv Invoice);
let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),

(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc
′

3, vc4, c5)) in

out(ch,ReceiptAck).

Fig. 43. The patient process Ppt (Fixing enforced prescribing-privacy with chameleon
bit-commitments).

75



let Pph =
out(ch, sign((Idph , cph Idmpa), skph));
in(ch, rcv PtAuthSss);
let (cph Credpt , cph Sss) = getpublic(rcv PtAuthSss) in

if Vfy-zkPtAuthSss(rcv PtAuthSss, (cph Credpt , cph Sss)) = true then

in(ch, (rcvph PrescProof , rcvph PtSpk ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5));
let (cph Comtdr , cph Creddr ) = getSpkVinfo(rcvph PrescProof ) in

let (rcvph PrescCommit , cph PrescriptID , = cph Comtdr , cph Comtpt)
= getSpkMsg(rcvph PrescProof ) in

if Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , rcvph PrescCommit ,
cph PrescriptID , cph Comtdr , cph Comtpt)) = true then

let c msg = getSpkMsg(rcvph PtSpk) in

if Vfy-spkPtSpk(rcvph PtSpk ,
(cph Credpt , cph Comtpt , c msg)) = true then

let (= cph Credpt , c Enc1) = getpublic(rcv vc1) in

if Vfy-zkVEncHii(rcv vc1, (cph Credpt , c Enc1, rcvph pkmpa)) = true then

let (= rcvph PrescProof , c Enc2) = getpublic(rcv vc2) in

if Vfy-zkVEncDrnymMpa(rcv vc2, (rcvph PrescProof ,
c Enc2, rcvph pkmpa)) = true then

let (= cph Credpt , c Enc3) = getpublic(rcv vc3) in

if Vfy-zkVEncPtnym(rcv vc3, (cph Credpt , c Enc3, pksso)) = true then

let (= cph Credpt , c Enc′

3) = getpublic(rcv vc′

3) in

if Vfy-zkVEncHii(rcv vc′

3, (cph Credpt , c Enc′

3, pksso)) = true then

let (= cph Credpt , c Enc4) = getpublic(rcv vc4) in

if Vfy-zkVEncPtnym(rcv vc4,
(cph Credpt , c Enc4, rcvph pkmpa)) = true then

in(chptph, rcvph xr);
let cph presc = chopen(rcvph PrescCommit , rcvph xr) in

out(ch, invoice(cph PrescriptID));
in(ch, rcv ReceiptAck);
if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt , cph PrescriptID ,
Idph , rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5)) = true then

out(ch, (sign((Idph , cph Idmpa), skph), Idph));
in(ch, rcv Authmpa);
if Vfy-sign(rcv Authmpa , rcvph pkmpa) = true then

out(ch, (rcvph PrescProof ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′

3, rcv vc4, rcv c5,
rcv ReceiptAck))

out(chpm, rcvph xr).

Fig. 44. The pharmacist process Pph (Fixing enforced prescribing-privacy with
chameleon bit-commitments).

76



let Pmpa p1 =
in(ch, (rcvmpa Authph , cmpa Idph));
let rcvmpa pkph = key(cmpa Idph) in

Vfy-sign(rcvmpa Authph , rcvmpa pkph) = true

let (= cmpa Idph , = Idmpa)
= getSpkMsg(rcvmpa Authph , rcvmpa pkph) in

out(ch, sign(Idmpa , skmpa));
in(ch, (rcvmpa PrescProof , rcvmpa vc

1
, rcvmpa vc

2
, rcvmpa vc

3
,

rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
, rcvmpa ReceiptAck));

let (cmpa Comtdr , cmpa Creddr ) = getSpkVinfo(rcvmpa PrescProof ) in

let (rcvmpa PrescCommit , cmpa PrescriptID , = cmpa Comtdr , cmpa Comtpt)
= getSpkMsg(rcvmpa PrescProof ) in

if Vfy-spkPrescProof(rcvmpa PrescProof , (cmpa Creddr , rcvmpa PrescCommit ,
cmpa PrescriptID , cmpa Comtdr , cmpa Comtpt)) = true then

let (= cmpa Credpt , cmpa Enc
1
) = getpublic(rcvmpa vc

1
) in

if Vfy-zkVEncHii(rcvmpa vc
1
,

(cmpa Credpt , cmpa Enc
1
, pkmpa)) = true then

let cmpa Hii = dec(cmpa Enc
1
, skmpa) in

let (= rcvmpa PrescProof , cmpa Enc
2
) = getpublic(rcvmpa vc

2
) in

if Vfy-zkVEncDrnymMpa(rcvmpa vc
2
,

(rcvmpa PrescProof , cmpa Enc
2
, pkmpa)) = true then

let cmpa Pnymdr = dec(cmpa Enc
2
, skmpa) in

let (= cmpa Credpt , cmpa Enc3) = getpublic(rcvmpa vc
3
) in

if Vfy-zkVEncPtnym(rcvmpa vc
3
,

(cmpa Credpt , cmpa Enc
3
, pksso)) = true then

let (= cmpa Credpt , cmpa Enc′

3
) = getpublic(rcvmpa vc′

3
) in

if Vfy-zkVEncHii(rcvmpa vc′

3
,

(cmpa Credpt , cmpa Enc′

3
, pksso)) = true then

let (= cmpa Credpt , cmpa Enc
4
) = getpublic(rcvmpa vc

4
) in

if Vfy-zkVEncPtnym(rcvmpa vc
4
,

(cmpa Credpt , cmpa Enc
4
, pkmpa)) = true then

let cmpa Pnympt = dec(cmpa Enc
4
, skmpa) in

if Vfy-spkReceiptAck(rcvmpa ReceiptAck , (cmpa Credpt ,
cmpa PrescriptID , cmpa Idph , rcvmpa vc

1
, rcvmpa vc

2
, rcvmpa vc

3
,

rcvmpa vc′

3
, rcvmpa vc

4
, rcvmpa c

5
))

= true then

in(chpm, rcvmpa xr);
let cmpa presc = chopen(rcvmpa PrescCommit , rcvmpa xr) in0.

Fig. 45. The MPA process Pmpa in Pharmacist-MPA sub-protocol (Fixing enforced
prescribing-privacy with chameleon bit-commitments).

77



let P ′

dr =
out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
in(ch, (rcv Authpt , rcv PtProof ));
in(chc, (rcv Authpt , rcv PtProof ));
let c Credpt = getpublic(rcv Authpt) in

let (c Comtpt , = c Credpt) = getpublic(rcv PtProof ) in

if Vfy-zkAuthpt
(rcv Authpt , c Credpt) = true then

if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt)) = true then

νpresc′;
out(chc, presc);
νr;
let commitpr = ChCommit(presc, r) in

out(chc, fake(commitpr , presc));
νrdr ;
out(chc, rdr );
let PrescriptID = hash(commitpr , c Comtpt , commit(Pnymdr , rdr )) in

out(ch, (spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(commitpr ,PrescriptID , commit(Pnymdr , rdr ), c Comtpt)),

rdr ));
out(chdp, r).

Fig. 46. The doctor process P ′

dr (Fixing enforced prescribing-privacy with chameleon
bit-commitments).

78


