
Algebraic Speci�cation of DynamicLeader Election Protocols in BroadcastNetworksJacob BrunekreefProgramming Research Group, University of AmsterdamAmsterdam, The NetherlandsJoost-Pieter KatoenDept. of Computing Science, University of TwenteEnschede, The NetherlandsRon KoymansPhilips Research LaboratoriesEindhoven, The NetherlandsSjouke MauwDept. of Math. and Comp. Sc., Eindhoven University of TechnologyEindhoven, The NetherlandsAbstractThe problem of leader election in distributed systems is considered. Com-ponents communicate by means of bu�ered broadcasting as opposed tousual point-to-point communication. In this paper three leader electionprotocols of increasing maturity are speci�ed. We start with a simpleleader election protocol, where an initial leader is present. In the secondprotocol this assumption is dropped. Eventually a fault-tolerant protocolis constructed, where components may crash and revive spontaneously.Both the protocols and the required behaviour are formally speci-�ed in ACP. Some remarks are made about a formal veri�cation of theprotocols.1 IntroductionIn current distributed systems functions (or services) are o�ered by some ded-icated component(s) in the system. Usually many components are capable too�er a certain functionality. However, at any moment only one component isallowed to actually o�er the function. Therefore, one component |called the\leader"| must be elected to support that function. Sometimes it su�ces toelect an arbitrary component, but for other functions it is important to electthe component which is best suited (according to some appropriate criteria) toperform that function.The problem of leader election was originally coined by [16] in the lateseventies. Various LE protocols have been developed since then, varying innetwork topology (ring [16, 9, 20], mesh, complete network [15, 2, 22], and so

on), communication mechanism (asynchronous, synchronous), available topol-ogy information at processes ([17, 3]), and so forth. A few LE protocols areknown that tolerate either communication link failures (see e.g. [1, 21]) or pro-cess failures ([13, 14, 18, 10]).Realistic distributed systems are subject to failures. The problem of leaderelection thus becomes of practical interest when failures are anticipated. In thispaper components behave dynamically|they may participate at arbitrary mo-ments and stop participating spontaneously without noti�cation to any othercomponent. Crashed components may recover at any time. Thus, a leaderhas to be elected from a component set whose contents may change continu-ously. Components communicate with each other by exchanging messages viaa broadcast network. This network is considered to be fully reliable. A broad-cast message is received by all components except the sending component itself.Communication is supposed to be asynchronous and order-preserving.In this paper we consider a leader election (LE) protocol which elects themost favourable component as leader. We assume a �nite number of compo-nents. Each component has a �xed unique identity and a total ordering existson these identities, known to all components. The leader is de�ned as the com-ponent with the largest identity among all participating components. We cometo a fault-tolerant protocol in three steps, each step resulting in a LE protocol.We start in section 2 with rather strong |and unrealistic| assumptions aboutcomponent and system behaviour: components are considered to be perfectand a leader is assumed to be present initially. A component may participatespontaneously, but once it does it remains to do so and does not crash. Insection 3 the assumption of an initial leader is dropped. This leads to a fullysymmetric protocol which uses a timeout mechanism to detect the absence ofa leader. Finally, in section 4 a protocol is designed in which components maycrash without giving any noti�cation to other components.Many communication protocols are action{oriented: their aim is to guaran-tee that each input{action containing a message is followed sooner or later byan output{action containing the same message. On the other hand, LE pro-tocols are �rst of all state{oriented: the aim of these protocols is to reach astate in which the \best" component is elected as the current leader. There-fore, in this paper we have chosen a state{oriented speci�cation style for thevarious protocols: processes are speci�ed in the UNITY Format as presentedin [7]. Furthermore, this choice is motivated by the fact that in this formatthe normalisation of the parallel composition of a large number of identicalprocesses (the components in the protocol) is rather easy. This plays a role inthe veri�cation of the protocols, see section 5.In the UNITY Format a process X is speci�ed as follows:X(D) = a1 �X(D1) / c1 . �+ : : :+ am �X(Dm) / cm . �+ am+1 / cm+1 . �+ : : :+ an / cn . �D denotes a parameter list, D1 : : : Dm denote a parameter list with substitu-

tions for some of the elements of D. a1 : : : an denote atomic actions. c1 : : : cndenote boolean conditions, based on elements of D. Information about theprocess state is put in the data parameters. Requirements may be formulatedas extra conditions on the data parameters of some or all summands of a pro-cess term. This raises the possibility of \state{oriented" protocol veri�cation.In section 5 the informal requirements for the protocols are presented and dis-cussed. The requirements for the �rst protocol are formally speci�ed in ACP.Some remarks are made about a formal veri�cation of the protocols againstthese requirements. A \state{oriented" veri�cation is also explored. Finally, insection 6, some concluding remarks are given.This paper is based on Brunekreef et al. ([8]). In this report the design ofthe protocols is discussed in depth. Moreover, the protocols are also speci�edusing Extended Finite State Diagrams. Temporal Logic is used for the formali-sation of the requirements and for a proof of the correctness of the protocols. Ingeneral the e�ciency of a Leader Election protocol is considered to be of greatimportance. Due to the lack of space in this paper the protocol complexity willnot be discussed. The reader is referred to [8] for a detailed analysis of theworst case message complexity of the protocols presented in this paper.2 A simple Leader Election protocolIn this �rst protocol a leader is present initially, it is assumed that all othercomponents have not entered the election yet. On entering the election a com-ponent does not know the identity of the current leader, and, consequently itcannot decide whether it will become a leader or not. Once the identity of theleader is known there are two possible outcomes: the component should become(the new) leader or not. From the above we conclude that a component maybe in one of the following possible states: candidate, when it does not yet knowwhether it will become a leader or not, leader when it actually is a leader, andfailed when it is defeated. A component that has not entered the election yetis considered to be in the start state.Once a component joins the election, that is, when it becomes a candidate,it transmits its identity my id by means of an identify message I(my id). Onreceipt of an identity a leader compares this identity with its own. In case thereceived id is larger than its own id the leader moves to the failed state (there isa `better' component), and gives the candidate the right of succession by trans-mitting the candidate's id with an R-message (Response). In the other case,the leader remains leader and transmits its own id using R(my id). The actionsof a candidate on receipt of a response message follow straightforward|whenit receives an R-message with its own id it becomes a leader, when it receivesan R-message with a larger id it becomes failed, and otherwise it remains acandidate.There is however a little
aw in the above informally described protocol:when two (or more) components are in the candidate state and one of themcauses the leader to capitulate (i.e., to become failed), the other candidatesmay not receive a response of the leader, remaining candidate forever. Thisproblem is resolved by letting a candidate (re-)transmit an I-message with itsown id on receipt of an R(id) message with id<my id.

Three basic processes are speci�ed: the protocol process and a local bu�er pro-cess of a single component and the medium process, modelling the broadcastnetwork. We will use the following naming convention for the atomic actions in-volved in the communication between the various processes. The transmissionof a message m by a component i is denoted by send XY (i;m). X representsthe source and Y represents the destination: P for a protocol process, B fora bu�er process, M for the medium process. The parameter i denotes thecomponent identity. In the same way the reception of a message is denoted byread XY (i;m) and the resulting communication action by comm XY (i;m).Figure 1 shows the various processes and their communications. In the speci-�cations to come ID represents the set of component identities. We considerthe size of ID to be �xed and �nite. M represents the set of messages. Forthis protocol M = fI(i); R(i) j i 2 IDg.

Medium Process
ProtocolProcessBu�erProcess

Component jComponent i Component k

Figure 1: Processes of Protocol 1The protocol process P1 has three parameters: i represents the id of thecomponent the protocol process is part of, ps represents the state of the pro-tocol process, j represents the id contained in a received R-message. In thisspeci�cation we distinguish seven states:� S: the start state.� B: the bu�er is reset, no initial I-message has been sent yet.� C: the candidate state, the initial I-message has been sent.� T : an R-message is received by a candidate, but has not been processedyet.� L: the leader state.

� R: an I-message is received by a leader, but has not been processed yet.� F : the failed state.Four states (S;C; L and F) have already been introduced in the informal de-scription of the protocol given above. The three other states are added in orderto get a neat speci�cation in the UNITY Format. In the speci�cation below thesummands are grouped state by state, visualised by a di�erent indentation ofthe + operator. For a better understanding of the speci�cation we will shortlyexplain the �rst three lines. The �rst line shows that in the state S an incomingmessage from the bu�er is ignored. In the second line, still in the start state,the local bu�er is reset (see below for the reason why), after which the state Bis entered. The third line shows the transmission of the initial I-message fromthe B state, after which the candidate state is entered. In the same way eachof the following lines shows what action can be performed in what state. Therecursive process call shows what state will be entered after the action.P1(i; ps; j) = Pm2M read BP (i;m) � P1(i; ps; j) / ps = S . �+ send PB(i; reset) � P1(i; B; j) / ps = S . �+ send PM(i; I(i)) � P1(i; C; j) / ps = B . �+ Pk2 ID read BP (i; I(k)) � P1(i; ps; j) / ps = C . �+ Pk2 IDnfig read BP (i; R(k)) � P1(i; T; k) / ps = C . �+ read BP (i; R(i)) � P1(i; L; j) / ps = C . �+ send PM(i; I(i)) � P1(i; C; j) / j < i ^ ps = T . �+ P1(i; F; j) / j > i ^ ps = T . �+ Pk2 ID read BP (i; I(k)) � P1(i; R; k) / ps = L . �+ send PM(i; R(i)) � P1(i; L; j) / j < i ^ ps = R . �+ send PM(i; R(j)) � P1(i; F; j) / j > i ^ ps = R . �+ Pm2M read BP (i;m) � P1(i; ps; j) / ps = F . �We will illustrate the process algebra speci�cation of the protocol process withan informal drawing (Figure 2). Every state is represented by a circle. Anarrow between two states indicates a transition. A transition is labelled witha condition and an action, which are both optional. The interpretation is thatthe transition takes place by executing the action. This is only allowed if thecondition on parameters of the action and parameters of the state yields true.We will only list the relevant parameters for every state. For example, theindex i, which indicates the actual component, is not mentioned explicitly. Wewill also use a shorthand notation for the atomic actions.The local bu�er process is speci�ed as a queue of unbounded size. Theprocess BUFFER has two parameters: the id i of the component the bu�erprocess resides in and a message queue q. The functions enq (enqueue, append-ing a message to the queue), serve (delivering the �rst message in the queue)and deq (dequeue, removing the �rst message from the queue) operate on themessage queue. The bu�er is reset by the protocol process at the entrance ofthe election. This reset prevents the handling of messages enqueued before thismoment. Although this would not in
uence the correctness of the protocol, itis regarded as unrealistic.

S B C L FR(k)

T(k)

k<i

r(i,m) r(i,I(k))

r(i,I(k))

r(i,m)

s(i,reset) s(i,I(i)) r(i,R(i)) s(i,R(k))

k>i

k<i

s(i,R(i))

k>ir(i,R(k))

s(i,I(i))

k<>i

Figure 2: State transitions of protocol 1BUFFER(i; q) =Pm2M read MB(i;m) � BUFFER(i; enq(m; q))+ send BP (i; serve(q)) � BUFFER(i; deq(q)) / q 6= empty queue . �+ read PB(i; reset) � BUFFER(i; empty queue)The medium process reads a message from a component and delivers this mes-sage to all other components, thus modelling a broadcast communication. Theset IDS is a variable set of component identities.MEDIUM (IDS;m) =Pi2 ID;n2M read PM(i; n) �MEDIUM (IDnfig; n) / IDS = ; . �+Pi2 IDS send MB(i;m) �MEDIUM (IDSnfig;m) / IDS 6= ; . �The following communications are de�ned between the various processes fori 2 ID, m 2 M :send BP (i;m) j read BP (i;m) = comm BP (i;m)send PM(i;m) j read PM(i;m) = comm PM(i;m)send MB(i;m) j read MB(i;m) = comm MB(i;m)send PB(i; reset) j read PB(i; reset) = comm PB(i; reset)Next we de�ne the process S1, being the encapsulated merge of all proto-col processes, local bu�ers and the medium. PS, J and Q denote sequences ofthe parameters ps, j and q for all components i 2 ID.S1(PS; J;Q; IDS;m) =@H1(ki2 ID (P1(i; psi; ji) k BUFFER(i; qi)) k MEDIUM (IDS;m))De�nition of the encapsulation set H1:H1 = fread BP (i;m); send BP (i;m); read PM(i;m); send PM(i;m);read MB(i;m); send MB(i;m); read PB(i; reset);send PB(i; reset) j i 2 ID; m 2 Mg

Protocol 1 is speci�ed by the following equation:Protocol1 = S1(PSinit; Jdc; EQ; ;;mdc)With PSinit a sequence of protocol process states psi for which it holds thatpsi = L for the initial leader and psi = S for all other components. The sub-script dc in Jdc and mdc indicates that for these parameters initially \don'tcare" values may be taken. Finally, EQ denotes a sequence of empty queues.3 A Leader Election Protocol without initialleaderWe now drop the unnatural assumption of a leader being present initially. Asin the previous section components are considered to be perfect. In this settingProtocol 1 does not su�ce, as no leader will ever be present in case a leaderis absent initially. The problem now is what mechanism to use for selecting anew leader in absence of a previous one.A straightforward approach to detect the absence of a leader is to equipeach component with a timer process and to detect the absence of a leaderby means of a timeout mechanism. A component starts its timer when itbecomes a candidate. When receiving a response of the leader on its initialI(my id) message the timer plays no role and the component progresses as inthe �rst protocol. In absence of a response of a leader, the candidate goes tothe leader state at the occurrence of a timeout. In Protocol 1 two di�erentmessage types to exchange identities were used. As a timeout guarantees thatin absence of a leader a candidate becomes a leader, a leader may go to thefailed state without notifying the component that forced it to that state. So,the response message from a leader to a candidate, giving that candidate theright of succession, is no longer needed. Of course a leader still has to defenditself against a candidate with a lower id. For this purpose I-messages can beused as well. This means that all R-messages can be replaced by I-messages.As a consequence, candidates now have to react on I-messages, which meansthat they can now be forced to become failed by receiving messages from othercandidates. In Protocol 1 a candidate only reacts to messages sent by theleader.A timeout must be disabled in case a leader is present. This might be theleader at the start of the timer, but it might also be a `fresh' one. Therefore,a timeout may expire only when a component has received and processed allresponses to its message sent at starting the timer. Premature timeouts haveto be excluded in the speci�cation of the protocol.Thus we obtain the following formal speci�cation of a protocol process P2.This process has three parameters: i represents a component id, ps representsthe state of the protocol process, j represents the id of a received I-message.In this speci�cation we distinguish eight states:� S: the start state.� B: the bu�er is reset, no initial I-message has been sent.

� I : the initial I-message has been sent, the timer has not been startedyet.� C: the candidate state, the timer has been started.� T : an I-message is received by a candidate, but has not been processedyet.� L: the leader state.� R: an I-message is received by a leader, but has not been processed yet.� F : the failed state.Compared to the states of P1, only the state I is new.P2(i; ps; j) = Pk2ID read BP (i; I(k)) � P2(i; ps; j) / ps = S . �+ send PB(i; reset) � P2(i; B; j) / ps = S . �+ send PM(i; I(i)) � P2(i; I; j) / ps = B . �+ send PT (i; start) � P2(i; C; j) / ps = I . �+ Pk2 ID read BP (i; I(k)) � P2(i; T; k) / ps = C . �+ read TP (i; timeout) � P2(i; L; j) / ps = C . �+ send PM(i; I(i)) � P2(i; C; j) / j < i ^ ps = T . �+ send PT (i; stop) � P2(i; F; j) / j > i ^ ps = T . �+ Pk2 ID read BP (i; I(k)) � P2(i; R; k) / ps = L . �+ send PM(i; I(i)) � P2(i; L; j) / j < i ^ ps = R . �+ P2(i; F; j) / j > i ^ ps = R . �+ Pk2ID read BP (i; I(k)) � P2(i; ps; j) / ps = F . �In Figure 3 this speci�cation is illustrated.
S

s(i,reset)
C L FR(k)

T(k)

k<i

r(i,I(k))

k<i

s(i,I(i))

B
s(i,I(i))

I

r(i,I(k))

s(i,start)

r(i,I(k))

r(i,timeout)

s(i,I(i))

k>i

r(i,I(k))

s(i,stop)
k>iFigure 3: State transitions of protocol 2The bu�er process and the medium process are speci�ed as in Protocol 1.The set of messages now only contains I-messages: M = fI(i) j i 2 IDg.The local timer process is very simple. The timer states are represented byTR (timer running) and TS (timer stopped). We suppose that no start signalis received while the timer is in the state TR.

TIMER(i; ts) = read PT (i; start) � TIMER(i; TR) / ts = TS . �+ read PT (i; stop) � TIMER(i; TS) / ts = TR . �+ send TP (i; timeout) � TIMER(i; TS) / ts = TR . �The communications between a protocol process and its local timer are de�nedas follows:send PT (i; start) j read PT (i; start) = comm PT (i; start)send PT (i; stop) j read PT (i; stop) = comm PT (i; stop)send TP (i; timeout) j read TP (i; timeout) = comm TP (i; timeout)As mentioned above, this protocol is not robust with respect to prematuretimeouts: a component has to wait for the reply (if any) of all other compo-nents participating in the election before a timeout may be enabled. In ACPit is common practise to model such a timeout by means of the priority opera-tor �. The timeout action gets a lower priority than other actions. As long asone of these actions is enabled the timeout action is prohibited.Application of the priority operator to our protocol implies the de�nition ofa set of orderings on actions in which a timeout of a component i gets a lowerpriority than every action that is related to the reply to the initial messagefrom this component. A reply can be made recognisable by labelling the initialI-message with its source and by attaching the same label to all replies to thismessage. However, in our speci�cation a timeout may be enabled before allreplies have been received, due to two causes. First, a message in a bu�erqueue is only related with the comm BP action if it is at the head of thequeue, otherwise no actions are related with this message. This means that areply that has already been received by a component but is not at the head ofthe bu�er, cannot prevent a timeout. This problem can be solved by a morecomplex labelling of the messages in the bu�er. Second, if the medium is in use(a message has been transmitted to the medium by a component, but has notbeen bu�ered by all other components yet), a comm PM action with a replymessage to a component i may temporarily be disabled, although the timeoutof a component i should still be prohibited by this action.We solve this problem in a rather crude way by placing more restrictionson a timeout action. The timeout of a component i is given a lower prior-ity than every comm MB action in order to prevent a temporary blockade ofa comm PM action. The timeout is also given a lower priority than everycomm BP action in order to guarantee that every component has had the pos-sibility to react on a message. Finally, the timeout is given a lower prioritythan every comm PM action from a component with an id higher than i inorder to ensure that every reply is received by component i before its timeoutis enabled. This leads to the following ordering relations:comm TP (i; timeout) < comm MB(k;m),comm TP (i; timeout) < comm BP (k;m)comm TP (i; timeout) < comm PM(j;m)with m 2 M; i; j; k 2 ID; j > i. Labelling of messages is not useful anymore. The whole system is speci�ed with the following equation:

S2(PS; TS; J;Q; IDS;m) =� � @H2(ki2 ID (P2(i; psi; ji) k BUFFER(i; qi) k TIMER(i; tsi)) kMEDIUM (IDS;m))De�nition of the encapsulation set H2:H2 = H1 [fread PT (i; start); send PT (i; start); read PT (i; stop);send PT (i; stop); read TP (i; timeout); send TP (i; timeout) j i 2 IDgwith H1 de�ned in the previous section. Protocol 2 is speci�ed by the fol-lowing equation:Protocol2 = S2(PSinit; TSinit; Jdc; EQ; ;;mdc)with PSinit a sequence of protocol process states psi with psi = S for allcomponents. TSinit denotes a sequence of timer states tsi with tsi = TS for allcomponents. As with Protocol 1, the subscript dc in Jdc and mdc indicates thatfor these parameters initially \don't care" values may be taken, EQ denotes asequence of empty queues.4 A fault tolerant Leader Election protocolFor the third protocol we drop the assumption of perfect components. Com-ponents may cease participating without notifying other components . Afterhalting, a component does not behave maliciously. This kind of failures isknown as crash faults (see e.g. [11]). Crashed components may recover and(re-)join at any time. It is assumed that recovered components restart in thestart state. The number of times a component can crash or recover during anelection is unlimited. A component cannot crash during the execution of anatomic event.The crucial point for a protocol in this setting is that after a crash of theleader component a failed component might be a valid successor. To involvefailed components in the election we consider two cases. First, to avoid a candi-date to become a leader in case a leader crashed and a better failed componentis present, failed processes become a candidate again on receipt of an I-messagewith a smaller id than their own id|thus joining the competition about theleadership. Other I-messages are still ignored when being failed. On becominga candidate, an I-message with my id is broadcasted and the local timer isstarted. This does not su�ce in case a leader crashes, at least one failed com-ponent is present (that will never crash), and no candidate will ever appear. Inthis scenario no leader will ever be elected, although there is some componentthat will never crash. Therefore, we should have a mechanism via which failedcomponents will rejoin the election in absence of a leader. Several techniquescan be applied to accomplish this1. Here we abstract from a speci�c techniqueand model this by adding an unconditional non{deterministic choice of a tran-1For instance, a leader may transmit on a regular basis \I am here" messages and inabsence of such messages a timeout could expire in a failed component, thus forcing it tobecome starting (or candidate). Another possibility would be to let a failed componentregularly check whether a leader is present (see e.g. [13]).

sition from the failed state to the candidate state, such that a failed componentmay (re-)join the election spontaneously by identifying itself and starting itstimer. It should be noticed that we now have two transitions from the failedstate to the candidate state with equivalent actions, one after the reception ofan I-message with a lower id, the other without a preceeding action.We now turn to the formal speci�cation of this protocol. A component crashhas consequences not only for the protocol process, but also for the local bu�erprocess and the local timer process. Therefore all component processes needto be reconsidered. In the speci�cation below we will use a simple model of acomponent crash:� A \dead state" is added to the other states (start, candidate, leader,failed).� Only the protocol process has the possibility to crash. The bu�er processand the timer process will simply continue (as far as possible) after acrash of the protocol process.� The \revival" of a component is modelled by the revival of the protocolprocess. At its revival this process resets the local timer. The local bu�eris reset in the start state, which is entered after the revival.� In the speci�cation of the protocol process a transition from a state tothe dead state is modelled by the atomic action crash. The transitionfrom the dead state to the start state is modelled by the atomic actionrevive. These actions do not communicate with any action from any otherprocess.Remark: in the Finite State Diagram speci�cation of this protocol in [8] thetransition to the dead state is modelled with a may transition, which may beignored inde�nitely. This opposed to a must transition, which has to be chosensooner or later when it is continuously enabled. This distinction cannot bemodelled in ACP: under the usual fairness assumptions each component willcrash (and revive) at some moment in the future.The protocol process P3 has the same parameters as P2: i (the componentid), ps (the protocol state) and j (the id of a received I-message). In the spec-i�cation we distinguish eleven states. The �rst eight states, from S to F , areidentical to the states of P2. Three states are new:� X : an I-message is received by a failed process, but has not been pro-cessed yet.� D: the dead state.� A: the component becomes alive again (the revive action has been exe-cuted), the timer has not been reset yet.In the speci�cation below the transition to the dead state is not added to theprocess term for each separate state S : : :X . Instead, a single summand withthe action crash is added with the condition ps 6= D).

P3(i; ps; j) = Pk2 ID read BP (i; I(k)) � P3(i; ps; j) / ps = S . �+ send PB(i; reset) � P3(i; B; j) / ps = S . �+ send PM(i; I(i)) � P3(i; I; j) / ps = B . �+ send PT (i; start) � P3(i; C; j) / ps = I . �+ Pk2 ID read BP (i; I(k)) � P3(i; T; k) / ps = C . �+ read TP (i; timeout) � P3(i; L; j) / ps = C . �+ send PM(i; I(i)) � P3(i; C; j) / j < i ^ ps = T . �+ send PT (i; stop) � P3(i; F; j) / j > i ^ ps = T . �+ Pk2 ID read BP (i; I(k)) � P3(i; R; k) / ps = L . �+ send PM(i; I(i)) � P3(i; L; j) / j < i ^ ps = R . �+ P3(i; F; j) / j > i ^ ps = R . �+ Pk2 ID read BP (i; I(k)) � P3(i;X; k) / p = F . �+ P3(i; B; j) / ps = F . �+ P3(i; B; j) / j < i ^ ps = X . �+ P3(i; F; j) / j > i ^ ps = X . �+ crash(i) � P3(i;D; j) / ps 6= D . �+ revive(i) � P3(i; A; j) / ps = D . �+ send PT (i; stop) � P3(i; S; j) / ps = A . �In Figure 4 the speci�cation is illustrated. We did not draw all crash actionsfrom every state to the D state.
S

s(i,reset)
C L FR(k)

T(k)

k<i

r(i,I(k))

k<i

s(i,I(i))

B
s(i,I(i))

I

r(i,I(k))

s(i,start)

r(i,I(k))

r(i,timeout)

s(i,I(i))

k>i

s(i,stop)
k>i

A

D

........

r(i,I(k))

X(k)

k>i

s(i,stop)

revive(i)

crash(i)

Figure 4: State transitions of protocol 3The bu�er process, the timer process and the medium process are the sameas in the previous sections. The process S3 has the same data parameters as

S2. So we getS3(PS; TS; J;MS; IDS;m) =� � @H2(ki2 ID (P3(i; psi; ji) k BUFFER(i; qi) k TIMER(i; tsi)) kMEDIUM (IDS;m))with H2 as de�ned before. Protocol 3 is speci�ed by the following equation:Protocol3 = S3(PSinit; TSinit; Jdc; EQ; ;;mdc)The initial value of the parameters is the same as with Protocol 2 in the previoussection.5 Towards the veri�cation of the protocolsIn this section a set of requirements for the protocols is given. As an examplethe requirements for Protocol 1 are formalised. Some remarks are made aboutproving the correctness of the protocol with respect to these requirements.The formalisation of the requirements of the other protocols as well as actualcorrectness proofs are left for future research. We start with a set of fourrequirements for the fault{free protocols, Protocol 1 and Protocol 2.R1. A leader will be elected: at the termination of the protocol the componentwith the highest identity is elected as the leader.R2. At each moment at most one component is the current leader. At nomoment during or after the election more than one leader is allowed.R3. The capitulation of a leader is caused by an active component with ahigher identity than the capitulated leader.R4. A new leader will have a higher identity than the one that just has capit-ulated.The �rst requirement is obvious. The second requirement states that duringthe election there may always be at most one leader (since a change of leader-ship may take some time there can be temporarily no leader at all). The lasttwo requirements make sense of the ordering of component identities. Com-ponents with a higher identity have priority in being elected as leader overcomponents with a lower identity. The third requirement states that a leadercapitulates only in the presence of a component with a higher identity, whichis participating in the election. We do not state anything about the possiblefuture leadership of this `better' component. The last requirement states thatthe next leader will be an improvement over the previous one (i.e., will have ahigher identity). The last two requirements impose constraints on the capitu-lation of a leader and the ordering of its successor. Note that R4 implies thata component that capitulates once, will not become a leader any more.For a fault{tolerant protocol (Protocol 3) these requirements are too strong.R1 is already problematic: as components may crash and come up again, afault tolerant LE protocol will never terminate. So it cannot be required that

�nally a leader will be elected. Under a certain notion of fairness we may expectthat some component becomes a leader for some time, just as we may expectthat it will crash at some other moment. Of course requirement R2 still holdsduring the election. A component crash may cause the capitulation of a leader.Therefore R3 has to be restricted to the capitulation of a leader that remainsalive after its capitulation. In that case there has to be a cause as stated inR3. In case of a leader crash nothing can be required about the identity of thenew leader compared to the identity of the previous one. So R4 also has to berestricted to the capitulation of a leader that stays alive until the new leader ispresent. This leads to the following set of requirements for Protocol 3:R1'. At any moment it holds that at some moment in the future a leader willbe elected.R2'. At each moment at most one component is the current leader. At nomoment during the election more than one leader is allowed.R3'. The capitulation of a leader is caused by an active component with ahigher identity or by a crash of the leader.R4'. Under the condition that the old leader has not crashed, a new leader willhave a higher identity than the one that just has capitulated.In ACP traditionally requirements are formalised by the speci�cation of thedesired behaviour of a process. The veri�cation of a protocol then consists ofan algebraic proof of the equivalence of the requirement speci�cation and theprotocol speci�cation with abstraction from certain actions.Another approach to veri�cation is based on the information contained inthe data parameters of the process equations. In particular when the UNITYFormat is used, much of the information about the process state is put in theseparameters. Requirements can be translated to extra conditions on some orall summands of a process term. These conditions have to be invariantly true.As ACP has no formal syntax and semantics of data types, a data{orientedproof will always be \pseudo formal". In case a strictly formal treatment ofdata is required the related formalism �CRL ([12]) has to be used. In [5] and[6] correctness proofs in �CRL are given in which formal reasoning about dataplays an important role.In this case study we will give a formalisation of the requirements for Pro-tocol 1 in ACP in terms of desired actions. Next some remarks are made abouta data{oriented formalisation of each requirement. Finally, a formalisation ofthe requirements for the other protocols is discussed brie
y.Before we turn to the requirements we �rst will derive an equation for theparallel composition of Protocol 1 in the UNITY Format. The expansion ofthe process term for S1 from section 2 leads to the following equation. In thisequation the substitution of a new value x for the old value of a parameter yin a sequence S is denoted by S[x=y].

Lemma 5.1S1(PS; J;Q; IDS;m) =Pi2 ID(Pn2M comm BP (i; n) � S1(PS; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = n ^ psi = S . �+ comm PB(i; reset) � S1(PS[B=psi]; J;Q[empty queue=qi]; IDS;m)/ psi = S . �)+Pi2 ID(comm PM(i; I(i)) � S1(PS[C=psi]; J;Q; IDnfig; I(i))/ IDS = ; ^ psi = B . �)+Pi2 ID(Pj 2 ID comm BP (i; I(j)) � S1(PS; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = I(j) ^ psi = C . �+Pj 2 IDnfig comm BP (i; R(j))�S1(PS[T=psi]; J [j=ji]; Q[deq(qi)=qi]; IDS;m)/ serve(qi) = R(j) ^ psi = C . �+ comm BP (i;R(i)) � S1(PS[L=psi]; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = R(i) ^ psi = C . �)+Pi2 ID(comm PM(i; I(i)) � S1(PS[C=psi]; J;Q; IDnfig; I(i))/ IDS = ; ^ ji < i ^ psi = T . �+ S1(PS[F=psi]; J;Q; IDS;m) / ji > i ^ psi = T . �)+Pi2 ID(Pj 2 ID comm BP (i; I(j))�S1(PS[R=psi]; J [j=ji]; Q[deq(qi)=qi]; IDS;m)/ serve(qi) = I(j) ^ psi = L . �)+Pi2 ID(comm PM(i; R(i)) � S1(PS[L=psi]; J;Q; IDnfig; R(i))/ IDS = ; ^ ji < i ^ psi = R . �+ comm PM(i; R(ji)) � S1(PS[F=psi]; J;Q; IDnfig; R(ji))/ IDS = ; ^ ji > i ^ psi = R . �)+Pi2 ID(Pn2M comm BP (i; n) � S1(PS; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = n ^ psi = F . �+Pi2 IDS(comm MB(i; m) � S1(PS; J;Q[enq(m; qi)=qi]; IDSnfig; m)/ IDS 6= ; . �)Proof: straightforward, see [8].With this equation as a starting point, we will investigate how the require-ments R1{R4 can be formalised.R1. The protocol will terminate with the component with the highest iden-tity being elected as the leader.A fault{free leader election protocol terminates when the component with thehighest identity is elected as the leader and all other components have lost theelection (are in the failed state). In the ACP speci�cation of Protocol 1 thisrepresents a deadlock: no action is enabled. However, this deadlock can beavoided in the following way: we add to the equation for the protocol processin lemma 5.1 an extra summand Pi2 ID exit(i) / psi = L . � without a re-cursive call. By giving the exit action a lower priority than every other actionin the protocol, it will only be enabled if no other action is. We now requirethat, with abstraction from all other actions, only the action exit(idmax) will

be observed before successful termination of the protocol. De�ne the processReq1 as follows:Req1 = � � exit(idmax)For Protocol 1 R1 is ful�lled if the following identity is proved:�I1 � �(Protocol1) = Req1 (R1.ACP)With Protocol1 de�ned in section 2. The abstraction set I1 contains all ac-tions except the exit action.R2. At each moment at most one component is the current leader.This means that the action on which a component i becomes a leader has to bepreceeded by an action connected with the capitulation of the previous leaderk . In Protocol 1 the action comm BP (i; R(i)) re
ects the transition to theleader state, the action comm PM(k;R(i)), k < i, re
ects the capitulation ofa leader.The speci�cation of the process Req2(k; IDS) also contains a summandwith the exit action, indicating the termination of the protocol. As before,IDS denotes a variable set of component ids. The components in this set havenot yet become (or will not inevitably be soon) failed or leader.Req2(k; IDS) = � � (Pi2IDS � � comm PM(k;R(i))�(Req2a(i; IDS) / i > k . Req2(k; IDSnfig))+ exit(idmax))Req2a(i; IDS) = � � comm BP (i; R(i)) �Req2(i; IDSnfig)For Protocol 1 R2 is ful�lled if the following identity is proved (idil denotesthe identity of the initial leader):�I2 � �(Protocol1) = Req2(idil; IDnfidilg) (R2.ACP)The set I2 contains all actions except the actions showed in the speci�cation ofReq2.R3. The capitulation of a leader is caused by an active component with ahigher identity than the capitulated leader.This requirement is formalised in a weaker version: the following equation forReq3 states that the capitulation of a leader k is preceeded by the transmissionof one or more I-messages from components with a higher identity. A strictcausal relation is not speci�ed. As with R1 and R2 the termination of theprotocol is speci�ed with the exit action in the �rst equation. IDS containsthe ids of the components who have not yet become (or will not inevitably besoon) failed or leader.Req3(k; IDS) = � � (Pi2ID � � comm PM(i; I(i))�(Req3(k; i; IDSnfig) / i > k . Req3(k; k; IDSnfig))+ exit(idmax))

Req3(k; i; IDS) = � � (Pj2ID � � comm PM(j; I(j))�(Req3(k; i; IDS) / j > i . Req3(k; i; IDSnfjg))+ � � comm PM(k;R(i)) � Req3(i; IDS))R3 is ful�lled if the following identity is proved:�I3 � �(Protocol1) = Req3(idil; ID=fidilg) (R3.ACP)The set I3 contains all actions except the actions used in the speci�cationof Req3.R4. A new leader will have a higher identity than the one that just has ca-pitulated.For Protocol 1 this requirement is formalised by requiring a sequence of zeroor more comm BP (i; R(i)) actions with i greater than the identity of the lastleader (k). This action marks the transition from the candidate state to theleader state. We get the following equation:Req4(k) = � �(Pi2ID � �comm BP (i; R(i))�(Req4(i)/ i > k . �)+exit(idmax))R4 is ful�lled if the following identity is proved:�I4 � �(Protocol1) = Req4(idil) (R4.ACP)The set I4 contains all actions except the actions used in the speci�cationof Req4.Next we will shortly discuss a data{oriented formalisation of the requirements.With R1 we will also need the exit action for the successful termination ofthe protocol. However, without the detour of the priority operator, needed inR1.ACP, we now may directly specify the condition under which this action isenabled. It is clear that the exit action is enabled if for the state of the pro-tocol processes the following holds: psidmax = L and, for all other componentsj 2 ID, psj = F . This can directly be checked by investigating the sequenceof protocol states PS. Remark: In the UNITY Format the priority operatormay be \translated" to extra conditions on several summands, see [7]. Thiswill lead to the same condition for the exit action as stated above.In a data{oriented formalisation of R2 we have to count the number ofprotocol processes in the sequence PS for which psi = L or psi = R holds.This number may never be greater than one. This condition may be imposedon every summand of the equation in lemma 5.1. However, it seems su�cientto impose the condition only on the summand with the action after which acomponent enters the leader state (comm BP (i; R(i))).Requirement R3 can be formalised by adding an extra boolean parameterto the parameter list of S1. Every time an I-message with an id greater thanthe id of the current leader (or last leader) is sent, this parameter is set to true.The capitulation of a leader (the action send PM(k;R(i)) with i > k) is onlypermitted under the extra condition that the boolean parameter has been setto true. Execution of this action resets the parameter to false.

In a data{oriented formalisation of R4 an extra parameter may be added tothe parameter list of S1, containing the identity of the current or last leader,say k. Now, according to R4, for a component to become a leader it musthold that its identity is greater than k. So the summand with the actioncomm BP (i; R(i)) gets an extra condition: i > k.Along the same lines the requirements for Protocol 2 and Protocol 3 can beformalised. With these protocols we have the problem that no atomic actionis directly connected with the capitulation of a leader. This means that for aformalisation of R2 and R3 an extra action, say capitulate(i), has to be intro-duced in order to resolve this problem. With Protocol 3 the crash actions makea formalisation of the requirements R1'{R4' fairly complicated. The crash of aleader has to be observed separately from the crash of other components.In this paper we will not give a formalisation of the requirements for Protocol2 or Protocol 3 or a formal proof of the correctness of Protocol 1 with regardto the requirements stated above. This is left for future research.6 ConclusionsIn this paper we have speci�ed a series of dynamic leader election protocols inbroadcast networks. The protocols are presented in a stepwise fashion. Thestepwise approach aids not only in the clarity and conciseness of the protocols,but also |and more importantly| in reasoning about them (`separation ofconcerns').The speci�cation of a protocol in ACP contains a complete formal descrip-tion, not only of the various processes but also of the complete distributedbehaviour of the protocol. The UNITY Format for process speci�cation, usedin this paper, provides speci�cations that are well-readable and that can serveas a solid base for algebraic manipulations like normalising the parallel com-position of several processes or proving the correctness of a complete system.While specifying the protocols, problems were encountered in modelling thedesired timeout semantics (which appeared to be impossible due to the scopeof the priority operator) and in modelling the crash of a component (which ap-peared to be counter{intuitive somehow, due to the usual fairness assumptionsin ACP).The timeout semantics problem may be overcome by specifying the proto-cols in a formalism with real{time features included, e.g. real{time ACP ([4]).This is left for future research.The requirements for Protocol 1 are formalised after the formal speci�cationof the protocol. The atomic actions from the protocol speci�cation needed tobe known before the required behaviour could be speci�ed. It is an interestingquestion whether this kind of \reverse software development" is intrinsic to aformalism like ACP or whether it is due to the speci�c character of the protocolsstudied in this paper.The requirements can be formalised in two di�erent ways: process{orientedand data{oriented. At this moment it is not clear which approach is best-suitedfor a formal veri�cation of the protocol. The protocols in this paper are toolarge for manual algebraic veri�cation. Probably automated veri�cation in arelated formalism as �CRL ([12]) is possible.

The speci�cations from this paper have been translated into the executableformalism PSF ([19]). Simulation runs of these speci�cations appeared to bevery helpful during the various stages of the protocol development.Acknowledgements: The authors gratefully acknowledge Jan Bergstra (Univ.of Amsterdam & Univ. of Utrecht) for initiating and stimulating our fruitfulcooperation. We are also grateful to Jan Friso Groote (Univ. of Utrecht) forhis assistance during the beginning of our work.References[1] H.H. Abu-Amara. Fault-tolerant distributed algorithm for election in com-plete networks. IEEE Transactions on Computers, 37(4):449{453, 1988.[2] Y. Afek and E. Gafni. Time and message bounds for election in syn-chronous and asynchronous complete networks. SIAM Journal on Com-puting, 20(2):376{394, 1991.[3] H. Attiya, J. van Leeuwen, N. Santoro, and S. Zaks. E�cient elections inchordal ring networks. Algorithmica, 4(3):437{446, 1989.[4] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. FormalAspects of Computing, 3(2):142{188, 1991.[5] M.A. Bezem and J.F. Groote. A correctness proof of a One-bit SlidingWindow Protocol in �CRL. Technical Report Logic Group Preprint Seriesnr. 99, Department of Philosophy, Utrecht University, 1993.[6] M.A. Bezem and J.F. Groote. Invariants in process algebra with data.Technical Report Logic Group Preprint Series nr. 98, Department of Phi-losophy, Utrecht University, 1993.[7] J.J. Brunekreef. Process Speci�cation in a UNITY Format. TechnicalReport P9329, Programming Research Group, University of Amsterdam,1993. An exented abstract is published in this volume.[8] J.J. Brunekreef, J.P. Katoen, R.L.C. Koymans, and S. Mauw. Designand analysis of dynamic leader election protocols in broadcast networks.Technical Report P9324, Programming Research Group, University of Am-sterdam, 1993.[9] E. Chang and R. Roberts. An improved algorithm for decentralizedextrema-�nding in circular con�gurations of processors. Communicationsof the ACM, 22(5):281{283, 1979.[10] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leaderelection part 1: Complete graph protocols. (Preliminary version appearedin Proc. 6th Int. Workshop on Distributed Algorithms, (S. Toueg et. al.,eds.), LNCS 579, 167{180, 1992), 1993.[11] M.J. Fischer. A theoretican's view of fault tolerant distributed computing.In Fault Tolerant Distributed Computing, number 448 in LNCS, pages 1{9.Springer Verlag, 1991.

[12] J.F. Groote and A. Ponse. �CRL: A base for analyzing processes withdata. In E. Best and G. Rozenberg, editors, Proceedings of the 3rd Work-shop on Concurrency and Compositionality, pages 125{130. Universit�atHildesheim, 1991.[13] R. Gusella and S. Zatti. An election algorithm for a distributed clocksynchronization program. In Proc. 6th IEEE Int. Conf. on DistributedComputing Systems, pages 364{371, 1986.[14] A. Itai, S. Kutten, Y. Wolfstahl, and S. Zaks. Optimal distributed t-resilient election in complete networks. IEEE Transactions on SoftwareEngineering, 16(4):415{420, 1990.[15] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for somedistributed algorithms for a complete network of processors. In Proc. 3rdAnnual ACM Symp. on Principles of Distributed Computing, pages 199{207. ACM, 1984.[16] G. LeLann. Distributed systems|towards a formal approach. InB. Gilchrist, editor, Information Processing (vol. 77) (IFIP), pages 155{160. North-Holland, Amsterdam, 1977.[17] M.C. Loui, T.A. Matsushita, and D.B. West. Election in a complete net-work with a sense of direction. Information Processing Letters, 22:185{187,1986. (see also Inf. Proc. Letters, 28:327, 1988).[18] T. Masuzawa, N. Nishikawa, K. Hagihara, and N. Tokura. Optimal fault-tolerant distributed algorithms for election in complete networks with aglobal sense of direction. In J.-C. Bermond and M. Raynal, editors, Dis-tributed Algorithms, LNCS 392, pages 171{182. Springer-Verlag, 1989.[19] S. Mauw and G.J. Veltink. A Process Speci�cation Formalism. Fund. Inf.,XII:85{139, 1990.[20] G.L. Peterson. An O(n logn) unidirectional algorithm for the circularextrema problem. ACM Trans. Progr. Lang. Syst., 4:758{762, 1982.[21] L. Shrira and O. Goldreich. Electing a leader in a ring with link failures.Acta Informatica, 24:79{91, 1987.[22] G. Singh. E�cient distributed algorithms for leader election in completenetworks. In Proc. 11th IEEE Int. Conf. on Distributed Computing Sys-tems, pages 472{479, 1991.

