Algebraic Specification of Dynamic
Leader Election Protocols in Broadcast
Networks

Jacob Brunekreef
Programming Research Group, University of Amsterdam

Amsterdam, The Netherlands

Joost-Pieter Katoen

Dept. of Computing Science, University of Twente
Enschede, The Netherlands

Ron Koymans

Philips Research Laboratories
Eindhoven, The Netherlands

Sjouke Mauw
Dept. of Math. and Comp. Sc., Eindhoven University of Technology
Eindhoven, The Netherlands

Abstract

The problem of leader election in distributed systems is considered. Com-
ponents communicate by means of buffered broadcasting as opposed to
usual point-to-point communication. In this paper three leader election
protocols of increasing maturity are specified. We start with a simple
leader election protocol, where an initial leader is present. In the second
protocol this assumption is dropped. Eventually a fault-tolerant protocol
is constructed, where components may crash and revive spontaneously.

Both the protocols and the required behaviour are formally speci-
fied in ACP. Some remarks are made about a formal verification of the
protocols.

1 Introduction

In current distributed systems functions (or services) are offered by some ded-
icated component(s) in the system. Usually many components are capable to
offer a certain functionality. However, at any moment only one component is
allowed to actually offer the function. Therefore, one component —called the
“leader” must be elected to support that function. Sometimes it suffices to
elect an arbitrary component, but for other functions it is important to elect
the component which is best suited (according to some appropriate criteria) to
perform that function.

The problem of leader election was originally coined by [16] in the late
seventies. Various LE protocols have been developed since then, varying in
network topology (ring [16, 9, 20], mesh, complete network [15, 2, 22], and so

on), communication mechanism (asynchronous, synchronous), available topol-
ogy information at processes ([17, 3]), and so forth. A few LE protocols are
known that tolerate either communication link failures (see e.g. [1, 21]) or pro-
cess failures ([13, 14, 18, 10]).

Realistic distributed systems are subject to failures. The problem of leader
election thus becomes of practical interest when failures are anticipated. In this
paper components behave dynamically they may participate at arbitrary mo-
ments and stop participating spontaneously without notification to any other
component. Crashed components may recover at any time. Thus, a leader
has to be elected from a component set whose contents may change continu-
ously. Components communicate with each other by exchanging messages via
a broadcast network. This network is considered to be fully reliable. A broad-
cast message is received by all components except the sending component itself.
Communication is supposed to be asynchronous and order-preserving.

In this paper we consider a leader election (LE) protocol which elects the
most favourable component as leader. We assume a finite number of compo-
nents. Each component has a fixed unique identity and a total ordering exists
on these identities, known to all components. The leader is defined as the com-
ponent with the largest identity among all participating components. We come
to a fault-tolerant protocol in three steps, each step resulting in a LE protocol.
We start in section 2 with rather strong and unrealistic assumptions about
component and system behaviour: components are considered to be perfect
and a leader is assumed to be present initially. A component may participate
spontaneously, but once it does it remains to do so and does not crash. In
section 3 the assumption of an initial leader is dropped. This leads to a fully
symmetric protocol which uses a timeout mechanism to detect the absence of
a leader. Finally, in section 4 a protocol is designed in which components may
crash without giving any notification to other components.

Many communication protocols are action oriented: their aim is to guaran-
tee that each input—action containing a message is followed sooner or later by
an output—action containing the same message. On the other hand, LE pro-
tocols are first of all state oriented: the aim of these protocols is to reach a
state in which the “best” component is elected as the current leader. There-
fore, in this paper we have chosen a state—oriented specification style for the
various protocols: processes are specified in the UNITY Format as presented
in [7]. Furthermore, this choice is motivated by the fact that in this format
the normalisation of the parallel composition of a large number of identical
processes (the components in the protocol) is rather easy. This plays a role in
the verification of the protocols, see section 5.
In the UNITY Format a process X is specified as follows:

X(D): al-X(D1)<101|>6

A X (D) < em > 6
Am+1 < Cyp1 D 6

+4++++

ap < Cp > O

D denotes a parameter list, D;...D,, denote a parameter list with substitu-

tions for some of the elements of D. a; ...a, denote atomic actions. ¢;...c,
denote boolean conditions, based on elements of D. Information about the
process state is put in the data parameters. Requirements may be formulated
as extra conditions on the data parameters of some or all summands of a pro-
cess term. This raises the possibility of “state oriented” protocol verification.
In section 5 the informal requirements for the protocols are presented and dis-
cussed. The requirements for the first protocol are formally specified in ACP.
Some remarks are made about a formal verification of the protocols against
these requirements. A “state—oriented” verification is also explored. Finally, in
section 6, some concluding remarks are given.

This paper is based on Brunekreef et al. ([8]). In this report the design of
the protocols is discussed in depth. Moreover, the protocols are also specified
using Extended Finite State Diagrams. Temporal Logic is used for the formali-
sation of the requirements and for a proof of the correctness of the protocols. In
general the efficiency of a Leader Election protocol is considered to be of great
importance. Due to the lack of space in this paper the protocol complexity will
not be discussed. The reader is referred to [8] for a detailed analysis of the
worst case message complexity of the protocols presented in this paper.

2 A simple Leader Election protocol

In this first protocol a leader is present initially, it is assumed that all other
components have not entered the election yet. On entering the election a com-
ponent does not know the identity of the current leader, and, consequently it
cannot decide whether it will become a leader or not. Once the identity of the
leader is known there are two possible outcomes: the component should become
(the new) leader or not. From the above we conclude that a component may
be in one of the following possible states: candidate, when it does not yet know
whether it will become a leader or not, leader when it actually is a leader, and
failed when it is defeated. A component that has not entered the election yet
is considered to be in the start state.

Once a component joins the election, that is, when it becomes a candidate,
it transmits its identity my_id by means of an identify message I(my_id). On
receipt of an identity a leader compares this identity with its own. In case the
received id is larger than its own id the leader moves to the failed state (there is
a ‘better’ component), and gives the candidate the right of succession by trans-
mitting the candidate’s id with an R-message (Response). In the other case,
the leader remains leader and transmits its own id using R(my_id). The actions
of a candidate on receipt of a response message follow straightforward—when
it receives an R-message with its own id it becomes a leader, when it receives
an R-message with a larger id it becomes failed, and otherwise it remains a
candidate.

There is however a little flaw in the above informally described protocol:
when two (or more) components are in the candidate state and one of them
causes the leader to capitulate (i.e., to become failed), the other candidates
may not receive a response of the leader, remaining candidate forever. This
problem is resolved by letting a candidate (re-)transmit an I-message with its
own id on receipt of an R(id) message with id<my_id.

Three basic processes are specified: the protocol process and a local buffer pro-
cess of a single component and the medium process, modelling the broadcast
network. We will use the following naming convention for the atomic actions in-
volved in the communication between the various processes. The transmission
of a message m by a component 7 is denoted by send_XY (i,m). X represents
the source and Y represents the destination: P for a protocol process, B for
a buffer process, M for the medium process. The parameter ¢ denotes the
component identity. In the same way the reception of a message is denoted by
read_XY (i,m) and the resulting communication action by comm_XY (i,m).
Figure 1 shows the various processes and their communications. In the speci-
fications to come ID represents the set of component identities. We consider
the size of ID to be fixed and finite. M represents the set of messages. For
this protocol M = {I(i),R(i) | 1 € ID}.

3

Component i Component j Component k

Protocol
Process

/
Buffer :
Process

Medium Process

Figure 1: Processes of Protocol 1

The protocol process P1 has three parameters: ¢ represents the id of the
component the protocol process is part of, ps represents the state of the pro-
tocol process, 7 represents the id contained in a received R-message. In this
specification we distinguish seven states:

e S: the start state.
e B: the buffer is reset, no initial /-message has been sent yet.
e (: the candidate state, the initial [-message has been sent.

e T an R-message is received by a candidate, but has not been processed
yet.

e L: the leader state.

e R: an I-message is received by a leader, but has not been processed yet.
e F': the failed state.

Four states (S,C, L and F) have already been introduced in the informal de-
scription of the protocol given above. The three other states are added in order
to get a neat specification in the UNITY Format. In the specification below the
summands are grouped state by state, visualised by a different indentation of
the 4+ operator. For a better understanding of the specification we will shortly
explain the first three lines. The first line shows that in the state S an incoming
message from the buffer is ignored. In the second line, still in the start state,
the local buffer is reset (see below for the reason why), after which the state B
is entered. The third line shows the transmission of the initial /-message from
the B state, after which the candidate state is entered. In the same way each
of the following lines shows what action can be performed in what state. The
recursive process call shows what state will be entered after the action.

P1(i,ps,j) = Yomem read_BP(i,m) - P1(i,ps,j) < ps =S > §
+ send_PB(i,reset) - P1(i,B,j)<ps =S §
+ send.PM(i,I(i))- P1(:,C,j)a ps =B §

+ Xierpread BP(i, I(k)) - P1(i,ps,j) < ps =C v 6

+ ZkeID\{i} read_BP(R(k))-P1(i,T,k)<ps=Cnp> 6
+ read_BP(i,R(i)) - P Lj)aps=Cnp6
C

1(s,
+ send_PM(i, I(7)) - P1(s,
+ P1(i,F,j)<j>i A p

Yoreipread BP(i, I

send_PM (i, R(i)) - P
+ send_PM (i, R(j)) - P

+ Y memread BP(i,m

J)9j<i Aps=Tnpré
Tv6

s
k)) - P1(i,R,k)<ps=L > 6

(i,L,j)aj<i AN ps=Rpvé
(1, F j)94j>iN ps=R>6

-P1(i,ps,j)daps=F 1§

+

+
v,_\»—\/\

We will illustrate the process algebra specification of the protocol process with
an informal drawing (Figure 2). Every state is represented by a circle. An
arrow between two states indicates a transition. A transition is labelled with
a condition and an action, which are both optional. The interpretation is that
the transition takes place by executing the action. This is only allowed if the
condition on parameters of the action and parameters of the state yields true.

We will only list the relevant parameters for every state. For example, the
index i, which indicates the actual component, is not mentioned explicitly. We
will also use a shorthand notation for the atomic actions.

The local buffer process is specified as a queue of unbounded size. The
process BUFFER has two parameters: the id ¢ of the component the buffer
process resides in and a message queue ¢. The functions eng (enqueue, append-
ing a message to the queue), serve (delivering the first message in the queue)
and deq (dequeue, removing the first message from the queue) operate on the
message queue. The buffer is reset by the protocol process at the entrance of
the election. This reset prevents the handling of messages enqueued before this
moment. Although this would not influence the correctness of the protocol, it
is regarded as unrealistic.

r(i,m) r(i,1(k)) r(i,m)

r(i,1(K) K>i
L
<i

s(i,R()

r(i,R(i))

(i reset) @ S(0.1(0)

k<>i

r(i,R(K))

) k>i
k<i

s(i,1(1))

Figure 2: State transitions of protocol 1

BUFFER(i,q) =
Y me m read_M B(i,m) - BUFFER(i,eng(m, q))
+ send_BP(i, serve(q)) - BUFFER(i,deq(q)) < q # empty_queue > &
+ read_PB(i,reset) - BUFFER(i, empty_queue)

The medium process reads a message from a component and delivers this mes-
sage to all other components, thus modelling a broadcast communication. The
set IDS is a variable set of component identities.

MEDIUM (IDS,m) =
i 1pm e a Tead-PM(i,n) - MEDIUM (ID\{i},n) < IDS =0 > §
+3 e 1ps send-MB(i,m) - MEDIUM(IDS\{i},m) « IDS #0 > &

The following communications are defined between the various processes for
t € ID, m € M:

send_BP(i,m) | read_BP(i,m) = comm_BP(i,m)
send_PM(i,m) | read_PM (i, m) = comm_PM (i, m)
send_-M B(i,m) | read_M B(i,m) = comm_M B(i, m)
send_PB(i,reset) | read_PB(i,reset) = comm_PB(i, reset)

Next we define the process S1, being the encapsulated merge of all proto-
col processes, local buffers and the medium. PS, J and) denote sequences of
the parameters ps, j and ¢ for all components 2 € I D.

S1(PS,J,Q,IDS,m) = '
Ou,(llierp (P1(i,ps',j") || BUFFER(i,q")) | MEDIUM(IDS,m))

Definition of the encapsulation set Hjy:

H, = {read_BP(i,m), send_BP(i,m), read_PM (i,m), send_PM (i,m),
read_-M B(i,m), send_-M B(i,m), read_PB(i,reset),

send_PB(i,reset) | i € ID, m € M}

Protocol 1 is specified by the following equation:
Protocoll = S1(PSinit, Jac, EQ, 0, ma.)

With PS;n: a sequence of protocol process states ps® for which it holds that
ps’ = L for the initial leader and ps* = S for all other components. The sub-
script de in Jg. and my. indicates that for these parameters initially “don’t
care” values may be taken. Finally, E(Q) denotes a sequence of empty queues.

3 A Leader Election Protocol without initial
leader

We now drop the unnatural assumption of a leader being present initially. As
in the previous section components are considered to be perfect. In this setting
Protocol 1 does not suffice, as no leader will ever be present in case a leader
is absent initially. The problem now is what mechanism to use for selecting a
new leader in absence of a previous one.

A straightforward approach to detect the absence of a leader is to equip
each component with a timer process and to detect the absence of a leader
by means of a timeout mechanism. A component starts its timer when it
becomes a candidate. When receiving a response of the leader on its initial
I(my_id) message the timer plays no role and the component progresses as in
the first protocol. In absence of a response of a leader, the candidate goes to
the leader state at the occurrence of a timeout. In Protocol 1 two different
message types to exchange identities were used. As a timeout guarantees that
in absence of a leader a candidate becomes a leader, a leader may go to the
failed state without notifying the component that forced it to that state. So,
the response message from a leader to a candidate, giving that candidate the
right of succession, is no longer needed. Of course a leader still has to defend
itself against a candidate with a lower id. For this purpose I[-messages can be
used as well. This means that all R-messages can be replaced by I-messages.
As a consequence, candidates now have to react on I-messages, which means
that they can now be forced to become failed by receiving messages from other
candidates. In Protocol 1 a candidate only reacts to messages sent by the
leader.

A timeout must be disabled in case a leader is present. This might be the
leader at the start of the timer, but it might also be a ‘fresh’ one. Therefore,
a timeout may expire only when a component has received and processed all
responses to its message sent at starting the timer. Premature timeouts have
to be excluded in the specification of the protocol.

Thus we obtain the following formal specification of a protocol process P2.
This process has three parameters: ¢ represents a component id, ps represents
the state of the protocol process, j represents the id of a received I-message.
In this specification we distinguish eight states:

e S: the start state.

e B: the buffer is reset, no initial /-message has been sent.

e [: the initial I-message has been sent, the timer has not been started
yet.

e (': the candidate state, the timer has been started.

e T an [-message is received by a candidate, but has not been processed
yet.

e [: the leader state.
e R: an I-message is received by a leader, but has not been processed yet.
e F': the failed state.

Compared to the states of P1, only the state I is new.

P2ips.j)= Teerpread-BP(i,I(K)- P2i,ps,j)< ps =5 > 6
+ send_PB(i,reset) - P2(i,B,j)<dps=S1> ¢

+ send_PM((i,I(i)) - P2(i,I,j)< ps=B > ¢
send_PT(i,start) - P2(i,C,j)a ps=11> 6§

+ Yoreipread BP(i, I(k)) - P2(i, T, k)< ps=C > ¢
+ read_TP(i,timeout) - P2(i,L,j) §

+ send_ PM(i,1(3i)) - P2(i,C,j)aj<i A ps=T 1> 6
+ send_PT(i,stop) - P2(i,F,j)<j>i AN ps=T 1> 6

+ Yorerpread BP(i,I(k)) - P2(i,R,k)< ps=L > ¢

+ send_PM(i,I(i))- P2(i,L,j)9j<i A ps=R1> 6
+ P2(i,F,j)<j>i AN ps=Rp b

+ Yowerpread BP(i, I(k)) - P2(i,ps,j)< ps = F > 6

+

In Figure 3 this specification is illustrated.

1i,1()) 10,1())

1i,1(K)

(i reset) /;\ s(i,1() m (i start) /;\r(i,tima)ut) A @
NN N

<i

E@I0)

k>i

E@I0)) S(i,stop)

Figure 3: State transitions of protocol 2

The buffer process and the medium process are specified as in Protocol 1.
The set of messages now only contains I-messages: M = {I(i) | ¢ € ID}.

The local timer process is very simple. The timer states are represented by
TR (timer running) and T'S (timer stopped). We suppose that no start signal
is received while the timer is in the state T'R.

TIMER(i,ts) = read_PT(i,start) - TIMER(i,TR)< ts =TS8 > 6
+ read_PT (i, stop) - TIMER(i,TS)<ts=TR > 6
+ send T P(i, timmeout) - TIMER(i,TS)<ts=TR > 6

The communications between a protocol process and its local timer are defined
as follows:

send_PT(i, start) | read_PT(i, start) = comm_PT(i, start)
send_PT (i, stop) | read_PT(i, stop) = comm_PT(i, stop)
send T P(i, timeout) | read T P(i,timeout) = comm_ T P(i, tirneout)

As mentioned above, this protocol is not robust with respect to premature
timeouts: a component has to wait for the reply (if any) of all other compo-
nents participating in the election before a timeout may be enabled. In ACP
it is common practise to model such a timeout by means of the priority opera-
tor f. The timeout action gets a lower priority than other actions. As long as
one of these actions is enabled the timeout action is prohibited.

Application of the priority operator to our protocol implies the definition of
a set of orderings on actions in which a timeout of a component 7 gets a lower
priority than every action that is related to the reply to the initial message
from this component. A reply can be made recognisable by labelling the initial
I-message with its source and by attaching the same label to all replies to this
message. However, in our specification a timeout may be enabled before all
replies have been received, due to two causes. First, a message in a buffer
queue is only related with the comm_BP action if it is at the head of the
queue, otherwise no actions are related with this message. This means that a
reply that has already been received by a component but is not at the head of
the buffer, cannot prevent a timeout. This problem can be solved by a more
complex labelling of the messages in the buffer. Second, if the medium is in use
(a message has been transmitted to the medium by a component, but has not
been buffered by all other components yet), a comm_PM action with a reply
message to a component ¢ may temporarily be disabled, although the timeout
of a component i should still be prohibited by this action.

We solve this problem in a rather crude way by placing more restrictions
on a timeout action. The timeout of a component i is given a lower prior-
ity than every comm_M B action in order to prevent a temporary blockade of
a comm_PM action. The timeout is also given a lower priority than every
comm_BP action in order to guarantee that every component has had the pos-
sibility to react on a message. Finally, the timeout is given a lower priority
than every comm_PM action from a component with an id higher than ¢ in
order to ensure that every reply is received by component i before its timeout
is enabled. This leads to the following ordering relations:

comm_T P(i, timeout) < comm_M B(k, m)
comm_T P(i, timeout) < comm_BP(k,m)
comm T P(i,timeout) < comm_PM (j,m)

3

with m € M, i,5,k € ID,5 > i. Labelling of messages is not useful any
more. The whole system is specified with the following equation:

S2PS.TS,1,Q,IDS,m) = | |
eoaHz(”iGID (P2(27p521.]z) || BUFFER(Zaqz) || TIMER(Z/tSZ)) ||
MEDIUM(IDS,m))

Definition of the encapsulation set Hs:

H, = H, U {read_PT (i, start), send_PT(i,start), read_PT (i, stop),

3

send_PT (i, stop), read T P(i,timeout), send T P(i,timeout) | i € ID}

with H; defined in the previous section. Protocol 2 is specified by the fol-
lowing equation:

Protocol2 = S2(PSinit, T Sinit, Jac, EQ, D, mq.)

with PS;ni; a sequence of protocol process states ps’ with ps’ = S for all
components. T S;,;; denotes a sequence of timer states ts’ with ts? = T'S for all
components. As with Protocol 1, the subscript dc in Jy4. and my4. indicates that
for these parameters initially “don’t care” values may be taken, E(Q) denotes a
sequence of empty queues.

4 A fault tolerant Leader Election protocol

For the third protocol we drop the assumption of perfect components. Com-
ponents may cease participating without notifying other components . After
halting, a component does not behave maliciously. This kind of failures is
known as crash faults (see e.g. [11]). Crashed components may recover and
(re-)join at any time. It is assumed that recovered components restart in the
start state. The number of times a component can crash or recover during an
election is unlimited. A component cannot crash during the execution of an
atomic event.

The crucial point for a protocol in this setting is that after a crash of the
leader component a failed component might be a valid successor. To involve
failed components in the election we consider two cases. First, to avoid a candi-
date to become a leader in case a leader crashed and a better failed component
is present, failed processes become a candidate again on receipt of an I-message
with a smaller id than their own id—thus joining the competition about the
leadership. Other I-messages are still ignored when being failed. On becoming
a candidate, an I-message with my_id is broadcasted and the local timer is
started. This does not suffice in case a leader crashes, at least one failed com-
ponent is present (that will never crash), and no candidate will ever appear. In
this scenario no leader will ever be elected, although there is some component
that will never crash. Therefore, we should have a mechanism via which failed
components will rejoin the election in absence of a leader. Several techniques
can be applied to accomplish this'. Here we abstract from a specific technique
and model this by adding an unconditional non—deterministic choice of a tran-

1For instance, a leader may transmit on a regular basis “I am here” messages and in
absence of such messages a timeout could expire in a failed component, thus forcing it to
become starting (or candidate). Another possibility would be to let a failed component
regularly check whether a leader is present (see e.g. [13]).

sition from the failed state to the candidate state, such that a failed component
may (re-)join the election spontaneously by identifying itself and starting its
timer. It should be noticed that we now have two transitions from the failed
state to the candidate state with equivalent actions, one after the reception of
an I-message with a lower id, the other without a preceeding action.

We now turn to the formal specification of this protocol. A component crash
has consequences not only for the protocol process, but also for the local buffer
process and the local timer process. Therefore all component processes need
to be reconsidered. In the specification below we will use a simple model of a
component crash:

e A “dead state” is added to the other states (start, candidate, leader,
failed).

e Only the protocol process has the possibility to crash. The buffer process
and the timer process will simply continue (as far as possible) after a
crash of the protocol process.

e The “revival” of a component is modelled by the revival of the protocol
process. At its revival this process resets the local timer. The local buffer
is reset in the start state, which is entered after the revival.

e In the specification of the protocol process a transition from a state to
the dead state is modelled by the atomic action crash. The transition
from the dead state to the start state is modelled by the atomic action
revive. These actions do not communicate with any action from any other
process.

Remark: in the Finite State Diagram specification of this protocol in [8] the
transition to the dead state is modelled with a may transition, which may be
ignored indefinitely. This opposed to a must transition, which has to be chosen
sooner or later when it is continuously enabled. This distinction cannot be
modelled in ACP: under the usual fairness assumptions each component will
crash (and revive) at some moment in the future.

The protocol process P3 has the same parameters as P2: i (the component
id), ps (the protocol state) and j (the id of a received I-message). In the spec-
ification we distinguish eleven states. The first eight states, from S to F, are
identical to the states of P2. Three states are new:

e X: an [-message is received by a failed process, but has not been pro-
cessed yet.

e D: the dead state.

e A: the component becomes alive again (the revive action has been exe-
cuted), the timer has not been reset yet.

In the specification below the transition to the dead state is not added to the
process term for each separate state S ... X. Instead, a single summand with
the action crash is added with the condition ps # D).

P3(i,ps.i) = Yyespread BP(i,I(k))- P3(i,ps,j)aps =S > 6
+ send_PB(i,reset) - P3(i,B,j)aps=S1> 6

send_.PM(i,1(3)) - P3(i,1,j)< ps=B > é
send_PT(i,start) - P3(i,C,j)aps=11> 68

+ Yoreipread BP(i, I(k)) - P3(i, T, k)< ps=C > ¢
+ read_TP(i,timeout) - P3(i,L,j) 6

+ send_.PM(i,1(37)) - P3(i,C,j)aj<i AN ps=T 1> 6
+ send_PT(i,stop) P3(i,F,j)<j>i AN ps=T 1> b

+ Yorerpread BP(i, I(k)) - P3(i,R,k)< ps=L > ¢

+ send_PM((i,I(i))- P3(i,L,j)<j<i AN ps=Rnb> 6
+ P3(i,F,j)<j>i AN ps=Rpé

+ Yorerpread BP(i,I(k)) - P3(i, X, k)a<p=F > 6
+ P3(:,B,j)aps=Fnp>6

+ P3(i,B,j)<j<i AN ps=X0b>6b
+ P3(i,F.j)<j>i AN ps=X1b>6b

+ crash(i) - P3(i,D,j)<a ps# D > §
+ revive(i) - P3(i,A,j)<ps=D >
+ send_PT(i,stop) - P3(i,S,j)aps=A> 6

+ +

In Figure 4 the specification is illustrated. We did not draw all crash actions
from every state to the D state.

iy S

r(i.1(K)

<i

(1)

k<i

s(i.1 ()

k>i
(i, stop)

Figure 4: State transitions of protocol 3

The buffer process, the timer process and the medium process are the same
as in the previous sections. The process S3 has the same data parameters as

S52. So we get

S3(PS.TS,J,MS,IDS,m) = | |
eoaHz(”iEID (P3(Z/psza.]l) || BUFFER(Zan) || TIMER(Z/tSZ)) ||
MEDIUM (IDS, m))

with H, as defined before. Protocol 3 is specified by the following equation:
Protocol3 = S3(PSinit, T Sinits Jae, EQ, D, ma.)

The initial value of the parameters is the same as with Protocol 2 in the previous
section.

5 Towards the verification of the protocols

In this section a set of requirements for the protocols is given. As an example
the requirements for Protocol 1 are formalised. Some remarks are made about
proving the correctness of the protocol with respect to these requirements.
The formalisation of the requirements of the other protocols as well as actual
correctness proofs are left for future research. We start with a set of four
requirements for the fault—free protocols, Protocol 1 and Protocol 2.

R1. A leader will be elected: at the termination of the protocol the component
with the highest identity is elected as the leader.

R2. At each moment at most one component is the current leader. At no
moment during or after the election more than one leader is allowed.

R3. The capitulation of a leader is caused by an active component with a
higher identity than the capitulated leader.

R4. A new leader will have a higher identity than the one that just has capit-
ulated.

The first requirement is obvious. The second requirement states that during
the election there may always be at most one leader (since a change of leader-
ship may take some time there can be temporarily no leader at all). The last
two requirements make sense of the ordering of component identities. Com-
ponents with a higher identity have priority in being elected as leader over
components with a lower identity. The third requirement states that a leader
capitulates only in the presence of a component with a higher identity, which
is participating in the election. We do not state anything about the possible
future leadership of this ‘better’ component. The last requirement states that
the next leader will be an improvement over the previous one (i.e., will have a
higher identity). The last two requirements impose constraints on the capitu-
lation of a leader and the ordering of its successor. Note that R4 implies that
a component that capitulates once, will not become a leader any more.

For a fault tolerant protocol (Protocol 3) these requirements are too strong.
R1 is already problematic: as components may crash and come up again, a
fault tolerant LE protocol will never terminate. So it cannot be required that

finally a leader will be elected. Under a certain notion of fairness we may expect
that some component becomes a leader for some time, just as we may expect
that it will crash at some other moment. Of course requirement R2 still holds
during the election. A component crash may cause the capitulation of a leader.
Therefore R3 has to be restricted to the capitulation of a leader that remains
alive after its capitulation. In that case there has to be a cause as stated in
R3. In case of a leader crash nothing can be required about the identity of the
new leader compared to the identity of the previous one. So R4 also has to be
restricted to the capitulation of a leader that stays alive until the new leader is
present. This leads to the following set of requirements for Protocol 3:

R1’. At any moment it holds that at some moment in the future a leader will
be elected.

R2’. At each moment at most one component is the current leader. At no
moment during the election more than one leader is allowed.

R3’. The capitulation of a leader is caused by an active component with a
higher identity or by a crash of the leader.

R4’. Under the condition that the old leader has not crashed, a new leader will
have a higher identity than the one that just has capitulated.

In ACP traditionally requirements are formalised by the specification of the
desired behaviour of a process. The verification of a protocol then consists of
an algebraic proof of the equivalence of the requirement specification and the
protocol specification with abstraction from certain actions.

Another approach to verification is based on the information contained in
the data parameters of the process equations. In particular when the UNITY
Format is used, much of the information about the process state is put in these
parameters. Requirements can be translated to extra conditions on some or
all summands of a process term. These conditions have to be invariantly true.
As ACP has no formal syntax and semantics of data types, a data oriented
proof will always be “pseudo formal”. In case a strictly formal treatment of
data is required the related formalism pCRL ([12]) has to be used. In [5] and
[6] correctness proofs in uCRL are given in which formal reasoning about data
plays an important role.

In this case study we will give a formalisation of the requirements for Pro-
tocol 1 in ACP in terms of desired actions. Next some remarks are made about
a data—oriented formalisation of each requirement. Finally, a formalisation of
the requirements for the other protocols is discussed briefly.

Before we turn to the requirements we first will derive an equation for the
parallel composition of Protocol 1 in the UNITY Format. The expansion of
the process term for S1 from section 2 leads to the following equation. In this
equation the substitution of a new value = for the old value of a parameter y
in a sequence S is denoted by S[z/y].

Lemma 5.1

S1(PS, J,Q,1DS, m) =
YoicinQnem comm_BP(i,n) - SL(PS,], Q[deq(q")/q'], 1 DS, m)
aserve(q')=n A ps'=Sp 8
+ comm_PB(i,reset) - SL(PS|B/ps'], J, Q[empty_queue/q'], IDS, m)
aps' =S b 6)

+ ZieID(comm_PM(i,I(i_)) . Sl(PS[C’/psi]7 J,Q,ID\{i}, I(7))
A4IDS =0 A ps' = B > 6)

+ ZieID(Z]. cip cqmm_BP(i,I(j)) - S1(PS, J,Qldeq(q")/q'], IDS, m)
aserve(q') =I(j) N ps*=Cnp 6
+ Zj € ID\{i} Comm'BP_(i’ E(3))- o
SUPSIT/ps'), T13/57), Qldeq(a")/'], IDS, m)
aserve(q') = R(j) A ps'=Cpé o
+ Cmnnz_BP(j7 R(i)) - Sl(PS[L/psl], J,Qldeq(q")/q'], IDS, m)
aserve(q') = R(1) A ps'=C > 6)

+ 32, ¢ plcomm PM(i, I(i)) - SL(PS[C/ps'], J,Q, ID\{i}, I(i))
QIDS=0 A j'<i Apss=Tnp>é
+ S1(PS[F/ps'], J,Q,IDS,m) <4 j' >1i A ps' =T » §)

+ e, e comm BPI(7)
Sl(PS[R/psl], J[5/3°)s Q[deq(ql)/ql]a IDS,m)
aserve(q') = I(j) A ps' =L > §)
+ 2 i ¢ 1p(comm PM (i, R(3)) - SL(PS[L/ps'], J,Q,ID\{i}, R(:))
AaIDS=0 A j'<i A ps'=Rpé _
+ comm_PM (i, R(j")) - S1(PS[F/ps'], J,Q, ID\{i}, R(j'))
4IDS=0 A j5°>i A ps'=Rp§)

+>, c ID(ZnEM comm_BP(i, n) -S1(PS, J, Qldeq(q")/q'], IDS, m)
aserve(q')=n A pss=F > §

+ 201 e 1ps(comm MB(i,m) - S1(PS, J,Qlenq(m, q')/q'], IDS\{i}, m)
a4IDS # 0 > 6)

Proof: straightforward, see [8].

With this equation as a starting point, we will investigate how the require-
ments R1 R4 can be formalised.

R1. The protocol will terminate with the component with the highest iden-
tity being elected as the leader.

A fault free leader election protocol terminates when the component with the
highest identity is elected as the leader and all other components have lost the
election (are in the failed state). In the ACP specification of Protocol 1 this
represents a deadlock: no action is enabled. However, this deadlock can be
avoided in the following way: we add to the equation for the protocol process
in lemma 5.1 an extra summand), exit(i) < ps' = L > § without a re-
cursive call. By giving the exit action a lower priority than every other action
in the protocol, it will only be enabled if no other action is. We now require
that, with abstraction from all other actions, only the action exit(id,,q.) will

be observed before successful termination of the protocol. Define the process
Req1 as follows:

Reql = 7 - exit(id,naz)
For Protocol 1 R1 is fulfilled if the following identity is proved:

71, © 8(Protocoll) = Reql (R1.ACP)
With Protocoll defined in section 2. The abstraction set I; contains all ac-
tions except the exit action.

R2. At each moment at most one component is the current leader.

This means that the action on which a component i becomes a leader has to be
preceeded by an action connected with the capitulation of the previous leader
k . In Protocol 1 the action comm_BP(i, R(i)) reflects the transition to the
leader state, the action comm_PM (k, R(7)), k < i, reflects the capitulation of
a leader.

The specification of the process Req2(k,IDS) also contains a summand
with the exit action, indicating the termination of the protocol. As before,
IDS denotes a variable set of component ids. The components in this set have
not yet become (or will not inevitably be soon) failed or leader.

Req2(k,IDS) =7 -(3_,cipg T - comm_PM (k, R(i))-
(Req2a(i,IDS) @i > k > Req2(k,IDS\{i}))
+ exit(id)

Req2a(i, IDS) = 7 - comm_BP(i, R(3)) - Req2(i, IDS\{i})

For Protocol 1 R2 is fulfilled if the following identity is proved (id; denotes
the identity of the initial leader):
71, 0 B(Protocoll) = Req2(id;;, ID\{id;}) (R2.ACP)

2

The set I, contains all actions except the actions showed in the specification of
Req2.

R3. The capitulation of a leader is caused by an active component with a
higher identity than the capitulated leader.

This requirement is formalised in a weaker version: the following equation for
Req3 states that the capitulation of a leader k is preceeded by the transmission
of one or more I-messages from components with a higher identity. A strict
causal relation is not specified. As with R1 and R2 the termination of the
protocol is specified with the exit action in the first equation. IDS contains
the ids of the components who have not yet become (or will not inevitably be
soon) failed or leader.

Req3(k,IDS) =1 - (3 ,c;p T - comm_PM(i, (i)
(Req3(k,i,IDS\{i}) <« i >k > Req3(k,k,IDS\{i}))
+ exit(id)

Req3(k,i,1DS) =1 - (3 ;c;p T comm_PM(j,1(j))
(Reg3(k,i,IDS) < j > i > Req3(k,i,IDS\{j}))
+ 7 -comm_PM(k, R(i)) - Req3(i,IDS))

R3 is fulfilled if the following identity is proved:
71, 0 8(Protocoll) = Req3(id;, ID/{id;}) (R3.ACP)

The set I3 contains all actions except the actions used in the specification
of Req3.

R4. A new leader will have a higher identity than the one that just has ca-
pitulated.

For Protocol 1 this requirement is formalised by requiring a sequence of zero
or more comm_BP(i, R(i)) actions with i greater than the identity of the last
leader (k). This action marks the transition from the candidate state to the
leader state. We get the following equation:

Reqd(k) = 7-(3,c;p T-comm_BP(i, R(i))-(Req4(i)<i > k> 6)+exit(idmaz))
R4 is fulfilled if the following identity is proved:
71, © O(Protocoll) = Req4(id;;) (R4.ACP)

The set I, contains all actions except the actions used in the specification

of Req4.

Next we will shortly discuss a data—oriented formalisation of the requirements.
With R1 we will also need the exit action for the successful termination of
the protocol. However, without the detour of the priority operator, needed in
R1.ACP, we now may directly specify the condition under which this action is
enabled. It is clear that the exit action is enabled if for the state of the pro-
tocol processes the following holds: psi®me+ = L and, for all other components
j € ID, ps? = F. This can directly be checked by investigating the sequence
of protocol states PS. Remark: In the UNITY Format the priority operator
may be “translated” to extra conditions on several summands, see [7]. This
will lead to the same condition for the exit action as stated above.

In a data—oriented formalisation of R2 we have to count the number of
protocol processes in the sequence PS for which ps® = L or ps® = R holds.
This number may never be greater than one. This condition may be imposed
on every summand of the equation in lemma 5.1. However, it seems sufficient
to impose the condition only on the summand with the action after which a
component enters the leader state (comm_BP(i, R(i))).

Requirement R3 can be formalised by adding an extra boolean parameter
to the parameter list of S1. Every time an I-message with an id greater than
the id of the current leader (or last leader) is sent, this parameter is set to true.
The capitulation of a leader (the action send_PM (k, R()) with i > k) is only
permitted under the extra condition that the boolean parameter has been set
to true. Execution of this action resets the parameter to false.

In a data oriented formalisation of R4 an extra parameter may be added to
the parameter list of S1, containing the identity of the current or last leader,
say k. Now, according to R4, for a component to become a leader it must
hold that its identity is greater than k. So the summand with the action
comm_BP(i, R(i)) gets an extra condition: 7 > k.

Along the same lines the requirements for Protocol 2 and Protocol 3 can be
formalised. With these protocols we have the problem that no atomic action
is directly connected with the capitulation of a leader. This means that for a
formalisation of R2 and R3 an extra action, say capitulate(i), has to be intro-
duced in order to resolve this problem. With Protocol 3 the crash actions make
a formalisation of the requirements R1’-R4’ fairly complicated. The crash of a
leader has to be observed separately from the crash of other components.

In this paper we will not give a formalisation of the requirements for Protocol
2 or Protocol 3 or a formal proof of the correctness of Protocol 1 with regard
to the requirements stated above. This is left for future research.

6 Conclusions

In this paper we have specified a series of dynamic leader election protocols in
broadcast networks. The protocols are presented in a stepwise fashion. The
stepwise approach aids not only in the clarity and conciseness of the protocols,
but also —and more importantly— in reasoning about them (‘separation of
concerns’).

The specification of a protocol in ACP contains a complete formal descrip-
tion, not only of the various processes but also of the complete distributed
behaviour of the protocol. The UNITY Format for process specification, used
in this paper, provides specifications that are well-readable and that can serve
as a solid base for algebraic manipulations like normalising the parallel com-
position of several processes or proving the correctness of a complete system.
While specifying the protocols, problems were encountered in modelling the
desired timeout semantics (which appeared to be impossible due to the scope
of the priority operator) and in modelling the crash of a component (which ap-
peared to be counter intuitive somehow, due to the usual fairness assumptions
in ACP).

The timeout semantics problem may be overcome by specifying the proto-
cols in a formalism with real time features included, e.g. real time ACP ([4]).
This is left for future research.

The requirements for Protocol 1 are formalised after the formal specification
of the protocol. The atomic actions from the protocol specification needed to
be known before the required behaviour could be specified. It is an interesting
question whether this kind of “reverse software development” is intrinsic to a
formalism like ACP or whether it is due to the specific character of the protocols
studied in this paper.

The requirements can be formalised in two different ways: process—oriented
and data oriented. At this moment it is not clear which approach is best-suited
for a formal verification of the protocol. The protocols in this paper are too
large for manual algebraic verification. Probably automated verification in a
related formalism as uCRL ([12]) is possible.

The specifications from this paper have been translated into the executable
formalism PSF ([19]). Simulation runs of these specifications appeared to be
very helpful during the various stages of the protocol development.

Acknowledgements: The authors gratefully acknowledge Jan Bergstra (Univ.
of Amsterdam & Univ. of Utrecht) for initiating and stimulating our fruitful
cooperation. We are also grateful to Jan Friso Groote (Univ. of Utrecht) for
his assistance during the beginning of our work.

References

[1] H.H. Abu-Amara. Fault-tolerant distributed algorithm for election in com-
plete networks. IEEE Transactions on Computers, 37(4):449 453, 1988.

[2] Y. Afek and E. Gafni. Time and message bounds for election in syn-
chronous and asynchronous complete networks. SIAM Journal on Com-
puting, 20(2):376 394, 1991.

[3] H. Attiya, J. van Leeuwen, N. Santoro, and S. Zaks. Efficient elections in
chordal ring networks. Algorithmica, 4(3):437-446, 1989.

[4] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal
Aspects of Computing, 3(2):142-188, 1991.

[5] M.A. Bezem and J.F. Groote. A correctness proof of a One-bit Sliding
Window Protocol in pCRL. Technical Report Logic Group Preprint Series
nr. 99, Department of Philosophy, Utrecht University, 1993.

[6] M.A. Bezem and J.F. Groote. Invariants in process algebra with data.
Technical Report Logic Group Preprint Series nr. 98, Department of Phi-
losophy, Utrecht University, 1993.

[7] J.J. Brunekreef. Process Specification in a UNITY Format. Technical
Report P9329, Programming Research Group, University of Amsterdam,
1993. An exented abstract is published in this volume.

[8] J.J. Brunekreef, J.P. Katoen, R.L.C. Koymans, and S. Mauw. Design
and analysis of dynamic leader election protocols in broadcast networks.
Technical Report P9324, Programming Research Group, University of Am-
sterdam, 1993.

[9] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processors. Communications
of the ACM, 22(5):281-283, 1979.

[10] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader
election part 1: Complete graph protocols. (Preliminary version appeared
in Proc. 6th Int. Workshop on Distributed Algorithms, (S. Toueg et. al.,
eds.), LNCS 579, 167 180, 1992), 1993.

3

[11] M.J. Fischer. A theoretican’s view of fault tolerant distributed computing.
In Fault Tolerant Distributed Computing, number 448 in LNCS, pages 1-9.
Springer Verlag, 1991.

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

J.F. Groote and A. Ponse. uCRL: A base for analyzing processes with
data. In E. Best and G. Rozenberg, editors, Proceedings of the 3¢ Work-
shop on Concurrency and Compositionality, pages 125-130. Universitat
Hildesheim, 1991.

R. Gusella and S. Zatti. An election algorithm for a distributed clock
synchronization program. In Proc. 6th IEEE Int. Conf. on Distributed
Computing Systems, pages 364-371, 1986.

A. Ttai, S. Kutten, Y. Wolfstahl, and S. Zaks. Optimal distributed ¢-
resilient election in complete networks. IEEE Transactions on Software
Engineering, 16(4):415-420, 1990.

E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some
distributed algorithms for a complete network of processors. In Proc. 3rd
Annual ACM Symp. on Principles of Distributed Computing, pages 199
207. ACM, 1984.

G. LeLann. Distributed systems—towards a formal approach. In
B. Gilchrist, editor, Information Processing (vol. 77) (IFIP), pages 155
160. North-Holland, Amsterdam, 1977.

M.C. Loui, T.A. Matsushita, and D.B. West. Election in a complete net-
work with a sense of direction. Information Processing Letters, 22:185 187,
1986. (see also Inf. Proc. Letters, 28:327, 1988).

T. Masuzawa, N. Nishikawa, K. Hagihara, and N. Tokura. Optimal fault-
tolerant distributed algorithms for election in complete networks with a
global sense of direction. In J.-C. Bermond and M. Raynal, editors, Dis-
tributed Algorithms, LNCS 392, pages 171-182. Springer-Verlag, 1989.

S. Mauw and G.J. Veltink. A Process Specification Formalism. Fund. Inf.,
XII:85 139, 1990.

G.L. Peterson. An O(nlogn) unidirectional algorithm for the circular
extrema problem. ACM Trans. Progr. Lang. Syst., 4:758-762, 1982.

L. Shrira and O. Goldreich. Electing a leader in a ring with link failures.
Acta Informatica, 24:79-91, 1987.

G. Singh. Efficient distributed algorithms for leader election in complete
networks. In Proc. 11th IEEE Int. Conf. on Distributed Computing Sys-
tems, pages 472-479, 1991.

