
1

Delayed choice: an operator for joining Message Sequence Charts

J.C.M. Baeten and S. Mauw

Dept. of Mathematics and Computing Science,

Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

We study the extension of a simple process algebra with the delayed choice operator. It

di�ers from the normal non-deterministic choice in that the moment of choice is delayed

until all alternatives can be distinguished by their �rst action. An application is in joining

Message Sequence Charts.

1. INTRODUCTION

Message Sequence Charts provide a graphical method for the description of the interac-

tions between system components. The ITU-TS (the Telecommunication Standardization

Section of the International Telecommunication Union, the former CCITT) maintains rec-

ommendation Z.120 [13] which contains the syntax and an informal explanation of the

semantics of Message Sequence Charts. Current developments are the de�nition of a for-

mal semantics based on branching time process algebra [16, 17] and the extension of the

MSC language with operators [12].

The current proposal of the formal semantics only considers single Message Sequence

Charts, while the application of Message Sequence Charts often consists of a collection of

Message Sequence Charts. Sometimes the intended meaning is the sequential composition

of the charts contained, while in other cases they are viewed as alternatives. The semantics

of such a collection thus can only be de�ned if the relation between the contained Message

Sequence Charts is explicitly stated. It is proposed to use operators for this purpose.

In [10] several operators are proposed: alternative composition (+), sequential composi-

tion (�), weak sequential composition (�) and parallel composition (k). We think however

that in a branching time setting the non-deterministic alternative composition operator

is not always the intention of the user. In branching time the moment of choice is taken

into consideration, so, for example, a distinction is made between the processes a(b+ c)

and ab + ac. In the �rst expression the choice between b and c is made after executing

action a, while in the second expression the choice is made before a. Now consider the

following typical use of Message Sequence Charts (see Figure 1).

The semantics of the �rst drawing is that �rst a message ICONreq is received from

the environment by the Initiator. Thereafter the message ICON is being sent to the

Responder, which sends an ICONind to the environment and receives an ICONresp from

the environment. The Responder sends ICONF back to the Initiator, who sends an

ICONconf to the environment. The second drawing displays an alternative scenario in

which due to a timeout (which was left out of the picture), a failure IDISind is reported

to the environment.

2

Responder

ICONconf
ICONF

ICONresp

ICONind
ICON

ICONreq

Initiator

msc connection setup (a)

Responder

ICONind
ICON

ICONreq

Initiator

IDISind

msc connection setup (b)

Figure 1. Two Message Sequence Charts

If we combine these two Message Sequence Charts by means of the alternative compo-

sition operator in a branching time setting, it will mean that the choice between correct

operation and faulty operation has been made before reception of the ICONreq. This was

obviously not the intention.

In order to be able to combine alternative Message Sequence Charts while sharing their

initial behavior, we introduce the delayed choice operator. Since it behaves as the choice

operator in the setting of trace theory, we will denote it by � (Trace-+). The most

important property is expressed in the following equation (a, b and c are atomic actions,

b 6= c).

ab� ac = a(b+ c)

while, if the two operands do not share an initial action (i.e. a 6= c), we have

ab� cd = ab+ cd

In this paper we will de�ne this operator within the framework of BPA

"

. This is

the concurrency theory BPA (Basic Process Algebra) extended with the empty process

", which is the neutral element for sequential composition. Introduction of this special

process is motivated by the following example. In the expression a � ab both operands

start with action a. The �rst operand terminates after execution of a, while the second

operand executes b after execution of a. This can only be expressed if we have a special

symbol for immediate termination. Using the empty process we obtain a("+ b).

Several variants of the alternative composition operator have been de�ned before, none

of which satis�es our needs.

In TCSP [8] (Theoretical Communicating Sequential Processes) we have the determin-

istic choice operator 2 and the non-deterministic choice u. The operator 2 also removes

possible non-determinism, but only non-determinism due to internal steps. This operator

was de�ned in a branching time setting in [9], there called � -angelic choice. The operator

we need should remove all non-determinism, also non-determinism due to external, visible

3

actions. Note that TCSP's non-deterministic choice u was studied in a branching time

setting in [2]; there, also a form of choice intermediate between 2 and u is studied.

The operational rules we will present for our delayed choice operator also appear in

[18] for an operator they call angelic non-determinism. In [18], only linear time seman-

tics is considered, and no axiomatization is presented. We present our delayed choice

operator in a more general branching time framework, and moreover provide a complete

axiomatization for �nite processes.

We prefer not to use the term angelic choice. This is because this term stems from a

dualistic world, where speci�ed behavior is distinguished from intended behavior. Trans-

ferring this notion to the monistic world of process theory will only cause confusion and

di�erences of opinion.

The remainder of this paper is structured as follows. In Section 2 we will give a short

introduction to the theory BPA

"

. Section 3 contains an axiomatization and an operational

semantics of the delayed choice operator. An example of the use of this operator in the

�eld of Message Sequence Charts is shown in Section 4.

We thank Michel Reniers for proof reading this document and Wim Hesselink for a

conversation on angelic choice.

2. BASIC PROCESS ALGEBRA WITH THE EMPTY PROCESS

The process algebra BPA

"

is an algebraic theory for the description of process behavior

[5, 6]. This theory is parameterized by a set of unspeci�ed constants A, which are called

atomic actions. A process is built up from atomic actions, the special constants � and "

and the operators � and +.

The special constant � denotes the process that has stopped executing actions and

cannot proceed. This constant is called deadlock or inaction. The special constant "

denotes the process that is only capable of terminating successfully. It is called the empty

process.

The binary operators + and � are called the alternative and sequential composition. The

alternative composition of the processes x and y is the process that either executes process

x or y but not both. The sequential composition of the processes x and y is the process

that �rst executes process x, and upon completion thereof starts with the execution of

process y.

The equations of BPA

"

are given in Table 1. Axiom A1, A2 and A3 express that the +

is commutative, associative and idempotent. Axiom A4 de�nes right distributivity of the

sequential composition over the alternative composition. Since we consider a branching

time theory, we do not have left distributivity. Axiom A5 expresses associativity of the

sequential composition. Deadlock is de�ned by axioms A6 and A7 and the empty process

is de�ned by axioms A8 and A9.

The precedence of the operators is as follows: � binds stronger than all other operators

to be introduced, and + binds weaker. The other operators have the same binding power.

Brackets are associated to the left. We sometimes use xy to denote x � y.

Table 2 de�nes a structured operational semantics (S.O.S.) in the style of [19]. Predicate

expresses that a process has an option to terminate. For every atomic action a, predicate

a

! expresses that the �rst argument can execute action a and become the second argument.

4

Table 1

Axioms of BPA

"

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) � z = x � z + y � z A4

(x � y) � z = x � (y � z) A5

x+ � = x A6

� � x = � A7

x � " = x A8

" � x = x A9

Thus the �rst rule states that " has a termination option. The second rule states that

whenever x has a termination option then so do x+ y and y+x, and the third rule states

that whenever both x and y have a termination option, then so does x � y.

Table 2

Operational semantics for BPA

"

"#

x#

(x+y)#; (y+x)#

x#; y#

(x�y)#

a

a

!"

x

a

!x

0

x+y

a

!x

0

; y+x

a

!x

0

x

a

!x

0

x�y

a

!x

0

�y

x#; y

a

!y

0

x�y

a

!y

0

Using these predicates it is easy to associate an element of the so-called graph model

to every process expression. The domain G of this model consists of �nitely branching

rooted graphs. Edges are labeled with an atomic action and nodes may be attributed

with the symbol # to indicate the option to terminate successfully.

The model G=
$

{{

of BPA

"

is the graph domain divided out by bisimulation. Two graphs

are bisimilar if there is a bisimulation relating their root nodes. A bisimulation is a binary

relation R, satisfying:

� if R(p; q) and p

a

! p

0

, then there is a q

0

such that q

a

! q

0

and R(p

0

; q

0

)

� if R(p; q) and q

a

! q

0

, then there is a p

0

such that p

a

! p

0

and R(p

0

; q

0

)

� if R(p; q) then p# if and only if q#.

5

3. THE DELAYED CHOICE

3.1. Axioms

The delayed choice between processes x and y, is the process obtained by joining the

common initial parts of x and y and continuing with a normal choice between the remain-

ing parts. However, we do not want to remove nondeterministic choices which are internal

to x or y. This is expressed in the de�nition of the delayed choice operator in Table 3.

For this de�nition we need two auxiliary operators. The �rst is the join operator (1).

In x 1 y exactly those summands of x and y are selected which have a common initial

action. The corresponding summands of x and y are joined with respect to their �rst

common action. The unless operator (�) has the opposite behavior. In x � y only those

summands from x are selected which share no initial action with y. Now the de�nition

of the delayed choice can be interpreted as follows. There are three options. The �rst

is that a summand of x and a summand of y have a common initial action. In this case

the result is a summand where this action is shared (x 1 y). The second case is that a

summand from x has no initial action with any summand of y in common (x � y) and

the third case is that a summand of y has no initial action with any summand of x in

common (y � x).

Table 3

Axioms for delayed choice

x� y = x 1 y + x � y + y � x DC1

" 1 x = � DC2 " � x = " DC10

x 1 " = � DC3 x � " = x DC11

� 1 x = � DC4 � � x = � DC12

x 1 � = � DC5 x � � = x DC13

ax 1 ay = a(x� y) DC6 ax � ay = � DC14

a 6= b) ax 1 by = � DC7 a 6= b) ax � by = ax DC15

(x+ y) 1 z = x 1 z + y 1 z DC8 (x+ y) � z = (x � z) + (y � z) DC16

x 1 (y + z) = x 1 y + x 1 z DC9 x � (y + z) = (x � y) � z DC17

The unless operator � that we have here has a �ltering behavior very much like the

unless operator used in the axiomatization of the priority operator in [3]; this is the reason

we use the same name and notation.

Examples (assuming that a, b, c, d, e and f are distinct atomic actions):

(ab+ ac)� ad = a(b+ d) + a(c+ d)

(ab+ ac)� (ad+ ae+ f) = a(b+ d) + a(c+ d) + a(b+ e) + a(c+ e) + f

The theory BPA

"

extended with the delayed choice operator is denoted by BPA

"

+DC.

6

Table 4

Operational semantics for Delayed Choice

x

a

!x

0

; y

a

!y

0

x�y

a

!x

0

�y

0

; x1y

a

!x

0

�y

0

x

a

!x

0

; y 6

a

!

x�y

a

!x

0

; y�x

a

!x

0

; x�y

a

!x

0

x#

(x�y)#; (y�x)#; (x�y)#

3.2. Structured Operational Semantics

The rules in Table 4 de�ne an operational semantics for the delayed choice operator. In

the de�nition of the

a

! predicate, we make use of so-called negative premises (see [20]).

This means that a negation occurs in the condition of an S.O.S. rule. Expression y 6

a

!

means that process y cannot execute action a. In Lemma 3.3.4 we prove correctness of this

de�nition. The construction of the graph associated to a process is not as straightforward

as in the case without negative premises. Using a layering technique (see [7]) we can

derive the so-called deduction graph.

We started by formulating the axiomatic laws and afterwards came up with operational

rules. This can also be done in reverse order: as [1] shows, there are heuristics on deriving

a set of axiomatic laws on the basis of the operational rules. The auxiliary operators 1

and �, needed for a �nite axiomatization, arise by splitting up the operational rules into

di�erent cases.

3.3. Soundness and Completeness

In this section we prove soundness and completeness of the axioms with respect to

the S.O.S. rules. In order to prove that the extension of BPA

"

with the delayed choice is

conservative, we use term rewrite techniques. Consider the term rewrite system consisting

of the rules A3{A9 from Table 1, all axioms of Table 3 and the additional axioms from

Table 5 (a 6= b), oriented from left to right. The additional rules are derivable from the

axioms for the delayed choice operator. They are needed because in some derivations

axiom A8 (x � " = x) is used from right to left.

Table 5

Additional rules

a 1 a = a a 1 b = � a � a = � a � b = a

a 1 ax = a("+ x) a 1 bx = � a � ax = � a � bx = a

ax 1 a = a("+ x) ax 1 b = � ax � a = � ax � b = ax

7

Lemma 3.3.1 The term rewrite system de�ned above is strongly normalizing

Proof We do this by applying the method of the lexicographical path ordering [14, 15].

There is a complication with this, as in the reduction of �, the operator 1 appears, and

in the reduction of ax 1 ay, it is the other way around. The solution is to weigh these

operators with the size of their arguments, as is done in [6]. Thus, we get operators �

n

,

1

n

, and the ordering is as in Figure 2 (a any atomic action).

.

.

.

�

3

1

3

�

2

1

2

S

S

�

�

" a

�

� �

�

�

Q

Q

Q

Q

�

�

+

Figure 2. Ordering of operators

Furthermore, we give � the lexicographical status for the �rst argument, and � the

lexicographical status for the second argument. For more information on lexicographical

path ordering, we refer to [15]. 2

De�nition 3.3.2 De�ne the class B of basic terms over BPA

"

+DC as the smallest class

satisfying

1. "; � 2 B, A � B

2. a 2 A; t 2 B) a � t 2 B

3. s; t 2 B) s+ t 2 B

Theorem 3.3.3 Let t be a closed BPA

"

+ DC-term. Then there is a basic term s with

BPA

"

+DC ` t = s.

Proof Using 3.3.1 rewrite t to normal form s. We claim that s must be basic. For,

s cannot contain � because DC1 can be applied. If s contains 1 or �, take a smallest

sub-term containing one of them, say s

1

1 s

2

, then we can apply one of DC2{DC9 or the

additional rules for 1 from Table 5. If this subterm is s

1

� s

2

then we can apply one of

DC10{DC17 or the additional rules for �. It is now easy to �nish the proof. 2

This is the so-called elimination theorem, saying that the operators newly introduced

can be eliminated from closed terms.

8

Lemma 3.3.4 Bisimulation is a congruence on the set of deduction graphs generated by

the S.O.S. rules.

Proof The S.O.S. rules for BPA

"

and delayed choice satisfy the panth format of [20].

Thus, all we need to do is to provide a strati�cation for this term deduction system. This

is easy: the rank of a step t

a

! t

0

or a termination option t # is the number of � symbols

plus the number of � symbols in t. It is now easy to check that the conditions are met. 2

Thus we have that all operators are de�ned on G=
$

{{

, the set of deduction graphs

modulo
$

{{

.

Theorem 3.3.5 Soundness: G=
$

{{

j= BPA

"

+DC.

Proof By [4] we have G=
$

{{

j= BPA

"

. For DC1, consider the relation that relates every

closed term of the form x � y to the term x 1 y + x � y + y � x (and vice versa) and

moreover relates every term to itself. On the basis of the de�nition of a deduction graph,

it is easy to verify that this is a bisimulation. All other axioms are equally simple. 2

Theorem 3.3.6 BPA

"

+DC is a conservative extension of BPA

"

.

Proof The operational conservativity follows since our operational rules are in panth

format, and pure and well-founded (see [21]). Then we get equational conservativity since

the axiomatization of BPA

"

is sound and complete (see [4]) and the axiomatization of DC

is sound (Theorem 3.3.5). 2

Theorem 3.3.7 BPA

"

+DC is a complete axiomatization for G=
$

{{

.

Proof See [21]. In addition to the ingredients of the previous proof, all we need is the

elimination theorem (Theorem 3.3.3). 2

3.4. Properties

The main property proven in this section is the commutativity and associativity of �.

This is not derivable from the axioms, but it holds for all closed terms. We need several

lemmas to prove this.

Lemma 3.4.1 The following identities are derivable from the equations.

1. ax� ay = a(x� y)

2. a 6= b) ax� by = ax+ by

3. x� � = x

4. x� " = x+ "

5. (x � y) � z = (x � z) � y

9

Proof

1. ax� ay = ax 1 ay + ax � ay + ay � ax = a(x� y) + � + � = a(x� y).

2. If a 6= b then ax� by = ax 1 by + ax � by + by � ax = � + ax+ by = ax+ by.

3. x� � = x 1 � + x � � + � � x = � + x+ � = x.

4. x� " = x 1 "+ x � "+ " � x = � + x+ " = x+ ".

5. (x � y) � z = x � (y + z) = x � (z + y) = (x � z) � y. 2

In the following we use that every closed term can be written in the form

P

a

i

x

i

(+"),

where (+") denotes an optional summand ". This follows from the elimination theorem

(Theorem 3.3.3).

Lemma 3.4.2 Let a

i

and b

j

(i 2 I, j 2 J , I and J �nite) be atomic actions and let x

i

and y

j

be processes.

1.

X

i

a

i

x

i

(+") 1

X

j

b

j

y

j

(+") =

X

i;j(a

i

=b

j

)

a

i

(x

i

� y

j

)

2.

X

i

a

i

x

i

�

X

j

b

j

y

j

(+") =

X

i(8

j

a

i

6=b

j

)

a

i

x

i

3.

X

i

a

i

x

i

+ "

!

�

X

j

b

j

y

j

(+") =

X

i(8

j

a

i

6=b

j

)

a

i

x

i

+ "

Proof

1.

X

i

a

i

x

i

(+") 1

X

j

b

j

y

j

(+") =

X

i;j

(a

i

x

i

1 b

j

y

j

) =

X

i;j(a

i

=b

j

)

a

i

(x

i

� y

j

)

2.

X

i

a

i

x

i

�

X

j

b

j

y

j

(+") =

X

i

(a

i

x

i

�

X

j

b

j

y

j

(+")) =

X

i(8

j

a

i

6=b

j

)

a

i

x

i

This last equality can be proven with induction on the number of elements in J .

3. Analogously. 2

De�ne the set of initial actions of a process as in Table 6.

Table 6

Initial actions of a process

I(�) = ;

I(") = ;

I(ax) = fag

I(x+ y) = I(x) [I(y)

10

Lemma 3.4.3 For closed terms x and y we have

1. I(x 1 y) = I(x) \ I(y)

2. I(x � y) = I(x)� I(y)

3. I(x� y) = I(x) [I(y)

Proof This follows directly from the de�nitions and Lemma 3.4.2. 2

The next lemma expresses the fact that in an expression of the form x � y, only the

initial actions of y matter.

Lemma 3.4.4 For closed terms x, y and z

I(y) = I(z)) x � y = x � z

Proof Write x =

P

a

i

x

i

, y =

P

b

j

y

j

(+") and z =

P

c

k

z

k

(+").

We use the following property: I(

P

j2J

b

j

y

j

(+")) = fb

j

: j 2 Jg.

X

i

a

i

x

i

�

X

j

b

j

y

j

(+") =

X

i(8

j

a

i

6=b

j

)

a

i

x

i

=

X

i(8

k

a

i

6=c

k

)

a

i

x

i

=

X

i

a

i

x

i

�

X

k

c

k

z

k

(+")

If x has a summand " an analogous proof applies. 2

Theorem 3.4.5 For closed terms x, y and z we have

1. x 1 y = y 1 x

2. x� y = y � x

3. x � (y � z) = x � (y + z) = (x � y) � z

4. x 1 (y � z) = (x 1 y) � z = (x � z) 1 y

5. x 1 (y 1 z) = (x 1 y) 1 z

6. x� (y � z) = (x� y)� z

Proof

� (1) and (2) are proven by mutual induction. Again write x =

P

a

i

x

i

(+"), y =

P

b

j

y

j

(+") and z =

P

c

k

z

k

(+"). First consider (1).

X

i

a

i

x

i

(+") 1

X

j

b

j

y

j

(+")

=

X

i;j(a

i

=b

j

)

a

i

(x

i

� y

j

)

=

X

i;j(a

i

=b

j

)

a

i

(y

j

� x

i

)

=

X

i;j(a

i

=b

j

)

b

j

(y

j

� x

i

)

=

X

j

b

j

y

j

(+") 1

X

i

a

i

x

i

(+")

11

For (2) we calculate:

x� y = x 1 y + x � y + y � x = y 1 x+ y � x+ x � y = y � x.

� (3) follows from Lemma 3.4.3.3, Lemma 3.4.4 and the de�nitions.

� For (4) write x =

P

a

i

x

i

, y =

P

b

j

y

j

(+") and z =

P

c

k

z

k

(+"). Then we have:

(x 1 y) � z

=

0

@

X

i

a

i

x

i

1

X

j

b

j

y

j

(+")

1

A

�

X

k

c

k

z

k

(+")

=

0

@

X

i;j(a

i

=b

j

)

a

i

(x

i

� y

j

)

1

A

�

X

k

c

k

z

k

(+")

=

X

i;j(a

i

=b

j

;8

k

a

i

6=c

k

)

a

i

(x

i

� y

j

)

=

X

i(8

k

a

i

6=c

k

)

a

i

x

i

1

X

j

b

j

y

j

(+")

= (x � z) 1 y

If x has a summand ", the proof is analogous. The other equation goes similarly.

� For (5) and (6) we use mutual induction. Write x =

P

a

i

x

i

(+"); y =

P

b

j

y

j

(+"); z =

P

c

k

z

k

(+"). Then for (5) we calculate:

x 1 (y 1 z)

=

X

i

a

i

x

i

(+") 1

0

@

X

j

b

j

y

j

(+") 1

X

k

c

k

z

k

(+")

1

A

=

X

i

a

i

x

i

(+") 1

X

j;k(b

j

=c

k

)

b

j

(y

j

� z

k

)

=

X

i;j;k(a

i

=b

j

=c

k

)

a

i

(x

i

� (y

j

� z

k

))

=

X

i;j;k(a

i

=b

j

=c

k

)

a

i

((x

i

� y

j

)� z

k

)

=

X

i;j(a

i

=b

j

)

a

i

(x

i

� y

j

) 1

X

k

c

k

z

k

(+")

= (x 1 y) 1 z

For (6) we have

x� (y � z)

= x 1 (y � z) + x � (y � z) + (y � z) � x

x 1 (y 1 z) + x 1 (y � z) + x 1 (z � y) +

x � (y � z) +

(y 1 z) � x+ (y � z) � x+ (z � y) � x

= (x 1 y) 1 z + (x 1 y) � z + (x � y) 1 z +

12

(x � y) � z +

(y � x) 1 z + (y � x) � z + z � (x� y)

= (x� y) 1 z + (x� y) � z + z � (x� y)

= (x� y)� z 2

We have established associativity and commutativity for �. However, the delayed

choice operator is not idempotent and it does not satisfy several laws of distributivity.

Proposition 3.4.6 The following equations are NOT valid in the initial algebra.

1. x� x = x

2. (x+ y)� z = (x� z) + (y � z)

3. (x� y) + z = (x+ z)� (y + z)

4. (x� y)z = xz � yz

5. z(x� y) = zx� zy

Proof Let a, b, c, d and e be distinct atomic actions.

1. (ab+ ac)� (ab+ ac) = ab+ a(b+ c) + ac

2. (ab+ cd)� ae = a(b+ e) + cd, while

(ab� ae) + (cd� ae) = a(b+ e) + cd+ ae.

3. (ab� c) + ad = ab+ c+ ad, while

(ab+ ad)� (c+ ad) = a(b+ d) + ad+ c.

4. ("� a)a = a+ aa, while

"a� aa = a("+ a).

5. (ab+ ac)(d� e) = ab(d+ e) + ac(d+ e), while

(ab+ ac)d� (ab+ ac)e = (abd+ acd)� (abe+ ace) = ab(d+ e)+ a(bd+ ce)+ a(cd+

be) + ac(d+ e). 2

4. EXAMPLE

Figure 3 shows an example of the use of the delayed choice operator for combining Mes-

sage Sequence Charts. The complete MSC document consists of four Message Sequence

Charts. The �rst MSC describes the normal operation of a system which consists of two

instances a and b. Instance a sends a start message to instance b. Next a test has to

be performed by b, which checks if b operates correctly. This is indicated by a condi-

tion named testing. Such a condition can be used to denote that there are two possible

continuations. The �rst possibility is expressed in MSC continuation 1. It describes the

situation where b actually performs a test (indicated by the local action test), followed by

an acknowledgement to a. The alternative continuation is described in MSC continuation

2. In this case, a test is performed and followed by a negative acknowledgment. These

13

two continuations are alternatives, thus expressing that the choice between ok and fail is

non-deterministic. Furthermore, MSC cancel expresses yet another scenario. It describes

the option that a, immediately after starting b, can cancel operation of b. It is clearly

not the intention to have a non-deterministic choice between testing and cancellation. So

these alternative scenarios are combined with the delayed choice operator.

Using the techniques from [16] we calculate the semantics of these four Message Se-

quence Charts separately in a simpli�ed notation. Since a Message Sequence Chart de-

scribes asynchronous communication, a distinction is made between the output and the

input of a message.

normaloperation = out(start) � in(start)

continuation1 = test � out(ok) � in(ok)

continuation2 = test � out(fail) � in(fail)

cancel = out(start)� (in(start) � out(cancel) � in(cancel)

+out(cancel) � in(start) � in(cancel)

)

Thus the intended semantics of the complete MSC document is

normaloperation � (continuation1 + continuation2)� cancel

This is equal to

out(start) � in(start) � (test � out(ok) � in(ok) + test � out(fail) � in(fail))

� out(start)� (in(start) � out(cancel) � in(cancel)

+out(cancel) � in(start) � in(cancel)

)

= out(start) � (in(start)� (test � out(ok) � in(ok)

+test � out(fail) � in(fail)

+out(cancel) � in(cancel)

)

+out(cancel) � in(start) � in(cancel)

)

5. CONCLUSION

We de�ned the semantics of the delayed choice operator, without proposing a concrete

textual or graphical syntax for it in the MSC language. The reason is that the integration

of compositional operators and Message Sequence Charts must be uniform for all operators

proposed.

We de�ned operational semantics for the delayed choice operator and gave a sound

and complete set of equational laws. We also proved some additional properties of this

operator.

If we replace in a process all choices by delayed choices we throw away all branching time

information. Thus, on processes that contain only delayed choice, bisimulation semantics

14

msc continuation 1

a b

testing

ok

a b

testing

fail

a b

start

testing

a b

cancel

msc normal operation msc cancel

msc continuation 2

start

test test

Figure 3. Example Message Sequence Charts

and trace semantics coincide [11]. We leave the formalization of this statement as future

work.

The modular approach to process algebra in the style of [5, 6] makes it easy to ex-

tend the theory presented here with additional operators. Thus, it is straightforward to

achieve extensions with parallel composition, synchronous communication, asynchronous

communication, abstraction and other features.

Of course the use of the delayed choice operator is not restricted to the domain of

Message Sequence Charts. It is applicable in all cases where we need to express trace-like

alternatives in a branching time setting. In general, we prefer the introduction of an extra

operator to a total reconsideration of a theory in a di�erent semantics.

REFERENCES

1. L. Aceto, B. Bloom, and F.W. Vaandrager. Turning sos rules into equations. In Proc.

LICS92, pages 113{124. Santa Cruz, IEEE Computer Society Press, 1992.

2. J.C.M. Baeten and J.A. Bergstra. Process algebra with partial choice. In J. Parrow,

editor, Proc. CONCUR'94. Uppsala, LNCS, 1994. (to appear).

3. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equations for an

interrupt mechanism in process algebra. Fund. Inf., IX(2):127{168, 1986.

4. J.C.M. Baeten and R.J. van Glabbeek. Merge and termination in process algebra. In

15

K.V. Nori, editor, Proc. FST&TCS 7, pages 153{172. Pune, Springer Verlag, 1987.

LNCS 287.

5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical

Computer Science 18. Cambridge University Press, 1990.

6. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. I&C,

60(1/3):109{137, 1984.

7. B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can't be traced: preliminary

report. In Proc. 15th ACM symposium on Principles of Programming Languages,

pages 229{239. San Diego, California, 1988.

8. S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential

processes. Journal of the ACM, 31:560{599, 1984.

9. P. D'Argenio. � -angelic choice for process algebra. Technical report, LIFIA, Dpto. de

Inform�atica, Fac. Cs. Exactas, UNLP, 1994.

10. J. de Man. Towards a formal semantics of Message Sequence Charts. In

O. F�rgemand and A. Sarma, editors, SDL'93 Using Objects, Proceedings of the

Sixth SDL Forum, Darmstadt, 1993. Elsevier Science Publishers B.V.

11. J. Engelfriet. Determinacy ! (observation equivalence = trace equivalence. TCS,

36(1):21{25, 1985.

12. O. Haugen. MSC Structural concepts. Experts Meeting SG10, Turin, TD9006, ITU-

TS, 1994.

13. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,

Geneva, 1994.

14. S. Kamin and J.-J. L�evy. Two generalizations of the recursive path ordering. Unpub-

lished manuscript, 1980.

15. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,

editors, Handbook of Logic in Computer Science, volume II, pages 1{116. Oxford

University Press, 1992.

16. S. Mauw and M.A. Reniers. An algebraic semantics of Basic Message Sequence Charts.

The computer journal, 37(4), 1994. (to appear).

17. S. Mauw and M.A. Reniers. An algebraic semantics of Message Sequence Charts.

Experts Meeting SG10, Turin, TD9009, ITU-TS, 1994. Report CSN94/23, Eindhoven

University of Technology, 1994.

18. M.W. Mislove and F.J. Oles. A simple language supporting angelic nondetermin-

ism and parallel composition. In S. Brookes, M. Main, A. Melton, M. Mislove, and

D. Schmidt, editors, Mathematical Foundations of Programming Semantics, 7th in-

ternational conference, pages 77{101. Springer Verlag, 1991.

19. G.D. Plotkin. An operational semantics for CSP. In Proceedings of the Conference

on the Formal Description of Programming Concepts, volume 2, Garmisch, 1983.

20. C. Verhoef. A congruence theorem for structured operational semantics with pred-

icates and negative premises. In J. Parrow, editor, Proc. CONCUR'94. Uppsala,

LNCS, 1994. (to appear).

21. C. Verhoef. A general conservative extension theorem in process algebra. In Proc.

PROCOMET'94, IFIP 2 Working Conference. San Miniato, North-Holland, 1994. (to

appear), report CSN 93/38, Eindhoven University of Technology 1993.

