
Session Subtyping and Multiparty Compatibility1

using Circular Sequents2

Ross Horne3

Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg4

ross.horne@uni.lu5

Abstract6

We present a structural proof theory for multi-party sessions, exploiting the expressive power of7

non-commutative logic which can capture explicitly the message sequence order in sessions. The8

approach in this work uses a more flexible form of subtyping than standard, for example, allowing a9

single thread to be substituted by multiple parallel threads which fulfil the role of the single thread.10

The resulting subtype system has the advantage that it can be used to capture compatibility in the11

multiparty setting (addressing limitations of pairwise duality). We establish standard results: that12

the type system is algorithmic, that multiparty compatible processes which are race free are also13

deadlock free, and that subtyping is sound with respect to the substitution principle. Interestingly,14

each of these results can be established using cut elimination. We remark that global types are15

optional in this approach to typing sessions; indeed we show that this theory can be presented16

independently of the concept of global session types, or even named participants.17

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation18

→ Proof theory; Theory of computation → Linear logic; Theory of computation → Process calculi19

Keywords and phrases session types, subtyping, compatibility, linear logic, deadlock freedom20

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.621

Acknowledgements This paper benefits hugely from discussions with Mariangiola Dezani-Ciancaglini22

and Paola Giannini who suggested restricting to a regular calculus.23

1 Introduction24

Session types are a class of type systems for modelling protocols that prescribe, not only the25

types of messages exchanged, but also the sequence in which they are communicated. The26

first session type systems were constrained to two parties. For such binary sessions, given a27

session type prescribing the behaviour of each of the participants, it is possible to determine28

whether the two behaviours are compatible, in the sense that they can interact together to29

successfully realise a protocol.30

Here, in the introduction, we first make it clear there are obvious, underexploited,31

connections between compatibility in the binary setting and provability in non-commutative32

extensions of linear logic. The body of this work shows that these observations extend33

elegantly to the multiparty setting [32, 33], where multiparty compatibility is the problem of34

whether two or more participants realise a protocol when they communicate together.35

On the binary setting and non-commutative logic. In the binary setting, compat-36

ibility holds when the two parties are dual to each other [30]. For example, !λ1;(?λ2 ∧ ?λ3)37

is dual to ?λ1;(!λ2 ∨ !λ3). The former types a process that is ready to output a message of38

type λ1, and then receives either a message of type λ2 or λ3. The latter types a process that39

is ready to receive a message of type λ1, and then makes a choice between two branches,40

sending a message of type λ2 or λ3. By building subtyping into the system [24, 23, 18],41

duality becomes a more flexible concept. For example, two processes of respective types42

!λ1;(?λ2 ∧ ?λ3) and ?λ1;!λ2 are also compatible. Notice a process of the type !λ1;(?λ2 ∧ ?λ3)43

offers two possible inputs, so is more than capable of responding correctly to ?λ1;!λ2, which44

© Ross Horne;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

 https://orcid.org/0000-0003-0162-1901
mailto:ross.horne@uni.lu
https://doi.org/10.4230/LIPIcs.CONCUR.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Session Subtyping and Multiparty Compatibility

always chooses to send λ2 as its second action.45

For binary sessions, compatibility is proven by showing that the dual of a type is a subtype46

of another type, for example establishing !λ1;(?λ2 ∧ ?λ3) ≤ !λ1;?λ2. In the original paper on47

session types [30], it was explicit that internal and external choice were inspired by the additive48

operators in linear logic [27, 26, 1]. For example, interpreting ∧ as additive conjunction in49

linear logic, subtype relation ?λ2 ∧ ?λ3 ≤ ?λ2 is a provable implication in linear logic. While50

pure linear logic has no concept of sequentiality (all operators are commutative), linear logic51

can be extended with non-commutative operators explicitly capturing sequentiality, allowing52

the above subtype judgement involving prefixing to be proven. In this work, we restrict53

ourselves to a fragment of non-commutative logic with action prefixing only, allowing us54

to retain a sequent calculus presentation. Full sequential composition can be achieved [34].55

However, for full sequential composition, it is necessary [50] to employ the calculus of56

structures [28]. The compromise adopted in this work, of restricting non-commutative logic57

to prefixing, allows us to formulate our subtype system using the sequent calculus, whilst58

still working within a fragment of a conservative extension of linear logic.59

Contribution to the multiparty setting. Using non-commutative extensions of linear60

logic to model multiparty session types provides additional expressive power. In particular,61

the subtype system obtained allows more session types to be compared than possible using62

established subtype systems [25]. Indeed the subtype system obtained is sufficiently rich, so63

that subtyping can be used to evaluate compatibility in the multi-party setting. The notion64

of multiparty compatibility enforced by this methodology allows session types to be used65

to guarantee that multiparty sessions are deadlock free without the need for a global type66

choreographing all processes. An advantage of avoiding global types is that we can check67

compatibility for protocols for which no global type exists [48].68

Problems with pairwise duality resolved. Early work on multi-party session types [8,69

21] employed a notion of compatibility based on the notion of duality for binary types applied70

pairwise. In that early work, we take each pair of participants and restrict them only to the71

inputs and outputs between the participants selected, and then check whether each pair of72

projections are dual. Pair-wise duality fails to guarantee deadlock freedom, since process73

?λ1;!λ2‖?λ2;!λ3‖?λ3;!λ1 deadlocks, despite participants being pair-wise dual (e.g., restricting74

the first two participants to their mutual communications gives types !λ2 and ?λ2, which are75

dual). The process above consists of three participants in parallel each waiting to receive a76

message, from another process before producing an output. The process is clearly deadlocked77

since all inputs await a message that never arrives.78

The current work, and related work [20, 15, 48, 39, 19], addresses the above limitation79

of pair-wise duality by proposing more sophisticated notions of multi-party compatibility.80

The work on which this builds [15] (which concerned a finite fragment of Scribble [31]),81

handles multiparty compatibility as a special case of subtyping. In this work, as required,82

our example processes in the previous paragraph would not be multi-party compatible. The83

rules of the system in this paper are determined by logical principles (cut-elimination).84

Related paradigms. This paper does not follow the Curry-Howard inspired proofs-85

as-processes school; instead, it follows a processes-as-formulae [10, 36] approach closer to86

intersection types [44] and algorithmic subtyping [47]. For multiparty sessions, the processes-87

as-formulae [15] and proofs-as-processes paradigms [12, 11] emerged simultaneously. Papers88

following the Curry-Howard approach typically aim to design new (higher-order) session89

calculi where the process terms are proofs in an established logic. In contrast, in the processes-90

as-formulae approach pursued here, we typically harness the power of structural proof theory91

to design new logics that can directly embed established session calculi [17], while respecting92

R. Horne 6:3

their semantics. In this work, linear implication in the logical system introduced provides us93

with a notion of session subtyping preserving deadlock freedom.94

Summary. In Section 2, we explain how the notion of multiparty subtyping is more95

flexible than established notions of subtyping for multiparty sessions, illustrated using an96

example where a participant is substituted by two participants. Section 3 formally develops97

a theory of session subtyping and multiparty compatibility in a coinductive sequent calculus.98

That section concludes with an example where we guarantee the deadlock freedom of a99

session for which no global type exists.100

2 Motivating Example: A Generalised Substitution Principle101

The problem of defining a subtype system for multiparty sessions is in a sense solved in the102

synchronous setting [14, 25]. Soundness in that work is defined according to a substitution103

principle [41], informally stated in related work [25] as: “If T R T′, then a process of type T′104

engaged in a well-typed session may be safely replaced with a process of type T.” Here R is105

a candidate subtype relation and “safely” is formalised in terms of deadlock freedom.106

In the above related work, the substitution principle allows one (single threaded) parti-107

cipant to replace another participant. In the current paper, we take a broader interpretation108

of the substitution principle, permitting more parallelism to be introduced. We allow parti-109

cipants in a session to be replaced by any number of participants, e.g., a single thread of110

type T can be replaced by two parallel participants of type T1 and T2, where T1 ⊗ T2 ≤ T.111

This allows parallel components to be introduced with additional communications, while112

preserving the ability of the multiple components to fulfil the role of the original components.113

An example is provided next.114

An authorisation protocol. We provide an example that is out of scope of the substi-115

tution principle in related work mentioned above, but within the scope of the substitution116

principal in the current paper. In the example that follows, we consider an application where117

a Trusted App is replaced by an Untrusted App and an OAuth Server. This demands a rich118

multi-party subtype system accounting for parallelism and interactions.119

Consider the protocol realised by the three participants in Fig. 1, which are modelled as120

threads in a typical session calculus. In this authorisation protocol, the Trusted App asks the121

Owner of a resource for permission before it accesses the Resource.122

Owner: ?login_page(app_ID, scope); (!deny⊕ !authorise(name, password))

Resource: recX.(?release + ?request(token);(!revoke⊕ !response(data);X))

Trusted App: !login_page(app_ID, scope);
?deny;!release + ?authorise(name, password);

recY .!release⊕ !request(token);
?revoke + ?response(data);Y

Figure 1 The local behaviours of three participants in an authorisation protocol.

Owner: This could be you — the human user, who owns the resource. You get redirected123

to a login page containing the app_ID for the Trusted App and a scope indicating the124

resources requested (e.g., personal contact details). If you chose to approve authorisation,125

you grant access to the resource by providing your name and password. You do however126

CONCUR 2020

6:4 Session Subtyping and Multiparty Compatibility

have the ability to chose not to approve, choosing the branch !deny in the internal choice,127

notated ⊕ in the process Owner in Fig. 1.128

Resource: A token is used by the Trusted App to prove it has the right to access the129

resource. The Resource can be accessed many times by the Trusted App until the token130

expires or is revoked. The expiry of a token is modelled here by the Resource making an131

internal choice, deciding whether to provide data or revoke.132

Trusted App: Since the App is trusted it presents directly the login page to the user. If133

the Resource Owner approves, the same App manufactures a token which is used to access134

the resource. Notice external choice, notated +, is used for inputs.135

A problem with the above protocol is that user credentials are provided directly to the136

Trusted App. Furthermore, the Trusted App does not only know the credentials of the owner137

of the resource, it must also know how to manufacture tokens to access the resource; hence,138

in principle, has the right to freely access the resource without asking permission. Thus,139

there is no security offered to the Resource Owner or Resource if the app is compromised.140

Substituting one participant with two participants. We can address the above141

limitation by making use of the OAuth 2.0 protocol [29] where handling of credentials and142

generation of tokens is handled by an OAuth Server that the Owner trusts more than the143

app. We can refine the above protocol by substituting Trusted App with two processes in144

parallel: an Untrusted App and OAuth Server, defined in Fig. 2.145

Untrusted App:
!initiate(add_ID, scope);
?close + ?authorisation_code(code);

!exchange(app_ID, secret, code);
?close + ?access_token(token);

recY .!request(token);(?revoke + ?response(data);Y)
OAuth Server:
?initiate(app_ID, scope);
!login_page(app_ID, scope);
(?deny;!close;!release) + ?authorise(name, password);

(!close;!release)⊕ !authorisation_code(code);
?exchange(app_ID, secret, code);
(!close;!release)⊕ !access_token(token)

Figure 2 Two participants that can safely replace the Trusted App in Fig. 1

The OAuth protocol enables the Untrusted App to access the Resource, for which per-146

mission is required from the Owner, in such a way that the Owner never discloses their147

credentials to the Untrusted App. The Owner permits the OAuth Server to grant an access148

token to the Untrusted App that can be used to access the Resource. We briefly describe149

informally each process.150

OAuth Server: As a mediator between the Untrusted App and Resource Owner, the151

OAuth Server receives an initiate request from the Untrusted App, resulting in the Resource152

Owner being redirected to a login page. Notice the OAuth Server reacts to the decision of153

the Resource Owner to either provide credentials or end the session, indicated by an external154

choice. Notice, after that point, that the server makes two internal choices: the first issuing155

a code to the Untrusted App only if the correct credentials were provided by the Owner ; the156

R. Horne 6:5

second issuing an access token only if the Untrusted App provides its correct credentials (and157

the correct code). If all is correct, a token is eventually issued to the Untrusted App.158

Untrusted App: The Untrusted App initiates the protocol. It then reacts, indicated by159

external choices, to whether the Resource Owner and OAuth Server grant access. If an access160

token is granted, the token can be used repeatedly to access the resource requested.161

What the subtype system guarantees here. The Trusted App can be replaced by162

Untrusted App ‖OAuth Server while preserving deadlock freedom of the protocol. We know163

this because the type of App ‖OAuth is a subtype of the type of Trusted App, by using the164

subtype system introduce in the next section. Furthermore, for protocols of the complexity of165

this OAuth example, it is not immediately obvious whether all roles are correctly implemented166

such that deadlock freedom is guaranteed. We can also use the subtype system introduced167

in the next section to check whether participants together are multiparty compatible.168

3 A Proof System for Subtyping and Multiparty Compatibility169

In this section, we introduce session types and a proof system for expressing session types170

called Session, which defines our subtype system for multiparty sessions. Later in this section,171

having introduced Session, we define multiparty compatibility and race freedom, and use172

these properties to establish our main deadlock freedom result.173

Session types are defined according to the following syntax. Note we could have proposi-174

tional data types (nat, bool, etc.), but accommodating such data types is a perpendicular175

issue to this work, hence we simply label messages (λ1, λ2, etc.).176

I Definition 1 (session types). Session types for threads are defined by:177

L ::=
∧
i∈I?λi;Li |

∨
i∈I !λi;Li | µt.L | t | OK178

Session types for networks are defined by:179

N ::= L | N ` N | N ⊗ N180

We refer to both of the above simply as session types, which are ranged over by T, U, V. We181

restrict ourselves to guarded recursion, avoiding the type µt.t. Index sets I are finite.182

The constant OK is used to type networks that, on all paths, either successfully terminate or183

progress forever. Intersection types (abbreviated as ∧ when there are two branches) are used184

to type external choices between inputs; while union types (abbreviated as ∨) type internal185

choices between outputs.186

Actions π are either of the form !λ or ?λ. Whenever there is only one branch in a187

union/intersection type, we simply write the action prefixed type π;T, which is used to type188

a process that performs an input or output and then behaves as T. As standard, we allow OK189

to be omitted, by abbreviating π;OK as π.190

Notably, the syntax features two commutative multiplicative operators ` and ⊗. When191

typing multiparty sessions we employ only T ⊗ U, representing two parallel sessions T and U192

that may communicate and interleave actions. The operator T ` U is introduced to complete193

the theory, as the dual to parallel composition, and is used in subtyping proofs. Future work194

may also use ` as an additional modelling device that prevents one session from interfering195

with another session. As a consequence of including the pair of multiplicatives, every session196

type, has a dual type, its co-type, given by the function below.197

I Definition 2 (co-type). Co-types are defined by the following mapping over types, prefixed198

CONCUR 2020

6:6 Session Subtyping and Multiparty Compatibility

types and actions:199 ∧
i∈I

Ti =
∨
i∈I

Ti
∨
i∈I

Ti =
∧
i∈I

Ti π;T = π;T !λ = ?λ ?λ = !λ200

T ⊗ U = T ` U T ` U = T ⊗ U µt.T = µt.T t = t OK = OK201
202

In addition to the duality between the multiplicatives, described above, the de Morgan duality203

between ∨ and ∧ is standard for session types. The co-type of a prefix action interchanges204

send and receive, and dualises the continuation. The unit OK is self-dual. Since we have only205

guarded recursion, we treat fixed points equi-recursively, hence the fixed point operator is206

self-dual. Intuitively, equi-recursive types are treated equivalently to their infinite unfoldings.207

Note co-types and the use of two multiplicatives is optional in this work. Having co-types208

reduces the number of rules in the next section by avoiding two sided sequents.209

3.1 Deriving subtype judgements using the rules of Session210

The rules of Session are defined in Fig. 3, using, in proof theoretic terms, a circular (or211

cyclic) sequent calculus [9, 4] — which is, in type theoretical terms, a coinductive algorithmic212

subtype system [47]. We employ an explicit algorithmic presentation of such a circular system213

where we have an axiom [Leaf] which is enabled whenever there is a loop in the proof214

returning to a sequent visited earlier in the proof. This algorithmic approach to coinduction215

is standard in type theory [2], being sound and complete for infinite proofs such as these due216

to the restriction to guarded recursion.217

We explain the notation [Θ] Γ `. The sequent Γ is a (comma separated) multiset of218

types, hence types in a sequent can commute (exchange) inside a sequent, but cannot be219

duplicated (contraction) or removed (weakening). A set of sequents Θ, where each sequent220

in the set is separated using][, is employed to define an algorithmic coinductive system, by221

remembering sequents that may be revisited. We omit Θ if it is empty.222

I Remark 3. Note that proof systems typically formalise provability of formulae, written ` T.223

For a tight match with session type conventions (without breaking the logical convention224

that ∧ is conjunctive), we instead formulate provability of duals of formulae. To emphasise225

that we formulate probability of duals we write sequents as T `, which is equivalent to ` T.226

Subtypes. Using co-types (Def. 2) and the rules in Fig. 3, subtyping can be defined as227

follows. Note, a type is closed when no type variables appear free.228

I Definition 4 (subtyping). We say a closed type T is a subtype of another closed type U,229

written T ≤ U, whenever T , U ` holds in Session.230

Note that in linear logic a linear implication T (U holds whenever T ⊗ U is provable.231

Translating to provability of duals, proving T ⊗ U is equivalent to establishing T , U `.232

Indeed subtyping as defined above is a conservative extension of linear implication in linear233

logic (with the mix rule). In what follows, we confirm that standard subtype judgements234

are covered by the above definition. In addition, some additional subtype judgements hold,235

which are particular to the multiparty setting.236

We briefly highlight that most rules are standard rules from linear logic and coinductive237

proof systems. Examples appear in the next section. Rules are well-defined over closed types.238

Rules from MALL. Most rules of Session are rules of Multiplicative Additive Linear239

Logic (MALL), dualised in order to formalise provability of duals. The rule [Times] breaks240

down types into their parallel components. The rule [Par] is required for subtyping in the241

presence of parallelism. The axiom [OK] indicates that a protocol with no more actions has242

R. Horne 6:7

[OK]

[Θ] OK , OK , . . . OK `
[Leaf]

[Θ][Γ] Γ `

[Fix-µ]
[Θ][µt.T , Γ] T

{
µt.T/t

}
, Γ `

[Θ]µt.T , Γ `

[Meet]
[Θ] ?λj ;Tj , Γ ` for some j ∈ I

[Θ]
∧
i∈I

?λj ;Ti , Γ `

[Join]
[Θ] !λj ;Tj , Γ ` for all j ∈ I

[Θ]
∨
i∈I

!λj ;Ti , Γ `

[Prefix]
[Θ] T , U , Γ `

[Θ] !λ;T , ?λ;U , Γ `

[Times]
[Θ] T , U , Γ `
[Θ] T ⊗ U , Γ `

[Par]
[Θ] T , Γ1 ` [Θ] U , Γ2 `

[Θ] T ` U , Γ1 , Γ2 `

Figure 3 A presentation of the algorithmic coinductive proof system Session. Note, to align with
session type conventions, the system establishes provability of duals.

successfully terminated (this rule is valid for MALL with mix). Rules [Join] and [Meet] are243

(dualised) standard rules for the additives of linear logic.244

Rules for equi-recursion. Fixed points can be unfolded using the rule [Fix-µ]. Axiom245

[Leaf] is applied when we reach a previously visited sequent, completing a loop.246

Rule [Prefix]. The exception to the above established rules for equi-recursion and MALL247

is the [Prefix] rule. This is used to model an interaction between two processes where one248

sends and the other receives. The rule enforces a causal order on interactions.249

3.2 On notable admissible rules and algorithmic subtyping250

For a proof system, we say a rule is admissible, whenever anything provable in the system251

with the rule present is provable in the same system but with the rule removed. We highlight252

the following three notable rules that are admissible in Session.253

[Cut]
[Θ] Γ1 , T ` [Θ] T , Γ2 `

[Θ] Γ1 , Γ2 `

[Intr]
I ⊆ J [Θ] Tk , Uk , Γ ` for all k ∈ I

[Θ]
∨
i∈I

!λi;Ti ,
∧
j∈J

?λj ;Uj , Γ `

[Mix]
[Θ] Γ1 ` [Θ] Γ2 `

[Θ] Γ1 , Γ2 `
254

Cut elimination and algorithmic subtyping. The admissibility of [Cut], called255

cut elimination, is the corner stone of proof theory, since many results in logic (e.g., the256

consistency of classical logic) can be proven as corollaries of cut elimination. Since cut257

elimination justifies that rules are consistently defined, we present cut elimination in Session258

as a theorem.259

I Theorem 5 (cut elimination). The [Cut] rule is admissible in Session.260

To see that the above holds, observe that, trivially, the unfolding of a proof in Session to261

infinite proofs (over infinitely unfolded terms) is sound, and, due to regularity, complete262

(i.e., an infinite proof will always eventually loop on every branch, allowing [Leaf] to be263

applied). Thus it is sufficient to show that cut elimination holds for the finite proof system.264

This follows by observing that the standard normalisation steps for MALL, plus cases for265

CONCUR 2020

6:8 Session Subtyping and Multiparty Compatibility

[Prefix], can be applied to unfold a cut free proof to an arbitrary depth. We show only the266

principal case for [Prefix], which is given by the following proof normalisation step.267

Γ1 , U , T `
Γ1 , ?λ;U , !λ;T `

T , V , Γ2 `

?λ;T , !λ;V , Γ2 `
[Cut]

Γ1 , ?λ;U , !λ;V , Γ2 `

;

Γ1 , U , T ` T , V , Γ2 `
[Cut]

Γ1 , U , V , Γ2 `

Γ1 , ?λ;U , !λ;V , Γ2 `

268

An immediate consequence of cut elimination for session types is that subtyping relation269

≤ is transitive. It is also reflexive by a simple induction on the structure of types.270

I Corollary 6. If T ≤ U and U ≤ V, then T ≤ V. Also, we have T ≤ T.271

From the perspective of type theory this is a standard result that must hold in order to272

recommend an algorithmic subtype system. An algorithmic subtype system is expressed273

without a cut (or transitivity) rule, since cut violates what is known as the sub-formula274

property. The sub-formula property states that every formula appearing in the premise is a275

sub-formula of one of formulae appearing in the conclusion (up to unfolding of equi-recursion,276

which is allowed here due to regularity). The sub-formula property guarantees that proof277

search in Session terminates.278

Admissibility of [Intr]. Established algorithmic subtype systems usually employ a279

rule of the form [Intr]. That rule can be simulated by using [Join], [Meet] and [Prefix],280

without loss of expressive power. For example, the following sequent, provable using the rule281

[Intr] is also provable as follows.282

OK , OK ` [OK]

?λ1 , !λ1 `
[Prefix]

(?λ1 ∧ ?λ2) , !λ1 `
[Meet]

OK , OK ` [OK]

?λ2 , !λ2 `
[Prefix]

(?λ1 ∧ ?λ2) , !λ2 `
[Meet]

(?λ1 ∧ ?λ2) , (!λ1 ∨ !λ2) `
[Join]

283

However, we cannot simulate all proofs involving the three rules discussed above, if, instead,284

only [Intr] is employed. The following cannot be proven using only [Intr].285

OK , OK , OK ` [OK]

!λ3 , OK , ?λ3 `
[Prefix]

!λ3 , OK , ?λ2 ∧ ?λ3 `
[Meet]

!λ1;!λ3 , ?λ1 , ?λ2 ∧ ?λ3 `
[Prefix]

!λ1;!λ3 , ?λ1 ∧ ?λ4 , ?λ2 ∧ ?λ3 `
[Meet]

OK , OK , OK ` [OK]

!λ4 , ?λ4 , OK ` [Prefix]

!λ4 , ?λ1 ∧ ?λ4 , OK ` [Meet]

!λ2;!λ4 , ?λ1 ∧ ?λ4 , ?λ2 `
[Prefix]

!λ2;!λ4 , ?λ1 ∧ ?λ4 , ?λ2 ∧ ?λ3 `
[Meet]

!λ1;!λ3 ∨ !λ2;!λ4 , ?λ1 ∧ ?λ4 , ?λ2 ∧ ?λ3 `
[Join]

286

The following is an example of a coinductive proof that, similarly to the above proof,287

cannot be established using only [Intr]. In the following proof, assume T = µt.(!λ1;t ∨ !λ2;t),288

U = µu.(?λ1;u), and V = µv.(?λ2;v). We also abbreviate sequents Γ = T , U , V and289

Γ′ = !λ1;T , U , V and Γ′′ = !λ2;T , U , V, but notice only Γ is used rule [Leaf].290

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] !λ1;T , ?λ1;U , V `
[Prefix]

[Γ] !λ1;T , U , V `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] !λ2;T , U , ?λ2;V `
[Prefix]

[Γ] !λ2;T , U , V `
[Fix-µ]

[Γ] !λ1;T ∨ !λ2;T , U , V `
[Join]

T , U , V ` [Fix-µ]

T , U ⊗ V ` [Times]
291

R. Horne 6:9

Notice, the above proof establishes µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t) — a subtype292

judgement decomposing a single threaded participant into two concurrent threads.293

Admissibility of [Mix]. The fact that the [Mix] rule is admissible allows scenarios294

where separate parallel communications can occur. For example, the subtype judgement295

!λ1 ⊗ ?λ1 ⊗ !λ2 ⊗ ?λ2 ≤ OK (which also holds in pure linear logic with mix only), can be296

established by the following proof in Session without using mix.297

OK , OK , OK , OK , OK ` [OK]

!λ1 , ?λ1 , !λ2 , ?λ2 , OK ` [Prefix] (twice)

!λ1 ⊗ ?λ1 ⊗ !λ2 ⊗ ?λ2 , OK ` [Times] (twice)
298

The admissibility of [Mix] is a corollary of Theorem 5.299

3.3 Typing multiparty compatible networks, by using subtyping300

The syntax of processes is defined by the following grammar.301

I Definition 7 (Processes). Processes for threads are defined by:302

P ::= Σi∈I?λi;Pi | ⊕i∈I !λi;Pi | µX.P | X | 1303

Processes for networks are defined by grammar: N ::= P | N ‖ N.304

We simply refer to both of the above as processes, ranged over by P , Q, R. . . .305

Internal choice ⊕ defines a process ready to perform any of the given outputs, and external306

choice
∑

indicates a process ready to perform some input. We typically abbreviate !λ;P307

and !λ1;P1 ⊕ !λ2;P2 for the unary and binary versions of the above external choice. Similarly,308

?λ;P and ?λ1;P1 + ?λ2;P2 can be used for internal choices.309

∆ ` Pi : Ti (i ∈ I)
[t-ExtCh]

∆ ` Σi∈I?λi;Pi :
∧
i∈I?λi;Ti

∆ ` Pi : Ti (i ∈ I)
[t-IntCh]

∆ ` ⊕i∈I !λi;Pi :
∨
i∈I !λi;Ti

∆,X : t ` X : t [t-Var]
∆,X : t ` P : T

[t-Rec]
∆ ` µX.P : µt.T

∆ ` P : T ∆ ` Q : U
[t-Par]

∆ ` P ‖Q : T ⊗ U
∆ ` 1 : OK [t-1]

∆ ` P : T T ≤ U
[subsumption]

∆ ` P : U

Figure 4 Typing rules for processes, making use of the subtype relation ≤ in Def. 4.

Multiparty compatible processes are those with type OK. Note, for any interesting example,310

this will involve applying subsumption.311

I Definition 8 (compatibility). Process P is multiparty compatible whenever ` P : OK, ac-312

cording to the rules of Fig. 4, where environment ∆ associates process variables to type313

variables.314

Any application of the [subsumption] rule can always be delayed to the final step. I.e.,315

we calculate the minimal type for the whole network, then apply [subsumption].316

I Theorem 9 (algorithmic typing). If ` P : U then we can construct a T such that T ≤ U317

holds and ` P : T holds without using the [subsumption] rule.318

CONCUR 2020

6:10 Session Subtyping and Multiparty Compatibility

The above result is another consequence of cut elimination.319

An immediate consequence is that, if P is multiparty compatible, there exists T such that320

` P : T, without using the subsumption rule, and T ` holds. For example, proofs from the321

previous section can be used to established that networks such as the following are multiparty322

compatible: !λ1;!λ3 ⊕ !λ2;!λ4 ‖ ?λ1 + ?λ4 ‖ ?λ2 + ?λ3 and µt.(!λ1;t⊕ !λ2;t) ‖ µu.(?λ1;u) ‖323

µv.(?λ2;v). Furthermore, the multiparty compatibility of the processes from Sec. 2 can be324

established in this way.325

Note on open sessions. We select a flexible presentation in Fig. 4, since, as a bonus,326

we can also use the above type system to reason about open sessions, which may be327

missing participants in order for multiparty compatibility to hold. For example, by using328

[subsumption] and the processes from Sec. 2, we have the following type judgement.329

` Owner‖Untrusted App‖OAuth Server : µt.
(
!release⊕ !request(token);

(?revoke+ ?response(data);t)
)330

The above type judgement indicates an “interface” exposed by the open session given by331

network Owner ‖ Untrusted App ‖ OAuth Server. Hence, if composed with a process that332

interacts with the interface given by the dual of the above type (such as Resource from333

Sec 2) we can judge the whole system to be multiparty compatible. Composition of two334

open sessions can be performed by using [t-Par] and then applying [subsumption] to the335

resulting type to show that, together, they inhabit type OK, assuming that together the336

processes are multiparty compatible (alternatively, when composed, they may expose another337

interface if the composition of two open sessions is still an open session). Note this achieves338

the same effect as applying a rule of the following form.339

∆ ` P : T ⊗ U ∆ ` Q : U ⊗ V
[t-Cut]

∆ ` P ‖Q : T ⊗ V
340

The above rule, derivable using [t-Par] and [subsumption], achieves the effect of a “con-341

necting cut”, as desired in recent work on open multiparty sessions [6].342

3.4 Guaranteeing deadlock freedom (via race freedom)343

In order to prove deadlock freedom of multiparty compatible networks, we require a reduction344

system for closed networks, defined by the rules in Fig. 5. As standard [17], different345

behaviours are forced for internal choice and external choice. When ranging over all executions,346

for external choice, we consider all branches, as indicated by the transition rule for internal347

choice (⊕). Notice that, in order for a communication to occur, we must have committed to348

a single branch of the internal choice, forcing all branches to be resolved. However, we need349

only select one of the inputs with the corresponding output label in an external choice (
∑

)350

for a communication to occur.351

j ∈ I

⊕i∈I !λi;Qi I !λj ;Qj

j ∈ I

!λj ;P ‖ Σi∈I?λi;Qi I P ‖Qj recX.P I P
{recX.P/X

}
P I P ′

P ‖Q I P ′ ‖Q
P ≡ P ′ P ′ I Q′ Q′ ≡ Q

P I Q

P ‖ (Q ‖R) ≡ (P ‖Q) ‖R
P ‖Q ≡ Q ‖ P P ‖ 1 ≡ P

Figure 5 Reduction system for networks.

R. Horne 6:11

Race freedom. Some multiparty compatible networks with race conditions are not352

deadlock free. Races can be avoided by naming participants and ensuring each branch of an353

external choice awaits a message from the same participant but is labelled differently compared354

to other branches of that external choice. For example, the following multiparty compatible355

networks have races, hence should be rejected. For network !λ1;!λ2⊕!λ1;!λ3‖?λ1;?λ2+?λ1;?λ3,356

when λ1 is sent it may be received by the wrong branch of the external choice resulting in357

deadlock. Similarly, network !λ1;?λ2 ‖ !λ1 ‖ ?λ1;!λ2;?λ1, may deadlock if the second process358

engages in a communication before the first.359

While explicitly naming participants, as described above, would avoid such examples, for360

added flexibility we show that we can also achieve race freedom without naming participants.361

This additional flexibility is necessary for examples such as in Sec. 2, where one participant362

is replaced by two or more participants (hence if participants were named we would require a363

mechanism such as internal delegation [13] to allow one participant act on behalf of another).364

An added benefit of avoiding races without naming participants is that we may guarantee365

race freedom without relying on participant names to guide reductions.366

Race freedom can be formulated in terms of a type inference problem using the race type367

system in Fig. 6, where A race type is of the form 〈o:α, i:χ〉, where α and χ are sets of sets368

of labels. The former, α, represents a set of sets of output labels — one set of labels for each369

thread in a network. The latter χ represents a set of sets of inputs — one set of labels for370

each external choice somewhere in the network. We also require a “participant condition”371

ensuring all branches of a choice talk to the same process, formalised as follows.372

I Definition 10. A race type 〈o:α, i:χ〉 satisfies the participant condition whenever, for373

all x ∈ χ and y, z ∈ α, if x ∩ y 6= ∅ and x ∩ z 6= ∅ then y = z. A process P is race free,374

whenever there exists a race type 〈o:α, i:χ〉 satisfying the participant condition such that375

` P : 〈o:α, i:χ〉 using the rules of Fig. 6.376

Σ ` Pi : 〈o:{xi}, i:χi〉 (i ∈ I) (∀i, j ∈ I)λi = λj implies i = j
[r-ExtCh]

Σ ` Σi∈I?λi;Pi :

〈
o:

{⋃
i∈I

xi

}
, i:
⋃
i∈I

χi ∪ {{λi : i ∈ I}}

〉

Σ ` Pi : 〈o:{xi}, i:χi〉 (i ∈ I)
[r-IntCh]

Σ ` ⊕i∈I !λi;Pi :

〈
o:

{⋃
i∈I

xi ∪ {λi : i ∈ I}

}
, i:
⋃
i∈I

χi

〉

Σ ` P : 〈o:α, i:χ〉 Σ ` Q : 〈o:β, i:ζ〉
(⋃

α
)
∩
(⋃

β
)

= ∅
(⋃

χ
)
∩
(⋃

ζ
)

= ∅
[r-Par]

Σ ` P ‖Q : 〈o:α ∪ β, i:χ ∪ ζ〉

Σ,X : 〈o:α, i:χ〉 ` X : 〈o:α, i:χ〉 [r-Var] Σ ` 1 : 〈o:∅, i:∅〉 [r-1]

Σ,X : 〈o:α, i:χ〉 ` P : 〈o:α, i:χ〉
[r-Rec]

Σ ` µX.P : 〈o:α, i:χ〉

Figure 6 Type rules for checking race freedom.

The above race-freedom property we propose is satisfied whenever the unfolding of all377

CONCUR 2020

6:12 Session Subtyping and Multiparty Compatibility

fixed points of a process satisfies the following:378

Branches of an external choice use distinct labels for their immediately enabled inputs379

(see [r-ExtCh]).380

For any external choice, the set of immediately enabled input labels in an external choice381

must be disjoint from the set of all output labels of all but one of the parallel components382

(the participant condition). This ensures one participant is listening to at most one other383

participant at a time.384

For parallel processes, P ‖ Q, the set of all input labels of P and the set of all input385

labels of Q are disjoint; and, similarly, the sets of all output labels of P and Q are disjoint386

(see [r-Par]).387

The above property is efficient to check, since it simply builds up the relevant sets of sets388

of labels. Note, a single thread always has a singleton set of outputs.389

A critical example the participant condition rejects is the following process, which is of390

the race type indicated below.391

` !λ1 ‖ recX. (?λ1 + ?λ2;X) ‖ recY .!λ2;Y : 〈o:{{λ1} , ∅, {λ2}}, i:{{λ1,λ2}}〉392

The above example processes contains a race. Two parallel outputs with different labels393

contact a process ready to receive a message from either process and, if actions labelled394

λ1 are played, the process deadlocks. The above example is forbidden by the participant395

condition since we have {λ1,λ2} ∩ {λ1} 6= ∅ and {λ1,λ2} ∩ {λ2} 6= ∅ but {λ1} 6= {λ2}.396

Deadlock freedom. Deadlock freedom can be defined as follows (coinductively): at any397

point we can either make progress or we have successfully terminated.398

I Definition 11 (deadlock freedom). A network P is deadlock free whenever:399

either P ≡ 1, or there exists network Q such that P I Q;400

and, for all R such that P I R we have R is deadlock free.401

The theory developed in this work guarantees deadlock freedom as in Def. 11.402

I Theorem 12. Any race-free multiparty-compatible network satisfies deadlock freedom.403

The proof of this result [see Appendix] relies on Theorem 5 and builds on novel proof404

normalisation techniques developed for giving computational interpretations of formulae in405

extensions of linear logic [35, 36].406

I Remark 13. Note often deadlock freedom is referred to as “progress” which is an overloaded407

word in the literature. Deadlock freedom does not necessarily prevent starvation, as for408

notions such as lock freedom [37, 46]. Restricted variants of Session can be tightened to409

enforce stronger liveness properties — an observation deserving of attention in future work.410

Soundness of the subtype system with respect to our multithreaded liberalisation of the411

substitution principle [25] is precisely formulated below, which is an immediate consequence412

of Theorem 5 and Theorem 12. Notice the flexible subtype system in this work, which permits413

networks consisting of parallel threads to be compared, allows a thread to be substituted by414

more than one thread, as motivated in Sec. 2.415

I Corollary 14 (substitution principle). Assume P , Q and R are closed networks. If ` P : T,416

` Q : T′ and T ≤ T′, then if ` Q ‖R : OK, and P ‖R is race free, then P ‖R is deadlock free.417

R. Horne 6:13

Proof. Assume ` P : T and ` Q : T′ without using [subsumption], and also assume T ≤ T′,418

` Q ‖R : OK and P ‖R is race free. By Theorem 9, there exists a type U such that ` Q ‖R : U419

without using [subsumption] and U ≤ OK. By Lemma 15 there exists V such that U = T′ ⊗ V420

and ` P ‖R : T′ ⊗ V without using [subsumption]. By Theorem 5, we have T ⊗ V ≤ T′ ⊗ V,421

and hence, by Theorem 5 again, T ⊗ V ≤ OK. Thereby ` P ‖R : OK, and hence, by race freedom422

and Theorem 12, we have P ‖R is deadlock free, as required. J423

Importance of avoiding races. The following example emphasises the importance of424

checking races are avoided. Consider the multiparty compatible network 1 ‖ !λ1 ‖ (?λ1 + ?λ2).425

Observe we have ` !λ2 ‖ ?λ2 : OK hence process 1 can be substituted by !λ2 ‖ ?λ2 while426

preserving multiparty compatibility. Now, if we remove the condition concerning races in427

the substitution principle, after applying the above substitution in the network at the top of428

the paragraph, we should have !λ2 ‖ ?λ2 ‖ !λ1 ‖ (?λ1 + ?λ2) is deadlock free. However, this429

network is in fact not deadlock free, due to the presence of a race.430

Note our race-freedom property does not require output labels in an internal choice431

to be distinct. For example, the network (!λ1;!λ2 ⊕ !λ1;!λ3) ‖ ?λ1;(?λ2 + ?λ3) is race free,432

multiparty compatible and deadlock free. Note this is example would not be typeable using433

established session type systems.434

3.5 Typeable sessions for which there is no global type435

Multiparty compatibility is defined independently from global types. Theories that rely436

on global types run into the problem that many reasonable protocols have no global type.437

Such problematic protocols typically feature branching under a recursion where different438

participants are contacted in each branch. The problem of typing protocols for which there439

is no established theory in which they can be assigned a global type has been explored in440

recent work [48].441

To emphasise that Session can also be used to type multiparty sessions for which there is442

no global type, we adapt one of the key examples from related work (Figure 4, (2) [48]). In443

this recursive two-buyer protocol a buyer repeatedly asks another buyer to split the price.444

Assume we have the following types.445

TA = !query;?price;µt.T1 where T1 = (!split;T2 ∨ !cancel;!no) and T2 = (?yes;!buy ∧446

?no;t)447

TB = µt.T3 where T3 = (?split;T4 ∧ ?cancel) and T4 = !yes ∨ !no;t448

TS = ?query;!price;T5 where T5 = ?buy ∧ ?no.449

Also assume we have sequents Γ = µt.T1 , T5 , TB and Γ′ = T1
{
µt.T1/t

}
, T5 , TB450

(only the former is used in a [leaf] axiom). The following proof can be used to establish451

TA ⊗ TB ⊗ TS ≤ OK, which can be used in a multiparty compatibility judgement. Notice we452

use the admissible compound rule [Intr] to shorten the proof.453 [
Γ′][Γ

]
OK , OK , OK `

[OK][
Γ′][Γ

]
!buy , T5 , OK `

[Intr] [
Γ′][Γ

]
µt.T1 , T5 , TB `

[Leaf][
Γ′][Γ

]
T2
{
µt.T1/t

}
, T5 , T4

{
µt.T3/t

}
`

[Intr]

[
Γ′][Γ

]
OK , OK , OK `

[OK][
Γ′][Γ

]
!no , T5 , OK `

[Intr][
Γ′][Γ

]
T1
{
µt.T1/t

}
, T5 , T3

{
µt.T3/t

}
`

[Intr]

[Γ] T1
{
µt.T1/t

}
, T5 , TB `

[Fix-µ]

µt.T1 , T5 , TB `
[Fix-µ]

?price;µt.T1 , !price;T5 , TB `
[Prefix]

TA , TS , TB `
[Prefix]

454

CONCUR 2020

6:14 Session Subtyping and Multiparty Compatibility

In the above example, it is possible that processes typed with TA and TB negotiate forever and455

a process typed with TS, after reaching a state typed by T5, waits forever. Such starvation is456

permitted by our classic notion of progress in Def. 11, i.e., deadlock freedom.457

4 Related Work and Future Work458

A closely related line of work studies the problem of synthesising a “coherent” global type459

for multi-party compatible types [43]. The approach in the current paper can be used to460

expose the structural proof theoretic content of a closely related system proposed for such461

a synthesis problem [38]. There is much work providing notions of semantic subtyping for462

session types [7, 5, 45], whose resulting systems can be interpreted proof theoretically using463

subsystems and variants of Session (at least for the first-order fragment without delegation).464

It could be valuable to explore connections between Session, which follows a processes-as-465

formulas approach, and a variety of Curry-Howard inspired systems. There are intersection466

type systems, satisfying subject expansion, that completely characterise deadlock freedom467

for a fragment of the asynchronous π-calculus where a name can only be used as an input468

channel by the process that created the name [16]. Process in that work are quite different469

from those in our session calculus, since, in this work, we neither consider channel passing470

(delegation) nor asynchrony, while they do not consider choice. Challenges concerning duality471

of binary sessions in the presence of delegation and recursion are explored through a linear472

λ-calculus typed using explicit least and greatest fixedpoints rather than equi-recursion [40].473

Regarding circular proofs, Derakhshan and Pfenning propose a calculus for binary sessions474

with delegation in a Curry-Howard style [22]. In their work, they propose a locally checkable475

condition that guarantees a well-typed session will always terminate either in an empty476

configuration or a configuration attempting to communicate along external channels.477

In future work, it would be valuable to investigate variants of the rules, notably a focussed478

variant of Session [3, 4]. In a focussed system, rules such as Join are treated asynchronously,479

meaning that we can immediately apply the rule without backtracking; whereas rules such480

as Meet are synchronous, meaning that, in general, backtracking may be required during481

proof search. The important observation is that, for race-free sessions there will only be one482

way to apply synchronous rules, thereby eliminating the need to backtrack in the search for483

a proof, i.e., proof search can be conducted deterministically. The ability to search for proofs484

in this uniform manner is connected with goal-directed search in logic programming [42].485

The system designed in this work preserves deadlock freedom for race-free processes,486

as established in Theorem 12; but does not guarantee stronger livelock freedom properties487

(sometimes referred to as lock freedom) [37, 46, 49]. Livelock freedom strengthens deadlock488

freedom by ensuring that no parties are starved of resources; however, there are many subtle489

variations on precisely how livelock freedom is defined. Hence we push the investigation of490

refinements of Session that can guarantee notions livelock freedom to future work.491

To illustrate the above point, we observe some more unexpected properties of Session.492

Observe, the process µX.?λ1;X ‖ ?λ2 ‖ µY .!λ1;Y is race-free and multiparty compatible, and493

hence deadlock free. However, it has a hanging input ?λ2 that never receives a message,494

hence it is not livelock free in any sense. Using a proof of the multiparty compatibility495

of the above process, we can also establish subtype judgement µt.?λ1;t ⊗ ?λ2 ≤ µt.?λ1;t.496

This subtype judgements allows inactive parallel components to be typed using the subtype497

system, as long as they rest of the system is deadlock free. Thus the current formulation of498

Session guarantees no property stronger than deadlock freedom.499

For a more subtle example outside the scope of established session type systems, consider500

R. Horne 6:15

the types T = µt.(!λ1;t ∨ !λ2;!λ3) and U = µt.(?λ1;t ∧ ?λ2). We have T ⊗ U ≤ !λ3 thus a501

thread that sends λ2 can be replaced by two threads that may choose to talk internally on502

λ1 forever, although there is always the possibility of a branching taken where λ3 is sent.503

This subtype judgement does preserve some notions of livelock freedom (it is always possible504

for everyone to eventually act [46]), but not stronger notions of livelock freedom (always505

everyone must act eventually [37]). An objective for future work would be to explain how506

Session can be refined by restricting circular proofs so that they preserve a strong form of507

livelock freedom. The key idea is to check that at all threads in a network act at least once508

in every unfolding of a recursion, thereby rejecting both subtype judgements above.509

5 Conclusion510

The proof calculus Session, introduced in Fig. 3, showcases tools of structural proof theory,511

i.e., analytic calculi satisfying cut elimination (Theorem 5), which can be used in the design512

of rich multiparty session type systems. Session defines an algorithmic subtype system513

(Definition 4), the transitivity of which follows from cut elimination (Corollary 6). The514

subtype system admits a more flexible substitution principle (Corollary 14) than standard.515

This flexibility enables subtyping to be used directly to decide multiparty compatibility516

(Definition 8) and also opens up fresh problems that can be tackled using subtyping, not517

limited to scenarios where extra parallelism is introduced, as illustrated in Sec. 2.518

Race freedom may be guaranteed by naming participants; however, for extra flexibility we519

propose a type system for race freedom (Definition 10). From these definitions, we establish520

our main result (Theorem 12) guaranteeing deadlock freedom for networks that are both521

multiparty compatible and race free. In this line of work, global types are optional, allowing522

networks for which no global type exists to be typed.523

References524

1 Samson Abramsky. Computational interpretations of linear logic. Theoretical computer science,525

111(1):3–57, 1993. doi:10.1016/0304-3975(93)90181-R.526

2 Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.527

Lang. Syst., 15(4):575–631, September 1993. doi:10.1145/155183.155231.528

3 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic529

and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.530

4 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary Proof Theory: the Multiplicative531

Additive Case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual532

Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages 42:1–42:17.533

Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.CSL.2016.42.534

5 Franco Barbanera and Ugo de’Liguoro. Sub-behaviour relations for session-based client/server535

systems. Mathematical Structures in Computer Science, 25(6):1339–1381, 2015. doi:10.1017/536

S096012951400005X.537

6 Franco Barbanera and Mariangiola Dezani-Ciancaglini. Open multiparty sessions. In Massimo538

Bartoletti, Ludovic Henrio, Anastasia Mavridou, and Alceste Scalas, editors, Proceedings 12th539

Interaction and Concurrency Experience, ICE 2019, Copenhagen, Denmark, 20-21 June 2019.,540

volume 304 of EPTCS, pages 77–96, 2019. doi:10.4204/EPTCS.304.6.541

7 Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session542

types. Logical Methods in Computer Science, 12(2), 2016. doi:10.2168/LMCS-12(2:10)2016.543

8 Eduardo Bonelli and Adriana Compagnoni. Multipoint session types for a distributed calculus.544

In Gilles Barthe and Cédric Fournet, editors, Trustworthy Global Computing, pages 240–256.545

Springer, 2008. doi:10.1007/978-3-540-78663-4_17.546

CONCUR 2020

http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.1145/155183.155231
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.42
http://dx.doi.org/10.1017/S096012951400005X
http://dx.doi.org/10.1017/S096012951400005X
http://dx.doi.org/10.1017/S096012951400005X
http://dx.doi.org/10.4204/EPTCS.304.6
http://dx.doi.org/10.2168/LMCS-12(2:10)2016
http://dx.doi.org/10.1007/978-3-540-78663-4_17

6:16 Session Subtyping and Multiparty Compatibility

9 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.547

Journal of Logic and Computation, 21(6):1177–1216, 10 2010. doi:10.1093/logcom/exq052.548

10 Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J. Stuckey,549

editor, Logic Programming, pages 302–316. Springer, 2002. doi:10.1007/3-540-45619-8_21.550

11 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory, and551

beyond. In Elvira Albert and Ivan Lanese, editors, FORTE 2016, volume 9688 of Lecture Notes552

in Computer Science, pages 74–95. Springer, 2016. doi:10.1007/978-3-319-39570-8_6.553

12 Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty554

session types as coherence proofs. Acta Informatica, 54(3):243–269, 2017. doi:10.1007/555

s00236-016-0285-y.556

13 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global557

types with internal delegation. Theoretical Computer Science, 807:128–153, 2020. doi:558

10.1016/j.tcs.2019.09.027.559

14 Tzu-chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On the560

Preciseness of Subtyping in Session Types. Logical Methods in Computer Science, Volume 13,561

Issue 2, 2017. doi:10.23638/LMCS-13(2:12)2017.562

15 Gabriel Ciobanu and Ross Horne. Behavioural analysis of sessions using the calculus563

of structures. In Manuel Mazzara and Andrei Voronkov, editors, Perspectives of Sys-564

tem Informatics - 10th International Andrei Ershov Informatics Conference, PSI 2015,565

volume 9609 of Lecture Notes in Computer Science, pages 91–106. Springer, 2015. doi:566

10.1007/978-3-319-41579-6_8.567

16 Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Intersection types568

and runtime errors in the pi-calculus. Proc. ACM Program. Lang., 3(POPL), 2019. doi:569

10.1145/3290320.570

17 Rocco De Nicola and Matthew Hennessy. CCS without τ ’s. In Hartmut Ehrig, Robert571

Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT ’87, pages 138–152. Springer,572

1987. doi:10.1007/3-540-17660-8_53.573

18 Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with574

linear types. In CONCUR, volume 6901 of LNCS, pages 280–296. Springer, 2011. doi:575

10.1007/978-3-642-23217-6_19.576

19 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating577

automata. In Helmut Seidl, editor, Programming Languages and Systems, pages 194–213.578

Springer, 2012. doi:10.1007/978-3-642-28869-2_10.579

20 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating580

automata: Characterisation and synthesis of global session types. In Automata, Languages,581

and Programming, pages 174–186. Springer, 2013. doi:10.1007/978-3-642-39212-2_18.582

21 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised583

multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/584

LMCS-8(4:6)2012.585

22 Farzaneh Derakhshan and Frank Pfenning. Circular proof as session-typed processes: a local586

validity condition. (arXiv:1908.01909), 2019. URL: https://arxiv.org/abs/1908.01909.587

23 Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informatica,588

42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.589

24 Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In590

ESOP, volume 1576 of Lecture Notes in Computer Science, pages 74–90. Springer, 1999.591

doi:10.1007/3-540-49099-X_6.592

25 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.593

Precise subtyping for synchronous multiparty sessions. J. Log. Algebr. Meth. Program.,594

104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.595

26 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–112, 1987. doi:596

10.1016/0304-3975(87)90045-4.597

http://dx.doi.org/10.1093/logcom/exq052
http://dx.doi.org/10.1007/3-540-45619-8_21
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/s00236-016-0285-y
http://dx.doi.org/10.1007/s00236-016-0285-y
http://dx.doi.org/10.1007/s00236-016-0285-y
http://dx.doi.org/10.1016/j.tcs.2019.09.027
http://dx.doi.org/10.1016/j.tcs.2019.09.027
http://dx.doi.org/10.1016/j.tcs.2019.09.027
http://dx.doi.org/10.23638/LMCS-13(2:12)2017
http://dx.doi.org/10.1007/978-3-319-41579-6_8
http://dx.doi.org/10.1007/978-3-319-41579-6_8
http://dx.doi.org/10.1007/978-3-319-41579-6_8
http://dx.doi.org/10.1145/3290320
http://dx.doi.org/10.1145/3290320
http://dx.doi.org/10.1145/3290320
http://dx.doi.org/10.1007/3-540-17660-8_53
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
https://arxiv.org/abs/1908.01909
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1016/j.jlamp.2018.12.002
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4

R. Horne 6:17

27 Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In Hartmut Ehrig,598

Robert Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT ’87, pages 52–66.599

Springer, 1987. doi:10.1007/BFb0014972.600

28 Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Compututa-601

tional Logic, 8, 2007. doi:10.1145/1182613.1182614.602

29 Dick Hardt. The OAuth 2.0 authorization framework. standard rfc6749, Internet Engineering603

Task Force, 2012. URL: https://tools.ietf.org/html/rfc6749.604

30 Kohei Honda. Types for dyadic interaction. In CONCUR’93, pages 509–523. Springer, 1993.605

doi:10.1007/3-540-57208-2_35.606

31 Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.607

Scribbling interactions with a formal foundation. In Raja Natarajan and Adegboyega Ojo,608

editors, Distributed Computing and Internet Technology, pages 55–75. Springer, 2011. doi:609

10.1007/978-3-642-19056-8_4.610

32 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.611

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of612

Programming Languages, POPL ’08, pages 273–284. ACM, 2008. doi:10.1145/1328438.613

1328472.614

33 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.615

J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.616

34 Ross Horne. The consistency and complexity of multiplicative additive system virtual. Scientific617

Annals of Computer Science, 25(2):245–316, 2015. doi:10.7561/SACS.2015.2.245.618

35 Ross Horne. The sub-additives: A proof theory for probabilistic choice extending linear619

logic. In Herman Geuvers, editor, 4th International Conference on Formal Structures for620

Computation and Deduction, FSCD 2019, volume 131 of LIPIcs, pages 23:1–23:16. Schloss621

Dagstuhl, 2019. doi:10.4230/LIPIcs.FSCD.2019.23.622

36 Ross Horne and Alwen Tiu. Constructing weak simulations from linear implications for623

processes with private names. Mathematical Structures in Computer Science, 29(8):1275–1308,624

2019. doi:10.1017/S0960129518000452.625

37 Naoki Kobayashi. A type system for lock-free processes. Information and Computation,626

177(2):122–159, 2002. doi:10.1016/S0890-5401(02)93171-8.627

38 Julien Lange and Emilio Tuosto. Synthesising choreographies from local session types. In628

Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 – Concurrency Theory, pages629

225–239. Springer, 2012.630

39 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical631

choreographies. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium632

on Principles of Programming Languages, POPL ’15, pages 221–232. ACM, 2015. doi:633

10.1145/2676726.2676964.634

40 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types. In635

Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,636

ICFP 2016, page 434–447. ACM, 2016. doi:10.1145/2951913.2951921.637

41 Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.638

Program. Lang. Syst., 16(6):1811–1841, 1994. doi:10.1145/197320.197383.639

42 Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a640

foundation for logic programming. Annals of Pure and Applied Logic, 51(1):125–157, 1991.641

doi:10.1016/0168-0072(91)90068-W.642

43 Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially643

commutative asynchronous sessions. In Programming Languages and Systems, pages 316–332.644

Springer, 2009. doi:10.1007/978-3-642-00590-9_23.645

44 Luca Padovani. Session types = intersection types + union types. In Elaine Pimentel, Betti646

Venneri, and Joe B. Wells, editors, Proceedings Fifth Workshop on Intersection Types and647

Related Systems, ITRS 2010, Edinburgh, U.K., 9th July 2010., volume 45 of EPTCS, pages648

71–89, 2010. doi:10.4204/EPTCS.45.6.649

CONCUR 2020

http://dx.doi.org/10.1007/BFb0014972
http://dx.doi.org/10.1145/1182613.1182614
https://tools.ietf.org/html/rfc6749
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.23
http://dx.doi.org/10.1017/S0960129518000452
http://dx.doi.org/10.1016/S0890-5401(02)93171-8
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1145/2951913.2951921
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1016/0168-0072(91)90068-W
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://dx.doi.org/10.4204/EPTCS.45.6

6:18 Session Subtyping and Multiparty Compatibility

45 Luca Padovani. On projecting processes into session types. Mathematical Structures in650

Computer Science, 22(2):237–289, 2012. doi:10.1017/S0960129511000405.651

46 Luca Padovani. Deadlock and lock freedom in the linear pi-calculus. In CSL-LICS, pages652

72:1–72:10. ACM Press, 2014. doi:10.1145/2603088.2603116.653

47 Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathem-654

atical Structures in Computer Science, 6(5):409–453, 1996. doi:10.1017/S096012950007002X.655

48 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. PACMPL,656

3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.657

49 Paula Severi and Mariangiola Dezani-Ciancaglini. Observational equivalence for multiparty658

sessions. Fundam. Inform., 170(1-3):267–305, 2019. doi:10.3233/FI-2019-1863.659

50 Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical660

Methods in Computer Science, 2(2), 2006. doi:10.2168/LMCS-2(2:4)2006.661

http://dx.doi.org/10.1017/S0960129511000405
http://dx.doi.org/10.1145/2603088.2603116
http://dx.doi.org/10.1017/S096012950007002X
http://dx.doi.org/10.1145/3290343
http://dx.doi.org/10.3233/FI-2019-1863
http://dx.doi.org/10.2168/LMCS-2(2:4)2006

R. Horne 6:19

A Proof of Theorem 12: well-typed networks are deadlock free662

We require the following standard lemmas, which follow by structural induction.663

I Lemma 15 (inversion lemma). In the following, we do not use the subsumption rule.664

If ` P ‖Q : T, there exists U and V such that T = U ⊗ V and ` P : U and ` Q : V.665

If ` ⊕i∈I !λi;Pi : T, there exists Ti such that T =
∨
i∈I !λi;Ti and ` Pi : Ti.666

If ` Σi∈I?λi;Pi : T, there exists Ti such that T =
∧
i∈I !λi;Ti and ` Pi : Ti.667

If ` recX.P : T, there exists U and t such that T = µt.U and X : t ` P : U.668

If ` 1: T then T = OK.669

I Lemma 16. If ` recX.P : µt.T then ` P
{
X.P/X

}
: T
{
µt.T/t

}
.670

We also require that race freedom is preserved by the reduction system. This is effectively671

a subject reduction theorem for the race free property.672

I Lemma 17 (race freedom). If P is race free and P I Q, then Q is race free.673

The following condition follows from inverting the type system for race freedom.674

I Lemma 18. If P ‖Q is race free and ` P : T and ` Q : U, then if π appears in T, then π675

does not appear in U.676

Since we employ a reduction semantics, we require that the rules of the structural677

congruence preserve multiparty compatibility.678

I Lemma 19. If ` P : OK and P ≡ Q, then ` Q : OK.679

We also require a subject reduction result, where proofs that T ≤ OK and race freedom680

play the role that a global type normally plays in such proofs. Note we avoid the term session681

fidelity since fidelity is typically expressed in terms of global types [32].682

I Lemma 20 (subject reduction). If ` P : OK, and P is race free, then for all Q such that683

P I Q, we have ` Q : OK.684

Proof. If there exists a reduction, we can apply the structural congruence to a process685

to reach one of the following forms. By Lemma 19, the use of the structural congruence686

preserves multiparty compatibility.687

Case of internal choice. Assume we have ` ⊕i∈I !λi;Pi ‖ Q : OK. By Theorem 9, for688

some T, we have ` ⊕i∈I !λi;Pi ‖Q : T, without using subsumption, and T ≤ OK. Consider the689

transition ⊕i∈I !λi;Pi ‖Q I !λk;Pk ‖Q, where k ∈ I.690

By Lemma 15, we have there exists Ui and V such that T =
∨
i∈I !λi;Ui ⊗ V and ` Pi : Ui,691

for all i, and ` Q : V. Therefore ` !λk;Pk ‖Q : !λi;Ui ⊗ V.692

Now, since
∨
i∈I !λi;Ui , V ` is provable and so is

∧
i∈I?λi;Ui , !λk;Uk `, by Theorem 5,693

!λk;Uk , V ` holds. Hence !λk;Uk ⊗ V ≤ OK, as required.694

Case of external choice. Assume we have ` Σi∈I?λi;Pi‖ !λk;Q‖R : OK, where k ∈ I and695

Σi∈I?λi;Pi ‖ !λk;Q ‖R is race free. Consider transition Σi∈I?λi;Pi ‖ !λk;Q ‖R I Pk ‖Q ‖R.696

By Theorem 9, for some T, we have that ` Σi∈I?λi;Pi ‖ !λk;Q ‖R : T holds without using697

subsumption, and T ≤ OK. By Lemma 15 we have there exists Ui, V and W such that we have698

T =
∧
i∈I?λi;Ui ⊗ !λk;V ⊗ W and ` Pi : Ui, for all i, and ` Q : V and ` R : W. Therefore we699

have ` Pk ‖Q ‖R : Uk ⊗ V ⊗ W holds.700

Now, consider the proof of
∧
i∈I?λi;Ui , !λk;V , W `. Since we have the type judgements701

` Σi∈I?λi;Pi ‖ !λk;Q :
∧
i∈I?λi;Ui ⊗ !λk;V and ` R : W and Σi∈I?λi;Pi ‖ !λk;Q ‖ R is race702

free, by Lemma 18, neither !λi nor ?λk appear in W. Hence there are only two possibilities,703

for every branch of the proof tree:704

CONCUR 2020

6:20 Session Subtyping and Multiparty Compatibility

1. Either we eventually reach an application of rule [Prefix], possibly via an application of705

[Meet] as follows:706

...
[Θ]` Uk , V , Γ `

[Θ] ?λk;Uk , !λk;V , Γ `
[Prefix]

...
[Θ′] ?λk;Uk , !λk;V , Γ′ `

[Θ′]
∧
i∈I?λi;Ui , !λk;V , Γ′ `

[Meet]

...707

Note, by race freedom, if λj = λk then j = k, hence only one branch can be selected in708

rule [Meet] to enable the rule [Prefix]. Hence the above application of rule [Intr] is709

deterministic.710

2. Alternatively, on some path no [Prefix] is ever applied to type !λk;V and there is a711

[Leaf] axiom of the following form, with an corresponding ancestor [Fix-µ] rule as712

follows:713

[Leaf]
[Θ′][!λk;V , µt.W′ , Γ] !λk;V , µt.W′ , Γ `

...

[Θ][!λk;V , µt.W′ , Γ] !λk;V , W′
{
µt.W′

/t

}
, Γ `

[Fix-µ]
[Θ] !λk;V , µt.W′ , Γ `

714

In this case, by the participant condition in the race free condition, each λj such that715

j ∈ I can only match an output in the type !λk;V. Hence there must also be no [Prefix]716

applied to any λi in
∧
i∈I?λi;Ui between the [Leaf] and the corresponding [Fix-µ]. Hence717

either
∧
i∈I?λi;Ui appears in Γ, or there is some j ∈ I such that ?λj ;Uj for j ∈ I appears718

in Γ.719

In paths in the proof satisfying the first case above, simply remove the relevant instance720

of the rule [Intr] below the rule in the proof, replace
∧
i∈I?λi;Ui and !λk;V with Uk and V.721

In paths in the proof satisfying the second case above where both
∧
i∈I?λi;Ui and !λk;V722

are never touched, simply replacing these formulae with Uk and V everywhere in the given723

path. In cases where ?λj ;Ui appears in Γ, there must be an instance of rule [Join] below the724

rule [Fix-µ] that introduced Γ or the following form.725

[Θ′′] !λk;V , ?λj ;Uj , Γ′′ `
[Θ′′] !λk;V ,

∧
i∈I

?λi;Ui , Γ′′ `726

Since, by the participant condition, we know that in this path we never apply [Prefix] to727

λj , we can safely remove the above rule instances from the proof and replace ?λj ;Uj with Uk728

along that path.729

After applying the above proof transformation, we obtain a proof of Uk , V , W `. Hence730

Uk ⊗ V ⊗ W ≤ OK as required.731

Case of fixed points. Assume ` recX.P ‖Q : OK holds. By Theorem 9, for some T, we732

have ` recX.P ‖ Q : T, without using subsumption, and T ≤ OK. Consider the transition733

recX.P ‖Q I P
{

recX.P/X
}
‖Q.734

R. Horne 6:21

By Lemma 15, we have there exist types U and V and type variable t such that T =735

µt.U ⊗ V and ` recX.P : µt.U and ` Q : V. Now, by Lemma 16, ` P
{

recX.P/X
}

: U
{
µt.U/t

}
.736

Therefore, we have ` P
{

recX.P/X
}
‖Q : U

{
µt.U/t

}
⊗ V.737

Now, since ` µt.U , V is provable and µt.U, U
{
µt.U/t

}
` is provable, by Theorem 5, we738

have U
{
µt.U/t

}
, V ` is provable. Hence U

{
µt.U/t

}
⊗ V ≤ OK, as required. J739

I Theorem 21 (Theorem 12). Any race-free multiparty-compatible network is deadlock free.740

Proof. Assume ` P : OK holds and P is race free. Consider the form of P . Either P has a741

fixed point or internal choice at the head of a process, hence is ready to act. Hence, there742

exists Q such that P I Q. Otherwise we have a process equivalent to the following form.743

!λ1;Q1 ‖ . . . ‖ !λm;Qm ‖ Σi∈I1?λ1
i ;R1

i ‖ . . . ‖ Σi∈In
?λni ;Rni ‖ 1 ‖ . . . ‖ 1744

There are two cases to consider as follows.745

In the first case, m = n = 0; hence we have P = 1 ‖ . . . ‖ 1. Therefore, P ≡ 1 and hence746

the processes is successfully terminated.747

Otherwise, observe, by Theorem 9, there exists T such that ` P : T without using748

subsumption and T ≤ OK. Also, observe, by Theorem 15, there exists Ui and Vii such that749

T = !λ1;U1 ⊗ . . . ⊗ !λm;Um ⊗
∧
i∈I1

?λ1
i ;V1

i ‖ . . . ⊗
∧
i∈In

?λni ;Vni ⊗ OK ⊗ . . . ⊗ OK and ` Qk : Uk750

and ` R`j : V`j , for all j, k and `.751

In the proof of T `, there must be at least one application of the rule [Prefix]. Due to the752

absence of ` in T , the only other rules that may be applied before the bottommost instances753

of rule [Prefix] are the rules [Par] and [Meet]. In order to apply the rule [Prefix], there754

exists j, k and ` such j ∈ I` and λk = λ`j , allowing a proof tree of the following form.755

[Θ] Tk , U`i , Γ `
[Θ] !λk;Tk , ?λ`j ;U`j , Γ `

...

[Θ] !λk;Tk , ?λ`j ;U`j , Γ `
[Θ] !λk;Tk ,

∧
i∈I`

?λ`i ;U`i , Γ `

...
T `

756

Thus, simply due to the existence of such a matching pair of inputs and outputs, we have a757

transition of the form.758

!λ1;Q1 ‖ . . . ‖ !λk;Qk ‖ . . . ‖ !λm;Qm
‖Σi∈I1?λ1

i ;R1
i ‖ . . . ‖ Σi∈I`

?λn`i;R`i ‖ . . . ‖
Σi∈In

?λni ;Rni ‖ 1 ‖ . . . ‖ 1
I

!λ1;Q1 ‖ . . . ‖Qk ‖ . . . ‖ !λm;Qm
‖Σi∈I1?λ1

i ;R1
i ‖ . . . ‖R`j ‖ . . .

‖Σi∈In
?λni ;Rni ‖ 1 ‖ . . . ‖ 1

759

Thus we certainly have that either P ≡ 1 or there exists Q such that P I Q.760

Finally, by Lemma 20, since R is race free, we have that for all R such that P I R,761

` R : OK and furthermore, by Lemma 17, R is race free, as required. Hence, deadlock freedom762

is established by coinduction. J763

CONCUR 2020

6:22 Session Subtyping and Multiparty Compatibility

B The Precise Relationship to Linear Logic764

For a self-contained presentation, we summarise the related non-commutative logic [15] on765

which this work builds, formulated in the calculus of structures [28]. We adjust the syntax766

to match the body of the paper. The rules of MAV [34] are presented as in Fig. 7, where the767

calculus of structures allows rules to be applied in any context C{ · } and the structural768

congruence ≡ can be applied at any point in a proof.

OK ` success
C{ OK } `

C{ !λ ⊗ ?λ } ` atomic interaction

C{ (T ⊗ V) ; (U ⊗ W) } `
C{ (T ; U) ⊗ (V ; W) } `

seq C{ T ` (U ⊗ V) } `
C{ (T ` U) ⊗ V } ` switch

C{ (T ∨ V) ; (U ∨W) } `
C{ (T ; U) ∨ (V ; W) } ` medial

C{ (T ⊗ U) ∨ (T ⊗ V) } `
C{ T ⊗ (U ∨ V) } ` external

C{ T } `
C{ T ∧ U } ` left

C{ U } `
C{ T ∧ U } `

right
C{ OK } `
C{ OK ∨ OK } `

tidy

(T ` U) ` V ≡ T ` (U ` V)
T ` OK ≡ T

T ` U ≡ U ` T

OK ; T ≡ T
T ; OK ≡ T

(T ; U) ; V ≡ T ; (U ; V)

(T ⊗ U) ⊗ V ≡ T ⊗ (U ⊗ V)
T ⊗ OK ≡ T

T ⊗ U ≡ U ⊗ T

Figure 7 Inference and structural rules for proof system MAV (formalising provability of duals).
769

We extend the notion of a co-type to local types with sequential composition.770

(T ∧ U) = T ∨ U (T ∨ U) = T ∧ U T ` U = T ⊗ U T ⊗ U = T ` U771

(T ; U) = T ; U OK = OK !λ = ?λ ?λ = !λ772
773

Notice the only difference compared to the co-type transformation for Session (Def. 2) is774

that any type may appear to the left of sequential composition, not only an atomic send or775

receive action. The following result generalises cut elimination to the calculus of structures.776

I Theorem 22 (Horne 2015 [34]). In the system in Fig. 7, if C
{

T ` T
}
` holds then we777

can construct a proof of C{ OK } `.778

The related work [15, 34], from which the above is extracted, clarifies that, as for Session in779

the body of this paper, MAV defines a rich notion of multiparty subtyping and compatibility.780

The following result formally relating MAV and Session is a corollary of cut elimination781

(each direction of the implication follows from cut elimination in one of the two systems).782

I Corollary 23. If T is a session type, as in Def. 1 but without fixed points, then T ` in783

Session if and only if T ` in System MAV.784

Finally, observe that MAV is a conservative extension of linear logic with mix and, the above785

corollary proves the finite fragment of Session is also a fragment of MAV.786

	Introduction
	Motivating Example: A Generalised Substitution Principle
	A Proof System for Subtyping and Multiparty Compatibility
	Deriving subtype judgements using the rules of Session
	On notable admissible rules and algorithmic subtyping
	Typing multiparty compatible networks, by using subtyping
	Guaranteeing deadlock freedom (via race freedom)
	Typeable sessions for which there is no global type

	Related Work and Future Work
	Conclusion
	Proof of Theorem 12: well-typed networks are deadlock free
	The Precise Relationship to Linear Logic

