
MSC and data: dynami
 variablesA.G. Engels, L.M.G. Feijs, S. MauwDepartment of Mathemati
s and Computing S
ien
e,Eindhoven University of Te
hnology,P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands.engels�win.tue.nl, feijs�win.tue.nl, sjouke�win.tue.nlThe extension of the MSC language with more advan
ed data
on
epts is one of the
urrent topi
s of dis
ussion in the MSC standardization
ommunity. A re
ent paper atthe SAM98 workshop by two of the
urrent authors [2℄ treated the extension of MSC withstati
 variables. Feasibility of an approa
h to parameterize the MSC language with a datalanguage was shown.We have extended this resear
h by studying the
ombination of MSC with a datalanguage
ontaining dynami
 variables. Rather than giving a pre
ise proposal of theway in whi
h an a
tual data language must be added to the MSC language, we dis
ussoptions and problems. Choi
es have to be made, for example with respe
t to s
ope,use of variables, and the way of assigning variables. For some parti
ular
ombination ofthe options mentioned above, we give a formal operational semanti
s of the
ombinedMSC/Data language. It is argued that the interfa
e between the data language de�nitionand the MSC language de�nition should be expli
it.List of Keywords: Extension of existing language, Formal semanti
 models, MSC,Data, Variables.1. INTRODUCTIONQuite high on the list of possible extensions for the language MSC [4℄ (Message Sequen
eCharts) is data. Currently, the language has hardly any data
on
ept. At best, data
an be expressed as a parameter of a message whi
h is simply
onsidered as a synta
ti
alextension of the message name. Operations
an be de�ned informally by means of a
tions.Again, this is
onsidered as a purely synta
ti
al
on
ept.There is
learly a need for a more extensive treatment of data. This is in line with thetrend that MSC is be
oming a language that is more and more useful for the
ompletedes
ription of system behaviour, rather than for displaying single tra
es. But also whenusing MSC for the visualization of tra
es, a
tual data values may be observed.Sin
e MSC is
losely related to SDL [3℄, some things
an be learned from the way inwhi
h SDL deals with data. The �rst formal data language integrated with SDL was basedon algebrai
 spe
i�
ations. These are known for having a very simple syntax and a
learsemanti
al foundation. In pra
ti
e, however, the fun
tional style of an algebrai
 spe
i�-
ation showed to be too diÆ
ult for people used to an imperative language. Therefore,an alternative data language, ASN.1 [5℄, was adopted. This enfor
ed the development of

a se
ond re
ommendation, whi
h exists next to the �rst one. Currently, the developmentof SDL2000 involves a redesign of the SDL data language.This situation has several drawba
ks. Both re
ommendations have a large overlap, andthus there is a maintenan
e problem. Furthermore it requires a new semanti
s de�nition.In whi
h sense is the semanti
s dependent on the a
tual data language? And �nally it isnot
lear what will happen if a new paradigm (su
h as Java) gets into the pi
ture. Willa third re
ommendation be developed?We
learly do not want these problems to o

ur when extending MSC with data. There-fore, we have initiated resear
h on the extension of MSC with data. In a previous paper [2℄we have dis
ussed several issues related to the extension of MSC with a data language
ontaining stati
 variables. We have argued in favour of developing an expli
it interfa
ebetween the MSC behavioural part and the MSC data part. This would over
ome someof the drawba
ks mentioned above. Furthermore, we have designed su
h an interfa
e,appropriate for two
lasses of languages, namely, algebrai
 spe
i�
ations and
onstraintsyntax languages su
h as ASN.1 [5℄. In Se
tion 2 we will summarize the results of thisresear
h.In this paper, we study the extension of MSC with a language
ontaining dynami
variables. These are variables whose value may
hange during \exe
ution" of an MSC.This situation is
learly more
ompli
ated than the
ase of stati
 variables. We mentionsome questions that arise: Whi
h MSC
onstru
ts
an be used for
hanging the value of avariable? What should be the s
ope of a variable? How often may a variable have a valuebe assigned to it? How to determine in whi
h state an expression should be evaluated?How to handle referen
es to unde�ned variables?We will dis
uss all these questions, formulate possible answers and dis
uss their respe
-tive merits. As in [2℄ we aim at de�ning an interfa
e between the MSC language andsome data language with dynami
 variables. However, we expe
t that a uniform interfa
e
annot be de�ned. That is an interfa
e whi
h is suited regardless of the answers to theabove mentioned questions. Nevertheless, we have studied su
h an interfa
e for one par-ti
ular
ombination of answers and we have roughly de�ned the operational semanti
s ofthis parti
ular MSC/Data language.This paper is stru
tured as follows. In Se
tion 2 we summarize the �ndings of [2℄.Se
tion 3
ontains the des
ription of a simple example showing the
ombination of Basi
Message Sequen
e Charts with a basi
 data language. In Se
tion 4 we dis
uss somequestions
on
erning the extension of MSC with dynami
 variables. The operationalsemanti
s of a
ombined MSC/Data language is sket
hed in Se
tion 5. We will end withsome
on
luding remarks.A
knowledgmentsWe thank Jan Friso Groote, Frans Meijs, Ja
o van de Pol, Mi
helReniers and all members of the MSC standardization group for their fruitful dis
ussionson this topi
.2. STATIC DATAIn this se
tion we summarize the �ndings of [2℄, whi
h addresses the question howthe MSC language
ould be extended with a data type formalism. It is argued that itmay be better not to
hoose a parti
ular data type formalism for standardization as a

part of MSC, but instead set up the re
ommendation in su
h a way that the a
tual datalanguage
an be
onsidered as a parameter. This leads to the resear
h question of howto parameterize the MSC language with a data language. Starting from the idea thatMSC is parameterized over some grammar with some semanti
al information, the latterresear
h question is investigated in [2℄ by noting those properties of the data formalismthat are required in order to formally de�ne syntax, well-formedness and semanti
s of anMSC with data. As demonstrated in [2℄ it is indeed possible to de�ne su
h an interfa
ebetween MSC and data. As usual, the interfa
e is a two-way
ontra
t; it des
ribes boththe required assumptions
on
erning MSC behaviour and the sets and fun
tions to beprovided by the data formalism.In [2℄ it is found that this interfa
e is suÆ
ient for
onne
ting quite distin
t dataformalisms to MSC. This is demonstrated by two
ase studies. The �rst
ase study is analgebrai
 data language. The se
ond
ase study is a
onstraint syntax language whi
htakes ASN.1 as a starting point and is based on the proposal from Baker and Jervis [1℄.It is interesting to remark that [2℄ exploits a notion of variables too. In the setting ofthe present paper, they are a kind of stati
 variables: the semanti
s is taken to
onsist ofall possible behaviours of giving values to the variables.3. EXAMPLE LANGUAGEIn this paper we will use a simpli�ed data language to explain the various features ofdynami
 data in MSC. Our language will
onsist of:� The data types of Naturals and booleans� Variables x, y, z and x1; x2; : : : signifying naturals, and p, q, r and p1; p2; : : : signi-fying booleans� The operators +, �, ^, _, and =It also
ontains variable de
larations in the form var x: Natural or var p: Boolean,and assignments of the form x := e, with x a variable and e an expression. Variablede
larations are pla
ed in the MSC, near the MSC name. Assignments are made in lo
ala
tions.As said, we will use this example to show various proposals and
hoi
es. To get a �rstidea of how MSC with variables might look like, we show an example in Figure 1.Intuitively what happens here is that x gets the value 1, m(x), whi
h thus should bem(1) is sent and re
eived, y gets the value 4, and k(5) is sent and re
eived.For this simple example,
lear and unambiguous semanti
s
an be given. In more
omplex
ases, with for example multiple assignments or restri
ted s
opes, this may notbe the
ase, and expli
it
hoi
es have to be made. This is what will be dis
ussed in thenext se
tion.4. CHOICESWhen designing a
ombined MSC/Data language, there are several
hoi
es with respe
tto the pre
ise intera
tion of the two languages. We will �rst list the major issues anddis
uss possible answers in the next se
tions.

k(y+1)

y:=x+3

x:=1

cba

msc
var

forward
x,y: Natural

m(x)

Figure 1. Example MSC with data1. The extent to whi
h the variables are behaving dynami
ally or stati
ally.2. The pla
e where assignment of variables may take pla
e.3. The pla
es where and the ways in whi
h a variable is used.4. The way unde�ned variables are handled.5. What s
ope variables have, both regarding their extension over one, some or allinstan
es and regarding their extension in time.4.1. Stati
 vs. dynami
 nature of a variableWhen talking about the dynami
 nature of a variable, we are dealing with the libertywhi
h we have in manipulating the data { the more dynami
ally variables are handled,the easier data
an be manipulated. We distinguish four gradations here:1. fully stati
 variables2. parameter variables3. single time assignable variables4. multiple times assignable variablesFully stati
 variables: In a fully stati
 environment, the values of variables are either
ompletely pre-determined, or not de�ned at all. In the latter
ase the semanti
s istaken to
onsist of all possible behaviours for any valuation of the various variables. Thisaddition is the situation des
ribed in [2℄ and
hapter 2 of the present paper.Parameter variables: Parameter variables play a role within HMSC or MSC referen
eexpressions, the idea being that one provides a value for one or more variables while
alling the referen
e MSC. It
an be used espe
ially when the same behaviour needs tobe des
ribed for di�erent values for some of the a
tions, see for example Figure 2.

transmit(42)

transmit(1)

ba

s(p)

mscmsc transmit(p:Natural)transmission

Figure 2. Example MSC with parameter variablesIntuitively, this means that the referen
e MSC transmit is
alled twi
e, but the �rst timewith p equal to 1, and the se
ond time with p equal to 42. Thus, �rst the message s(1)is sent and re
eived, then s(42). Parametri
 data is semanti
ally less
ompli
ated thanthe next two options of assignable variables. On the other hand, it is also less powerful.Of
ourse, it would also be possible to in
lude both options, resulting in an even greaterpower of expression.Single time assignable variables: Here a variable
an be assigned at any pla
e inthe MSC, but on
e it is assigned, it
annot get a new value, at least not within its
urrents
ope. So ea
h time a variable is a

essed, it will still have the same value. A problemhere is what we should do with attempts to a

ess a variable before it is given a value. Wewill go further into this question below. An example of an MSC with single time assignedvariables
an be found in Figure 1.Multiple times assignable variables: This
hoi
e o�ers most expressiveness tothe user. No restri
tions apply; the variables
an have their value
hanged at any time(provided they have been de
lared), and as often as is wanted. On the other hand, it isalso the most
omplex one, thus possibly
ausing problems to those theorizing about thelanguage and the tool makers. One problem is, that one sometimes would like to use anold value of a variable in the interpretation of an expression. See for example Figure 3(assuming global variables). Intuitively it is
lear that the sending of the message m(x)uses the last assignment to x, and thus its
urrent value. But what about its re
eipt? Ifthat too would use the
urrent value of x, we
ould have the tra
e x := 1; s(m(1)); x :=2; r(m(2)) (here s and r are used to denote the sending and re
eption of a message).But this would mean that the re
eived message is unequal to the sent message. It wouldbe more natural to let the �nal re
eipt be m(1). This would imply that it refers to thevalue of x at some time in the past (namely, when the message was sent). Although itis not impossible to formulate a semanti
s that des
ribes this, it is
umbersome, and theresulting semanti
s might be
ome non-transparent.Note that this same problem
an also arise with single time assignable variables, ifwe allow a

ess to the variable before it is used { what is important, is that there is anassignment between the two usages of the variable.

x:=1 x:=2

msc race
var x: Natural

m(x)

ba

Figure 3. MSC with assignable variables and messageAn even more
ompli
ated situation o

urs when we
onsider multi-instan
e events.These are events that work on more than one instan
e but do not represent a point intime where all instan
es involved syn
hronize. One might think of
onditions in thisregard. There are proposals to use
onditions as guards. This
reates a problem when thetruth value of a
ondition
hanges between the di�erent times it is
he
ked by the variousinstan
es. This problem will be des
ribed more extensively below, when we dis
uss theuse of data in
onditions.4.2. Pla
e of assignmentWhen having dynami
 variables, one needs a
onstru
t to assign them a value. In theexamples up to now, we have used lo
al a
tion for this purpose. Of
ourse a new
onstru
t
ould be introdu
ed to do so, but it seems both possible and preferable to use an existing
onstru
t for this, so that the language is not extended more than is ne
essary.If we have stati
 variables, no assignment takes pla
e at all. Instead, all variablesare quanti�ed universally, that is, they
an have any valid value, and a behaviour that
orresponds to any value is a valid behaviour of the MSC. This is des
ribed in more detailin [2℄.With parametri
 variables, we do have assignments, but they are ne
essarily part ofthe
all itself, so again we have no options to
hoose from.Thus, the only pla
e where this question really
omes up is with the (single or multipletimes) assignable variables.Apart from lo
al a
tions, we
ould also use message inputs for assigning values to avariable. The idea is that a message whi
h has re
eived a value when sent, and has onlya variable as its value when re
eived, in that way sets the variable. This is shown inFigure 4. The variable x in the referen
e MSC is set by the fa
t that the a
tual value ofthe message m(x) re
eived from the environment is m(3). One problem with this way ofworking
ould be that it may not be
lear when a message re
eipt is a variable assignmentand when it is not. For example, m(3)
ould be uni�ed with m(x), but
an m(3 + y) beuni�ed with m(4), or even m(x + 4)?Of
ourse, some other MSC
onstru
ts
ould be used as an assignment, but we will not

super

k(x)

msc

ki j

m(3)
transmit

msc transmit
var x: Natural

m(x)

kj

Figure 4. Message input as an assigning a
tiongo into them here. Below when talking about data and
onditions we will see one optionin whi
h
onditions are used as assignments.4.3. Pla
e of referen
ing a variableThe next question we will dis
uss is the pla
es and ways that a variable
an be used.Basi
ally, any pla
e where now some string text appears in MSC whi
h is not furtherspe
i�ed, we
ould repla
e it with an expression in the data language. And su
h anexpression
ould be, or
ould in
lude, a variable.This usage only requires evaluation of the expression. Su
h unspe
i�ed texts exist inlo
al a
tions, messages, timers, and several other
onstru
ts, even instan
e names.A more involved usage of expressions is in
onditions. Currently,
onditions do not haveany dynami
 meaning in the semanti
s of MSC. When data are added, they might be usedas guarding
onditions. To do so, one would put a boolean expression in the
ondition.The
ondition
ould then be passed only if the expression in it were true. For an exampleof this, see the left MSC in Figure 5. Instan
e a sends a message,
ontaining the valueof x, to instan
e b. If x equals zero, then the se
ond alternative
annot be
hosen, so ithas to be the �rst, and instan
e b replies with message zero. If x does not equal zero, the�rst alternative
annot be
hosen, and the se
ond one will be, resulting in the messagenonzero.Unfortunately, we run into problems in
ases like the one in the right MSC in Figure 5Here, instan
e a gives x the value 0, then sends k, and arrives at the
hoi
e. It may nowsele
t the se
ond alternative,
hange x to 1, and wait for m(2) to arrive. However, it ispossible that the right instan
e arrives at the
hoi
e of the alt-expression after x has been
hanged to 1, and then
annot pass the
ondition, at least not to the lower of the two
hoi
es where the left instan
e has gone. The question is: What should we do with su
ha
ase?There are several options. We found at least the following, but this list is possibly not
omplete:1. If we have only stati
 and parametri
 data, or only single time assignable variablesthat
annot be used before their assignment, there is no problem.

msc switch
var x: Natural

ba

alt

x=1

x=0

k
x:=0

m(1)

m(2)
x:=1

a

msc choice (x: Natural)

ba

alt

x=0

m(x)

zero

nonzero

not(x=0)

Figure 5. Using
onditions as guards2. Simply ignore this problem, and just go ahead with the semanti
s. This will
ausethe right MSC in Figure 5 to deadlo
k in the situation above, as the right instan
ewill try to enter the se
ond alternative, but
annot do so.3. `First one to pass the
ondition de
ides'. That is, the �rst instan
e going throughthe
ondition
he
ks its truth value, and if it �nds the
ondition to be true, then allinstan
es
an go through, no matter what the a
tual truth value at the time whenthey do so is.4. Make a
ondition into a syn
hronization point. That is, all instan
es have to passthe
ondition at the same time. And thus, they have to evaluate the guardingexpression at the same time, resulting in the same out
ome.5. Let ea
h instan
e separately
hoose between the alternatives. In our example thiswould mean that whereas the left instan
e
hose the lower alternative, the right onemay still
hoose the upper one. We would like to advise against this alternative,though. It goes straight against the
urrent MSC semanti
s, in whi
h all instan
esdo
hoose the same alternative. Another obje
tion is that it solves the problem onlywhen the
ondition guards a
hoi
e, not in other
ases.6. Make the assignments of variables in global
onditions themselves, and let ea
hinstan
e remember its own
opy of the variable, updating it when it goes throughthe
ondition. Although this does solve the problem, the working of variables maywell di�er mu
h from people's intuitive ideas about them.

4.4. Handling of an unde�ned variableIn many
ases it will be possible to refer to a variable while it does not have a value.It is not a priori
lear how this should be managed. We will list several possible options:1. Forbid this, and use stati
 requirements to enfor
e this disallowan
e. This
anbe done if one uses a simple data language, and does not use
ompli
ated MSCstru
tures (su
h as guarded loops), but if one uses a data language that is strongenough to fun
tion as a
omplete programming language, or if more
ompli
atedMSC fun
tionalities are in
luded, this may be
ome diÆ
ult, or even impossible.2. Dete
t the problem during dynami
 evaluation. In this
ase we
he
k runtimewhether a variable is initialized. If not, we get a dynami
 error (that is, semanti
ally,a deadlo
k).3. All unde�ned variables are regarded as universally quanti�ed. That is, they
an haveany possible initial value. The semanti
s of the MSC is then the delayed
hoi
e ofall possible behaviours for any initial value (or set of initial values). This is basi
allythe same treatment as given to stati
 variables in [2℄. Thus, a dynami
 variable istreated as a stati
 one until its �rst assignment. A problem with this approa
h isthat the number of alternatives
ould be in�nite, and it is hard to give semanti
s foran in�nite delayed
hoi
e, the resulting semanti
s without doubt being both uglyand hard to work with.4. Ea
h (type of) variable has a default value. Until its �rst assignment it has thisdefault value. This way there are no unde�ned variables. We need to have a defaultvalue for ea
h data domain, though.The
hoi
e between these options will also be dependent on other
hoi
es. For example,the last two options, where the variable has some value before the �rst assignment, donot �t very well with the `single assignment' dynami
 variables. The reason that singleassignment is simpler than multiple assignment, is that the variable will have the samevalue ea
h time it is used. The last two solutions will remove this advantage, so we see noreason why, if they are used, one would prefer single assignments to multiple assignments.4.5. S
ope of a variableA further point on whi
h we
an make di�erent
hoi
es is in the de�nition of the s
opeof a variable. That is, on
e a variable has been de
lared, on whi
h part of the MSC
anit be used? This is the s
ope of that variable. S
opes might be nested, in whi
h
ase thevariables in the outer s
ope
an also be used in the inner s
ope, unless a new de
larationof the same variable has taken pla
e. If a variable is used in two di�erent s
opes, thenthe two uses of the variable have nothing in
ommon, and they should be regarded as twodi�erent variables that happen to share the same name.We
an distinguish two di�erent dimensions to the s
ope: Blo
k s
ope and ar
hite
turals
ope.The blo
k s
ope of a variable is a separated (framed) part of an MSC where the variableis de�ned. Su
h a separated part
ould be a
omplete MSC do
ument, a single MSC, anMSC referen
e expression or an Inline expression. There might be more
hoi
es, but theseseem to be the most logi
al ones.

x:=1

a

a(x)

x:=1

var x: Naturalvar x: Natural

ba

b(x)

x:=2

msc localscope

b

b(x)

x:=2

a(x)

msc globalscope
var x: Natural

Figure 6. The di�eren
e between lo
al and global ar
hite
tural s
opeApart from this there is also the ar
hite
tural s
ope. This gives the lo
ality with respe
tto the instan
es in an MSC. We
ould de�ne a variable to be de�ned on only one instan
e,or on all instan
es of the MSC. Possibilities in between, where a variable is de�ned on anumber of instan
es (for example, the instan
es that reside on one pro
essor),
ould alsobe
onsidered, although it might be harder to �nd a syntax for that option.The di�eren
e between (ar
hite
turally) lo
al and global variables
an be seen in Fig-ure 6. On the left we see an MSC with a global variable x, on the right one with twolo
al variables, both
alled x. The di�eren
e is that on the right, instan
e a will alwaysdo a(1), as for this instan
e the value of x is 1, while the right instan
e will do b(2), asfor this instan
e the value of x is 2. On the left, where the variable x is global, it doesnot matter where the value of x has been
hanged, and thus both instan
es will use thelast value of x, wherever it
ame from. Here x := 1; x := 2; a(2); b(2) is a possible tra
e {at the time instan
e a exe
utes a(x) the value of x is 2, so that is the value that is used.Of
ourse one
ould de
ide to make all variables lo
al, in that
ase the MSC on the leftwould a
t just like the one on the right, the
reation of the variable x being shorthandfor
reating su
h a variable on all instan
es.It might be argued that MSC is a language in whi
h all
ommuni
ation is displayedexpli
itly, whi
h implies that the introdu
tion of a shared variable paradigm goes againstthe spirit of MSC. This would make the (ar
hite
turally) lo
al
hara
ter of variables themore logi
al
hoi
e. If one uses lo
al variables, one does however also need a way totransport the value of a variable from one instan
e to another. A logi
al way to do sowould be through messages - see however the problems that are mentioned about this inthe 'pla
e of assignment' subse
tion.However, if this is
hosen, one should also de
ide whether and how the value of avariable
an be
ommuni
ated from one instan
e to another.5. SEMANTICSAs stated before, our aim is to parameterize the MSC language with a data language.To do so also requires to parameterize the MSC semanti
s. In
luded in su
h a parame-

terization needs to be an interfa
e that spe
i�es the information that is needed from thedata language.What exa
tly this interfa
e looks like, depends on the
hoi
es made with respe
t to theissues raised above. For example, if one
hooses to use default values to solve the problemof unde�ned variables, one needs these default values in the interfa
e.We will give example semanti
s for two
hoi
es, namely parametri
 variables with globalar
hite
tural s
ope, and single-assignment dynami
 variables with stati

he
k of unde-�ned variables and global ar
hite
tural s
ope. Several other
hoi
es will also be mentionedin short, giving an idea of how they
an be elaborated as well as the problems this might
ause.5.1. General Interfa
eWe �rst give a general idea about the interfa
e that is needed, although some thingswill be added or removed depending on the exa
t
hoi
es that are made.We would, in general, need 3 kinds of expressions:� A set of de
larations D, being the strings that represent variable de
larations� A set of assignments A, being the strings that represent (or
an represent) assign-ments to variables� A set of expressions E, being the strings that represent (or
an represent) expressionsApart from this we also need a set of possible variables Var, whi
h in most
ases willbe a subset of E, and a semanti
 domain S, in whi
h the expressions will be interpreted.To de�ne the semanti
s of the parameterized MSC language, we need the notion of astate. A state gives a snapshot of the values of all variables involved.A state
onsists of:� A set of de�ned variables V � V ar� A valuation fun
tion ' : V ! S, giving the values of the variables. The set of allvaluation fun
tions is
alled �.Then, there need to be fun
tions to interpret the various texts.� For de
larations: d : D ! P(Var) giving the variables that are de
lared by D� For assignments: A set AV � A for ea
h set of variables V , giving the set ofassignments that may a
tually be used, given that only variables in V are de�ned,and a state transition fun
tion � : � � A ! �. �('; a) denotes the new state theMSC turns into when assignment a is exe
uted in state (V; '). Note that �('; a)needs only be de�ned when a 2 AV , where V is the set of variables on whi
h ' isde�ned.� For expressions: A set EV � E for ea
h set of variables V , giving the set of expres-sions that may a
tually be used, given that only variables in V are de�ned, and aninterpretation fun
tion I' : EV ! S, where V is the set of variables on whi
h ' isde�ned. I'(x) gives the value that x is interpreted to.

5.2. The Interfa
e for our exampleFor our example language, the various elements of the Interfa
e are des
ribed below.� Var
onsists of all natural and boolean variables. Natural variables are x, y, z,x1; x2; : : : ; boolean variables are p, q, r, p1; p2; : : :� Natural expressions are formed from integers, integer variables, and the operators+ and �, boolean expressions are formed from booleans, boolean variables, and theoperators :, _, ^ and = (the latter a
ting on natural expressions)� D
onsists of all expressions of the form 'Var x: Nat', with x a natural variable or'Var p: Bool', with p a boolean variable, and of lists of su
h expressions� A
onsists of all expressions of the form x := e, with either x a boolean variable ande a boolean expression, or x a natural variable and e a natural expression� E
onsists of all expressions of the form a(x) with a a string of
hara
ters, and x anatural or boolean expression.� S
onsists of the naturals, the booleans, as well as all expressions a(x), with a somestring and x a natural or boolean.� d(x)
onsists of all variables in x� AV and EV
onsist of those expressions that
ontain only variables in V .� The value of a natural or boolean expression e, given a valuation fun
tion ' is itsnumeri
al or truth value when ea
h variable x in that expression is repla
ed by itsvalue '(x). This value will be
alled '(e).� �('; x := e) is equal to ' with the value of x
hanged into '(e).� I'(a(x)), with a some string and x some expression, equals a(I'(x)).5.3. General Semanti
sIn a state (V; '), all expressions must be in EV and all assignments in AV . Providedone uses variables with a well-de�ned s
ope, this should not be hard to
he
k stati
ally.If the MSC is in a state (V; '), all events su
h as a
tion(a; i) and send(m; i; j), haveas their \name" parts (i.e. a for an a
tion and m for a message) an expression, whi
hthus must be in EV . The semanti
s for su
h an a
tion are then equal to the semanti
s ofa
tion(I'(a); i) and send(I'(m); i; j), respe
tively in `normal' MSC, apart from the twoex
eption below:� If we use assignable variables, using lo
al a
tions as assignments, then a lo
al a
tiona
tion(a; i) may also have a 2 AV . In this
ase it
auses a state
hange from (V; ')to (V; �('; a)).� If we use multiple times assignable variables, or single time assignable variablesthat
an be used before their assignment, then to give the semanti
s of a messagere
eipt, we need to use the state at the time the message was sent. We will dis
ussthe problems this might result in, and how they might be solved, when dis
ussingthe extension of the semanti
s to other options.

Using the semanti
s of existing MSC, the semanti
s of MSC with data
an now bedes
ribed by (we will in
lude the �rst but not the se
ond ex
eption):x a
tion(a;i)�! x0; a 2 E(x; V; ') a
tion(I'(a);i)�! (x0; V; ')x a
tion(a;i)�! x0; a 2 A(x; V; ') a
tion(a;i)�! (x; V; �('; a))An operational rule like x a�! x0 means that in an expression x one
an do an a
tiona, to end up in the expression x0. In the above rules, the interpretation of MSC with data(x; V; '), is derived from that of MSC without data x { the step below the line
an betaken if the step above the line
an.5.4. Parametri
 VariablesThe interpretation to parametri
 variables as given below
omplies with the
all-by-valueprin
iple used in many programming languages for instantiating the values of pro
eduralparameters.In parametri
 data, we do not have expli
it assignments, so we
an do away with A,and de
larations will probably also not be ne
essary, as they are impli
it as well. Whatremains are E, Var, EV , and I'.In parametri
 variables, we
ould have an MSC referen
e expression (most importantexample) refer to an MSC ms
 name(e1; e2; : : : en), with e1; : : : ; en 2 EV , provided thatMSC ms
 name is de�ned as ms
 ms
 name(x1; : : : ; xn), with xi 2 V ar, xi 6= xj.In this
ase the semanti
s of the MSC referen
e expression ms
 name(e1; : : : ; en) in astate (V; ')
an be found by pre-pro
essing the MSC ms
 name by
hanging expressionse into I'�(e), using the state (V [fx1; : : : ; xng; '�), where:� '�(x) = ei if x = xi� '�(x) = '(x) if x 62 fx1; : : : ; xngParametri
 variables are relatively simple, semanti
ally speaking, whi
h
an be seenfrom the fa
t that pre-pro
essing, as des
ribed above, is enough to des
ribe the semanti
s.When we get to dynami
al data, this will not be the
ase { we will have to use the statewithin the operational
al
ulations5.5. Single Time Assignable VariablesOur se
ond example will use the following setting: single time assignable variables,stati

he
ks that unassigned variables are not used, ar
hite
turally global variables, andassignments in lo
al a
tions.Here it is important to use unique names for variables. To do this, ea
h time we meeta de
laration of an already used variable, we use a new name. Ea
h a
tion in the s
opegets a list of whi
h variable is a
tually used when some variable (like x) is meant.That is, if we get a variable x in a s
ope, we de�ne a fresh variable xi, and everywherewithin the s
ope, all a
tions get a pointer, saying that instead of the value of x, the value

of xi has to be
he
ked. To be able to do so, the de
laration of variables should be
he
kedby the semanti
s at a time when it is
lear what is and what is not the s
ope.To do so, we need to `rename' the variable within the s
ope, if it also has a meaningoutside the s
ope. Thus, we will need to have renaming operators �(x7!y) : E 7! E and�x7!y : A 7! A for ea
h pair of variables x and y, de�ning what is the result when x isrepla
ed by y. Furthermore, to make everything work, Var should be (
ountably) in�nite,and � should have
ertain ni
e properties, for example I'�(�x7!y(e)) = I'(e), when ' isnot de�ned on y, and '� is given by adding '(y) = '(x) to '.Suppose an MSC referen
e expression is
alled, whi
h
onsists of a variable de
larationD, and an MSC-part k. Then the semanti
s of MSC-referen
e expression (D; k) in astate (V; ') is that of �x1 7!y1(�x2 7!y2(: : : (k) : : :)) in a state (V [fy1; y2; : : : yng; ') (lifting� to MSC a
tions and expressions, then to a list of them, in the obvious way). Be
ausethe value of the new variables
annot be used until they have been assigned, how ' isextended to the new variables does not matter. x1; : : : ; xn are the variables de�ned by D,that is, v(D), and y1; : : : ; yn are n unused variables.Having done all this, we
an then use the semanti
s as given in se
tion 5.3.5.6. TypesIn the example language, there are variables in two types, natural and boolean. Itis probably useful to add this
on
ept to the MSC semanti
 interfa
e, so we know thatthe expressions x ^ y is only legal if x and y are boolean expressions. Above we haveused di�erent sets of variables (p, q, r, p1; : : : pn for booleans and x, y, z, x1; : : : xn fornaturals) to distinguish the two types, but in more realisti
 languages, one variable
ouldbe of more than one type, depending on the pre
eding de
laration. Of
ourse, whi
h typesexist, what their semanti
al interpretation is, and how the variables are given types, shouldbe inherited from the data language. It has no a
tual relevan
e for the MSC languageand its semanti
s. An ex
eption
ould be the type of booleans, whi
h would be the onlyallowable type if guarding expressions in expressions are added (see se
tion 4.2); a similartreatment
ould also be given to naturals, whi
h are used to give the number of timesa loop must be passed, this
ould also be extended to in
lude general expressions of theappropriate type.Semanti
ally, a semanti
 domain is asked for ea
h possible type; their intera
tion is
om-pletely left to the data language. Using types would give a somewhat more
ompli
atedinterfa
e, whi
h we will not give here.5.7. Other
hoi
esAbove for two possible
hoi
es, the semanti
s have been dis
ussed. We will now lookat the other options, but in mu
h less detail, giving only the main di�eren
es with ourexample settings in both the interfa
e and the semanti
s.Multiply assignable variables: Compared to singly assignable variables, the extraproblem is in the situation that the value of a variable may
hange between the sendingand the re
eipt of a message. Yet, the re
eipt should use the values as they were whenthe message was sent. To make this possible, one should add either to the pro
ess algebraexpression or to the state, a list of messages that have been sent, and how they wereinterpreted. Then, when a message must be re
eived, instead of looking up the
urrentvalue, one should use the value given by this list. This method only works if one stri
tly

keeps the uniqueness of message names. The semanti
s
urrently assume this uniqueness,but in the presen
e of loops, maintaining it is tri
ky.Apart from this problem, multiply assignable variables
an be given the same semanti
sthat have been given to singly assignable variables.Assignment in messages: One option here would be to make an in
oming messageexpression
orrespond to an outgoing message expression, provided there is some assign-ment to variables that would allow it. The value of the variable after that would be anyvalue for whi
h the `�t' would work. Still, there is the problem of when an in
omingmessage is de�ning a value, and when it is merely using it. We do not see an immediatelyobvious answer to this question.Guarding
onditions: First, we need to de�ne a set of Boolean expressions B, whi
hhave BV and I' like normal expressions have EV and I', but ne
essarily have ftrue; falsegas their semanti
 domain. All
onditions need to have a text whi
h is a boolean expressionin BV . Where until now ea
h
ondition
ould be gone through without
hanging anything,this now will only be true for
onditions that evaluate to 'true'. If a
ondition evaluatesto 'false', it a
ts as a deadlo
k.The more detailed semanti
s for su
h a guarding
ondition, depends on what
hoi
e ismade to deal with the '
hanging value' problem, whether it be one of the �ve options weprovide or yet another one.Dynami
al
he
k of unused variables: The state now
ontains two sets of variablesinstead of one. One of these is the existing set V of de�ned variables, the other a set V 0 �V of variables that a
tually have re
eived a value. An a
tion
ontaining an expressionmay only be done when its expression is not just in EV , but in EV 0. An a
tion beingdisallowed is equivalent to making it a deadlo
k. For assignments, whether an assignmentis allowed is dependent both on V and on V 0, resulting in AV;V 0 instead of AV . If a variablegets assigned a value, it is added to V 0.Default values for unused variables: It is ne
essary to add the default variables forea
h variable (or, more likely, one default value for ea
h variable type) to the interfa
e.Apart from that, the problem of variable value
hanges, found in multiply assignablevariables, also needs to be dealt with again; we propose the same solution.Unused variables are universally quanti�ed: We need the semanti
s to be thedelayed
hoi
e of all possible `default value' semanti
s. A problem here is that this maybe a delayed
hoi
e of in�nitely many options. Su
h an in�nite operator makes thingsvery
ompli
ated. Rules
an probably be found for it, but most likely will be both uglyand unworkable.Lo
al variables: Instead of one set of variables V and one valuation fun
tion ', wenow have one set and one fun
tion for ea
h instan
e in the MSC. The set and the fun
tionof the instan
e on whi
h an a
tion takes pla
e are used to determine the semanti
s of thata
tion. Of
ourse message re
eipt is an ex
eption,
he
king the instan
e from whi
h themessage was sent rather than the instan
e on whi
h the a
tion itself takes pla
e.When we have globally de�ned variables with lo
al values, it seems logi
al to allowmessages to make the value of a variable known to other instan
es. To allow this, wewould need an extra interfa
e fun
tion
 : E ! Var, giving the variables whose values aresent when the expression is sent.For ea
h message, a 'snapshot' of the sender's state when the message was sent is

remembered, and not only is this snapshot used to interpret the re
eipt of the message,but also for the variables in
(e), the value on the re
eiving instan
e is set to the valuethey have in this snapshot.6. CONCLUSIONSIn this paper we have argued that the extension of MSC with a data language shall bea

omplished in su
h a way that the data language de�nition is a parameter of the MSClanguage de�nition. This will over
ome maintenan
e problems of the re
ommendationand will make it possible to anti
ipate at the variety of data languages already used in
onjun
tion with MSC.In [2℄ we have shown feasibility of this approa
h for the
ase of a data language withstati
 variables, using as our examples an algebrai
 spe
i�
ation language and a
on-straint syntax language. In the
urrent paper we have extended this resear
h to dynami
variables. Rather than giving a pre
ise des
ription of how to in
orporate dynami
 datavariables in MSC, we have listed a range of questions and possible answers
on
erningthe
onne
tion between MSC and a data language. Sin
e most of the questions are or-thogonal, in the sense that possible answers to one question do not restri
t the answersto other questions, this gives raise to a large variety of options.One su
h option is the following: variables
an be assigned only on
e, stati

he
ks onthe MSC guarantee that no referen
es to uninitialized variables are made, variables areknown to all instan
es, and only in lo
al a
tions variables
an be assigned a value.For a number of su
h options we have experimented with de�ning the interfa
e be-tween the MSC language and the data language, and we have sket
hed a semanti
s ofthis
ombined language, based on su
h an interfa
e. These experiments indi
ate thatthe parameterization approa
h is also feasible for dynami
 variables. Of
ourse, a moredetailed treatment of the semanti
s of the
ombined MSC/Data language is dependentupon the design
hoi
es made by the MSC standardization group. However, the presentpaper gives an overview of both the possibilities and the problems from a semanti
 pointof view.REFERENCES1. P. Baker and C. Jervis. Formal des
ription of data. Experts meeting SG10, Lutter-worth TDL16, ITU-TS, 1997.2. L.M.G. Feijs and S. Mauw. MSC and data. In Yair Lahav, AdamWolisz, Joa
him Fis-
her, and E
khardt Holz, editors, SAM98 - 1st Workshop on SDL and MSC. Pro
eed-ings of the SDL Forum So
iety on SDL and MSC, number 104 in Informatikberi
hte,pages 85{96. Humboldt-Universit�at Berlin, 1998.3. ITU-TS. ITU-TS Re
ommendation Z.100: Spe
i�
ation and Des
ription Language(SDL). ITU-TS, Geneva, 1988.4. ITU-TS. ITU-TS Re
ommendation Z.120: Message Sequen
e Chart (MSC). ITU-TS,Geneva, 1997.5. D. Steedman. Abstra
t syntax notation one (ASN.1): the tutorial and referen
e.Te
hnology Appraisals Ltd., 1990.

