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Abstract. RFID authentication protocols are susceptible to different
types of relay attacks such as mafia and distance frauds. A countermea-
sure against these types of attacks are the well-known distance-bounding

protocols. These protocols are usually designed to resist to only one of
these frauds, though, behave poorly when both are considered. In this
paper (i) we extend the analysis of mafia and distance frauds in recently
released protocols. (ii) We introduce the concept of distance-bounding
protocols based on graphs while previous proposals rely on linear reg-
isters or binary trees. (iii) We propose an instance of the graph-based
protocol that resists to both mafia and distance frauds without sacri-
ficing memory. To the best of our knowledge, this protocol achieves the
best trade-off between these two frauds.
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fraud, distance fraud, graph.

1 Introduction

Radio Frequency IDentification (RFID) is a contactless technology that is be-
coming the solution for everyday identification/authentication applications, such
as access control, passport, public transportation, payment, ticketing, etc. The
main purpose of RFID is to allow readers to communicate wirelessly with tags
implanted into objects. While identification does not involve heavy computation
capabilities for tags, authentication process, such as the ISO/IEC 9798 [2] or
ISO/IEC 11770 [1] standards, requires more powerful tags performing strong
cryptographic algorithms.

The most widespread and low-cost tags are passive, meaning that they do not
have their own power source, and are supplied by the electromagnetic field of a
reader. Although capacities of such tags are quite limited, some of them benefit
from cryptographic building blocks and secure authentication protocols. They
are typically used in the above-mentioned applications. Nevertheless, Desmedt,



Goutier and Bengio [5] presented in 1987, an attack that defeated any authenti-
cation protocol. In this attack, called Mafia Fraud, the adversary passes through
the authentication process by simply relaying the messages between a legitimate
reader (the verifier) and a legitimate tag (the prover). Thus she does not need
to modify or decrypt any exchanged data. Later in 1993, Brands and Chaum [4]
proposed a countermeasure that prevents from such an attack by estimating the
distance between the reader and the tag to authenticate: the distance-bounding
protocol. They also introduced in [4] a new kind of attack, named Distance Fraud,
where a dishonest prover claims to be closer to the verifier than it really is.

Since then, many distance-bounding protocols have been proposed to thwart
these attacks. In 2005, Hancke and Kuhn [6] proposed the first distance-bounding
protocol dedicated to RFID. It is split in two phases: a slow phase, in which
reader and tag exchange two nonces, and carry on resource-consuming opera-
tions; followed by a fast phase divided into n rounds where, in each one, the
reader measures the time taken by a single bit challenge/response. Based on
these exchanges, the reader is able to bound the distance between itself and the
tag. These communications also provide the identity proof of the tag. Unfortu-
nately, the adversary success probability regarding mafia and distance frauds is
(3/4)n while one may expect (1/2)n. Therefore, others protocols [3, 7, 8, 10–12]
attempt to fix the Hancke and Kuhn’s proposal.

There exist distance-bounding protocols structured differently than the one
proposed by Hancke and Kuhn. For example, the protocols [4, 8, 9] perform a
third additional phase in which the tag signs the exchanged bits. However, in
practice this final phase represents an additional delay. As stated in [3], as the
authentication entirely relies on this phase, if the latter is interrupted or not
reached, then the whole process is lost. Therefore, protocols without this final
slow phase are more flexible and faster. In the sequel we only focus on such
protocols.

Kim and Avoine’s protocol [7] and Avoine and Tchamkerten’s protocol [3] are
built in the same manner as Hancke and Kuhn’s one. To the best of our knowl-
edge, they have the best resistance considering only mafia fraud. However, Kim
and Avoine’s protocol [7] severely sacrifices the distance fraud security, whereas
Avoine and Tchamkerten’s one [3] requires an exponential amount of memory
(2n+1 − 2 in its standard configuration) to achieve such a high mafia fraud re-
sistance. Either Hancke and Kuhn nor the two latter protocols achieve a good
balance between memory, mafia fraud resistance and distance fraud resistance.

The first contribution of this paper is the mafia and distance fraud detailed
analysis of the protocols [3] and [7]. Then, we introduce the concept of distance-
bounding protocols based on graphs, and we propose a new distance-bounding
protocol based on a particular graph. Our goal is not to provide the best protocol
in terms of mafia fraud or distance fraud, but to design a protocol that ensures
a good trade-off between these concerns, while still using a linear memory. So,
our protocol is never the best one when considering only one property, but is
undeniably a good option when considering the three properties all together.
That is why we name our protocol Poulidor as a famous French bicycle racer



known as The Eternal Second : never the best in any race, but definitively the
best in average.

The paper is organized as follows. In Section 2, we describe in detail Hancke
and Kuhn’s protocol [6], Kim and Avoine’s protocol [7] and Avoine and Tchamk-
erten’s protocol [3]. Section 3 presents our graph-based protocol. In Section 4, we
formally define the adversary strategies for mafia and distance frauds, and give a
security analysis of the graph-based protocol regarding these two strategies. We
show in Section 5 that our protocol has the best trade-off between mafia fraud
resistance, distance fraud resistance and memory consumption. Finally, Section
6 discusses the obtained results, and raises some open problems to the scientific
community.

2 State of the Art

2.1 Hancke and Kuhn’s Protocol

Hancke and Kuhn’s protocol (HKP) [6], depicted in Figure 1, is a key-reference
protocol in terms of distance bounding devoted to RFID systems. HKP is a
simple and fast protocol, but it suffers from a high adversary success probability.

Initialization The prover (P ) and the verifier (V ) share a secret x and agree
on (i) a security parameter n, (ii) a public hash function H whose output size is
2n, and (iii) a given timing bound ∆tmax.

Protocol HKP consists of two phases: a slow one followed by a fast one. Dur-
ing the slow phase V generates a random nonce NV and sends it to P . Re-
ciprocally, P generates NP and sends it to V . V and P then both compute
H2n := H(x, NP , NV ). In what follows, Hi (1 ≤ i ≤ 2n) denotes the i-th bit of
H2n, and Hi . . . Hj (1 ≤ i < j ≤ 2n) denotes the concatenation of the bits from
Hi to Hj . Then V and P split H2n into two registers of length n: R0 := H1 . . . Hn

and R1 := Hn+1 . . .H2n. The fast phase then consists of n rounds. In each of
them, V picks a random bit ci (the challenge) and sends it to P . The latter
immediately answers ri := Rci

i , the i-th bit of the register Rci .

Verification At the end of the fast phase, the verifier checks that the answers
received from the prover are correct and that ∆ti ≤ ∆tmax (1 ≤ i ≤ n) .

2.2 Kim and Avoine’s Protocol

Kim and Avoine’s protocol (KAP) [7], represented in Figure 2, basically relies
on predefined challenges. Predefined challenges allow the prover to detect that
an attack occurs as follows: the prover and the verifier agree on some predefined
1-bit challenges; if the adversary sends in advance a challenge to the prover that
is different from the expected predefined challenge, then the prover detects the
attack and until the end of the protocol execution, sends random responses to
the adversary. The complete description of KAP protocol is provided below.



Prover Verifier
slow phase

generates NP generates NV

NV←−−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−−→

H2n = H(x,NP , NV ) H2n = H(x,NP , NV )
R0 = H1 . . . Hn R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n R1 = Hn+1 . . . H2n

fast phase

for i = 1 to n:

picks a bit ci
ci←−−−−−−−−−−−−−−−−− starts timer

ri = R
ci
i

ri−−−−−−−−−−−−−−−−−→ stops timer

Fig. 1. Hancke and Kuhn’s protocol

Initialization The prover (P) and the verifier (V) share a secret x and agree
on (i) a security parameter n, (ii) a public hash function H whose output size is
4n, and (iii) a given timing bound ∆tmax.

Protocol As previously, V and P exchange nonces NV and NP . From these
values they compute H4n = H(x, NP , NV ), and split it in four registers. R0 :=
H1 . . . Hn and R1 := Hn+1 . . . H2n are the potential responses. The register
D := H3n+1 . . . H4n constitutes the potential predefined challenges. Finally, the
register T := H2n+1 . . . H3n allows the verifier (resp. prover) to decide whether
a predefined challenge should be sent (resp. received): in round i, if Ti = 1 then
a random challenge is sent; if Ti = 0 then the predefined challenge Di is sent
instead of a random one.

Verification At the end of the fast phase, the verifier checks that the answers
received from the prover are correct and that ∆ti ≤ ∆tmax (1 ≤ i ≤ n).

2.3 Avoine and Tchamkerten’s Protocol

The Avoine and Tchamkerten’s protocol (ATP) [3] is slightly different from the
other existing distance bounding protocols. This protocol is also based on single
bit challenge/response exchanges. However, the authors propose to use a decision
tree to set up the fast phase. Figure 3 depicts the protocol detailed below.

Initialization The prover and the verifier share a secret x, agree on (i) two
security parameters n = αk and m, (ii) a pseudo-random function PRF whose
output size is at least m + α(2k+1 − 2) bits, (iii) a timing bound ∆tmax.



Prover Verifier
slow phase

generates NP generates NV

NV←−−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−−→

H4n = H(x,NP , NV ) H4n = H(x,NP , NV )
R0 = H1 . . . Hn R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n R1 = Hn+1 . . . H2n

T = H2n+1 . . . H3n T = H2n+1 . . . H3n

D = H3n+1 . . . H4n D1 = H3n+1 . . . H4n

fast phase

for i = 1 to n:

picks a random bit si

ci =

{

si if Ti = 1
Di otherwise

ci←−−−−−−−−−−−−−−−−− starts timer
if Ti = 1
ri = R

ci
i

otherwise:

ri =

{

R0
i if ci = Di

random otherwise
ri−−−−−−−−−−−−−−−−−→ stops timer

Fig. 2. Kim and Avoine’s protocol

Protocol The prover P and the verifier V both generate a nonce, NP for P
and NV for V . The verifier sends his nonce to P . Upon reception, the latter
computes PRF (x, NP , NV ). He then sends [PRF (x, NP , NV )]m1 , the first m bits
of PRF (x, NP , NV ), and his nonce. These bits are used for the authentication.

P and V use the remaining α(2k+1 − 2) bits to label the nodes of α binary
decision trees of depth k. Each node of the trees3 is labeled by one bit from

[PRF (x, NP , NV )]
m+α(2k+1−2)
m+1 (the remaining bits) in a one-to-one way. These

labels represent the prover’s responses during the fast phase. The challenges are
symbolized by the edges of the trees, the left and right edges are labeled with 0
and 1 respectively.

Afterwards, the fast phase begins, for 1 ≤ i ≤ α, and 1 ≤ j ≤ k, V picks
a bit ci

j at random, starts a timer and sends ci
j to P . The latter immediately

answers a bit ri
j = node(ci

1, . . . c
i
j), the value in the i-th tree of the node relied to

the root by the edges labeled ci
1, . . . , c

i
j . Once V receives P ’s response, he stops

his timer and computes ∆tij .

Verification The verifier authenticates the prover if the m bits, sent during the
slow phase, are those he expected. The prover succeeds the distance-bounding

3 Except the roots.



stage, if all his responses are correct and if for all 1 ≤ i ≤ α and 1 ≤ j ≤ k,
∆tij ≤ ∆tmax.

Prover Verifier
slow phase

generates NP generates NV

NV←−−−−−−−−−−−−−−−−−−
computes PRF (x,NP , NV )

NP , [PRF (x,NP ,NV )]m1−−−−−−−−−−−−−−−−−−−→
computes PRF (x,NP , NV )

fast phase

for i = 1 to α:

for j = 1 to k:

picks a bit ci
j

ci
j

←−−−−−−−−−−−−−−−−− starts timer

ri
j = node(ci

1, . . . , c
i
j)

ri
j

−−−−−−−−−−−−−−−−−→ stops timer

Fig. 3. Avoine and Tchamkerten protocol

3 Graph-Based Distance-Bounding Protocol

The ATP protocol [3] in its standard configuration (α = 1) relies on a binary
tree. The amount of memory needed to build this binary tree is exponential
regarding to the number of rounds. Although the authors in [3] proposed to
split the binary tree in order to reduce the memory requirements, they point out
that this leads to a significant decrease in the security level of the protocol. We
intend to go a step forward by proposing protocols based on graphs rather than
trees. The graph-based protocols, as presented below, provide a greater design
flexibility, a high security level and a low memory consumption.

3.1 Initialization

Parameters The prover P and the verifier V agree on four public parameters:
(i) a security parameter n that represents the number of rounds in the protocol,
(ii) a timing bound ∆tmax, (iii) a pseudo random function PRF whose output
size is 4n bits, and (iv) a directed graph G whose characteristics are discussed
below. They also agree on a shared secret x.

Graph To achieve n rounds, the proposed graph requires 2n nodes
{q0, q1, . . . , q2n−1}, and 4n edges {s0, s1, · · · , s2n−1, ℓ0, ℓ1, · · · , ℓ2n−1} such that,
si (0 ≤ i ≤ 2n − 1) is an edge from qi to q(i+1) mod 2n, and ℓi (0 ≤ i ≤ 2n − 1)
is an edge from qi to q(i+2) mod 2n. Figure 4 depicts the graph when n = 4.
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3.2 Exchanges

As described below, the protocol is divided in two phases, a slow phase followed
by a fast one. Figure 5 summarizes the protocol.

Slow phase – P and V generate nonces NP and NV respectively, and ex-
change them. From these values and the secret x, they compute H1|| . . . ||H4n =
PRF (x, NP , NV ) where Hi denotes the i-th bit of the output of PRF (x, NP , NV ).
The bits H1, . . . , H4n set up the graph G as follows: the first 2n bits are used
to value the nodes while the remaining bits are used to value the edges si

(0 ≤ i ≤ 2n − 1), finally ℓi = si ⊕ 1 (0 ≤ i ≤ 2n − 1).

Fast phase – This phase consists of n stateful rounds numbered from 0 to n− 1.
In the i-th round P ’s state and V ’s state are represented by the nodes qpi

and
qvi

respectively: initially qp0
= qv0

= q0. Upon reception of the i-th challenge ci,
P moves to the node qpi

to qpi+1
in the following way: qpi+1

= q(pi+1) mod 2n if si

is labeled with ci, otherwise qpi+1
= q(pi+2) mod 2n. Finally, the prover sends as

response ri the bit-value of the node qpi+1
. Upon reception of the prover answer

ri, the verifier stops his timer, and computes ∆ti, i.e. the round trip time spent
for this exchange. Besides this, V moves to the node qvi+1

using the challenge ci

(as the prover did but from the node qvi
) and checks if qvi+1

= ri.

3.3 Verification

The authentication succeeds if all the responses are correct, and each round is
completed within the time bound ∆tmax.



Prover Verifier
slow phase

generates NP generates NV

NV←−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−→

H1 . . . H4n = PRF (x,NP , NV ) H1 . . . H4n = PRF (x,NP , NV )
fills the graph: fills the graph:

for i = 0 to 2n− 1: for i = 0 to 2n− 1:






ℓi = Hi+2n+1

si = Hi+2n+1

qi = Hi+1







ℓi = Hi+2n+1

si = Hi+2n+1

qi = Hi+1

fast phase

for i = 0 to n− 1:
picks a bit ci

ci←−−−−−−−−−−−−−−−− starts timer
moves from qpi

to qpi+1

ri = qpi+1

ri−−−−−−−−−−−−−−−−→ stops timer
moves from qvi

to qvi+1

checks if ri = qvi+1

Fig. 5. Our proposal

4 Security Analysis of the Graph-Based Protocol

As stated in the introduction, mafia fraud and distance fraud are the two main
security concerns when considering distance bounding protocols. We analyze in
this section the graph-based protocol with respect to these frauds.

4.1 Mafia Fraud

To analyze the mafia fraud we consider the adversary abilities complying with the
models provided in [3], [6] and [7]. Below, we define the head node and rephrase
the well-known pre-ask strategy (see for example [9]) with our terminology.

Definition 1 (Head node). Given a sequence of challenges {c1, c2, · · · , ci}
(1 ≤ i ≤ n), the head node is the node that should be use by the prover to sends
the response to the verifier according to this sequence of challenges. The head
node is denoted as Ω(c1, c2, · · · , ci).

Definition 2 (Pre-ask strategy). The pre-ask strategy begins at the end of the
slow-phase and before the beginning of the fast phase. First, the adversary sends
a sequence of challenges {c̃1, c̃2, · · · , c̃n} to the prover and receives a sequence of
responses {Ω(c̃1), Ω(c̃1, c̃2), · · · , Ω(c̃1, c̃2, · · · , c̃n)}.
Later, during the fast phase, the adversary tries to use the information obtained
from the prover in the best way. Let consider {c1, c2, · · · ci} the challenges sent
by the verifier until the i-th round during the fast phase. If ∀j s.t. 1 ≤ j ≤ i, we



have cj = c̃j then the adversary sends as response Ω(c̃1, c̃2, · · · , c̃i). Otherwise
she sends as response the value Ω(c̃1, c̃2, · · · , c̃j) where j is selected according to
some rule that will be defined later.

Remark 1. Sending a combination of two or more values as response is com-
pletely useless for the adversary because the nodes’ values in the graph are inde-
pendent from each other. Furthermore in the graph-based protocol, one node is
never used twice to send a response. Therefore, the adversary can neither obtain
nor infer more information than the one obtained from the prover. Finally, note
that in the security analysis of previous protocols [3], [6] and [7], the best adver-
sary strategy is to pick j = i for every round, i.e. the adversary sends exactly
what she received from the prover in the i-th round. However, as we explain
below, in the graph-based protocol it makes sense to send a value received in a
different round.

While the challenges sent by the adversary match with the challenges sent
by the verifier, then the adversary is able to send the correct response. However,
after the first incorrect adversary challenge, she can no longer be convinced about
the correctness of her response. Consequently, we analyze below the adversary
success probability when the adversary sends at least an incorrect challenge to
the prover during the pre-ask strategy.

Theorem 1. Let (c1, c2, · · · , ci) be the sequence of verifier challenges until the
i-th round, and let (c̃1, c̃2, · · · , c̃n) be the sequence of adversary challenges in the
pre-ask strategy. Let F be the random variable representing the first round in
which ct 6= c̃t (1 ≤ t ≤ n). Given, Ω(c̃1, c̃2, · · · , c̃j), the adversary response in
the i-th round for some (1 ≤ j ≤ n), we have:

Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)|F = t) =















1 if i < t and i = j,
1
2 if i < t and i 6= j,
1
2 if i ≥ t and j < t,
p(t) if i ≥ t and j ≥ t,

where p(t) = 1
2 + 1

2i+j−2t+2

∑k=2n−1
k=0

(

Ai−t[1, k]Aj−t[2, k] + Ai−t[2, k]Aj−t[1, k]
)

,
and A is the adjacency matrix of the graph which represents the graph-based
protocol.

Proof. We analyze the problem by cases:

Case 1 (i < t and i = j). As i < t then ∀1 ≤ k ≤ i, c̃k = ck, therefore
Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci).

Case 2 (i < t and i 6= j). As i < t then Ω(c̃1, c̃2, · · · , c̃i) = qvi
= Ω(c1, c2, · · · , ci).

On the other hand, as i 6= j then qvi
and Ω(c̃1, c̃2, · · · , c̃j) are not the same node

in the graph. As the node values in the graph are independent, we conclude that,
Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)) = 1

2 .



Case 3 (i ≥ t and j < t). This case is analog to Case 2.

Case 4 (i ≥ t and j ≥ t). Let be qvi
= Ω(c1, c2, · · · , ci) and

qaj
= Ω(c̃1, c̃2, · · · , c̃j), so:

Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)) = Pr(qvi
= qaj

) . (1)

Now, Pr(qvi
= qaj

) = Pr(qvi
= qaj

|vi = aj) Pr(vi = aj) + Pr(qvi
= qaj

|vi 6=
aj) Pr(vi 6= aj) where Pr(qvi

= qaj
|vi = aj) = 1 by definition of the graph-based

protocol. On the other hand, Pr(qvi
= qaj

|vi 6= aj) = 1
2 because the node values

are selected at random in the protocol, then:

Pr(qvi
= qaj

) =
1

2
+

Pr(vi = aj)

2
. (2)

As 0 ≤ vi, aj ≤ 2n − 1 then:

Pr(vi = aj) =

k=2n−1
∑

k=0

Pr(vi = k) Pr(aj = k) . (3)

As ct 6= c̃t for the first time, then two equally probable cases occur: 1)
Ω(c1, · · · , ct) = qx and Ω(c̃1, · · · , c̃t) = qx+1, 2) Ω(c1, · · · , ct) = qx+1 and
Ω(c̃1, · · · , c̃t) = qx, where (0 ≤ x ≤ 2n − 1) and ∀x, x + 1 = (x + 1) mod 2n.
Using these two events in the equation 3 we obtain:

Pr(vi = aj) =
1

2

(

k=2n−1
∑

k=0

Pr(vi = k|Ω(c1, · · · , ct) = qx) Pr(aj = k|Ω(c1, · · · , ct) = qx)

+

k=2n−1
∑

k=0

Pr(vi = k|Ω(c1, · · · , ct) = qx+1) Pr(aj = k|Ω(c1, · · · , ct) = qx+1)

)

. (4)

As Ay[x, k] represents the number of walks of size y between the nodes x and

k, then Pr(vi = k|Ω(c1, · · · , ct) = qx) = Ai−t[x,k]
2i−t and Pr(vi = k|Ω(c1, · · · , ct) =

qx+1) = Ai−t[x+1,k]
2i−t , in the same way Pr(aj = k|Ω(c1, · · · , ct) = qx) = Aj−t[x,k]

2j−t

and Pr(aj = k|Ω(c1, · · · , ct) = qx+1) = Aj−t[x+1,k]
2j−t . Then using Equation 4:

Pr(vi = aj) =
1

2i+j−2t+2

k=2n−1
∑

k=0

(

Ai−t[x, k]Aj−t[x + 1, k] + Ai−t[x + 1, k]Aj−t[x, k]
)

.

(5)
Given the graph characteristics, we have Ay[x, k] = Ay[(x−z) mod 2n, (k−

z) mod 2n] for any z ∈ N. Therefore, Ai−t[x, k] = Ai−t[1, (k − x + 1) mod 2n]
and Ai−t[x + 1, k] = Ai−t[2, (k − x + 1) mod 2n], in the same way, Aj−t[x, k] =
Aj−t[1, (k − x + 1) mod 2n] and Aj−t[x + 1, k] = Aj−t[2, (k − x + 1) mod 2n].
So:



2n−1
∑

k=0

(

Ai−t[x, k]Aj−t[x + 1, k] + Ai−t[x + 1, k]Aj−1[x, k]
)

=

2n−1
∑

k=0

(

Ai−t[1, k]Aj−t[2, k] + Ai−t[2, k]Aj−t[1, k]
)

. (6)

Equations 1, 2, 5, and 6 yield the expected result.

⊓⊔

Remark 2. Using Theorem 1, assuming c1 6= c̃1, then for i = 1 we obtain that
Pr(Ω(c̃1, c̃2) = Ω(c1)) = 5

8 > Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1)) for every j 6= 2. It
means that in this case it is better for the adversary to send the second response
of the prover (Ω(c̃1, c̃2)). These results only reinforce the ideas expressed in the
Remark 1, that is the best adversary strategy is not always to pick j = i in the
graph-based protocol.

Corollary 1. Given ri = Ω(c̃1, c̃2, · · · , c̃i) and c′i = Ω(c1, c2, · · · , ci) for every
1 ≤ i ≤ n, the best adversary success probability in the mafia fraud is:

t=n
∑

t=1

1

2t

(

i=n
∏

i=t

max(Pr(r1 = c′i|F = t), · · · , Pr(rn = c′i|F = t))

)

+
1

2n

where Pr(rj = c′i|F = t) is defined in Theorem 1.

Proof. The adversary success probability in the mafia fraud is:

t=n
∑

t=1

(Pr(success|F = t) Pr(F = t)) + Pr(c1 = c̃1, c2 = c̃2, · · · , cn = c̃n) . (7)

As the challenges are selected at random, then:

Pr(F = t) = 1
2t .

Pr(c1 = c̃1, c2 = c̃2, · · · , cn = c̃n) = 1
2n .

(8)

Considering the pre-ask attack strategy in Definition 2:

Pr(success|F = t) =

i=n
∏

i=t

max(Pr(r1 = c′i|F = t), · · · , Pr(rn = c′i|F = t)) . (9)

Equations 7, 8, and 9 yield the expected result.

⊓⊔



4.2 Distance Fraud

The distance fraud analysis for most of the distance-bounding protocols is not
a hard task. However, for the ATP [3] protocol, to the best of our knowledge,
nobody has found the distance fraud success probability. Unfortunately, in the
graph-based protocol which has some similarities with the ATP protocol, dis-
tance fraud analysis is also not trivial. Then, in this paper we provide an upper
bound of the distance fraud for a sub-family of the distance-bounding protocols,
which will be useful for the ATP protocol, and of course, for the graph-based
protocol too.

Definition 3 (Distance-bounding protocol sub-family). Let consider P,
a distance bounding protocol. P belongs to the distance-bounding protocol sub-
family if it fulfills the following requirements:

– During the fast phase, in each round the verifier sends a bit as challenge and
the prover answers with a bit alike.

– There is no final phase.
– After the slow-phase, it should be possible to build a function f : {0, 1}n →

{0, 1}n such that, given any sequence of challenge {c1, c2, · · · , cn}, then
f(c1, c2, · · · , cn) is the correct response sequence for the verifier. Since now
on, we are going to call this function as “prover function”.

Definition 4 (Prover function pre-image). For a sequence y ∈ {0, 1}n

and a prover function f , the prover function pre-image is the set Iy = {x ∈
{0, 1}n|f(x) = y}.

We now define the adversary capability in the distance fraud:

Definition 5 (Adversary capability in the distance fraud). The adver-
sary capability in the distance fraud is twofold:

1. The adversary has access to the prover function.
2. The adversary can send in advance a sequence y ∈ {0, 1}n to the verifier, try-

ing to maximize Pr(f(c1, c2, · · · , cn) = y) where {c1, c2, · · · , cn} is a random
sequence of challenges.

Proposition 1. Let y be the sequence sent by the adversary in advance, then

the success probability in the distance fraud is
|Iy|
2n .

So, the adversary strategy is pretty clear, she must find and send a sequence
y ∈ {0, 1}n, such that for any sequence x ∈ {0, 1}n it holds that |Iy | ≥ |Ix|.

Theorem 2. Given x, y ∈ {0, 1}n two random sequences, and a prover function
f , then, for any sequence z ∈ {0, 1}n such that Iz 6= ∅ we have:

Pr(x ∈ Iz) ≤

1
2n +

√

1
22n − 4

2n + 4 Pr(f(x) = f(y))

2



Proof. Given that Iz 6= ∅, we have:

Pr(f(x) = f(y)) = Pr(f(x) = f(y)|y ∈ Iz) Pr(y ∈ Iz)

+ Pr(f(x) = f(y)|y /∈ Iz) Pr(y /∈ Iz) (10)

But, Pr(f(x) = f(y)|y ∈ Iz) = Pr(x ∈ Iz) = Pr(y ∈ Iz) because x and y are
random sequences. On the other hand, Pr(f(x) = f(y)|y /∈ Iz) ≥

1
2n because of

the “prover function” definition. Therefore, using these results in Equation 10:

Pr(f(x) = f(y)) ≥ Pr(x ∈ Iz)
2 +

1

2n
(1 − Pr(x ∈ Iz)) . (11)

Calculating the discriminant of this quadratic inequality, and obtaining its
solutions, we conclude the proof. Note that, this quadratic inequality has real
solutions because Pr(f(x) = f(y)) ≥ 1

2n , and in this case, the discriminant value
is always positive. ⊓⊔

Corollary 2. For every distance-bounding protocol that complies with Defini-
tion 3, the adversary success probability in the distance fraud is upper bounded
by:

1
2n +

√

1
22n − 4

2n + 4 Pr(f(x) = f(y))

2
.

With this last result, we are giving a way to compute an upper bound of a
sub-family of the distance-bounding protocols. We show below how it is possible
to apply this result to the graph-based protocol, and later we apply the same
result for the ATP protocol.

Theorem 3. The distance fraud success probability for the graph-based protocol
is upper bounded by:

1
2n +

√

1
22n − 4

2n + 4p

2
.

where

p =
i=n
∏

i=1

(

1

2
+

1

22i+1

k=2n−1
∑

k=0

(Ai[0, k])2

)

.

Proof. Let considered two random sequences x = {x1, x2, · · · , xn} and y =
{y1, y2, · · · , yn}, then by the definition of the graph-based protocol and the def-
inition of “Prover Function”:

Pr(f(x) = f(y)) =
i=n
∏

i=1

Pr(Ω(x1, · · · , xi) = Ω(y1, · · · , yi)) . (12)

Let be qxi
= Ω(x1, · · · , xi) and qyi

= Ω(y1, · · · , yi), then, like in Theorem1,
we can obtain that:



Pr(qxi
= qyi

) =
1

2
+

Pr(xi = yi)

2
. (13)

and

Pr(xi = yi) =
k=2n−1
∑

k=0

Pr(xi = k) Pr(yi = k) . (14)

Once again, as Ai[j, k] represents the number of walks of size i between the
nodes j and k, where A is the adjacency matrix of the graph, then Pr(xi = k) =
Ai[0,k]

2i = Pr(yi = k). Therefore, using Equation 14:

Pr(xi = yi) =

k=2n−1
∑

k=0

(

Ai[0, k]

2i

)2

. (15)

Equations 12, 13, and 15, yield to:

Pr(f(x) = f(y)) =
i=n
∏

i=1

(

1

2
+

1

22i+1

k=2n−1
∑

k=0

(Ai[0, k])2

)

. (16)

Applying Equation 16 to Corollary 2, considering that p = Pr(f(x) = f(y)),
we conclude the proof of this theorem. ⊓⊔

5 Comparison

In this paper we are analyzing three parameters: mafia fraud, distance fraud and
memory consumption. Therefore, we need these values for each of the previous
considered protocols. Unfortunately, the computation of the mafia fraud success
probability for KAP protocol [7] is not correct, but in Appendix A we provide
a correct calculation. On the other hand, as we previously said, ATP distance
fraud success probability was not presented in [3], nevertheless, in Appendix B
we give a distance fraud upper bound for this protocol exactly as we did with
the graph-based protocol.

Since we consider memory consumption as a main concern in distance-bounding
protocols, we relax the ATP protocol, as its authors propose, to fit with linear
memory. Nevertheless, reducing the memory in ATP protocol, increases the ad-
versary success probability for both type of fraud. Hence, we pick α = n

3 in
which case the memory consumption equals to 14n

3 ≈ 5n whereas the security is
still ensured. Note that this memory consumption is in the range of the other
studied protocol. This instance of the ATP protocol is named “ATP3”.

Table 1 depicts the values of the three parameters for each protocols that
we are considering. In terms of memory the Hancke and Kuhn protocol is, un-
doubtedly, the best protocol. As can be seen in Figure 6, when considering only
mafia fraud resistance KAP and ATP protocols are the best ones. And only in



Table 1. This table depicts the values of the three parameters (memory, mafia fraud
success probability and distance fraud success probability), for the HKP protocol, the
KAP protocol, the ATP protocols (ATP and ATP3), and the graph-based protocol
(GRAPH).

Memory Mafia Fraud Distance Fraud

HKP 2n [6]
(

3
4

)n
[6]

(

3
4

)n 2

KAP 4n [7] Appendix A
(

3
4

+ pd

4

)n
[7]

ATP 2n+1 − 2 [3]
(

1
2

)n
(n

2
+ 1) [3] Appendix B

ATP3 14n

3
[3]

(

1
2

)n ( 5
2

) n
3 [3] (0.3999)

n
3

3

GRAPH 4n Corollary 1 Theorem 3

terms of distance fraud, the lowest adversary success probability is reached by
the ATP protocol (see Figure 7).
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Fig. 6. In this figure we show the mafia fraud probability achieved by the GRAPH
protocol, HKP protocol , and ATP3 protocol. The ATP protocol in its standard con-
figuration is not presented in this chart because it has the same mafia fraud probability
than the KAP protocol.

2 The distance fraud probability for the HKP protocol is computed using the distance
fraud probability in the KAP protocol. Note that, the KAP protocol with pd = 0
and the HKP protocol are the same.

3 The distance fraud probability for the ATP3 protocol is the accurate value and
not an upper bound like in ATP or GRAPH protocols. It was computed by brute
force, i.e. for a given instance, we computed the adversary success probability. Then,
considering all the possible instance we deduce the probability in the average case.
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Fig. 7. In this figure we show the distance fraud probability achieved by the GRAPH
protocol, HKP protocol, and the ATP protocols (ATP and ATP3). The KAP protocol
was not presented in this chart because in the best case has the same distance fraud
probability than the HKP protocol.

However, our interest is finding the best protocol given a security level in
terms of mafia fraud and distance fraud. Therefore, Figure 8 depicts for each con-
figuration (mafia and distance), the protocol needing a lower number of rounds
to reach these security values. As it can be seen in Figure 8, the graph-based
protocol is, in general, the best protocol when considering memory consump-
tion, distance, and mafia fraud at the same time. In particular, if one requires
low success probabilities for both mafia and distance fraud, we stress out the
particularly good behavior of the graph-based protocol. Note that in some cases
more than one protocol is optimal in terms of number of rounds, in this case the
best in terms of memory is chosen.

6 Conclusions and Remarks

In this paper we take a step forward in the parameters (mafia fraud, distance
fraud, and memory) for the distance-bounding protocols. In particular, we pro-
vide a way to compute an upper bound on the distance-fraud probability, which
is useful for analyzing previous protocols and designing future ones. In addition,
we propose a new distance-bounding protocol, and we show that the achieved
security level is better than all previously published papers when considering the
three parameters at the same time.

This paper do not only provide a simple, fast, and flexible protocol, but it
also introduces the graph-based protocol concept and new open questions along
with. First of all, an interesting question is to know if there are graph-based
protocols that behave still better than the one presented here. In particular,
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Fig. 8. In this figure we show the best protocol in terms of number of rounds given dif-
ferent values of mafia fraud probability and distance fraud probability. The considered
protocols are: the graph-based protocol (GRAPH), the Hancke and Kuhn’s protocol
(HKP), the Kim and Avoine’s protocol (KAP), and the Avoine and Tchamkerten’s
protocol (ATP3). The ATP protocol in its standard configuration is not considered in
this chart because we are comparing only protocols with linear memory consumption.

if the number of rounds is not a critical parameter, prover and verifier may
be allowed to increase the number of rounds while keeping a 2n-node graph.
This means that some nodes may be used twice. In such a case, the security
analysis provided in this paper must be refined. On the other hand, although
a bound on the distance fraud success probability is provided, calculating the
exact probability of success is still cumbersome.
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Appendix

A Mafia fraud success probability for KAP [7]

In the Kim and Avoine protocol the adversary success probability in the mafia
fraud depends on the predefined challenges probability (pd). Let:

– Li be the event that the adversary win the i-th round.
– Di be the event that the adversary is detected in the i-th round by the tag

for the first time.
– Ni be the event that the adversary is detected by the tag in the i-th round,

and N the event that the adversary is never detected.

Remark 3. The notation Ā represents the complement of the event A.

By the law of total probability:

P (success) =

i=n
∑

i=1

Pr(success|Di) Pr(Di) + Pr(success|N) Pr(N) . (17)

As Pr(Ni) = pd

2 , then:

Pr(N) = (1 −
pd

2
)n . (18)

The probability of being detected in the i-th round for the first time is:

Pr(Di) =

j=i−1
∏

j=1

Pr(N̄j) Pr(Ni) =

(

2 − pd

2

)i−1
(pd

2

)

. (19)

On the other hand:

Pr(success|Di) =

j=i−1
∏

j=1

Pr(Lj |N̄j)

j=n
∏

j=i

Pr(Lj|Nj) (20)

where Pr(Lj|Nj) = 1
2 and:

Pr(Lj |N̄j) =
Pr(Lj ∩ N̄j)

Pr(N̄j)
. (21)

where Pr(Lj ∩ N̄j) = Pr(Lj ∩ N̄j |pd)pd + Pr(Lj ∩ N̄j |pr)pr. But, Pr(Lj ∩
N̄j |pd) = 1

2 because the adversary must send the correct challenges cj in this
round. And, Pr(Lj ∩ N̄j|pr) = 3

4 because this is the same case as in Hancke and

Kuhn protocol. Therefore, Pr(Lj ∩ N̄j) = 1
2pd + 3

4pr = 3−pd

4 . Using this result
in Equation 21:

Pr(Lj |N̄j) =
3 − pd

4 − 2pd

. (22)



using Equation 20, and 22:

Pr(success|Di) =

(

3 − pd

4 − 2pd

)i−1(
1

2

)n−i+1

, (23)

and

Pr(success|N) =

(

3 − pd

4 − 2pd

)n

. (24)

Using the equations 17, 18, 19, 23 and 24 we obtain the adversary success
probability for the mafia fraud in the Kim and Avoine protocol:

P (success) =
pd

2

i=n
∑

i=1

(

3 − pd

4

)i−1 (
1

2

)n−i+1

+

(

3 − pd

4

)n

. (25)

B Distance Fraud Success Probability for ATP [3]

To find an upper bound of the adversary success probability in the distance fraud
for the ATP protocol, we use the result of the Theorem 3. Indeed, this protocol
has the same behavior than the graph-based protocol. The only difference be-
tween them is that the ATP protocol create a full tree as graph. Therefore, in
ATP protocol the distance fraud success probability is upper bounded by:

1
2n +

√

1
22n − 4

2n + 4p

2
,

where

p =
i=n
∏

i=1

(

1

2
+

1

22i+1

k=2n−1
∑

k=0

(Ai[0, k])2

)

.

To give a complete equation, we define Ai[0, k] for a tree. For this purpose,
we consider that the nodes in the tree are labeled between 0 and 2n − 1 using a
breadth-first algorithm, then:

Ai[0, k] =







1 if 2i − 1 ≤ k < 2i+1 − 1,

0 otherwise.

Finally we obtain:

p =

i=n
∏

i=1

(

1

2
+

1

2i+1

)

.


