MSC and data: dynamic variables
A.G. Engels, L.M.G. Feijs, S. Mauw

Department of Mathematics and Computing Science,

Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands.
engels@win.tue.nl, feijs@win.tue.nl, sjouke@win.tue.nl

The extension of the MSC language with more advanced data concepts is one of the
current topics of discussion in the MSC standardization community. A recent paper at
the SAM98 workshop by two of the current authors [2] treated the extension of MSC with
static variables. Feasibility of an approach to parameterize the MSC language with a data
language was shown.

We have extended this research by studying the combination of MSC with a data
language containing dynamic variables. Rather than giving a precise proposal of the
way in which an actual data language must be added to the MSC language, we discuss
options and problems. Choices have to be made, for example with respect to scope,
use of variables, and the way of assigning variables. For some particular combination of
the options mentioned above, we give a formal operational semantics of the combined
MSC/Data language. It is argued that the interface between the data language definition
and the MSC language definition should be explicit.

List of Keywords: Extension of existing language, Formal semantic models, MSC,
Data, Variables.

1. INTRODUCTION

Quite high on the list of possible extensions for the language MSC [4] (Message Sequence
Charts) is data. Currently, the language has hardly any data concept. At best, data
can be expressed as a parameter of a message which is simply considered as a syntactical
extension of the message name. Operations can be defined informally by means of actions.
Again, this is considered as a purely syntactical concept.

There is clearly a need for a more extensive treatment of data. This is in line with the
trend that MSC is becoming a language that is more and more useful for the complete
description of system behaviour, rather than for displaying single traces. But also when
using MSC for the visualization of traces, actual data values may be observed.

Since MSC is closely related to SDL [3], some things can be learned from the way in
which SDL deals with data. The first formal data language integrated with SDL was based
on algebraic specifications. These are known for having a very simple syntax and a clear
semantical foundation. In practice, however, the functional style of an algebraic specifi-
cation showed to be too difficult for people used to an imperative language. Therefore,
an alternative data language, ASN.1 [5], was adopted. This enforced the development of

a second recommendation, which exists next to the first one. Currently, the development
of SDL2000 involves a redesign of the SDL data language.

This situation has several drawbacks. Both recommendations have a large overlap, and
thus there is a maintenance problem. Furthermore it requires a new semantics definition.
In which sense is the semantics dependent on the actual data language? And finally it is
not clear what will happen if a new paradigm (such as Java) gets into the picture. Will
a third recommendation be developed?

We clearly do not want these problems to occur when extending MSC with data. There-
fore, we have initiated research on the extension of MSC with data. In a previous paper [2]
we have discussed several issues related to the extension of MSC with a data language
containing static variables. We have argued in favour of developing an explicit interface
between the MSC behavioural part and the MSC data part. This would overcome some
of the drawbacks mentioned above. Furthermore, we have designed such an interface,
appropriate for two classes of languages, namely, algebraic specifications and constraint
syntax languages such as ASN.1 [5]. In Section 2 we will summarize the results of this
research.

In this paper, we study the extension of MSC with a language containing dynamic
variables. These are variables whose value may change during “execution” of an MSC.
This situation is clearly more complicated than the case of static variables. We mention
some questions that arise: Which MSC constructs can be used for changing the value of a
variable? What should be the scope of a variable? How often may a variable have a value
be assigned to it? How to determine in which state an expression should be evaluated?
How to handle references to undefined variables?

We will discuss all these questions, formulate possible answers and discuss their respec-
tive merits. As in [2] we aim at defining an interface between the MSC language and
some data language with dynamic variables. However, we expect that a uniform interface
cannot be defined. That is an interface which is suited regardless of the answers to the
above mentioned questions. Nevertheless, we have studied such an interface for one par-
ticular combination of answers and we have roughly defined the operational semantics of
this particular MSC/Data language.

This paper is structured as follows. In Section 2 we summarize the findings of [2].
Section 3 contains the description of a simple example showing the combination of Basic
Message Sequence Charts with a basic data language. In Section 4 we discuss some
questions concerning the extension of MSC with dynamic variables. The operational
semantics of a combined MSC/Data language is sketched in Section 5. We will end with
some concluding remarks.

Acknowledgments We thank Jan Friso Groote, Frans Meijs, Jaco van de Pol, Michel
Reniers and all members of the MSC standardization group for their fruitful discussions
on this topic.

2. STATIC DATA

In this section we summarize the findings of [2], which addresses the question how
the MSC language could be extended with a data type formalism. It is argued that it
may be better not to choose a particular data type formalism for standardization as a

part of MSC, but instead set up the recommendation in such a way that the actual data
language can be considered as a parameter. This leads to the research question of how
to parameterize the MSC language with a data language. Starting from the idea that
MSC is parameterized over some grammar with some semantical information, the latter
research question is investigated in [2] by noting those properties of the data formalism
that are required in order to formally define syntax, well-formedness and semantics of an
MSC with data. As demonstrated in [2] it is indeed possible to define such an interface
between MSC and data. As usual, the interface is a two-way contract; it describes both
the required assumptions concerning MSC behaviour and the sets and functions to be
provided by the data formalism.

In [2] it is found that this interface is sufficient for connecting quite distinct data
formalisms to MSC. This is demonstrated by two case studies. The first case study is an
algebraic data language. The second case study is a constraint syntax language which
takes ASN.1 as a starting point and is based on the proposal from Baker and Jervis [1].

It is interesting to remark that [2] exploits a notion of variables too. In the setting of
the present paper, they are a kind of static variables: the semantics is taken to consist of
all possible behaviours of giving values to the variables.

3. EXAMPLE LANGUAGE

In this paper we will use a simplified data language to explain the various features of
dynamic data in MSC. Our language will consist of:

e The data types of Naturals and booleans

e Variables z, y, z and xy, x9, ... signifying naturals, and p, ¢, r and py, po, ... signi-
fying booleans

e The operators +, -, A, V, and =

It also contains variable declarations in the form wvar x: Natural or var p: Boolean,
and assignments of the form x := e, with x a variable and e an expression. Variable
declarations are placed in the MSC, near the MSC name. Assignments are made in local
actions.

As said, we will use this example to show various proposals and choices. To get a first
idea of how MSC with variables might look like, we show an example in Figure 1.

Intuitively what happens here is that x gets the value 1, m(z), which thus should be
m(1) is sent and received, y gets the value 4, and k(5) is sent and received.

For this simple example, clear and unambiguous semantics can be given. In more
complex cases, with for example multiple assignments or restricted scopes, this may not
be the case, and explicit choices have to be made. This is what will be discussed in the
next section.

4. CHOICES

When designing a combined MSC/Data language, there are several choices with respect
to the precise interaction of the two languages. We will first list the major issues and
discuss possible answers in the next sections.

msc forward

var x,y: Natural @ |I| |I|
x:=1

m(x)

k(y+1)

Figure 1. Example MSC with data

1. The extent to which the variables are behaving dynamically or statically.
2. The place where assignment of variables may take place.

3. The places where and the ways in which a variable is used.

4. The way undefined variables are handled.

5. What scope variables have, both regarding their extension over one, some or all
instances and regarding their extension in time.

4.1. Static vs. dynamic nature of a variable

When talking about the dynamic nature of a variable, we are dealing with the liberty
which we have in manipulating the data — the more dynamically variables are handled,
the easier data can be manipulated. We distinguish four gradations here:

1. fully static variables
2. parameter variables
3. single time assignable variables

4. multiple times assignable variables

Fully static variables: In a fully static environment, the values of variables are either
completely pre-determined, or not defined at all. In the latter case the semantics is
taken to consist of all possible behaviours for any valuation of the various variables. This
addition is the situation described in [2] and chapter 2 of the present paper.

Parameter variables: Parameter variables play a role within HMSC or MSC reference
expressions, the idea being that one provides a value for one or more variables while
calling the reference MSC. It can be used especially when the same behaviour needs to
be described for different values for some of the actions, see for example Figure 2.

nmsc transm ssion nmsc transmt(p: Natural)

S .

transmit(1)

s(p)

transmit(42)

Figure 2. Example MSC with parameter variables

Intuitively, this means that the reference MSC transmit is called twice, but the first time
with p equal to 1, and the second time with p equal to 42. Thus, first the message s(1)
is sent and received, then s(42). Parametric data is semantically less complicated than
the next two options of assignable variables. On the other hand, it is also less powerful.
Of course, it would also be possible to include both options, resulting in an even greater
power of expression.

Single time assignable variables: Here a variable can be assigned at any place in
the MSC, but once it is assigned, it cannot get a new value, at least not within its current
scope. So each time a variable is accessed, it will still have the same value. A problem
here is what we should do with attempts to access a variable before it is given a value. We
will go further into this question below. An example of an MSC with single time assigned
variables can be found in Figure 1.

Multiple times assignable variables: This choice offers most expressiveness to
the user. No restrictions apply; the variables can have their value changed at any time
(provided they have been declared), and as often as is wanted. On the other hand, it is
also the most complex one, thus possibly causing problems to those theorizing about the
language and the tool makers. One problem is, that one sometimes would like to use an
old value of a variable in the interpretation of an expression. See for example Figure 3
(assuming global variables). Intuitively it is clear that the sending of the message m(z)
uses the last assignment to x, and thus its current value. But what about its receipt? If
that too would use the current value of z, we could have the trace = := 1;s(m(1)); z :=
2;7(m(2)) (here s and r are used to denote the sending and reception of a message).
But this would mean that the received message is unequal to the sent message. It would
be more natural to let the final receipt be m(1). This would imply that it refers to the
value of z at some time in the past (namely, when the message was sent). Although it
is not impossible to formulate a semantics that describes this, it is cumbersome, and the
resulting semantics might become non-transparent.

Note that this same problem can also arise with single time assignable variables, if
we allow access to the variable before it is used what is important, is that there is an
assignment between the two usages of the variable.

nsc race
var x: Natural @ @
x:=1 X:=2

m(x)

Figure 3. MSC with assignable variables and message

An even more complicated situation occurs when we consider multi-instance events.
These are events that work on more than one instance but do not represent a point in
time where all instances involved synchronize. One might think of conditions in this
regard. There are proposals to use conditions as guards. This creates a problem when the
truth value of a condition changes between the different times it is checked by the various
instances. This problem will be described more extensively below, when we discuss the
use of data in conditions.

4.2. Place of assignment

When having dynamic variables, one needs a construct to assign them a value. In the
examples up to now, we have used local action for this purpose. Of course a new construct
could be introduced to do so, but it seems both possible and preferable to use an existing
construct for this, so that the language is not extended more than is necessary.

If we have static variables, no assignment takes place at all. Instead, all variables
are quantified universally, that is, they can have any valid value, and a behaviour that
corresponds to any value is a valid behaviour of the MSC. This is described in more detail
in [2].

With parametric variables, we do have assignments, but they are necessarily part of
the call itself, so again we have no options to choose from.

Thus, the only place where this question really comes up is with the (single or multiple
times) assignable variables.

Apart from local actions, we could also use message inputs for assigning values to a
variable. The idea is that a message which has received a value when sent, and has only
a variable as its value when received, in that way sets the variable. This is shown in
Figure 4. The variable = in the reference MSC is set by the fact that the actual value of
the message m(x) received from the environment is m(3). One problem with this way of
working could be that it may not be clear when a message receipt is a variable assignment
and when it is not. For example, m(3) could be unified with m(z), but can m(3 + y) be
unified with m(4), or even m(zx + 4)?

Of course, some other MSC constructs could be used as an assignment, but we will not

nsc super nsc transmt
var x: Natural

i I e j k

m3) transmt K(x)

- mm mm| | == =

Figure 4. Message input as an assigning action

go into them here. Below when talking about data and conditions we will see one option
in which conditions are used as assignments.

4.3. Place of referencing a variable

The next question we will discuss is the places and ways that a variable can be used.
Basically, any place where now some string text appears in MSC which is not further
specified, we could replace it with an expression in the data language. And such an
expression could be, or could include, a variable.

This usage only requires evaluation of the expression. Such unspecified texts exist in
local actions, messages, timers, and several other constructs, even instance names.

A more involved usage of expressions is in conditions. Currently, conditions do not have
any dynamic meaning in the semantics of MSC. When data are added, they might be used
as guarding conditions. To do so, one would put a boolean expression in the condition.
The condition could then be passed only if the expression in it were true. For an example
of this, see the left MSC in Figure 5. Instance a sends a message, containing the value
of z, to instance b. If x equals zero, then the second alternative cannot be chosen, so it
has to be the first, and instance b replies with message zero. If © does not equal zero, the
first alternative cannot be chosen, and the second one will be, resulting in the message
nonzero.

Unfortunately, we run into problems in cases like the one in the right MSC in Figure 5
Here, instance a gives = the value 0, then sends k, and arrives at the choice. It may now
select the second alternative, change = to 1, and wait for m(2) to arrive. However, it is
possible that the right instance arrives at the choice of the alt-expression after x has been
changed to 1, and then cannot pass the condition, at least not to the lower of the two
choices where the left instance has gone. The question is: What should we do with such
a case?

There are several options. We found at least the following, but this list is possibly not
complete:

1. If we have only static and parametric data, or only single time assignable variables
that cannot be used before their assignment, there is no problem.

nsc choi ce (x: Natural) nmsc sw tch
var x: Natural

(%) <20k
[a]
al tJ al tJ
x=0 x=1
zero m1)
not (x=0) x=0
nonzer o x: =1 m(2)
I I I [

Figure 5. Using conditions as guards

2. Simply ignore this problem, and just go ahead with the semantics. This will cause
the right MSC in Figure 5 to deadlock in the situation above, as the right instance
will try to enter the second alternative, but cannot do so.

3. ‘First one to pass the condition decides’. That is, the first instance going through
the condition checks its truth value, and if it finds the condition to be true, then all
instances can go through, no matter what the actual truth value at the time when
they do so is.

4. Make a condition into a synchronization point. That is, all instances have to pass
the condition at the same time. And thus, they have to evaluate the guarding
expression at the same time, resulting in the same outcome.

5. Let each instance separately choose between the alternatives. In our example this
would mean that whereas the left instance chose the lower alternative, the right one
may still choose the upper one. We would like to advise against this alternative,
though. It goes straight against the current MSC semantics, in which all instances
do choose the same alternative. Another objection is that it solves the problem only
when the condition guards a choice, not in other cases.

6. Make the assignments of variables in global conditions themselves, and let each
instance remember its own copy of the variable, updating it when it goes through
the condition. Although this does solve the problem, the working of variables may
well differ much from people’s intuitive ideas about them.

4.4. Handling of an undefined variable
In many cases it will be possible to refer to a variable while it does not have a value.
It is not a priori clear how this should be managed. We will list several possible options:

1. Forbid this, and use static requirements to enforce this disallowance. This can
be done if one uses a simple data language, and does not use complicated MSC
structures (such as guarded loops), but if one uses a data language that is strong
enough to function as a complete programming language, or if more complicated
MSC functionalities are included, this may become difficult, or even impossible.

2. Detect the problem during dynamic evaluation. In this case we check runtime

whether a variable is initialized. If not, we get a dynamic error (that is, semantically,
a deadlock).

3. All undefined variables are regarded as universally quantified. That is, they can have
any possible initial value. The semantics of the MSC is then the delayed choice of
all possible behaviours for any initial value (or set of initial values). This is basically
the same treatment as given to static variables in [2]. Thus, a dynamic variable is
treated as a static one until its first assignment. A problem with this approach is
that the number of alternatives could be infinite, and it is hard to give semantics for
an infinite delayed choice, the resulting semantics without doubt being both ugly
and hard to work with.

4. Each (type of) variable has a default value. Until its first assignment it has this
default value. This way there are no undefined variables. We need to have a default
value for each data domain, though.

The choice between these options will also be dependent on other choices. For example,
the last two options, where the variable has some value before the first assignment, do
not fit very well with the ‘single assignment’ dynamic variables. The reason that single
assignment is simpler than multiple assignment, is that the variable will have the same
value each time it is used. The last two solutions will remove this advantage, so we see no
reason why, if they are used, one would prefer single assignments to multiple assignments.

4.5. Scope of a variable

A further point on which we can make different choices is in the definition of the scope
of a variable. That is, once a variable has been declared, on which part of the MSC can
it be used? This is the scope of that variable. Scopes might be nested, in which case the
variables in the outer scope can also be used in the inner scope, unless a new declaration
of the same variable has taken place. If a variable is used in two different scopes, then
the two uses of the variable have nothing in common, and they should be regarded as two
different variables that happen to share the same name.

We can distinguish two different dimensions to the scope: Block scope and architectural
scope.

The block scope of a variable is a separated (framed) part of an MSC where the variable
is defined. Such a separated part could be a complete MSC document, a single MSC, an
MSC reference expression or an Inline expression. There might be more choices, but these
seem to be the most logical ones.

nsc gl obal scope nsc | ocal scope
var x: Natural

.

var x: Natural var x: Natural

Figure 6. The difference between local and global architectural scope

Apart from this there is also the architectural scope. This gives the locality with respect
to the instances in an MSC. We could define a variable to be defined on only one instance,
or on all instances of the MSC. Possibilities in between, where a variable is defined on a
number of instances (for example, the instances that reside on one processor), could also
be considered, although it might be harder to find a syntax for that option.

The difference between (architecturally) local and global variables can be seen in Fig-
ure 6. On the left we see an MSC with a global variable z, on the right one with two
local variables, both called x. The difference is that on the right, instance a will always
do a(1), as for this instance the value of = is 1, while the right instance will do b(2), as
for this instance the value of z is 2. On the left, where the variable x is global, it does
not matter where the value of x has been changed, and thus both instances will use the
last value of , wherever it came from. Here x := 1; 2 := 2; a(2); b(2) is a possible trace
at the time instance a executes a(z) the value of z is 2, so that is the value that is used.

Of course one could decide to make all variables local, in that case the MSC on the left
would act just like the one on the right, the creation of the variable z being shorthand
for creating such a variable on all instances.

It might be argued that MSC is a language in which all communication is displayed
explicitly, which implies that the introduction of a shared variable paradigm goes against
the spirit of MSC. This would make the (architecturally) local character of variables the
more logical choice. If one uses local variables, one does however also need a way to
transport the value of a variable from one instance to another. A logical way to do so
would be through messages - see however the problems that are mentioned about this in
the “place of assignment’ subsection.

However, if this is chosen, one should also decide whether and how the value of a
variable can be communicated from one instance to another.

5. SEMANTICS

As stated before, our aim is to parameterize the MSC language with a data language.
To do so also requires to parameterize the MSC semantics. Included in such a parame-

terization needs to be an interface that specifies the information that is needed from the
data language.

What exactly this interface looks like, depends on the choices made with respect to the
issues raised above. For example, if one chooses to use default values to solve the problem
of undefined variables, one needs these default values in the interface.

We will give example semantics for two choices, namely parametric variables with global
architectural scope, and single-assignment dynamic variables with static check of unde-
fined variables and global architectural scope. Several other choices will also be mentioned
in short, giving an idea of how they can be elaborated as well as the problems this might
cause.

5.1. General Interface

We first give a general idea about the interface that is needed, although some things
will be added or removed depending on the exact choices that are made.

We would, in general, need 3 kinds of expressions:

e A set of declarations D, being the strings that represent variable declarations

e A set of assignments A, being the strings that represent (or can represent) assign-
ments to variables

e A set of expressions E, being the strings that represent (or can represent) expressions

Apart from this we also need a set of possible variables Var, which in most cases will
be a subset of F, and a semantic domain &, in which the expressions will be interpreted.

To define the semantics of the parameterized MSC language, we need the notion of a
state. A state gives a snapshot of the values of all variables involved.

A state consists of:

e A set of defined variables V' C Var

e A valuation function ¢ : V' — &, giving the values of the variables. The set of all
valuation functions is called ®.

Then, there need to be functions to interpret the various texts.
e For declarations: d: D — P(Var) giving the variables that are declared by D

e For assignments: A set Ay C A for each set of variables V', giving the set of
assignments that may actually be used, given that only variables in V' are defined,
and a state transition function 7 : ® x A — ®. 7(p, a) denotes the new state the
MSC turns into when assignment a is executed in state (V,¢). Note that 7(p, a)
needs only be defined when a € Ay, where V is the set of variables on which ¢ is
defined.

e For expressions: A set Ey C E for each set of variables V', giving the set of expres-
sions that may actually be used, given that only variables in V' are defined, and an
interpretation function I, : By — S, where V' is the set of variables on which ¢ is
defined. I,(x) gives the value that x is interpreted to.

5.2. The Interface for our example
For our example language, the various elements of the Interface are described below.

e Var consists of all natural and boolean variables. Natural variables are z, y, z,
T1,%s9,...; boolean variables are p, ¢, r, p1,pa, ...

e Natural expressions are formed from integers, integer variables, and the operators
+ and -, boolean expressions are formed from booleans, boolean variables, and the
operators —, V, A and = (the latter acting on natural expressions)

e D consists of all expressions of the form *Var z: Nat’, with x a natural variable or
"Var p: Bool’, with p a boolean variable, and of lists of such expressions

e A consists of all expressions of the form = := e, with either z a boolean variable and
e a boolean expression, or x a natural variable and e a natural expression

e F consists of all expressions of the form a(x) with a a string of characters, and z a
natural or boolean expression.

e S consists of the naturals, the booleans, as well as all expressions a(z), with a some
string and x a natural or boolean.

e d(x) consists of all variables in z
e Ay and Fy consist of those expressions that contain only variables in V.

e The value of a natural or boolean expression e, given a valuation function ¢ is its
numerical or truth value when each variable x in that expression is replaced by its
value ¢(x). This value will be called ¢(e).

e 7(p,x :=e) is equal to ¢ with the value of z changed into p(e).

e [, (a(x)), with a some string and = some expression, equals a(l,(x)).

5.3. General Semantics

In a state (V,), all expressions must be in Ey and all assignments in Ay. Provided
one uses variables with a well-defined scope, this should not be hard to check statically.

If the MSC is in a state (V,), all events such as action(a,i) and send(m,i,j), have
as their “name” parts (i.e. a for an action and m for a message) an expression, which
thus must be in Ey,. The semantics for such an action are then equal to the semantics of
action(I,(a),) and send(I,(m),i,j), respectively in ‘normal’ MSC, apart from the two
exception below:

e If we use assignable variables, using local actions as assignments, then a local action
action(a, i) may also have a € Ay. In this case it causes a state change from (V, ¢)

to (V,7(¢,a)).

e If we use multiple times assignable variables, or single time assignable variables
that can be used before their assignment, then to give the semantics of a message
receipt, we need to use the state at the time the message was sent. We will discuss
the problems this might result in, and how they might be solved, when discussing
the extension of the semantics to other options.

Using the semantics of existing MSC, the semantics of MSC with data can now be
described by (we will include the first but not the second exception):

action(a,i)

,a€F
(2, V,) “ D (1 v)

action(a,i)

r'a€eA
action(a,i)
) (z,V,7(p,a))

An operational rule like 2 —— 2’ means that in an expression z one can do an action
a, to end up in the expression z'. In the above rules, the interpretation of MSC with data
(x,V, @), is derived from that of MSC without data x the step below the line can be
taken if the step above the line can.

(z,V,p

5.4. Parametric Variables

The interpretation to parametric variables as given below complies with the call-by-value
principle used in many programming languages for instantiating the values of procedural
parameters.

In parametric data, we do not have explicit assignments, so we can do away with A,
and declarations will probably also not be necessary, as they are implicit as well. What
remains are K/, Var, By, and I,.

In parametric variables, we could have an MSC reference expression (most important

example) refer to an MSC msc_name(ey, es, . ..e€,), with ey,...,e, € Ey, provided that
MSC mse_name is defined as msc msc_name(x, ..., x,), with x; € Var, x; # z,.
In this case the semantics of the MSC reference expression msc_name(e;,...,e,) in a

state (V,) can be found by pre-processing the MSC msc_name by changing expressions
e into I,-(e), using the state (V U {zy,...,2,},¢*), where:

o pi(x)=¢ ifx =1

o o (z) =y(x)ifx & {x1,...,2,}

Parametric variables are relatively simple, semantically speaking, which can be seen
from the fact that pre-processing, as described above, is enough to describe the semantics.
When we get to dynamical data, this will not be the case — we will have to use the state
within the operational calculations

5.5. Single Time Assignable Variables

Our second example will use the following setting: single time assignable variables,
static checks that unassigned variables are not used, architecturally global variables, and
assignments in local actions.

Here it is important to use unique names for variables. To do this, each time we meet
a declaration of an already used variable, we use a new name. Each action in the scope
gets a list of which variable is actually used when some variable (like x) is meant.

That is, if we get a variable z in a scope, we define a fresh variable x;, and everywhere
within the scope, all actions get a pointer, saying that instead of the value of x, the value

of x; has to be checked. To be able to do so, the declaration of variables should be checked
by the semantics at a time when it is clear what is and what is not the scope.

To do so, we need to ‘rename’ the variable within the scope, if it also has a meaning
outside the scope. Thus, we will need to have renaming operators p(;,) : £ — FE and
Py @ A — A for each pair of variables and y, defining what is the result when z is
replaced by y. Furthermore, to make everything work, Var should be (countably) infinite,
and p should have certain nice properties, for example I« (pzsy(€)) = I,(e), when ¢ is
not defined on y, and ¢* is given by adding ¢(y) = ¢(x) to ¢.

Suppose an MSC reference expression is called, which consists of a variable declaration
D, and an MSC-part k. Then the semantics of MSC-reference expression (D, k) in a
state (V, p) is that of pa, oy, (Passy, (- .- (k) ...)) in a state (V U {y1,y2,...yn}, @) (lifting
p to MSC actions and expressions, then to a list of them, in the obvious way). Because
the value of the new variables cannot be used until they have been assigned, how ¢ is
extended to the new variables does not matter. x,,...,x, are the variables defined by D,
that is, v(D), and ¥y, ..., y, are n unused variables.

Having done all this, we can then use the semantics as given in section 5.3.

5.6. Types

In the example language, there are variables in two types, natural and boolean. It
is probably useful to add this concept to the MSC semantic interface, so we know that
the expressions = A y is only legal if x and y are boolean expressions. Above we have
used different sets of variables (p, g, r, p1,...p, for booleans and z, y, z, x;,...z, for
naturals) to distinguish the two types, but in more realistic languages, one variable could
be of more than one type, depending on the preceding declaration. Of course, which types
exist, what their semantical interpretation is, and how the variables are given types, should
be inherited from the data language. It has no actual relevance for the MSC language
and its semantics. An exception could be the type of booleans, which would be the only
allowable type if guarding expressions in expressions are added (see section 4.2); a similar
treatment could also be given to naturals, which are used to give the number of times
a loop must be passed, this could also be extended to include general expressions of the
appropriate type.

Semantically, a semantic domain is asked for each possible type; their interaction is com-
pletely left to the data language. Using types would give a somewhat more complicated
interface, which we will not give here.

5.7. Other choices

Above for two possible choices, the semantics have been discussed. We will now look
at the other options, but in much less detail, giving only the main differences with our
example settings in both the interface and the semantics.

Multiply assignable variables: Compared to singly assignable variables, the extra
problem is in the situation that the value of a variable may change between the sending
and the receipt of a message. Yet, the receipt should use the values as they were when
the message was sent. To make this possible, one should add either to the process algebra
expression or to the state, a list of messages that have been sent, and how they were
interpreted. Then, when a message must be received, instead of looking up the current
value, one should use the value given by this list. This method only works if one strictly

keeps the uniqueness of message names. The semantics currently assume this uniqueness,
but in the presence of loops, maintaining it is tricky.

Apart from this problem, multiply assignable variables can be given the same semantics
that have been given to singly assignable variables.

Assignment in messages: One option here would be to make an incoming message
expression correspond to an outgoing message expression, provided there is some assign-
ment to variables that would allow it. The value of the variable after that would be any
value for which the ‘fit’ would work. Still, there is the problem of when an incoming
message is defining a value, and when it is merely using it. We do not see an immediately
obvious answer to this question.

Guarding conditions: First, we need to define a set of Boolean expressions B, which
have By and I, like normal expressions have Ey and I,, but necessarily have {true, false}
as their semantic domain. All conditions need to have a text which is a boolean expression
in By. Where until now each condition could be gone through without changing anything,
this now will only be true for conditions that evaluate to 'true’. If a condition evaluates
to 'false’, it acts as a deadlock.

The more detailed semantics for such a guarding condition, depends on what choice is
made to deal with the ’changing value’ problem, whether it be one of the five options we
provide or yet another one.

Dynamical check of unused variables: The state now contains two sets of variables
instead of one. One of these is the existing set V' of defined variables, the other a set V' C
V' of variables that actually have received a value. An action containing an expression
may only be done when its expression is not just in Ey, but in Ey.. An action being
disallowed is equivalent to making it a deadlock. For assignments, whether an assignment
is allowed is dependent both on V' and on V', resulting in Ay, instead of Ay. If a variable
gets assigned a value, it is added to V.

Default values for unused variables: It is necessary to add the default variables for
each variable (or, more likely, one default value for each variable type) to the interface.
Apart from that, the problem of variable value changes, found in multiply assignable
variables, also needs to be dealt with again; we propose the same solution.

Unused variables are universally quantified: We need the semantics to be the
delayed choice of all possible ‘default value’ semantics. A problem here is that this may
be a delayed choice of infinitely many options. Such an infinite operator makes things
very complicated. Rules can probably be found for it, but most likely will be both ugly
and unworkable.

Local variables: Instead of one set of variables V' and one valuation function ¢, we
now have one set and one function for each instance in the MSC. The set and the function
of the instance on which an action takes place are used to determine the semantics of that
action. Of course message receipt is an exception, checking the instance from which the
message was sent rather than the instance on which the action itself takes place.

When we have globally defined variables with local values, it seems logical to allow
messages to make the value of a variable known to other instances. To allow this, we
would need an extra interface function ¢ : E — Var, giving the variables whose values are
sent when the expression is sent.

For each message, a ’snapshot’ of the sender’s state when the message was sent is

remembered, and not only is this snapshot used to interpret the receipt of the message,
but also for the variables in ¢(e), the value on the receiving instance is set to the value
they have in this snapshot.

6. CONCLUSIONS

In this paper we have argued that the extension of MSC with a data language shall be
accomplished in such a way that the data language definition is a parameter of the MSC
language definition. This will overcome maintenance problems of the recommendation
and will make it possible to anticipate at the variety of data languages already used in
conjunction with MSC.

In [2] we have shown feasibility of this approach for the case of a data language with
static variables, using as our examples an algebraic specification language and a con-
straint syntax language. In the current paper we have extended this research to dynamic
variables. Rather than giving a precise description of how to incorporate dynamic data
variables in MSC, we have listed a range of questions and possible answers concerning
the connection between MSC and a data language. Since most of the questions are or-
thogonal, in the sense that possible answers to one question do not restrict the answers
to other questions, this gives raise to a large variety of options.

One such option is the following: variables can be assigned only once, static checks on
the MSC guarantee that no references to uninitialized variables are made, variables are
known to all instances, and only in local actions variables can be assigned a value.

For a number of such options we have experimented with defining the interface be-
tween the MSC language and the data language, and we have sketched a semantics of
this combined language, based on such an interface. These experiments indicate that
the parameterization approach is also feasible for dynamic variables. Of course, a more
detailed treatment of the semantics of the combined MSC/Data language is dependent
upon the design choices made by the MSC standardization group. However, the present
paper gives an overview of both the possibilities and the problems from a semantic point
of view.

REFERENCES

1. P. Baker and C. Jervis. Formal description of data. Experts meeting SG10, Lutter-
worth TDL16, ITU-TS, 1997.

2. L.M.G. Feijs and S. Mauw. MSC and data. In Yair Lahav, Adam Wolisz, Joachim Fis-
cher, and Eckhardt Holz, editors, SAMIS - 1st Workshop on SDL and MSC. Proceed-
ings of the SDL Forum Society on SDL and MSC, number 104 in Informatikberichte,
pages 85-96. Humboldt-Universitat Berlin, 1998.

3. ITU-TS. ITU-TS Recommendation Z.100: Specification and Description Language
(SDL). TTU-TS, Geneva, 1988.

4. TTU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). TTU-TS,
Geneva, 1997.

5. D. Steedman. Abstract syntax notation one (ASN.1): the tutorial and reference.
Technology Appraisals Ltd., 1990.

