
Secure Ownership and Ownership Transfer in

RFID Systems

Ton van Deursen1⋆, Sjouke Mauw1, Saša Radomirović1, and Pim Vullers1,2

1 University of Luxembourg, Luxembourg.
{ton.vandeursen, sjouke.mauw, sasa.radomirovic}@uni.lu

2 Radboud University Nijmegen, The Netherlands.
p.vullers@cs.ru.nl

Abstract. We present a formal model for stateful security protocols.
This model is used to define ownership and ownership transfer as con-
cepts as well as security properties. These definitions are based on an
intuitive notion of ownership related to physical ownership. They are
aimed at RFID systems, but should be applicable to any scenario shar-
ing the same intuition of ownership.
We discuss the connection between ownership and the notion of desyn-
chronization resistance and give the first formal definition of the latter.
We apply our definitions to existing RFID protocols, exhibiting attacks
on desynchronization resistance, secure ownership, and secure ownership
transfer.

Key words: RFID protocols, ownership, desynchronization resistance,
ownership transfer, formal verification

1 Introduction

Radio frequency identification (RFID) is expected to become a key technology
in supply chain management, because it has a large potential to save costs. Two
of the cost-saving advantages of this technology are the improved efficiency of
inventory tracking and the reduction of counterfeit products. The former is due to
the fact that RFID is contactless and requires no line of sight between the RFID
reader and the RFID tag attached to a product. The latter is because RFID
tags can store and process information as well as execute simple communication
protocols.

As products flow through a supply chain, their ownership is transferred from
one partner to the next. This transfer of ownership extends to the RFID tags
attached to these products. This means that at some point in time a supply
chain partner owns the products and RFID tags legally, by means of a title, and
physically by the fact that the goods are at his premises. In general, ownership of
an object allows one to (exclusively) interact with the object, modify the object,
and transfer ownership of the object to someone else.

⋆ Ton van Deursen was supported by a grant from the Fonds National de la Recherche
(Luxembourg)

In this work, we propose and attempt to validate a definition of ownership in
RFID systems, which is inspired by the legal and physical meaning of ownership.
We use this definition as a basis to define secure ownership, in Section 3, and
secure ownership transfer in RFID protocols in Section 4. These definitions are
particularly relevant for RFID systems in supply chains, but we expect them to
be also applicable to other scenarios that share the same intuition of ownership,
such as future parcel delivery systems. The definitions of these properties are,
to the best of our knowledge, the first formal definitions proposed. We attempt
to validate them by considering a published protocol designed for ownership
transfer. We exhibit a flaw in the protocol and demonstrate attacks on secure
ownership and secure ownership transfer.

2 Stateful Security Protocols

In this section we introduce basic notation and definitions concerning security
protocols. Rather than providing a full description of security protocol syntax
and semantics, we only present the essentials needed for defining and analyzing
ownership and related notions. A more extensive description can be found in
Appendix A. The model presented is based on the model for stateless protocols
by Cremers and Mauw [1]. We extend their model by adding support for stateful
protocols. While stateless protocols start in the same state for every execution,
stateful protocols may use information from previous and parallel protocol exe-
cutions.

A protocol is defined as a map from an n-tuple of distinct roles to an n-tuple
of role specifications. A role specification defines the behavior of an honest agent
executing the role. Typical roles in an RFID system are the reader and tag roles
to be executed by actual RFID readers and RFID tags. A particular execution
of a protocol role by an agent is called a run.

The specification consists of a composition of events and the declaration of all
nonces and variables appearing in the composition. An event is either the sending
or the receiving of a message and both can be accompanied by assignments to
variables. The receiving of messages is referred to as a read event. Inspired by
Ryan et al. [2], we use signals to indicate that a certain point in the protocol
has been reached.

The exchanged messages between roles consist of terms. These terms are built
from basic terms such as nonces, constants, and agent names. Complex terms
can be constructed using functions like {·}· (encryption), h(·) (hashing), · ⊕ ·
(exclusive or), and (·, ·) (pairing). When an agent executes a role, nonces are
freshly generated and variables receive their actual value through read events
and assignments. We separate two kinds of variables. Local variables model the
stateless part of protocols. Their values are assigned through read events and
they are reassigned every run. Once assigned, their value does not change. The
stateful part of protocols is modeled by global variables. They receive their value
through explicit assignments and their values are maintained across different
runs.

We study the possible behavior of a system in which a collection of agents
executes a set of protocols Π through so-called traces, denoted by traces(Π).
Informally, a trace is a list of events occurring in the interleaved execution of
protocol runs. The precise construction of traces is dictated by the semantics
of the system (given in Appendix A). Formally, a trace t = t0 . . . tn−1 is a

valid derivation s0
t0−→ s1

t1−→ . . .
tn−1
−−−→ sn of system states s0 . . . sn and events

t0 . . . tn−1, and |t| = n is its length. Abusing notation, we write Σ(t) to denote
the states s0 . . . sn of trace t.

A system state is a five-tuple It contains the following components. The set
A is used to record active runs. Each run contains an identifier, the name of
the executing agent, the list of events that still have to be executed, and the
local variable assignments. A run r has been completed successfully in state s,
denoted by success(r, s), if its event list is empty. Otherwise the run is still active
or it has terminated unsuccessfully.

The current state of the global variable assignments of the agents is stored
in G. We consider communication to be asynchronous. Messages sent by agents
are placed in the send buffer SB . Similarly, agents read message from the read
buffer RB . Finally, the intruder’s knowledge is kept in I.

We assume that a standard Dolev-Yao intruder [3] controls the network. The
intruder delivers a message by moving it from the send buffer to the read buffer.
He eavesdrops on messages by adding them to his knowledge. The intruder can
construct any message from his knowledge and place it in the read buffer. He can
block or delay messages by not moving them from the send to the read buffer.
Finally, a message can be modified by faking a message and blocking the original
one. As usual in Dolev-Yao intruder models, we assume that cryptography is
perfect. This means that the intruder cannot reverse hash functions and that
he is not able to learn the contents of an encrypted term, unless he knows the
decryption key. We assume that there is one agent E which is under full control
of the intruder.

We use message sequence charts [4] to represent protocol specifications graph-
ically. Every message sequence chart shows the role names, framed, near the top
of the chart. Above a role name, the role’s secret terms are shown. Actions, such
as nonce generation, computation, verification of terms, and assignments are
shown in boxes. Messages to be sent and expected to be received are specified
above arrows connecting the roles. It is assumed that an agent continues the
execution of its run only if it receives a message conforming to the specification.

3 Ownership

In this section we consider two views on tag ownership. The first view, which we
call the system view, is, that ownership of a tag is the ability to interact with
the tag in a predefined manner. Ownership of a tag can, for instance, be defined
as an agent’s ability to inspect the tag’s ID. The second view is called the agent
view. It is based on the fact that each agent records in a local data structure the

tags it believes to be the owner of. We state a relation between these two views
as a security requirement.

3.1 System View of Ownership

We define ownership of a tag as the ability to execute a designated protocol with
the tag. This could, for example, be a mutual authentication protocol or a tag
identification protocol. We call this protocol the (ownership) test protocol. This
approach has been chosen over a knowledge-based solution, in which knowledge
of a secret on the the tag indicates ownership, because it is more general. It
allows, for example, to include trusted or other third parties in the decision of
ownership.

We note that the test protocol does not have to be implemented on the tag.
It is merely used to define what constitutes an owner of a tag and may thus
be a virtual protocol. Consequently, in every state of the system, the ownership
relation between tags and other agents is precisely defined, while the (hypotheti-
cal) executions of the ownership test protocol are not part of the system’s traces.
Ownership is tested in a virtual environment, consisting only of the testing agent,
tag, and other agents specified by the test protocol’s roles, but without any ad-
versarial influence. The ability of the testing agent to successfully complete the
test protocol proves ownership of a tag. In some contexts the knowledge of a key
may be the defining notion of ownership, while in others it may be the ability
to execute some or all protocols implemented on a tag. In the former setting,
a simple proof-of-knowledge protocol would be a suitable test protocol, in the
latter setting it would be the collection of protocols implemented on the tag.

A consequence of our approach to define ownership relative to a test protocol
is that notions such as ownership transfer are also relative to the chosen test
protocol. The choice of a proper test protocol is therefore an important step in all
verification efforts. Choosing an insufficient test protocol may lead to ownership-
related vulnerabilities being overlooked. A trivial example is the test protocol
that can be successfully executed by any agent and which thus declares everyone
as the owner of a tag. This problem is, however, mitigated by the fact that an
intuitive notion of ownership frequently coincides with the ability to complete
a mutual authentication protocol with a tag. In such cases, the authentication
protocol can simply be taken to be the test protocol.

Testing for ownership of a tag in state s amounts to verifying whether the
test protocol can be executed in a virtual environment whose initial state is s.
In order to model this, we introduce the notion of micro traces. These can be
derived from the traces described in Section 2 by allowing only one run for each
of the parties involved and disallowing intruder activities.

We denote by µtracesP (a1,...,an)(s) the micro traces for protocol P when ex-
ecuted by agents a1 . . . an, starting from initial state s. For every role, we allow
the creation of exactly one run. Since we do not verify security claims in mi-
cro traces, but rather define ownership, no intruder is modeled. Therefore all
messages sent from one agent to another are delivered.

We now have all ingredients to formally define ownership.

Definition 1 (Tag Owner). Let A be a projection from system states to active
runs. An agent R is owner of tag T with respect to test protocol P in system
state s, denoted by ownsP (R, T, s), if and only if

∃t∈µtracesP (R,T)(s)
∀r∈A(Σ(t)|t|) success(r,Σ(t)|t|).

Informally, an agent R owns a tag T with respect to a test protocol P , if
in absence of all adversarial activity, R and T can successfully complete the
protocol P . In this context, R is called the owner of T with respect to P and T
is called R’s property with respect to P .

We stress that our definition of ownership is not the definition of a security
requirement. Our notion of ownership is merely used as a basis to define cer-
tain security requirements, in particular secure ownership and secure ownership
transfer.

3.2 Agent View of Ownership

The definition of tag ownership allows one to verify whether an agent owns a
tag. It misses, however, the owner’s point of view. This view is important when
discussing the intention of an owner to transfer ownership, i.e. the fact that the
owner engages in an ownership transfer protocol. Thus we introduce the agent’s
view regarding ownership of a tag by defining tag holders.

A tag holder is an agent which, based on its protocol executions and local
data structure, believes it is the owner of a tag. We model whether an agent
holds a tag T with respect to test protocol P by a variable holds(P, T).

Definition 2 (Tag Holder). Let s be a system state 〈A,G,SB ,RB , I〉 such
that G(R) = σ for an agent R. We call R a holder of tag T with respect to test
protocol P in system state s, denoted by holdsP (R, T, s), if and only if

σ(holds(P, T)) = true.

By modeling tag holding explicitly we can let the protocol execution depend
on the value of the holds variable. This allows us, for instance, to specify that
an agent shall not transfer ownership of a tag, unless it actually holds the tag.

For verification purposes, we decorate protocols in which a role changes the
value of the holds variable with two signals: obtain and release. The obtain
signal indicates an assignment of true to the holds variable, while the release
signal indicates an assignment of false. We discuss these signals in more detail
in Section 4.1.

3.3 Secure and Exclusive Ownership

In an ideal world, the notions of tag owner and tag holder coincide. It is, how-
ever, immediate that this is impossible to achieve in an asynchronous commu-
nication model. Tag ownership changes when a tag updates its knowledge. Due

to asynchronicity, an agent is in general not be able to update its holds variable
simultaneously with the ownership change.

We define secure ownership as a consistency requirement on all states. We
say that a set of protocols provides secure ownership, if, whenever an agent is
holder of a tag, it must also be the owner of that tag.

Definition 3 (Secure Ownership). A set of protocols Π provides secure own-
ership with respect to test protocol P if and only if

∀t∈traces(Π) ∀0≤i≤|t| ∀R,T∈Agent holdsP (R, T,Σ(t)i) ⇒ ownsP (R, T,Σ(t)i).

Secure ownership provides a guarantee to the owner that it cannot be “dis-
owned” as long as it holds a tag. But secure ownership does not guarantee that
no other agent can have simultaneous ownership of the tag. Simultaneous own-
ership is prevented by the notion of exclusive ownership. It guarantees that the
holder of a tag is the sole owner of the tag. This is important, for instance,
when nobody (and in particular no previous owner) but the holder of a tag is
supposed to be able to identify or trace a tag. We define exclusive ownership as
the requirement that if an agent holds a tag, no other agent is owner of the tag.

Definition 4 (Exclusive Ownership). A set of protocols Π provides exclusive
ownership with respect to test protocol P if and only if

∀t∈traces(Π) ∀0≤i≤|t| ∀R,T∈Agent

holdsP (R, T,Σ(t)i) ⇒ ¬∃R′∈Agent\{R} ownsP (R′, T,Σ(t)i).

It is clear that in an environment where owners can trace tags, exclusive
ownership is a necessary condition for ownership transfer protocols to satisfy
untraceability against previous and future owners of tags.

4 Ownership Transfer

In this section we define the notion of an ownership transfer protocol and the
natural security requirement for such a protocol. We call a protocol Q an own-
ership transfer protocol if it satisfies the following functional requirement. By
executing Q an agent can become the owner of a tag, if it has not been the
owner of the tag.

Definition 5 (Ownership Transfer Protocol). Let P be an ownership test
protocol. We say that Q ∈ Π is an ownership transfer protocol with respect to P
if and only if

∃t∈traces(Π) ∃0≤i<|t| ∃R,T∈Agent ¬ownsP (R, T,Σ(t)i) ∧ ownsQ·P (R, T,Σ(t)i),

where Q · P is used to denote sequential protocol composition.

Informally, the definition states that Q is an ownership transfer protocol, if
there exists an agent R for whom the following two conditions are met. First,
R is not an owner of T and hence cannot successfully complete the protocol P
with T . Second, R is able to successfully complete the sequential composition of
Q followed by P with a tag T .

4.1 Signals

In order to reason about the agent’s view of ownership in a transfer protocol,
we need to keep track of the events in a trace in which an agent changes the
value of the holds variable. For this purpose we decorate protocols with obtain
and release signals as follows. We identify the assignment of true to the holds
variable with the appearance of an obtain signal and the assignment of false
with the appearance of a release signal. For a trace t = t0 . . . tn−1, 0 ≤ i < n,
we write ti = obtainP (B, T,A) to denote any event of a run of protocol P which
is accompanied by the assignment of true to agent B’s holds(P, T) variable. We
then say that agent B obtained tag T , apparently from agent A, in state Σ(t)i+1.
Similarly, ti = releaseP (A, T,B) denotes any event related to the signal in which
agent A releases tag T , apparently to agent B, i.e. assigns false to agent A’s
holds(P, T) variable. We call such an event ti a release event.

Remark 1. For secure ownership it is important to place the release and obtain
signals in the correct position in the ownership transfer protocol. The release
signal is placed at a point causally preceding a tag’s ownership update, typically
at the start of the role for the current owner of the tag. The obtain signal is
placed at a point causally following a tag’s confirmed ownership update, thus
typically at the end of the role for the new owner. It is easy to see that if a release
signal appears too late or an obtain signal appears too early, an agent may be
holder of a tag while not owning the tag, thus violating secure ownership.

4.2 Secure Ownership Transfer

We say that a set of protocols provides secure ownership transfer, if, whenever
an agent R becomes owner of a tag, it must be as a result of an execution of an
ownership transfer protocol, i.e. the ownership change must be intentional.

To capture an agent’s intention to give up ownership, we require that every
change in ownership, making R owner of T , must be preceded by a release signal.

We restrict the relation between ownership changes and release signals in
two ways. First, the ownership change must be in a one-to-one correspondence
with the release signals, i.e. one release signal must not be the source of two or
more ownership changes. Second, no corresponding release and ownership-change
events related to T may interleave other corresponding release and ownership-
change events of T . That is, the one-to-one map must be such that the ownership
change for T is mapped to the latest preceding release signal for T .

For tags owned by the intruder, these requirements cannot be enforced.
Therefore, an agent R can become owner of a tag, either as a consequence of
the tag being intentionally released to R or as a consequence of the tag being
released to the agent E controlled by the intruder. In the latter case the intruder
must have made R the new owner without properly releasing the tag.

Definition 6 (Secure Ownership Transfer). Let Event denote the set of all
possible events and let E ∈ Agent be the agent controlled by the intruder. A set
of protocols Π provides secure ownership transfer with respect to P if and only
if

∀t∈traces(Π) ∃f :Event→Event,injective ∀0≤k<|t| ∀R,T∈Agent

¬ownsP (R, T,Σ(t)k) ∧ ownsP (R, T,Σ(t)k+1) ⇒

∃0≤i≤k f(tk) = ti ∧ ¬∃i<j≤k tj = releaseP (∗, T, ∗)∧

(ti = releaseP (∗, T,R) ∨ ti = releaseP (∗, T, E)),

where ∗ is used to represent any agent.

4.3 The Yoon and Yoo Protocol

We demonstrate our definitions on the recently published ownership transfer
protocol by Yoon and Yoo [5].

ID , k, {ID}k

R

p = {ID}k

T

nonce nr
nr

h(p ⊕ nr)

key k′

a := h({ID}k) ⊕ {ID}k′

b := h({ID}k ⊕ {ID}k′)

a, b

if b = h(p ⊕ h(p) ⊕ a)
then p := h(p) ⊕ a

old owner T new owner

release

First Phase

Secure: ID , k′, {ID}k′

Third Phase

obtain

Fig. 1. Flawed ownership transfer protocol [5]

The protocol relies on a shared secret p = {ID}k between owner and tag,
called a pseudonym. It consists of three phases as shown on the right in Figure 1.
The first and the third phase are instantiations of the protocol shown on the left
in Figure 1. In the first phase, the old owner updates the pseudonym p, using
a fresh key k′. This key together with the real identity and the pseudonym are
sent over a secure channel to the new owner in the second phase. The final phase
consists of another pseudonym update executed by the new owner and the tag
using a fresh key.

Following Remark 1, we put the release signal at the start of the first phase,
and the obtain signal at the end of the third phase. Since the pseudonym p of the
tag is all that is used in communication with the tag, we take as ownership test

protocol a proof-of-knowledge protocol of p. We can now analyze the protocol
with respect to secure ownership and secure ownership transfer.

Consider an execution of the protocol by R, T , and R′, where initially R is
the owner of the tag T and intends R′ to become the new owner. We first show
that the protocol does not satisfy secure ownership transfer, because an intruder
E can obtain ownership of the tag without being the intended new owner. To
achieve this, the intruder queries the target tag T with the constant 0 to which
the tag replies with h(p). By eavesdropping on the first phase of the protocol
execution, the intruder obtains a = h(p) ⊕ {ID}k′ . As soon as the tag updates
its pseudonym to {ID}k′ the intruder becomes owner of the tag.

Next, we show that secure ownership can be violated using knowledge of the
tag’s pseudonym the intruder has gained after the first phase of the protocol
through the previous attack. The intruder eavesdrops on the third phase of the
transfer, carried out by T and R′. The new owner R′ becomes holder of the tag
when the third phase finishes. Using the information learned during this phase
the intruder can derive the new pseudonym as he did in the previous attack.
The intruder then executes the pseudonym update protocol to update the tag’s
pseudonym to a pseudonym the new owner R′ does not know. Therefore R′ loses
ownership while still being holder of the tag which violates secure ownership.

Finally, by eavesdropping on the third phase of the ownership transfer, a
dishonest previous owner will be able to learn the new pseudonym. Therefore it
will not lose ownership and hence exclusive ownership is not satisfied either.

5 Desynchronization

As an application of our definitions we study desynchronization attacks on state-
ful protocols. Although it is easy to characterize desynchronization for a given
protocol (by inspection of the values of the involved variables), it is not straight-
forward to transform this into a generic definition of desynchronization. In this
section we demonstrate how the notion of ownership can be used to define desyn-
chronization.

The execution of a stateful RFID protocol frequently ends with reader and
tag updating shared information. An attacker may attempt to disrupt the com-
munication between reader and tag such that the two agents’ updates are not
correlated. A flawed protocol will not allow the agents to recover from this dis-
ruption and the reader and tag will be in a state of desynchronization: they
will no longer be able to successfully communicate with each other. We call a
protocol that is not vulnerable to this type of attack desynchronization resistant.

In general, stateful RFID authentication protocols do not need to verify own-
ership requirements, since the owner of a tag never changes. We argue, however,
that our notion of ownership is closely related to desynchronization resistance.
Indeed, if there does not exist a reader that can successfully communicate with
a tag using a protocol P , then the tag has no owners with respect to P .

We say that a protocol P is desynchronization resistant, if a tag never loses
all its owners with respect to P .

Definition 7 (Desynchronization Resistance). A protocol P ∈ Π is desyn-
chronization resistant if and only if

∀t∈traces(Π) ∀0≤i<|t| ∀T∈Agent

∃R∈Agent ownsP (R, T,Σ(t)i) ⇒ ∃R′∈Agent ownsP (R′, T,Σ(t)i+1).

It is interesting to note that desynchronization resistance together with ex-
clusive ownership can imply secure ownership. Therefore in order to prove secure
ownership with respect to a test protocol P it is sufficient, under the conditions
stated in the following theorem, to prove desynchronization resistance of P and
exclusive ownership with respect to P . Note that the second condition in the
theorem corresponds to placing obtain signals in protocols at a point in which
an agent is sure to have become owner of a tag, as described in Remark 1.

Theorem 1. Let Π be a set of protocols containing the test protocol P . Suppose
that Π provides exclusive ownership with respect to P and that P is desyn-
chronization resistant. Then Π provides secure ownership for every trace which
satisfies the following two conditions.

(1) In the initial state every holder of a tag is owner of the tag.
(2) An agent only becomes holder of a tag if it owns the tag.

Proof. Suppose towards a contradiction that there is a trace t ∈ traces(Π) such
that in a state Σ(t)i an agent R holds a tag T , but does not own the tag.
By condition (2) the agent has not become holder of T in state Σ(t)i. Thus
there must be a state Σ(t)j , 1 ≤ j < i, in which the agent became holder of
the tag. By exclusive ownership, no other agent owns the tag in state Σ(t)i.
Desynchronization resistance implies that if no agent owns T in a state Σ(t)i,
then no agent could have owned T in state Σ(t)i−1. By condition (2) no agent
could have become holder in state Σ(t)i−1. This argument can be repeated to
conclude that no agent could have owned T in the initial state and no agent
could become holder in the states Σ(t)1, . . . , Σ(t)i. Thus R must have been the
holder in the initial state. This contradicts condition (1).

5.1 The Song and Mitchell Protocol

Song and Mitchell [6] propose a stateful RFID protocol that relies on a shared se-
cret for authentication. Their protocol achieves identification and authentication
of the tag and can therefore be used in scenarios like supply chain management
or access control. They notice that in many proposed protocols tags and readers
can be desynchronized by blocking certain messages from reader to tag. They
attempt to prevent desynchronization attacks by storing additional information,
allowing the reader to re-synchronize with a tag in case messages are blocked.
In this section we show that this mechanism is insufficient to provide desynchro-
nization resistance by describing an attack that has previously gone unnoticed.

We demonstrate that by modifying and blocking certain messages an attacker
can force a tag and reader to carry out differing updates of their shared secret.
As a result, the reader loses ownership of the tag.

k, s, k̄, s̄

R

k

T

nonce nr
nr

nonce nt, a := k ⊕ nt, b := fk(nr ⊕ nt)

a, b

c := s ⊕ (nt ≫ ℓ/2)

c

k̄, s̄ := k, s
s := (s ≪ ℓ/4) ⊕ (k ≫ ℓ/4) ⊕ nr ⊕ nt
k := h(s)

s := c ⊕ (nt ≫ ℓ/2)
if h(s) = k
then k := h((s ≪ ℓ/4) ⊕ (k ≫ ℓ/4) ⊕ nr ⊕ nt)

Fig. 2. RFID authentication protocol for low-cost tags [6]

The protocol specification is given in Figure 2. We use fk(·) to denote a keyed
hash function, a ≫ b, a ≪ b to denote a cyclic right and left shift, respectively,
of a over b bits, and ℓ to denote the bit length of the value to be shifted.

We assume that the attacker does not know the shared secret between tag
and reader. The attacker eavesdrops on the first two messages (nr and a, b) and
then aborts the protocol by blocking the third message (c). The tag has not
successfully completed its run and therefore does not carry out its update. The
attacker then challenges the same tag with his own nonce ni. The tag responds
with a′, b′, where a′ = k⊕nt′ and b′ = fk(ni⊕nt′). Using distributivity of ⊕ over
≫, the attacker can now construct a valid reader response c′ = c ⊕ ((a ⊕ a′) ≫
ℓ/2) = s ⊕ (nt′ ≫ ℓ/2). The tag accepts the message and updates its k to
h((s ≪ ℓ/4) ⊕ (k ≫ ℓ/4) ⊕ ni ⊕ nt′). As soon as the tag carries out its update
the genuine reader loses ownership. Indeed, no agent can successfully complete
the test protocol, since the key k is unknown (even to the attacker). Thus, the
protocol is not desynchronization resistant.

6 Related Work

Work on ownership transfer in RFID systems has thus far mostly focused on
designing ownership transfer protocols, but not on their security requirements.
A notable exception is the work by Song [7]. It provides a first survey of security
requirements related to ownership transfer. Song also proposes a set of protocols
for secure ownership transfer based on earlier work by Song and Mitchell [6].
However, this set of protocols suffers from the same flaws that are described in
Section 5 and by Van Deursen and Radomirović [8].

The first treatment of ownership transfer in RFID systems is due to Molnar
et al. [9]. They describe a protocol that relies on a trusted center. Readers send
tag pseudonyms to the center requesting the real identity of a tag. If the reader

is the owner of the tag it receives the identity. Owners of tags can ask the
trusted center to transfer the ownership of a tag to a new owner. The trusted
center subsequently refuses identity requests from the old owner, and accepts
them from the new owner. A trusted party is also used by the protocol of Saito
et al. [10]. Here, the trusted party shares a key with the tag which is used to
update the owner’s key. Hence an ownership transfer consists of a request to the
trusted party to encrypt the new owner’s key for the tag.

Osaka et al. [11] are among the first to propose a two-party ownership transfer
protocol. Lei and Cao [12], Jäppinen and Hämäläinen [13], and Yoon and Yoo [5]
describe a flaw in the protocol by Osaka et al. and propose an improved version
of the protocol. We describe an attack on Yoon and Yoo’s protocol in Section 4.2.

Lim and Kwon [14] propose a protocol which, compared to other solutions,
uses a more computationally intensive mutual authentication method based on
key chains. Solutions based on symmetric encryption have also been proposed
by Fouladgar and Afifi [15] and Koralalage et al [16]. Finally, one of the most
recent protocols in this area is due to Dimitriou [17]. Its distinguishing feature
is that it enables the owner of a tag to revert the tag to its original state. This is
useful for after-sales services, since it makes it possible for the tag’s new owner
to let a retailer recognize a sold tag.

7 Conclusion and Future Work

We have presented formal definitions of ownership and ownership transfer, as
well as their secure variants. We have demonstrated the applicability of our
definitions by exhibiting attacks on secure ownership, exclusive ownership, and
secure ownership transfer on a recently proposed ownership transfer protocol [5].
As an application of our definitions we have formalized desynchronization resis-
tance. We have used this formalization to uncover a flaw in a stateful RFID
protocol [6].

While we consider a formal definition of ownership to be of independent
interest, it will clearly become much more valuable when combined with existing
security and privacy properties. For instance, in a parcel delivery system, where
RFID tags are attached to parcels, non-repudiation for obtaining ownership
of RFID tags and untraceability of these tags by unauthorized entities become
important. We have only briefly indicated the connections between untraceability
and exclusive ownership. A useful next step is to study conditions under which
untraceable protocols can be safely composed with ownership transfer protocols.
This requires in particular an investigation into the interplay between two or
more untraceable protocols out of a set of protocols.

Another direction concerns the construction of ownership transfer protocols
and proofs of their correctness. The model used in this work has been designed in
such a way that the verification of our security requirements should be possible
with a model checking tool.

Acknowledgments. We are grateful to Carst Tankink, Erik de Vink, and the
anonymous reviewers for their valuable comments which helped to improve this
work.

References

1. Cremers, C., Mauw, S.: Operational semantics of security protocols. In: Scenarios:
Models, Algorithms and Tools (Dagstuhl 03371 post-seminar proceedings, Septem-
ber 7–12, 2003). Volume 3466 of Lecture Notes in Computer Science. (2005) 66–89

2. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: Modelling and
Analysis of Security Protocols. Addison-Wesley Professional (2001)

3. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29(2) (1983) 198–208

4. Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts.
Computer Networks and ISDN Systems 28(12) (1996) 1629–1641

5. Yoon, E., Yoo, K.: Two security problems of RFID security method with own-
ership transfer. In: Proc. IFIP International Conference on Network and Parallel
Computing, IEEE Computer Society (2008) 68–73

6. Song, B., Mitchell, C.: RFID authentication protocol for low-cost tags. In: Proc.
First ACM Conference on Wireless Network Security, ACM (2008) 140–147

7. Song, B.: RFID tag ownership transfer. In: Proc. Workshop on RFID Security.
(2008)

8. van Deursen, T., Radomirović, S.: Attacks on RFID protocols. Cryptology ePrint
Archive, Report 2008/310 (2008) http://eprint.iacr.org/.

9. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol
enabling ownership transfer of RFID tags. In: Proc. Selected Areas in Cryptogra-
phy. Volume 3897 of Lecture Notes in Computer Science., Springer (2005) 276–290

10. Saito, J., Imamoto, K., Sakurai, K.: Reassignment scheme of an RFID tag’s key
for owner transfer. In: Proc. Embedded and Ubiquitous Computing. Volume 3823
of Lecture Notes in Computer Science., Springer (2005) 1303–1312

11. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An efficient and secure RFID
security method with ownership transfer. In: Proc. Computational Intelligence and
Security, Springer-Verlag (2006) 778–787

12. Lei, H., Cao, T.: RFID protocol enabling ownership transfer to protect against
traceability and dos attacks. In: Proc. The First International Symposium on
Data, Privacy, and E-Commerce, IEEE Computer Society (2007) 508–510

13. Jäppinen, P., Hämäläinen, H.: Enhanced RFID security method with ownership
transfer. In: Proc. International Conference on Computational Intelligence and
Security, IEEE Computer Society (2008) 382–385

14. Lim, C., Kwon, T.: Strong and robust RFID authentication enabling perfect own-
ership transfer. In: Proc. Conference on Information and Communications Security.
Volume 4307 of Lecture Notes in Computer Science., Springer (2006)

15. Fouladgar, S., Afifi, H.: A simple privacy protecting scheme enabling delegation
and ownership transfer for RFID tags. Journal of Communications 2 (2007) 6–13

16. Koralalage, K., Reza, S.M., Miura, J., Goto, Y., Cheng, J.: POP method: an
approach to enhance the security and privacy of RFID systems used in product
lifecycle with an anonymous ownership transferring mechanism. In: Proc. ACM
Symposium on Applied Computing, ACM (2007) 270–275

17. Dimitriou, T.: rfidDOT: RFID delegation and ownership transfer made simple.
In: Proc. 4th International Conference on Security and Privacy in Communication
Networks, ACM (2008) 1–8

18. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag (2000)

A Syntax and Semantics of RFID Protocols

A.1 Protocol Specifications

A protocol is a map from an n-tuple of distinct roles to an n-tuple of role specifi-
cations. A role specification consists of a declaration of the nonces and variables
(defined below) used by that role and the events defining the messages that an
honest agent sends and expects to read, when executing the role. Events can
be composed in three ways. Sequential composition, denoted by (·), specifies
consecutive execution of events while alternative composition, denoted by (+),
models branching. Conditional branching, denoted by (⊳ x = y ⊲), chooses the
left branch if x = y and the right branch otherwise.

Messages to be sent over the network are constructed by a term algebra. We
define Agent to be the set of agent names allowed to execute protocols. The set
of constants, Const, contains values that are globally known, such as the natural
numbers. The set Nonce contains nonces, i.e. values that are freshly generated
for every protocol execution. Functions are contained in the set F .

We consider four pairwise disjoint sets of variables. The set RoleName con-
tains the role names of the roles in the protocol. During protocol execution,
role names are instantiated by the names of the agents executing the protocol.
Local variables are variables that are instantiated during an execution of a run,
but lose their value after the run finishes. They are contained in VarL. The set
VarG contains global variables which represent the persistent knowledge of an
agent. Their values are maintained across protocol runs. Global variable arrays,
contained in G, are a generalization of global variables. They group global vari-
ables, such as agent’s public keys, in order to simplify role specifications. We
use a special variable θ to denote the identifier of a run. This variable is used to
disambiguate nonces from different runs. A fresh value is assigned to θ when a
role is instantiated. Note that θ must not occur in any of the variable sets.

Complex terms can be constructed by pairing terms, denoted by (,), en-
crypting a term by another term, denoted by { } , or applying a function f ∈ F
to a term, denoted by f().

Send and read events can be accompanied by a list of variable assignments.
Assignments can be done to global variables and to global variable arrays. Execu-
tion of a send or read event accompanied by assignment of variables is considered
to be an atomic step.

Inspired by Ryan et al. [2], we use signals to indicate that a certain point in
the protocol has been reached.

A.2 Protocol Execution

In this section we describe how, through instantiation of variables, an abstract
role specification can be transformed into an execution by an agent. Further-
more, we define how the interleaved execution of a collection of runs defines the
behavior of a system.

A system state 〈A,G,SB ,RB , I〉 is determined by the active runs A, the
global knowledge of the agents G, the send buffer SB , the read buffer RB , and
the intruder’s knowledge I. An active run contains a run identifier, the name of
the agent executing the run, a list of remaining events, as well as the local vari-
able assignment for that run. The global knowledge contains the global variable
assignment for every agent. Since we assume communication between agents to
be asynchronous, agents write messages to a send buffer and read messages from
a read buffer. The intruder knowledge contains the set of terms that the intruder
initially knows, extended with the terms learned during protocol executions.

The behavior of the system is defined as a transition relation between system
states. The derivation rules, depicted in Figures 3, 4, and 5, are of the form

C

S
l
−→ S′

,

expressing that a system in state S can do a transition to state S′ with label l
if condition C is satisfied. A state transition is the conclusion of applying one of
these rules. In this way, starting from an initial state 〈∅, ∅, ∅, ∅,M0〉, where M0

denotes the initial intruder knowledge, we can derive all possible behavior of a
system executing a set of protocols.

We separate the derivation rules into three categories. The agent rules (Fig-
ure 3) express under which conditions an agent may execute one of its protocol
steps. Agent rules can be composed in several ways to model possible protocol
flow, expressed by the composition rules (Figure 4). Finally, the intruder rules
(Figure 5) model the capabilities of the intruder.

Agent Rules. The create-rule creates a run with a fresh run identifier f and
adds it to the set of active runs. We use runids(A) to denote the set of run
identifiers in A. We capture the set of agents that is allowed to execute role R
by agentsof (R). This is to optimize the verification of protocols in which agents
only implement a subset of the protocol roles. The type of an agent refers to the
possibility of the agent to be active in at most one run (type = 1) or more than
one run at a time (type = ∗). We denote the set of agents that currently have an
unfinished run by unfinished(A). The new active run is a tuple containing the run
identifier f , the agent name n, the events of the role (denoted by eventsof (R))
and the initial local variable assignment. The variable assignment maps the role
name to the agent name (R 7→ n) and the run identifier variable to its fresh
value (θ 7→ f).

The execution state of a run can be determined by inspecting its list of events.
An agent has successfully completed a run when this list is empty (denoted

[create]

n ∈ agentsof(R) ((n 6∈ unfinished(A) ∧ type(n) = 1) ∨ type(n) = ∗)
f 6∈ runids(A) a = (f, n, eventsof(R), {R 7→ n, θ 7→ f})

〈A, G,SB ,RB , I〉
create(f,R,n)
−−−−−−−−−→ 〈A ∪ {a}, G,SB ,RB , I〉

[send]

x
send(m)[−→x :=−→c]/T/F/
−−−−−−−−−−−−−−−→ x′ a = (f, n, x, ρ) ∈ A a′ = (f, n, x′, ρ)

G(n) = σ σ′ = σ[−→c /−→x] ∀(v,w)∈T σρ(v) = σρ(w) ∀(v,w)∈F σρ(v) 6= σρ(w)

〈A, G,SB ,RB , I〉
send(f,σρ(m))
−−−−−−−−−→ 〈A\{a} ∪ {a′}, G[σ′/n],SB ∪ {σρ(m)},RB , I〉

[read]

x
read(m)[−→x :=−→c]/T/F/
−−−−−−−−−−−−−−−→ x′ a = (f, n, x, ρ) ∈ A

Matchρ,σ(m, m′, ρ′) m′ ∈ RB

G(n) = σ σ′ = σ[−→c /−→x] ∀(v,w)∈T σρ(v) = σρ(w) ∀(v,w)∈F σρ(v) 6= σρ(w)

〈A, G,SB ,RB , I〉
read(f,m′)
−−−−−−−→ 〈A\{a} ∪ {(f, n, x′, ρ)}, G[σ′/n],SB ,RB\{m′}, I〉

[end]
a = (f, n, x, ρ) ∈ A x 6= ǫ

〈A, G,SB ,RB , I〉
end(f)
−−−−→ 〈A\{a} ∪ {(f, n,⊥ · x, ρ)}, G,SB ,RB , I〉

Fig. 3. Agent rules

by ǫ). An event list which has been marked (with ⊥), by means of the end -
rule, indicates that the run has been terminated before it was able to finish
successfully. Otherwise the run is currently unfinished.

Any agent executing a send event, thereby changing from state x to x′ (for x
and x′ lists of events), changes the overall system state. The sent message (ob-
tained by applying the local variable assignment ρ and global variable assignment
σ to the message) is added to the send buffer.

A send event can be accompanied by a list of global variable assignments of
the form x := c. We denote by −→x := −→c the simultaneous assignment of a list of
variables x to a list of values c of the same length. The rule changes the current
global variable assignment σ to σ[−→c /−→x], where σ[c/x] denotes the substitution
σ altered such that x 7→ c. When the execution of the send event is part of a
(nested) conditional branching statement, a (number of) equalities (T) and/or
inequalities (F) have to be fulfilled. Each of these (in)equalities must hold after
replacing the local and global variables with their respective values.

An agent executing a read event changes the system state similar to a send
event. It takes a message m′ from the read buffer and matches it against the
message that an agent expects to receive. It furthermore extends the local vari-
able assignment ρ to ρ′ such that any free variables in the expected message
are assigned a value making σ(m) and m′ equivalent. Finally, the message m′ is
removed from the read buffer.

The purpose of the match predicate, used in the read-rule, is to fix a mini-
mal substitution ρ′ that maps every variable in m to a ground term, such that
σρ(m) = m′. Furthermore, the term m′ is required to be readable. Formally,

Matchρ,σ(m,m′, ρ′) ≡ m′ = σρ(m) ∧ dom(ρ) = vars(m)∧
Rd(rng(ρ) ∪ rng(σ), ρ′, σ(m),m′).

The readability predicate Rd decides whether a given term is readable. A received
term m′ is readable with respect to an expected term m if there is a substitution
ρ that makes them syntactically equivalent. Furthermore, every subterm required
to read the term must be inferable from the agent’s knowledge extended with
the received message. More formally, let m, p ∈ Term, K ∈ P(Term), and
ρ(m) = m′, then

Rd(K, ρ′,m,m′) ≡ ∀a⊑m K ∪ {m′} ⊢ ρ(a) ∨ K ∪ {m′} ⊢ ρ(a)−1.

The subterm operator, denoted by ⊑, is used to decompose a term into the terms
from which it was constructed. Let t, t1, t2 ∈ Term, then:

t ⊑ t t1 ⊑ (t1, t2) t2 ⊑ (t1, t2)
t1 ⊑ {t1}t2 t2 ⊑ {t1}t2 t ⊑ h(t)

Composition Rules. The rules in Figure 4 describe the semantics for compo-
sition of events. They are very similar to the transition rules for Basic Process
Algebra [18]. The main difference is the treatment of the conditional branching
statement x ⊳ v = w ⊲ y. Instead of requiring v = w (or v 6= w) as a premise we
add it as a proof obligation. We therefore have rules of the form

A

x
a/T/F
−−−−→ x′

,

stating that an agent in state x can execute a and transition to x′, if the premise
A is satisfied. The execution of a additionally introduces the proof obligations
in T (equalities) and F (inequalities).

In the following, let a be a read, send, or claim event and x and y be vari-
ables ranging over lists of events. The exec rule states that an event a can be
successfully executed introducing no proof obligations. The choice rules express
that in an alternative composition either of the branches can be executed. The
sequential composition states that when executing x · y, first x is executed and
then y. The conditional branching statement x ⊳ v = w ⊲ y expresses that the
left branch can be executed, introducing a proof obligation v = w, or the right
branch can be executed, introducing a proof obligation v 6= w.

Intruder Rules. The rules in Figure 5 describe the capabilities of the intruder.
The intruder operates on the send and read buffer (SB and RB). The deliver rule
transfers a message from the send buffer to the read buffer. If the intruder has
eavesdropping capabilities he may additionally add that message to his knowl-
edge, as stated by the eavesdrop rule. The block rule expresses that any message
in the send buffer may be removed by the intruder, but the intruder still learns
the message. The intruder may also be able to inject messages, that is, add
messages he can infer from his knowledge to the read buffer.

Different adversaries can be modeled by selecting a subset of the rules in
Figure 5. An adversary with no powers is modeled by having only the deliver

[exec]
a

a/∅/∅
−−−−→ X

[choice1]
x

a/T/F
−−−−→ x′

x + y
a/T/F
−−−−→ x′

[choice2]
y

a/T/F
−−−−→ y′

x + y
a/T/F
−−−−→ y′

[seq1]
x

a/T/F
−−−−→ x′

x · y
a/T/F
−−−−→ x′ · y

[seq2]
x −→ X y

a/T/F
−−−−→ y′

x · y
a/T/F
−−−−→ y′

[cond1]
x

a/T/F
−−−−→ x′

x ⊳ v = w ⊲ y
a/T∪(v,w)/F
−−−−−−−−−→ x′

[cond2]
y

a/T/F
−−−−→ y′

x ⊳ v = w ⊲ y
a/T/F∪(v,w)
−−−−−−−−−→ y′

Fig. 4. Composition rules

rule. A passive adversary can be modeled by additionally having the eavesdrop
rule. The Dolev-Yao intruder [3], which is an adversary that essentially controls
the network, is modeled by the union of the four rules.

[deliver]
m ∈ S

〈A, G, S, R, I〉
deliver
−−−−→ 〈A, G, S\{m}, R ∪ {m}, I〉

[block]
m ∈ S

〈A, G, S, R, I〉
block
−−−→ 〈A, G, S\{m}, R, I ∪ {m}〉

[inject]
I ⊢ m

〈A, G, S, R, I〉
inject
−−−−→ 〈A, G, S, R ∪ {m}, I〉

[eavesdrop]
m ∈ S

〈A, G, S, R, I〉
eavesdrop
−−−−−−→ 〈A, G, S\{m}, R ∪ {m}, I ∪ {m})

Fig. 5. Intruder rules

