Assuming Just Enough Fairness

to make Session Types Complete

for Lock-freedom

ACM/IEEE LICS 2021 36th Annual Symposium on Logic in Computer Science

Rob van Glabbeek¹, Peter Höfner², and Ross Horne³

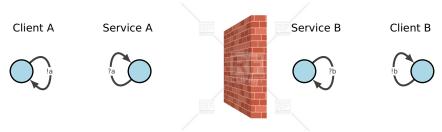
Data61, CSIRO and UNSW, Sydney, Australia
Australian National University, Canberra, Australia
Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg

29 June - 02 July, 2021

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ヘロト 人間ト 人造ト 人造ト

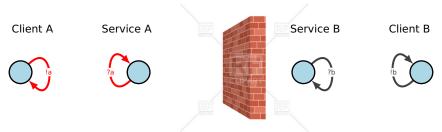
32



イロト 不得 トイヨト イヨト

э

Liveness property: Everyone wishing to trade eventually does so.



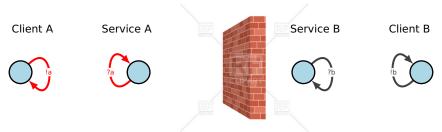
イロト 不得 トイヨト イヨト

э

Liveness property: Everyone wishing to trade eventually does so.

A path:

Client $A \rightarrow$ Service A:a



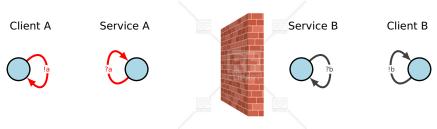
イロト 不得 トイヨト イヨト

э

Liveness property: Everyone wishing to trade eventually does so.

A path:

Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service A:a



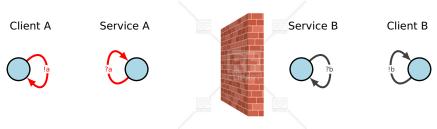
Liveness property: Everyone wishing to trade eventually does so.

A path:

Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service $A:a \dots \times$

イロト 不得 トイヨト イヨト

э.

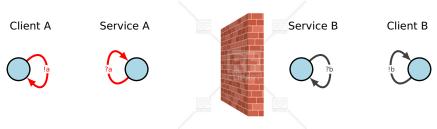


Liveness property: Everyone wishing to trade eventually does so.

A path:

Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service $A:a \dots \times$

⊭ L(P)

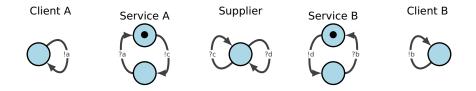


Liveness property: Everyone wishing to trade eventually does so.

A path:

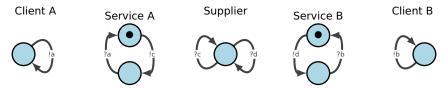
Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service A:a; Client $A \rightarrow$ Service $A:a \dots \times$

 $\not\not\models \mathcal{L}(\mathsf{P}) \qquad \qquad \models \mathcal{L}(\mathsf{J})$



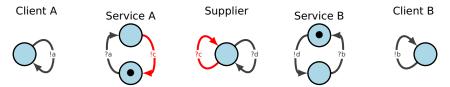
ヘロト 人間 とくほとくほとう

€ 9Q@



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Liveness property: Everyone wishing to trade eventually does so.

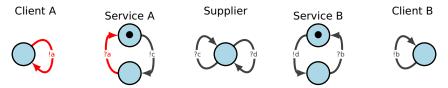


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Liveness property: Everyone wishing to trade eventually does so.

A just path:

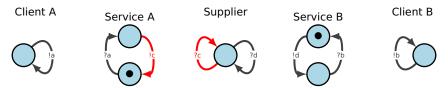
Service $A \rightarrow Supplier: c$



Liveness property: Everyone wishing to trade eventually does so.

A just path:

Service $A \rightarrow$ Supplier: c; Client $A \rightarrow$ Service A:a

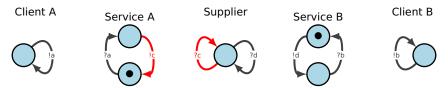


Liveness property: Everyone wishing to trade eventually does so.

A just path:

Service $A \rightarrow$ Supplier: c; Client $A \rightarrow$ Service A:a; Service $A \rightarrow$ Supplier: c ... X

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @



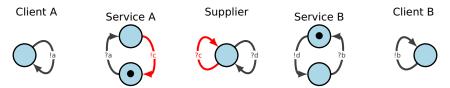
Liveness property: Everyone wishing to trade eventually does so.

A just path:

Service $A \rightarrow$ Supplier: c; Client $A \rightarrow$ Service A:a; Service $A \rightarrow$ Supplier: c ... X

⊭ £(J)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで



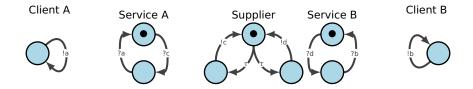
Liveness property: Everyone wishing to trade eventually does so.

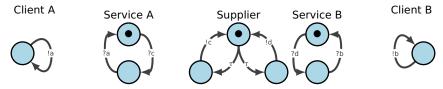
A just path:

Service $A \rightarrow$ Supplier: c; Client $A \rightarrow$ Service A:a; Service $A \rightarrow$ Supplier: c ... X

$\not\not\in \mathcal{L}(\mathsf{J}) \qquad \qquad \models \mathcal{L}(\mathsf{SC})$

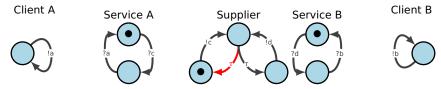
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @





▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Liveness property: Everyone wishing to trade eventually does so.

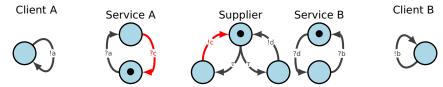


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Liveness property: Everyone wishing to trade eventually does so.

A path where components are strongly fair:

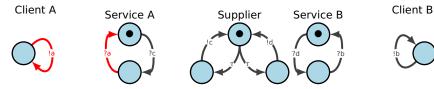
τ



Liveness property: Everyone wishing to trade eventually does so.

A path where components are strongly fair:

 τ ; Supplier \rightarrow Service A:c

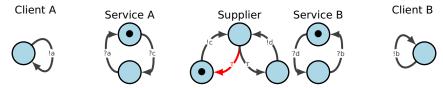


Liveness property: Everyone wishing to trade eventually does so.

A path where components are strongly fair:

 τ ; Supplier \rightarrow Service A:c; Client A \rightarrow Service A:a

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

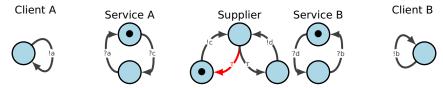


Liveness property: Everyone wishing to trade eventually does so.

A path where components are strongly fair:

 τ ; Supplier \rightarrow Service A:c; Client A \rightarrow Service A:a; $\tau \dots \times$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @



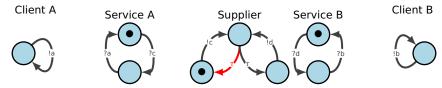
Liveness property: Everyone wishing to trade eventually does so.

A path where components are strongly fair:

 τ ; Supplier \rightarrow Service A:c; Client A \rightarrow Service A:a; $\tau \dots \times$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

⊭ L(SC)



Liveness property: Everyone wishing to trade eventually does so.

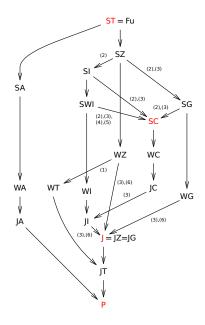
A path where components are strongly fair:

 τ ; Supplier \rightarrow Service A:c; Client A \rightarrow Service A:a; $\tau \dots \times$

$\not\not\in \mathcal{L}(\mathsf{SC}) \qquad \qquad \models \mathcal{L}(\mathsf{ST})$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Notions of Fairness for Finite-state Automata



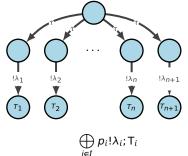
Under some mild assumptions:

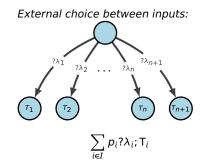
- For each synchronisation Z ⊆ I, and for each network state N, there is at most one transition t with instr(t) = Z that is enabled in N.
- (2) I is finite.
- (3) There is a function cp: I → C, where C is the set of components or locations in the network, such that comp(t) = {cp(I) | I ∈ instr(t)} for all transitions t.
- (4) If an instruction *I* is enabled in a state N, it is also requested.
- (5) If instruction I is requested in network state N and u is a transition from N to N' such that cp(I) ∉ comp(u), then I is still requested in N'.
- (6) If t → u with source(t) = source(u), then ∃v ∈ Tr with source(v) = target(u) and instr(v) = instr(t).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Restricting to Session Calculi

Internal choice between outputs:

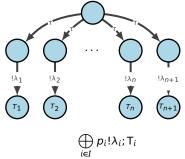


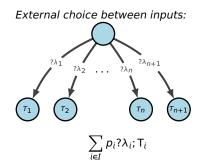


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Restricting to Session Calculi

Internal choice between outputs:



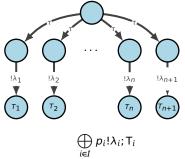


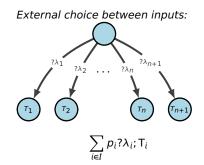
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Plus guarded recursion.

Restricting to Session Calculi

Internal choice between outputs:



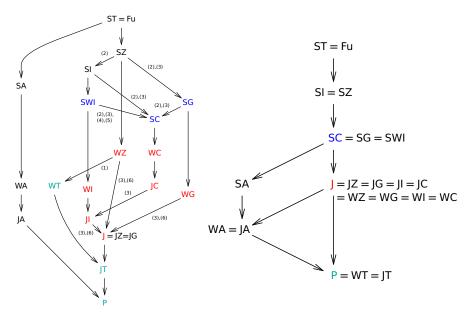


Plus guarded recursion.

 $ClientA[[\mu X.ServiceA!a; X]]$

- ∥ ServiceA [[µX.Supplier?c; ClientA?a; X]]
- Supplier [[µX.(ServiceA!c; X ⊕ ServiceB!d; X)]]
- ServiceB [[µX.Supplier?d; ClientB?b; X]]
- ∥ ClientB[[µX.ServiceB!b;X]]

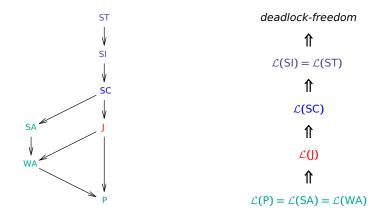
Notions of Fairness for a Synchronous Session Calculus



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

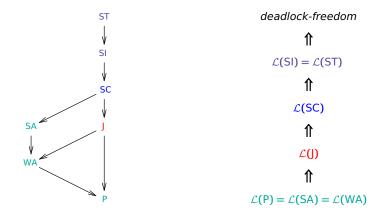
Lock-freedom for a Synchronous Session Calculus

Lock-freedom ($\mathcal{L}(\mathcal{F})$): Along any \mathcal{F} -fair path, if a component has not successfully terminated, then it must eventually act.



Lock-freedom for a Synchronous Session Calculus

Lock-freedom ($\mathcal{L}(\mathcal{F})$): Along any \mathcal{F} -fair path, if a component has not successfully terminated, then it must eventually act.

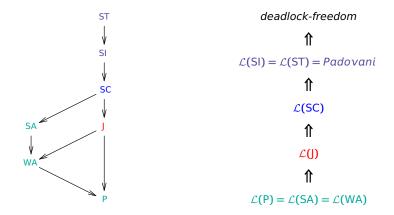


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Contravariance: more satisfaction if you consider less traces.

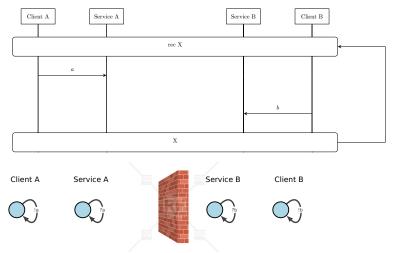
Lock-freedom for a Synchronous Session Calculus

Lock-freedom ($\mathcal{L}(\mathcal{F})$): Along any \mathcal{F} -fair path, if a component has not successfully terminated, then it must eventually act.

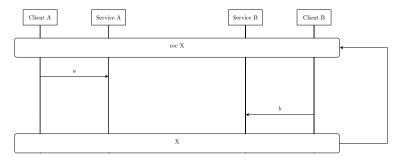


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

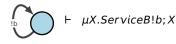
Contravariance: more satisfaction if you consider less traces.



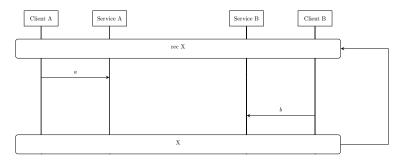
◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @



Projection of Client B:

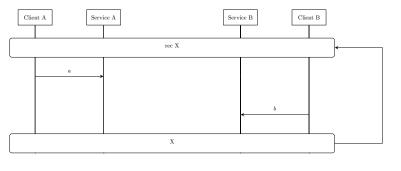


▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで



Projection of Client B: $\mu X.ServiceB!b; X$ Guarded!

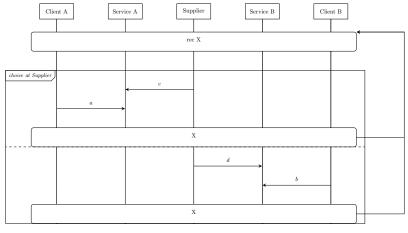
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで



Projection of Client B: $\mu X.ServiceB!b; X$ Guarded!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

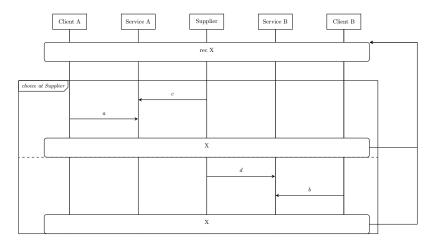
So $\mathcal{L}(P)$ is unsound with respect to typeability.



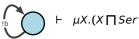
Client A

Client B

Global session types and guarded types



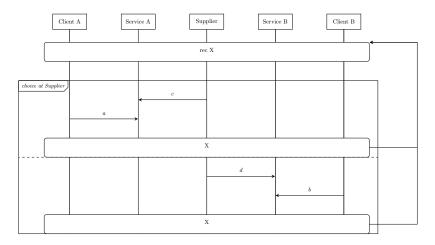
Projection of Client B:



 $\vdash \mu X.(X \sqcap ServiceB!b; X)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直 - のへで

Global session types and guarded types

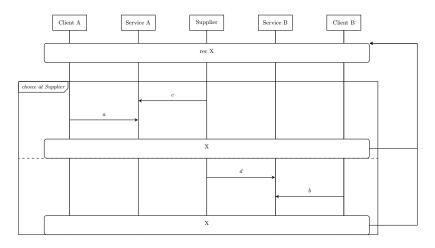


Projection of Client B:

 $\vdash \mu X.(X \sqcap ServiceB!b; X)$ Not Guarded!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Global session types and guarded types



Projection of Client B:

 $\mu X.(X \prod ServiceB!b; X)$ Not Guarded!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

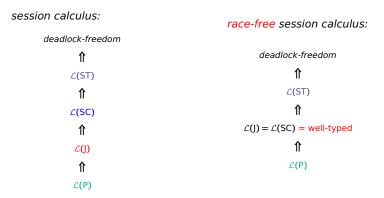
So $\mathcal{L}(ST)$ is incomplete with respect to typeability.

Soundness and Completeness for Race-free Networks

session calculus:	race-free session calculus:
deadlock-freedom	
ſ	deadlock-freedom
L(ST)	ſ
ſ	L(ST)
L(SC)	ſ
ſ	$\mathcal{L}(J) = \mathcal{L}(SC)$
۲ ()	ſ
ſ	<i>L</i> (Ρ)
<i>L</i> (P)	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Soundness and Completeness for Race-free Networks



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Theorem (soundness) \mathbb{N} well-typed and race-free $\Rightarrow \mathbb{N} \models \mathcal{L}(I)$.

Theorem (completeness)

 $\mathbb{N} \models \mathcal{L}(J) \quad \Rightarrow \quad \mathbb{N} \text{ well-typed.}$

Theorem (completeness)

 $\mathbb{N} \models \mathcal{L}(J) \quad \Rightarrow \quad \mathbb{N} \text{ well-typed.}$

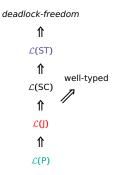
Can synthesise a global session type whenever $\mathcal{L}(J)$ satisfied.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへぐ

Theorem (completeness)

 $\mathbb{N} \models \mathcal{L}(J) \quad \Rightarrow \quad \mathbb{N} \text{ well-typed.}$

Can synthesise a global session type whenever $\mathcal{L}(J)$ satisfied.

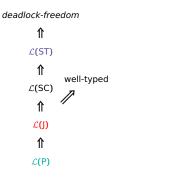


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Theorem (completeness)

 $\mathbb{N} \models \mathcal{L}(J) \quad \Rightarrow \quad \mathbb{N} \text{ well-typed.}$

Can synthesise a global session type whenever $\mathcal{L}(J)$ satisfied.



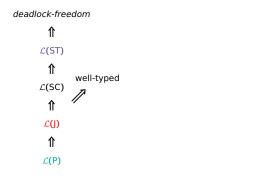
Can we strengthen such that " $\mathbb{N} \models \mathcal{L}(SC) \Rightarrow \mathbb{N}$ well-typed" holds?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Theorem (completeness)

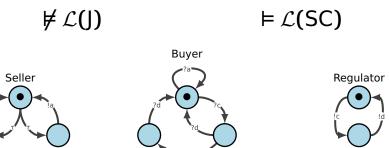
 $\mathbb{N} \models \mathcal{L}(J) \quad \Rightarrow \quad \mathbb{N} \text{ well-typed.}$

Can synthesise a global session type whenever $\mathcal{L}(J)$ satisfied.

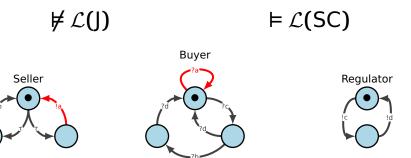


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Can we strengthen such that " $\mathbb{N} \models \mathcal{L}(SC) \Rightarrow \mathbb{N}$ well-typed" holds? X



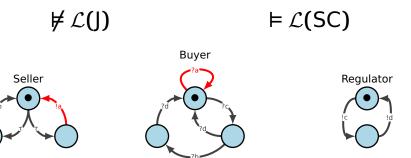
 $\not \models \mathcal{L}(\mathsf{J}) \qquad \qquad \models \mathcal{L}(\mathsf{SC})$ Seller $\overbrace{}^{7a}$ $\overbrace{}^{7a}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

 $\not \models \mathcal{L}(\mathsf{J}) \qquad \qquad \models \mathcal{L}(\mathsf{SC})$ Seller $\overbrace{}^{7a}$ $\overbrace{}^{7a}$

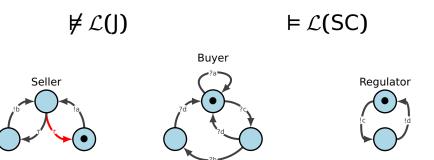
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(で)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

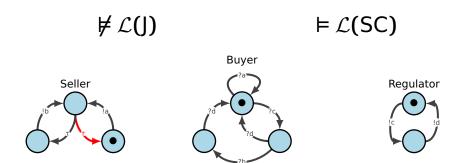
 $\not \models \mathcal{L}(\mathsf{J}) \qquad \qquad \models \mathcal{L}(\mathsf{SC})$ Seller $\overbrace{}^{7a}$ $\overbrace{}^{7a}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(で)



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

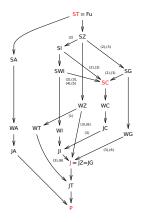
The network is not well typed, in line with $\mathcal{L}(J)$.



The network is not well typed, in line with $\mathcal{L}(J)$.

Explanation for experts: Each global type must have a subexpression $Seller \rightarrow Buyer:a; \mathcal{G}_1 \boxplus Seller \rightarrow Buyer:b; \mathcal{G}_2$, and hence must have a reachable state \mathbb{M} in which both transitions $\mathbb{M} \xrightarrow{Seller \rightarrow Buyer:a}$ and $\mathbb{M} \xrightarrow{Seller \rightarrow Buyer:b}$ are enabled. Yet there is no such reachable state.

Conclusion

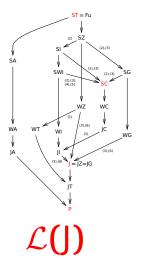


We considered a parametrised notion of lock-freedom and instantiated it for all established notions of fairness.

And the notion satisfying the most robust soundness and completeness properties with respect to global session types is:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Conclusion



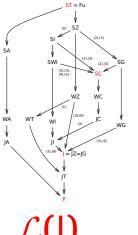
We considered a parametrised notion of lock-freedom and instantiated it for all established notions of fairness.

And the notion satisfying the most robust soundness and completeness properties with respect to global session types is:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Just Lock-Freedom

Conclusion



We considered a parametrised notion of lock-freedom and instantiated it for all established notions of fairness.

And the notion satisfying the most robust soundness and completeness properties with respect to global session types is:

L(J) Just Lock-Freedom

This is the first completeness result of it's kind for session calculi.

Session calculi look simple but proofs are non-trival and full of surprises...