

An MSC Based Representation of DiCons

J.C.M. Baeten, H.M.A. van Beek, and S. Mauw

Department of Mathematics and Computing Science,
Eindhoven University of Technology,

P.O. Box 513, NL–5600 MB Eindhoven, The Netherlands.
{josb,harm,sjouke}@win.tue.nl

Abstract. We present a graphical MSC-based representation of the lan-
guage DiCons, which is a formal language for the description of Internet
applications.

1 Introduction

Building internet applications is not an easy task. Given the many problems
involved it makes sense to investigate the use of formal methods since we think
that formal methods can help to develop Internet applications more efficiently,
and can help to improve the quality of applications.

Currently, a mix of different languages, at different levels, with a low degree
of formality is used, e.g. Perl, C++ and Java. Recently, we have started a new
line of research in order to remedy this. This has resulted in the first version of
the language DiCons in [3] of which an extended abstract appeared as [2].

The most important feature of DiCons is that it is geared towards the highest
level of abstraction, the communication level, and that aspects of lower levels
are treated in separate parts of the language. The purpose of this paper is to
give a graphical presentation of DiCons specifications.

The language DiCons focuses on a specific class of internet applications, a
class we call Distributed Consensus (this explains the name of the language).
This is the class of applications where several users strive to reach a common
goal without having to meet face to face, nor will there be any synchronized com-
munications between users. A central system, viz. an Internet application, must
be used to collect and distribute all relevant information. Example applications
are making an appointment, evaluating a paper, and selecting a winner.

Currently, we are working on the formal semantics of the language, which
serves as the starting point for this paper. The papers [3, 2] show the useful-
ness of the language in a number of examples which were first developed as
MSC scenarios, and afterwards programmed in DiCons. MSC is the language
Message Sequence Chart, that is used a lot in the telecommunications indus-
try, as standardized in [11]. MSC has in common with DiCons that it is mainly
concerned with the interaction between system components (here: a server and
several clients) and that internal processing of information is less important.

A closer look reveals that drawing the MSCs does not leave out much infor-
mation. Mostly, they contain just one scenario (or a couple of related scenarios).

326 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

On the other hand, the examples in DiCons suggest that there is a main trace
that admits variations occasionally. With the recent extensions of MSC [11] it
could be possible to give a complete, or almost complete MSC specification of
DiCons programs. This is the hypothesis that we investigate in this article.

There are several reasons why an MSC-like representation can have added
value for a textual specification language like DiCons. Most important is that
a visual interface can aid communication with a customer, who wants an appli-
cation to be built. It is easier to understand by those not used to programming
languages. Focusing on example scenarios can be very important in the initial
design phase of a new application.

On the other hand, there are reasons why just using MSC as a trace de-
scription language is not enough. Most important, just describing traces can
leave ambiguities, obscurities and misunderstanding about the working of an
application.

In general, it is not advisable to give complete system specifications in MSC.
However, it is interesting to note that DiCons is intended for restricted class of
applications, and this makes it possible to define a complete MSC-like represen-
tation. Thus, in DiCons we only consider the behaviour of the server, depending
on possible external stimuli and the internal state. This means we only have to
define the complete behaviour of a single MSC instance. This appears to be a
lot simpler than specifying the complete behaviour of several instances.

In this paper, we investigate giving an MSC-like representation of DiCons
with comparable expressivity. A first try is to see whether MSC-2000 is powerful
enough by itself, but it soon turns out that more is needed. For instance, Di-
Cons involves several communication primitives that have to be represented in
different ways. We see that DiCons has compound communications that go be-
yond the simple scheme of an asynchronous MSC communication. This requires
extensions of MSC-2000 in order to raise the representation to the same level of
abstraction. Our extensions are in the style of MSC-2000, for instance regarding
the use of in-line expressions.

We are not in the business of proposing extensions of the language MSC.
Rather, we look upon this work as a special application of MSC. In our ex-
perience, every (new) application domain of MSC will lead to a comparable
adaptation of the language. This is due to the nature of the language MSC. On
the one hand, MSC is so universal as to be applicable whenever there is a form
of distribution and communication. On the other hand, the drive to express is-
sues in the appropriate way and at the appropriate level will necessitate new
features that have not been standardized by the ITU (yet). The present offering
of MSC-2000 seems to have enough features already. There is a good basis of
possibilities to express issues like modularization, data, time, and many more
things, and it is not obvious that specific applications should lead to even more
extensions of the language.

Rather, we see our work as defining a graphical layer on top of DiCons based
on MSC, and not as an extension of MSC. This paper is exploratory: we do not
give a formal graphical syntax and do not give a translation to the semantics.

An MSC Based Representation of DiCons 327

On the other hand, we have tried to have a one-to-one correspondence with the
semantical constructs.

Also, it is not our intention to use exactly the semantics of MSC. For exam-
ple, we introduce several communication primitives that do not allow a simple
reduction to existing primitives. Thus, the semantics of our MSC-like language
will not arise by translation to the semantics of MSC, but rather by a translation
to the abstract syntax of DiCons and from there to the semantics of DiCons. As
a side remark, the semantics of MSC and the one of DiCons are not so different,
since both are based on a translation to process algebra.

In the following section, we present a short introduction to the DiCons lan-
guage and define our graphical representations for the language primitives. In
the next section, we work out an example, the meeting scheduler. Finally, we
present some conclusions.

2 DiCons Primitives and their Graphical Representation

In this section we will discuss the considerations that led to the current design
of the DiCons language and we describe the basic ingredients of DiCons.

In order not to have to face the complete problem of writing Internet appli-
cations in general, we restrict our problem setting in several ways. First of all,
we focus on a class of applications which is amenable to formal verification with
respect to behavioral properties. This means that the complexity of the appli-
cation comes from the various interactions between users and a system, rather
than from the data being exchanged and transformed. Implications for the de-
sign of the language are that the primitive constructs are interactions, which
can be composed into complex behavioral expressions. Furthermore, it implies
that the development of the language and its formal semantics must go hand in
hand. Nevertheless, we will not discuss semantic issues in the current paper.

A further restriction follows from the assumption that although the users
work together to achieve some common goal, there will be no means for the
users to communicate directly with each other. We assume a single, central
application that follows a strictly defined protocol in communication with the
users.

The last consideration with respect to the design of DiCons is that we want
to make use of standard Internet technology only. Therefore, we focus on com-
munication primitives such as e-mail and Web forms. This means that a user
can interact with the system with a standard Web browser, without the need
for additional software such as plug-ins. Of course, it must be kept in mind
that the constructs must be so general as to easily support more recent develop-
ments, such as ICQ or SMS messages. Currently, we only consider asynchronous
communication between client and server.

2.1 Overview of Language Constructs

Keeping the above considerations with respect to the application domain and
available technology in mind, we come to a description of the basic constructs

328 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

of DiCons. Although DiCons is initially developed as a linear language we will
only give a description of the graphical representation of DiCons. To this end
we build on the work that is done on the development of the MSC standard. A
graphical DiCons specification looks like an MSC, however, it is not an MSC. We
will define some extensions to the MSC standard that are essential to reach the
level of abstraction of the current linear DiCons language in a natural way. One
can easily see whether a figure is a basic MSC or its DiCons version: keyword
msc in the upper left corner is replaced with keyword DiCons in the DiCons
version.

Apart from basic MSCs we will also make use of High-level MSCs (see [16])
to specify DiCons applications. In the DiCons version we extend HMSCs by
adding constructs for declaring roles and variables.

We will first list the language ingredients and later discuss these in more
detail, by defining their graphical syntax. We will not give a complete description
of the syntax and semantics of (graphical) DiCons. The example in Sect. 3 will
serve to show the flavor of the graphical DiCons syntax and the way in which
the language can be used.

central application The central application is the main part of our DiCons
language. All interactions take place via this application.

users and roles Since an application may involve different users, the applica-
tion must be able to identify users. Moreover, since different users may want
to use the system in the same way, it must be possible to group users into
so-called roles.

interactions We have to identify the communication primitives, which we will
call interactions. They form the basic building blocks of the behavioral de-
scriptions. Interactions are abstract descriptions which are identified by their
name and may carry input and output parameters.

behavior A number of interactions with the same user may be combined to
form a session. Sessions and interactions can be composed into complex
behavioral descriptions which define an application.

presentations The abstract interactions are presented to the user by concrete
means of communication, such as e-mail and Web forms. This is called the
presentation of an interaction.

data In order to transform (user) data and keep state information, we need a
means to define and manipulate data (expressions, variables, data structures,
etc.)

2.2 Central Application

Since all interactions take place between the central system and one of the users,
the central system must be included in all graphical DiCons specifications. We
can only give a decription of the behaviour of the central system. We cannot force
users to interact in the way we intend, therefore we assume that they will do so
in order to be able to give a useful specification. The application is represented
by a gray-headed instance in a wide form not having an instance name. In Fig. 1
a graphical representation of the central application is given.

An MSC Based Representation of DiCons 329

Fig. 1. The central application

user

Fig. 2. A user

2.3 Users and Roles

A user is a (possibly human) entity that can interact with the system. Users
are grouped according to their role. Users with the same role are offered the
same interaction behavior. In DiCons roles can be defined and variables can be
declared which denote users with a given role.

In the graphical DiCons syntax we define roles by introducing them in the
same way as we introduce variables (see Sect. 2.5). However, we use the role
keyword instead of the var keyword. We represent a user by a regular instance,
containing the name of the user in its head symbol (Fig. 2).

2.4 Interactions

The basic problem when defining the interaction primitives is to determine the
right level of abstraction. In order to get a feeling of the level of abstraction
which is optimally suitable, look at Fig. 3. In this drawing we sketch in MSC a
typical scenario of an Internet application which is called the Meeting Scheduler
(see [17]). This is an application which assists in scheduling a meeting by keeping
track of all suitable dates and sending appropriate requests and convocations to
the intended participants of the meeting.

Please note that this is not a graphical DiCons specification, but an ordi-
nary MSC describing a possible scenario. We will give a more detailed graphical
DiCons specification in Sect. 3.

The example shows that we have two roles, viz. initiator and participant. In
this scenario, there is only one user with role initiator, while there are three users
with role participant. The MSC shows that the initiator starts the system by
providing it with meeting information. Next, the system sends an invitation to
the participants who reply by stating which dates suit them. After collecting this
information, the system informs the initiator about the options for scheduling
the meeting and awaits the choice made by the initiator. Finally, the system
informs the participants about the date and offers the users to have a look at
the agenda. Only participant 2 is interested in the agenda.

This example nicely shows at which level of detail one wants to specify such an
application. The arrows in the diagram represent the basic interaction primitives.
First, look at the invite messages. Since the participants do not know that they
will be invited for a meeting, the initiative of this interaction is at the server

330 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

Initiator Server Part-1 Part-2 Part-3

initialize

invite

invite

invite

info

info

info

options

choice

convocate

convocate

convocate

show agenda

msc Basic scenario

Fig. 3. An MSC Scenario of an Internet Application

side. The way in which a server can actively inform a client is (for example)
by sending an e-mail. This interaction only contains information transmitted
from the server to the user. The messages options and convocate can also be
implemented as e-mails.

Next, look at message info. This interaction is initiated by the user and is
best implemented as a Web form supplied by the server, on request of the user
and filled in by the user. The message choice also stands for a Web form being
filled in.

The last message, show agenda contains information sent by the server to
the user, on request of the user. This is simply the request and transmission of
a non-interactive Web page.

Finally, we look at the first message, initialize. The initiator has to supply
the system with various kinds of information, such as a list of proposed dates and
a list of proposed participants. This will probably be implemented as a dialogue
between the user and the system in the form of a series of Web forms. This is
called a session.

We summarize the three basic interaction schemes in Fig. 4. Notice that the
third scheme, the session, consists of a series of more primitive interactions. It
starts with a client requesting a form and submitting it after having it filled in.
This is the interaction which starts the session. Next, comes a series of zero or
more submissions of Web forms. These are interactions which come in the middle
of a session. And, finally, the session ends with the server sending a simple Web
page after the last submission of the client. So a session is composed of three
kinds of interactions.

An MSC Based Representation of DiCons 331

Client Server

email

msc e-mail

Client Server

req-url

web-page

msc page-query

Client Server

req-url
web-form
submission
web-form
submission
web-page

msc session

Fig. 4. Interaction Primitives

In DiCons we have constructs for these five interaction primitives. We have
used a naming scheme for the interaction primitives which is based on their
properties. First, we make a distinction based on the flow of information. If the
information goes from the server to the client, we call this a server push, while
if the information flows to the server, we call this a server pull. Notice that we
reason from the viewpoint of the server in this respect. The direction of the
arrow indicates whether the interaction involves a push or a pull.

The second distinction which we make is on which party takes the initiative
for the interaction. Still reasoning from the viewpoint of the server we consider
an active communication, which means that the server takes the initiative, a
reactive communication, which means that the client takes the initiative, and
a session oriented communication, which means that the communication is a
response from the server to a prior submission of a Web form by the client.
To graphically indicate the initiating party we place half a circle between its
instance and the arrow representing the interaction. The filling of the circle
indicates whether the interaction takes part in a session or not.

Finally, notice that we extend the interaction primitives with parameters to
express which information is being transmitted. An output parameter denotes
information sent by the server to the client, while an input parameter is a variable
in the data space of the server which will contain the information sent by the
client to the server. We make use of � and � to graphically specify the direction
in which data flows. Parameters left to a � flow from left to right and parameters
right to a � flow in the opposite direction.

The notation for our communication primitives is given below. We give a basic
MSC to show in which order the different messages take place. Furthermore, we
give the corresponding graphical DiCons syntax. In the figures given below,
ik (0 ≤ k ≤ m) denotes an input parameter and ok (0 ≤ k ≤ n) an output
parameter.

active server push The server takes the initiative to send information:
An active push takes place if the server sends a message to a client which
is not directly the result of a request from that client. Such an interaction

332 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

can only take place via an e-mail and not by sending a Web page, since this
requires a client to request some URL.
We denote this interaction by a message from the server to the client (Fig. 5).
The circle at the server side means that the server initiates the interaction.
It is not filled since the interaction does not take part in a session. The
direction of the arrow indicates that we have to do with a push.

client server

msg(o0 : : : on)

msc active push

client

msg/ o0 : : : on

DiCons active push

Fig. 5. Active push

reactive server push The server sends a Web page on request of the client:
A reactive push takes place if the server sends a Web page, not containing
a Web form, to a client which is the result of a normal request from that
client, (that is, not generated by filling out a previously received Web form).
Here, the circle is placed at the client side, meaning that the client initiates
the interaction. Again, it is not filled since the interaction is not part of a
session. Actually, the interaction may be seen as one that both starts and
ends a session containing only this interaction.

client server

req

msg(o0 : : : on)

msc reactive push

client

msg/ o0 : : : on

DiCons reactive push

Fig. 6. Reactive push

reactive server pull This interaction takes place if a client sends a request to
the server on which the server responds by sending a Web form. This form is
filled in and submitted by the client. A reactive pull starts a session with one
particular client. The client starts the interaction so the circle is at the client
side. The upper half of the circle is not filled since no session existed prior
to this interaction. Its lower half is filled, which means that after ending this
interaction a session is open. Note that the direction of the arrow indicates
a server pull.

An MSC Based Representation of DiCons 333

The dashed line in the MSC in Fig. 7 is not part of this interaction primitive.
It means that this interaction must be followed by an interaction which is
started by sending a message from the server to the client.

client server

req()

msg(o0 : : : on)

req(i0 : : : im)

msc reactive pull

client

i0 : : : im .msg/ o0 : : : on

DiCons reactive pull

Fig. 7. Reactive pull

session-oriented server pull The server sends a Web form to the client as
a response to a prior form submission by the client. After that, the client
submits the filled in form. This interaction is repeated in the middle of a
session.
The server initates this interaction and therefore the circle is at the server
side (Fig. 8). It is completely filled, since a session existed at the beginning
of the interaction and is still open at the end.
Again, the dashed lines represent mandatory messages preceding and fol-
lowing this interaction. Note that both a reactive pull and a session-oriented
pull can precede this interaction and that a session-oriented pull or a session-
oriented push can follow it.

client server

msg(o0 : : : on)

req(i0 : : : im)

msc session-oriented pull

client

i0 : : : im .msg/ o0 : : : on

DiCons session-oriented pull

Fig. 8. Session-oriented pull

session-oriented server push The server sends a non-interactive Web page
to the client in response to a prior form submission by the client. This inter-
action is the last interaction of a session.

334 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

If a server/client communication takes part in a session, the server can send
a Web page, not containing a Web form, as a response on a submission of a
Web form. Such a session-oriented push ends the session because the client
can no longer fill out any forms. The server initiates this interaction so the
circle is at the server side (Fig. 9). The upper half of the circle is filled,
meaning that the interaction starts within a session. On the other hand, the
lower half is not filled which denotes that the session is no longer open after
ending this interaction.
The dashed line in the MSC indicates a message from the client to the server,
which must precede this interaction.

client server

msg(o0 : : : on)

msc session-oriented push

client

msg/ o0 : : : on

DiCons session-oriented push

Fig. 9. Session-oriented push

Please notice that in our list of interaction primitives we did not mention the
active server pull. The reason for this is simply that with standard Internet
technology this interaction cannot be implemented. A Web server cannot take
the initiative to obtain information from a client.

2.5 Behaviour

Now that we have defined the basic interaction primitives, we can discuss the
means to compose them into sessions and applications. An application describes
the protocol to be executed by the server. A number of standard programming
language constructs are supported in DiCons. Since in most applications that
we have studied users have to react before a given deadline, we have included a
time-out construct in DiCons. A session is simply a program fragment with the
requirement that execution starts with a session-start interaction and ends with
a corresponding session-end interaction.

sequential composition We make use of the basic MSC based representation
for sequential composition. We only specify the behaviour of the central
application, so the order of the events on the instance axis of this application
determines their causal connection.

conditional branching For the construct of a conditional branching we make
use of an inline expression having the keyword if followed by the condition
in its upper-left corner. See Fig. 10 for an example of the grapical syntax for
expression if b then X else Y fi .

An MSC Based Representation of DiCons 335

user

X

Y

if b

DiCons conditional branching

Fig. 10. Syntax for conditional branching

repetition We make use of two different statements for repetition. First of all
we have the for all s∈S do X(s) od statement. For all elements s in S, bodies
X(s) are sequentially executed in an arbitrary order, where S represents a
finite set of data elements. Furthermore, we can specify a while loop by using
the while b do X od statement. The while loop repeats statement X until test
b proves false. In Fig. 11 the syntax for both loops is given. The X represents
a collection of (inter)actions. If variable s occurs in X we indicate this by
writing X(s).

user

X(s)

for s2S

DiCons for loop

user

X

while b

DiCons while loop

Fig. 11. Syntax for repetition

parallel composition We also have two operators for parallel composition at
our disposal: the fork and the par operator (Fig. 12).
Statement fork u∈U do X od means that all users u (u ∈ U) can execute
(inter)actions X between user u and the central applications in parallel and
more than once. On the other hand, the par u∈U do X od statement specifies
that all users u (u ∈ U) will execute (inter)actions X between user u and
the central applications in parallel but only once. So, in contrast to the fork
operation, after execution of X for all u ∈ U the par operation ends.
A fork gives clients the possibility to start an interaction (for example via a
reactive push) while the par obliges a client to interact. This obligation only

336 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

makes sense if the initiative for the interaction is on the server-side, such as
an active server-push.
Note that both the instance head and the instance foot of u are placed inside
the operator’s frame. This means that instance name u is bounded by the
operator and therefore it is not known outside the frame.

u

X

fork u2U

DiCons fork

u

X

par u2U

DiCons par

Fig. 12. Syntax for parallel composition

time-outs using conditional disrupts We introduce the until b do X od
statement to specify conditional disrupts. This means that X is normally
executed until b becomes true. At that moment the statement ends, inde-
pendent of the (inter)actions that are taking place at that moment. If X ends
before b becomes true the statement ends too. By placing a time check in b
we can specify time-out interrupts. However, b may be an arbitrary boolean
expression containing predicates on any part of the state space.

user

X

break

when b

DiCons conditional disrupts

Fig. 13. Syntax for conditional disrupts

variable assignments and procedure calls In the textual syntax of DiCons
we have a data part to introduce types, variables and functions. We can also
introduce them in several ways in the graphical representation. First of all,
we can introduce variables directly below the DiCons keyword (Fig. 14).

An MSC Based Representation of DiCons 337

These variables are available to all elements in the MSC, so the frame sur-
rounding the instances defines the block in which these variables are known.
As mentioned in Sect. 2.3, we can introduce roles in the same way by using
keyword role.
Furthermore, we can introduce variables using an inline expression. The
variables are only available within the box that is used for this variable
introduction. If we want to assign an intial value to a variable we can do this
at the place of declaration using the “:=” sign, however, this is optional.
Variables are owned by the central application only. This means that prob-
lems concerning individual variables in basic MSCs [10, 9] do not arise in our
graphical DiCons syntax.
There are three ways to change the value of a variable:
– Via a local action of the server, i.e. an assignment or a function call;
– Via an input parameter of an interaction;
– Via the bind-construct in the header of a graphical DiCons specification.

user

var

v
0

0
:=e

0

0
:T

0

0
; : : :

v
0

m
:=e

0

m
:T

0

m

DiCons variable declaration

role role0; : : : ; roler

var v0:=e0:T0; : : : ; vn:=en:Tn

user

v0 := e

function call()

DiCons assignments and function calls

var v0:=e0:T0; : : : ; vn:=en:Tn

Fig. 14. Syntax for variable declarations, variable assignments and function calls

High-level behavioural composition To be able to compose the behaviour
description of a DiCons application in an hierarchical way we make use of the
same notation as is used for the composition of MSCs by means of High-level
MSCs (see [16]).

2.6 Presentations

Up to now, we only described the top level view of DiCons applications. This level
is concerned with the composition of interactions into complete specifications of
the behaviour of the applications. However, this is not the only level for which
we would like to make a graphical representation. The other levels of the DiCons
language concern the presentation of the interactions and the data definition.
Examples of textual descriptions of these levels can be found in [3].

338 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

3 An Example: The Meeting Scheduler

The purpose of this section is to explain the use of graphical DiCons by means
of an example. The example concerns the specification of a Meeting Scheduler,
taken from [17]. Figure 3 in Sect. 2.4 already contains an informal example of a
scenario of this application.

The purpose of a Meeting Scheduler is to support the process of scheduling a
date for a meeting without the intended participants having to meet for selecting
a date. A central server could easily take care of the administrative tasks and
support the communication process. Of course there are several publicly available
tools with capabilities similar to our Meeting Scheduler which offer much more
functionality.

We present a top-down development of the case study. The highest level is
represented in Fig. 15. This contains a drawing which resembles a High-level
Message Sequence Chart (see [16]). It shows that the application consists of
three phases, which are called initialize, check, and select. These three phases are
elaborated in Figs. 16, 17 and 18. Roughly speaking, in the initialization phase
the initiator starts the application and provides the server with the required
information, in the check phase, the intended participants send in their selection
of suitable dates, and in the select phase the initiator selects the meeting date.
In these three phases, several global variables may be used. These are declared
just below the header. Since we will not focus on the actual language used for
defining these variables and other data-related objects, we will simply use an
abstract mathematical notation. Users who interact with the system can have
two roles, viz. initiator and invitee. Furthermore, we declare an initiator of type
Initiator, a set of Invitees in which the list of invitees is stored, a set of optional
dates, a deadline before which the intended participants must have replied, and
for each intended invitee the list of dates that are not convenient to him.

Next, we look at the specification of the initialization phase in Fig. 16. This
is a specification at the interaction level. There are three entities taking part in
this description. The middle entity describes the system providing the required
service. Its behavior is represented by a, so-called, fat instance axis. This is to
clearly distinguish it from the other instances acting as clients. The left instance
is named initiator. This is the user who initializes the application. Because any
user is allowed to initialize the application, we add the bind construct in the
header to indicate that the identity of the actual initiator is saved in the variable
named initiator. From now on, this variable is instantiated. The rightmost entity
has the name i. This is a variable local to the par-frame.

The first interaction, named inv, implies a flow of information from the ini-
tiator to the server which is stored in the variable with the name invitees. Of
course the initiator must send data of the intended type (a set of invitees) in
order to successfully complete this interaction. This can be enforced by using
a web form and JavaScript, but we will not elaborate on these implementation
related issues. Note that the interaction is a reactive server pull (see Sect. 2.4),
specifying the beginning of a session. The second interaction within this session,
a session-oriented pull, requires the initiator to send a list of possible dates, fol-

An MSC Based Representation of DiCons 339

initialize

check

select

DiCons meeting scheduler
role Initiator ; Invitee

var initiator :Initiator ; invitees:P(Invitee);

dates:P(Date); deadline:Date;

inconv :Invitee!P(Date)

Fig. 15. High-level overview

lowed by an interaction which requires the initiator to send the deadline before
which the intended participants must have replied.

After having received all this information, the server invites all users from
the set of invitees to submit their selection of inconvenient dates. This can be im-
plemented by providing them with a URL of some web page where each of them
can select some of the proposed dates. The fact that all invitees are informed in
this way is expressed in the upper left corner of the surrounding frame, which
contains the parallel operator. Finally, the server ends the session by sending a
confirmation to the initiator.

In the second phase (Fig. 17), all intended participants are allowed to submit
their lists of inconvenient dates any number of times. This can be done until all
participants have replied, or the given deadline for replying has passed. This is
indicated by the break-frame. The contained behavior will be disrupted at the
moment that the breaking condition becomes true. Please note that this frame
in no way indicates any repetition itself. It just expresses that the enclosed
behavior can be disrupted. The repetition is expressed in the fork-frame. This
fork operator makes it possible for every invitee i from the set of invitees to start
a session. It is allowed that these sessions run in parallel and that an invitee takes
part in more than one session. It is even possible for one invitee to run several
independent sessions in parallel. For each session within this fork-frame the
server declares a local variable ds, which will contain the list of inconvenient

340 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

bind initiator

invitees .inv

dates .dat

deadline .dl

i

\invitation" .mail inv

par i 2 invitees

conf / \con�rmed"

DiCons initialize

Fig. 16. Initialization phase

dates as submitted by the invitee in this session. A var-frame is used to indicate
the scope of this variable. An invitee starting such a session is prompted by the
server with the list of optional dates and the list of inconvenient dates possibly
provided by i in a previous session. In the same interaction i provides his (new)
list of inconvenient dates ds. The assignment in the local action adds this list
to the information maintained by the server, and the server ends the session
by sending a confirmation to the invitee. Finally, the server adds the name of
the invitee to the set of invitees checked. This is to keep track of which invitees
have already submitted their information. This variable is used in the guard of
the break-frame. If this guard becomes true, the fork will be disrupted and the
server concludes that enough information has been collected in order for the
initiator to select the most suitable date. This is indicated to the initiator in the
final interaction of this drawing.

In the last drawing (see Fig. 18) the initiator starts a session to select the date
for the meeting and notify the participants of this date. In the first interaction
the server provides the initiator with the list of inconvenient dates. Based on
this information the initiator decides upon the final date and sends it to the
server, where it is stored in local variable d. In a par-frame, the server sends an
invitation or notification to all invitees, making a distinction between invitees
that have indicated to be able to come on the selected date and those that
cannot come. Finally, the server sends a confirmation to the initiator and the
application ends.

4 Related Work

We introduced a graphical representation of a specification language for a specific
class of Internet applications, viz. applications for distributed consensus. There

An MSC Based Representation of DiCons 341

initiator

i

hello/ \hello"

dates ; inconv [i] .inc / ds

inconv [i] := ds

\con�rmed" .conf

var ds :P(Date)

checked := checked [fig

fork i 2 invitees

break when

passed(deadline) _
checked=invitees

mail pick/ \pick date"

DiCons check
var checked := ; : P(Invitee)

Fig. 17. Checking phase

are many different languages to specify Internet applications, but as far as we
know, none of them is specifically designed to develop such applications.

Closest to our work is the development of the Web-language Mawl [1, 13].
This is also a language that supports interaction between an application and
a single user. Mawl provides the control flow of a single session, but does not
provide control flow across several sessions. This is a distinguishing feature of
DiCons: interactions involving several users are supported. On the other hand,
Mawl does allow several sessions with a single user to exist in parallel, using an
atomicity concept to execute sequences of actions as a single action.

Groupware [22] is a technology designed to facilitate the work of groups.
This technology may be used to communicate, cooperate, coordinate, solve prob-
lems, compete, or negotiate. Groupware can be divided into two main classes:
asynchronous and synchronous groupware. Synchronous groupware concerns an
exchange of information, which is transmitted and presented to the users instan-
taneously by using computers. On the other hand, asynchronous groupware is
based on sending messages which do not have to be read and replied to imme-
diately. An example of asynchronous groupware that can be specified in DiCons
is a calendar for scheduling a project.

342 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

initiator

d .pick / invitees ; dates ; inconv

i

\invite"; d .mail invite

\notify"; d .mail notify

if d 2 inconv [i]

par i 2 invitees

conf / \con�rmed"

DiCons select
var d : Date

Fig. 18. Selection phase

Visual Obliq [4] is an environment for designing, programming and running
distributed, multi-user GUI applications. Its interface builder outputs code in an
interpreted language called Obliq [5]. Unlike DiCons, an Obliq application can
be distributed over several so-called sites on a number of servers.

Collaborative Objects Coordination Architecture (COCA) [14] is a generic
framework for developing collaborative systems. In COCA, participants are di-
vided into different roles, having different rights as in DiCons. Li, Wang and
Muntz [15] used this tool to build an online auction.

Further, there are languages that allow programming of browsing behaviour.
These allow, for instance, the behaviour of a user who wants to download a
file from one of several mirror sites to be programmed. For so-called Service
Combinators see [6, 12]. A further development is the so-called ShopBot, see [7].

However, none of the languages described above have a graphical represen-
tation.

5 Conclusions

We find that the nature of DiCons allows a complete MSC-like representation
to be made in a straightforward manner. The examples show that although the
specification does not become more compact, it does become clearer which agents
communicate, and when they do so. This is exactly the strength of MSC.

In order to get a complete MSC representation, it was necessary to extend
MSC with a number of new constructions. Maybe the presentation of these
features is still a bit ad hoc, but the intention of this document is not to define

An MSC Based Representation of DiCons 343

a graphical layer of DiCons, but rather to investigate the feasibility of such an
exercise.

In DiCons, we group separate communication actions into one aggregated
interaction. In the semantics, this leads to questions concerning atomicity. In
general, research is needed to consider atomicity with respect to possible race
conditions. Our aggregated interactions are a special case of the notion of mes-
sage refinement as discussed in [8].

Using MSC gives a whole range of possibilities in terms of precision and
completeness, in our setting. On the one hand, there are trace-based descrip-
tions of runs, requirements or test traces of a system, on the other hand, there
is the complete description of the whole behaviour of the server. Further, MSC
supports all levels in between, so that it is also possible to describe the compo-
sition of test runs, or test purposes. The testing of Internet applications is still
not developed very much, and is usually based on the manual execution of ad
hoc test sequences. Now that we have a formal notation for a class of Internet
applications, that both supports the description of complete systems and of the
behaviour of components, it might be possible to start testing in a more formal
and structured manner, for instance using Autolink [20] or TorX [21]. In this re-
spect, it is interesting to see what is the relation between our graphical language
and the MSC-based graphical language for TTCN-3, see [19].

We have implemented a compiler which can be used to compile (textual)
DiCons specifications into Java Servlets [18]. See our Web site1 for some working
examples. Except for generating a Servlet, the compiler checks a specification on
its syntax and static semantics. As making graphical tools for DiCons is quite a
big investment, we will not do a complete implementation before the language
DiCons has become stable.

References

1. D. L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A domain-specific language for
form-based services. IEEE Transactions on Software Engineering, 25(3):334–346,
May/June 1999. Special Section: Domain-Specific Languages (DSL).

2. J. Baeten, H. van Beek, and S. Mauw. Specifying internet applications with Di-
Cons. In Proceedings of the 16th ACM Symposium on Applied Computing (SAC
2001), Mar. 2001.

3. H. v. Beek. Internet protocols for distributed consensus – the DiCons language.
Master’s thesis, Eindhoven University of Technology, Aug. 2000.

4. K. Bharat and M. H. Brown. Building distributed, multi-user applications by direct
manipulation. In Proceedings of the ACM Symposium on User Interface Software
and Technology, Groupware and 3D Tools, pages 71–81, 1994.

5. L. Cardelli. Obliq A language with distributed scope. SRC Research Report 122,
Digital Equipment, June 1994.

6. L. Cardelli and R. Davies. Service combinators for web computing. IEEE Trans-
actions on Software Engineering, 25(3):309–316, May/June 1999.

1 The DiCons Web site can be found at http://dicons.eesi.tue.nl/.

344 J.C.M. Baeten, H.M.A. van Beek, S. Mauw

7. R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable comparison-shopping
agent for the world-wide web. In W. L. Johnson and B. Hayes-Roth, editors, Pro-
ceedings of the First International Conference on Autonomous Agents (Agents’97),
pages 39–48, Marina del Rey, CA, USA, 1997. ACM Press.

8. A. Engels. Message refinement: Describing multi-level protocols in MSC. In Y. La-
hav, A. Wolisz, J. Fischer, and E. Holz, editors, Proceedings of the 1st Workshop
of the SDL Forum Society on SDL and MSC, number 104 in Informatik-Berichte,
pages 67–74, Berlin, Germany, June 1998. Humboldt-Universität zu Berlin.

9. A. Engels. Design decisions on data and guards in MSC2000. In S. Graf, C. Jard,
and Y. Lahav, editors, SAM2000. 2nd Workshop on SDL and MSC, pages 33–46,
Col de Porte, Grenoble, June 2000.

10. A. Engels, L. Feijs, and S. Mauw. MSC and data: Dynamic variables. In R. Dsoulli,
G. von Bochmann, and Y. Lahav, editors, SDL’99: The Next Millennium, Proceed-
ings of the 9th SDL Forum, pages 105–120, Montreal, Canada, June 1999. Elsevier.

11. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC2000).
ITU-TS, Geneva, 2000.

12. T. Kistler and H. Marais. WebL — a programming language for the Web. Computer
Networks and ISDN Systems, 30(1–7):259–270, Apr. 1998.

13. D. Ladd and J. Ramming. Programming the web: An application-oriented lan-
guage for hypermedia service programming. In Proc. 4th WWW Conf., WWW
Consortium, pages 567–586, 1995.

14. D. Li and R. R. Muntz. COCA: Collaborative objects coordination architecture.
In Proceedings of ACM CSCW’98 Conference on Computer-Supported Cooperative
Work, Infrastructures for Collaboration, pages 179–188, 1998.

15. D. Li, Z. Wang, and R. R. Muntz. Building web auctions from the perspective
of collaboration. Technical report, UCLA Department of Computer Science, Sept.
1998.

16. S. Mauw and M. Reniers. High-level Message Sequence Charts. In A. Cavalli and
A. Sarma, editors, SDL’97: Time for Testing - SDL, MSC and Trends, Proceedings
of the Eighth SDL Forum, pages 291–306, Evry, France, September 1997.

17. S. Mauw, M. Reniers, and T. Willemse. Message Sequence Charts in the soft-
ware engineering process. In Handbook of Software Engineering and Knowledge
Engineering, S.K. Chang, editor. World Scientific, 2001. To appear.

18. K. Moss. Java Servlets. Computing McGraw-Hill, July 1998.
19. E. Rudolph, I. Schieferdecker, and J. Grabowski. HyperMSC – a graphical repre-

sentation of TTCN. In Proceedings of the 2nd Workshop of the SDL Forum Society
on SDL and MSC (SAM’2000), Grenoble (France), June 2000.

20. M. Schimitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Koch. Autolink – puting
SDL–based test generation into practice. In A. Petrenko, editor, Proceedings of
the 11th International Workshop on Testing Comunicating Systems (IWTCS’98),
pages 227–243. Kluwer Academic, 1998.

21. J. Tretmans and A. Belinfante. Automatic testing with formal methods. In Eu-
roSTAR’99: 7th European Int. Conference on Software Testing, Analysis & Review,
Barcelona, Spain, Nov. 1999. EuroStar Conferences, Galway, Ireland.

22. J. Udell. Practical Internet Groupware. O’Reilly & Associates, Inc., Oct. 1999.

