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Abstract

The most common juggling pattern is the three ball cascade. A four ball

cascade seems to be infeasible, but why? We formalize the notion of a

cascade and the decomposition of juggling patterns in order to give an

answer to this question.

1 Introduction

It is not difficult to learn how to juggle. One only needs a few hours of practice
and some perseverance in order to master the most common pattern, the three
ball cascade (see Figure 1). This cascade is the most symmetric and regular
pattern that can be thrown with three balls. The two hands move in alternation
and the balls are also thrown in a fixed alternating order.

Figure 1: A three ball cascade

After having mastered a three ball cascade, the novice juggler asks himself
the question how to juggle four balls. One would think that juggling four balls
is qualitatively the same as juggling three balls, be it with harder constraints on
timing and accuracy. But however far a person’s physical skills may progress, a
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four ball cascade does not seem to be possible. One will come up with less sym-
metric patterns, such as the shower (see Figure 1) or with compound patterns
such as two columns (see Figure 1).

Figure 2: A shower

Figure 3: Two columns

Juggling a four ball cascade with two hands seems to be impossible, but
why? It is certainly not due to a lack of skills, because experienced jugglers
have the same problem. Experience shows that it is possible to juggle a cascade
with every odd number of balls (up to 11, which is the current world record), but
a cascade with an even number of balls remains impossible. There is probably
a more fundamental reason. In this paper we will formulate an answer.

Thereto, we will give a formal definition of the notion of a cascade and using
simple number theory, we will show that two hands cannot throw a four ball
cascade.

Because we do not fix the number of hands in our definitions, our result will
be more general. The main theorem that we will derive is the following. It is
only possible to juggle a cascade if the number of hands and the number of balls
are relatively prime, i.e. have no common divisors larger than 1. This theorem
has already been stated (without a proof) as a proposition accompanying the
PH.D-thesis of one of the authors (see [1]).
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The extension to more than two hands is not purely artificial; there exist
advanced juggling patterns involving more than one juggler.

In the remainder of this paper we first define a notation for juggling patterns
and the notion of a cascade. By introducing partitions of a juggling pattern, we
can make a distinction between a real cascade and a compound cascade.

Thanks are due to all members of the Department of Pure Juggling in the
Watergraafsmeer (Amsterdam) for the fruitful discussions during the practical
and theoretical juggling sessions, and to Tijn Borghuis whose comments helped
much in improving this paper.

2 Notation

It has been recognized by the juggling community that some notation for com-
municating juggling patterns is needed. A variety of notations are used, ranging
from completely informal cartoons to a compact and formal notation such as
site swaps (see [2, 3]).

Since we intend to use mathematical methods for analyzing juggling pat-
terns, we need a formal notation. Unfortunately, none of the existing notations
used lines up neatly with our purposes. Therefore, we introduce a simple and
ad-hoc notation for expressing juggling patterns.

In order to capture the essence of a juggling pattern, we have to abstract
away physical properties, such as size and speed of the balls, direction of the
throws, etc. The only essential information is the order in which the hands
throw the balls. Thus we will describe a juggling pattern as a sequence of
ball/hand-combinations.

Definition 1 (juggling patterns) A juggling pattern J is a (possibly infinite)

sequence of pairs

(

h1

b1

)(

h2

b2

)(

h3

b3

)

. . . , where the hi are chosen from some finite

set of hands H and the bi from some finite set of balls B, such that each h ∈ H

and each b ∈ B is part of a pair in J . This sequence means that first ball b1 is
thrown from hand h1, then b2 from h2, etc.

For example, the 3-ball cascade in Figures 1 is the pattern

(

L

1

)(

R

2

)(

L

3

)

(

R

1

)(

L

2

)(

R

3

)(

L

1

)(

R

2

)(

L

3

)(

R

1

)(

L

2

)(

R

3

)

. . . , where the dots stand for a

repetition of the shown order of pairs (using the hands L and R for obvious
reasons).

Several observations can be made about this notation. First, we did not
include the catching of a ball as a separate event. Although the timing of the
catches influences the taste of the pattern, we do not think it is essential to the
pattern. As a consequence, we are not able to express the difference between
hot potato juggling, in which the balls stay as short as possible in the hands, and
lazy juggling, which is the opposite. The only requirement that is present is the
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practical requirement that a ball is caught somewhere between two successive
throwings of that ball. Secondly, we cannot describe patterns with synchronous
throws, which is the case if two throws occur at the same time. Neither is the
notation suited to express multiplexing, which means that at certain times more
than one ball is in the same hand. Thirdly, we did not include a possibility for
explicitly stating that some pattern is executed repeatedly.

However, for many basic patterns, and certainly for a cascade, this notation
is all we need.

If J =

(

h1

b1

)(

h2

b2

)(

h3

b3

)

. . . , we call h1h2h3 . . . its hand pattern and b1b2b3 . . .

its ball pattern. For example, the 3-ball cascade

(

L

1

)(

R

2

)(

L

3

)(

R

1

)(

L

2

)(

R

3

)

(

L

1

)(

R

2

)(

L

3

)(

R

1

)(

L

2

)(

R

3

)

. . . has hand pattern LRLRLRLR . . . and ball

pattern 123123123 . . . .
In practice only periodic juggling patterns are really interesting. This peri-

odicity can easily be found back in the hand and ball patterns, as can be seen
in the Theorem below:

Theorem 2 (periodicity of juggling patterns) Let a juggling pattern J be
such that its hand pattern is periodic with period pH and its ball pattern is peri-
odic with period pB . Then the pattern itself is periodic with period scm(pH , pB)
(where scm stands for smallest common multiple). Furthermore, if the periods
pH and pB are both prime periods (that is, the patterns are not periodic with
any smaller period), then scm(pH , pB) is the prime period of J .

Proof This follows from the following basic observation. The juggling pat-
tern is periodic with some period p if and only if both the hand and the ball
pattern are periodic with that same period p. �

3 The cascade

As stated in the introduction, a cascade is a pattern in which the hands throw
alternately and the balls are thrown in a fixed order. This observation leads to
the following definition.

Definition 3 (cascade) A cascade is a juggling pattern in which both the
hand pattern and the ball pattern are cyclic (that is, the hand pattern is periodic
and each hand shows up exactly once in each prime period, and likewise for the
ball pattern).

Under this definition there is exactly one cascade for each given number of hands
and balls. But if we look at the 2-hand, 4-ball cascade, we see the following
juggling pattern:
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(

L

1

)(

R

2

)(

L

3

)(

R

4

)(

L

1

)(

R

2

)(

L

3

)(

R

4

)

. . .

Looking at the pattern closely, one notices that it is in fact a superposition
of two separate patterns: the L-hand is throwing and catching balls 1 and 3,
and the R-hand is throwing and catching balls 2 and 4, without any interaction
between the two. The 2-hand, 4-ball cascade is just two 1-hand, 2-ball cascades
in parallel (see the two columns pattern from Figure 1). Because of this, it does
not count as a real cascade. So now the question becomes: Which cascades
(and other juggling patterns) are real in the sense that they are not composed
from simpler patterns, and which are not? To answer this question, we must
first formally define what a real juggling pattern is. For reasons which will soon
become clear, we will call these prime patterns.

4 Closed partitions and prime patterns

For a juggling pattern to be real, we want it to be impossible to divide its events
into two or more groups, in such a way that these groups are not interconnected
by sharing a hand or ball.

Definition 4 (closed partition) Let J =

(

h1

b1

)(

h2

b2

)

. . . be a juggling pat-

tern. A closed partition of J is a set J1, . . . , Jn (n ∈ N) of subsequences of J ,

such that (let Ji =

(

hni1

bni1

)(

hni2

bni2

)

. . . ):

1. The Ji form a partition of J , that is, each Ji is nonempty, and for each
k ∈ N there is exactly one i and one j such that nij = k.

2. If either hi = hj or bi = bj , then the pairs

(

hi

bi

)

and

(

hj

bj

)

are in the

same subsequence.

A juggling pattern is called prime if and only if its only closed partition is
the trivial partition, i.e. n = 1 and J1 = J .

Now we have the material to distinguish the ’real’ cascades from the ’false’
ones. A juggling pattern is ’real’ if and only if it is prime. For example, the 4-ball

cascade

(

L

1

)(

R

2

)(

L

3

)(

R

4

)(

L

1

)(

R

2

)(

L

3

)(

R

4

)

. . . is not prime, as it can be

partitioned in the subsequences

(

L

1

)(

L

3

)(

L

1

)(

L

3

)

. . . and

(

R

2

)(

R

4

)(

R

2

)

(

R

4

)

. . . . On the other hand, the 3-ball cascade

(

L

1

)(

R

2

)(

L

3

)(

R

1

)(

L

2

)(

R

3

)

(

L

1

)(

R

2

)(

L

3

)(

R

1

)(

L

2

)(

R

3

)

. . . is prime.

The term ’prime patterns’ has been chosen because they can be used to build
up all other patterns, as specified in the following theorem:
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Theorem 5 Each juggling pattern J has a unique closed partition J1, . . . , Jn
such that each Ji is a prime pattern.

Proof If J1, . . . , Jm and J ′

1, . . . , J
′

n are both closed partitions of J , then a
new partition, which partitions all subsequences Ji and J ′

i , can be obtained by
looking at the subsequences Ji ∩ J ′

j , and discarding those that are empty. It
is not hard to see that this will lead to a closed partition again. Taking such
an intersection over all possible closed partitions will give the unique closed
partition into prime patterns. As no closed partition can consist of more than
min(pH , pB) different subsequences, their number is finite, so the intersection is
finite as well. �

Next, our aim is to find some necessary and/or sufficient condition on when
a juggling pattern is prime. For this we will use the following basic number
theoretic result:

Theorem 6 (Chinese remainder theorem) Let m, n, x and y be four num-
bers such that m and n are relatively prime. Then there exists a number z such
that z ≡ x mod m and z ≡ y mod n.

Proof Can be found in any book on number theory, see for example [4]. �

For periodic patterns this leads to the following sufficient condition for a
juggling pattern to be prime.

Theorem 7 Let J be a juggling pattern of which the hand pattern is periodic
with period pH and the ball pattern is periodic with period pB , where pH and
pB are relatively prime. Then J is a prime pattern.

Proof We will prove that for every pair h ∈ H and b ∈ B there is a pair
(

h

b

)

in the sequence J . From this it can easily be seen that J has no closed

partition but the trivial one, and thus is prime.
Let h be any element of H, and let b be any element of B. Let J be

(

h1

b1

)(

h2

b2

)

. . . , and let m and n be chosen such that hm = h and bn = b. Now

find a number k such that k ≡ m mod pH and k ≡ n mod pB . That such a
number exists, follows from the Chinese Remainder Theorem. Because k ≡ m

mod pH we have hk = hm = h, likewise bk = b, so

(

hk

bk

)

=

(

h

b

)

. �

5 Back to the cascade

In the last theorem we saw that all juggling patterns where the periods of hands
and balls are relatively prime are prime patterns, and thus are real patterns,
which cannot be subdivided into separate independent patterns. In general the
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reverse is not true. The simplest counterexample is the 2-ball shower, which can
be found by removing the two dark balls in Figure 1. This has a juggling pattern,

consisting of a constant repetition of the sequence

(

L

1

)(

R

1

)(

L

2

)(

R

2

)

. This

is clearly a prime pattern, although the hand pattern has prime period 2 and
the ball pattern has prime period 4, so these prime periods are not relatively
prime. However, as we shall see in the next theorem, the reverse of Theorem 7
is true if we restrict ourselves to cascades only:

Theorem 8 Let J be a cascade with pH hands and pB balls. Then J can be
partitioned in exactly gcd(pH , pB) prime patterns (where gcd stands for greatest
common divisor). Furthermore, each of these prime patterns is a cascade with

pH

gcd(pH ,pB) hands and pB

gcd(pH ,pB) balls.

Proof We will prove this by constructing the prime patterns Ji.

Let J =

(

h1

b1

)(

h2

b2

)

. . . . We define Ji, for i ranging from 1 to gcd(pH , pB)

by

(

hk

bk

)

∈ Ji ⇔ i ≡ k mod gcd(pH , pB). We claim that this is a closed

partition of J , and that each Ji is prime.
It is easy to see that this is indeed a partition of J . To see that it is a

closed partition, let h ∈ H be any hand, and let the numbers m and n be
such that hn = hm = h. Then, as the hand pattern is cyclic with period pH ,
and every hand occurs exactly once in each cycle, n ≡ m mod pH , and thus

n ≡ m mod gcd(pH , pB) as well. Therefore,

(

hm

bm

)

and

(

hn

bn

)

are in the same

subsequence Ji. Of course, the proof for balls is analogous, from which it can
be seen that this partition is indeed closed.

Next we prove that every pattern Ji is prime. To do so, take h and b such,

that there are, for some h′ and b′, pairs

(

h

b′

)

and

(

h′

b

)

in some given Ji. We

will prove that there is a pair

(

h

b

)

in Ji, from which we can conclude that Ji is

prime.

As there are pairs

(

h

b′

)

and

(

h′

b

)

in Ji, there must be some numbers m

and n, such that hm. gcd(pH ,pB)+i = h and bn. gcd(pH ,pB)+i = b. By definition
of gcd, pH

gcd(pH ,pB) and pB

gcd(pH ,pB) are relatively prime, and because m ≡ n ≡ i

mod gcd(pH , pB), m− i and n− i are both divisible by gcd(pH , pB). Thus we
can use the Chinese Remainder Theorem to find an l such that l ≡ m−i

gcd(pH ,pB)

mod pH

gcd(pH ,pB) and l ≡ n−i
gcd(pH ,pB) mod pB

gcd(pH ,pB) . From this we can conclude

that l. gcd(pH , pB) ≡ m − i mod pH , so l. gcd(pH , pB) + i ≡ m mod pH , so

hl. gcd(pH ,pB)+i = hm = h. Likewise bl. gcd(pH ,pB)+i = b, so there is a pair

(

h

b

)

in Ji. As this holds for each h and b, we can conclude that Ji is prime.
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Let the hand pattern going with the juggling pattern Ji be denoted by Hi,
and its ball pattern by Bi. It can easily be seen that Hi is a restriction of
the hand pattern H to a subset of hands. As such, it can be seen to be cyclic
as well. Furthermore, each Hi has an equal part of the set of hands, and as
there are gcd(pH , pB) such subsequences, dividing pH in equal parts, each such
Hi contains exactly

pH

gcd(pH ,pB) hands. Analogously, the ball pattern Bi is cyclic

with pB

gcd(pH ,pB) balls. Thus, the patterns Ji are cascade patterns with
pH

gcd(pH ,pB)

balls and pB

gcd(pH ,pB) balls. �

Concluding, we get to our main result:

Corollary 9 A true (that is, prime) cascade with h hands and b balls exists if
and only if h and b are relatively prime.

6 Conclusions

The purpose of this paper was to use mathematical techniques to get insight
in the properties of juggling patterns. We studied the most common pattern,
the cascade. Our definitions are based on the assumption that a cascade is
a pattern with maximal symmetry. Of course, since the notion of a cascade
has never been defined unambiguously before, there cannot be a proof that our
definition is correct. However, most of the jugglers that we have discussed this
definition with seem to agree that this is a reasonable definition. Nevertheless,
it is not to every juggler evident how to generalize the notion of a cascade to
more than two hands. Our definition can be used in such a way that for every
number of hands and for every number of balls a unique juggling pattern can
be derived which is fully symmetric (but possibly not prime) by simply letting
the balls cycle through the hands in a fixed order.

Furthermore, we defined the notion of a composed pattern. The smallest
patterns that cannot be composed into even smaller patterns are called prime
patterns. Using simple mathematical reasoning and elementary number theory
we obtained our main result. It is considered common sense among jugglers
that one is only able to throw a cascade if the number of balls is odd. We have
proven this observation formally and have also derived its generalizations that
the number of hands and the number of balls should be relatively prime.

Our results are based on a very simple model of juggling patterns. The
only structure needed for deriving our results is the order in which the hands
throw the balls. We have abstracted away from all other properties of a juggling
pattern.

An interesting question is whether there are other common juggling patterns,
such as a shower or typical club passing patterns which can be characterized in
the same easy way as the cascade. Having a collection of formal definitions of
common patterns would help to classify juggling tricks and study their proper-
ties.
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In this paper one such property has been defined, namely the primality of
a juggling pattern, which means that the pattern is not composed of simpler
patterns. Other interesting properties that might lend themselves for formal-
ization might for example be symmetry (when is a pattern symmetric?) and
forced moves (some or all hands are sometimes or always forced to throw a ball
because the ball to be caught next is already airborne).

An interesting property of the class of cascade patterns is that it is closed
under taking the dual of a pattern. By this we mean that we change the roles
of the carrier sets for hands and balls, thus considering the balls as if they
were the throwing actors and the hands as if they are being thrown. From a
mathematical point of view the dual of a pattern is not much different from
the pattern itself, but in practice the dual of a pattern can be some orders of
magnitude harder (or easier) to master. Likewise, the aesthetical appreciation
may also be very different. Consider for example the difference between a very
difficult cascade with one hand and five balls and its dual, the trivial cascade
with five hands and one ball. Such a duality might be an interesting subject in
further juggling research.

In our definitions we made use of an ad-hoc notation for juggling patterns.
For several reasons as explained before, we did not use the more generally ac-
cepted site swap notation, as has for example been done by [3] and [5]. The
relation between our notation (and our results) and the site swap notation is
worth investigating. Which class of site swap patterns is considered a cascade?
Does this class coincide with our notion of cascade? How can one define the
primality of a pattern in site swap notation? What is the most convenient
extension of the site swap notation for denoting patterns with more than two
hands?

We can think of several extensions of our notation in order to be able to
use it for a larger class of juggling patterns. We mention synchronized throws
(two or more throws exactly at the same time) and multiplexing of balls (two
or more balls at the same moment in the same hand).

Our notation could quite easily be changed to get closer to the normal site
swap notation. In the siteswap the left and right hands always interchange, while
a series of numbers gives the amount of time that passes until the same ball is
caught again. Our notation could readily be changed into a kind of ’double site
swap’-notation, in which two sets of numbers give the delay until the next throw
of the same ball respectively the next throw with the same hand. Compared to
the ’normal’ site swap, this notation is more cumbersome for simple patterns,
but easier for patterns with irregular hand patterns, and more easily adapted
to patterns with more than two hands.
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