Probabilities in the TorX test derivation algorithm

L.M.G. Feijs, N. Goga, S. Mauw

Department of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513, NL 5600 MB Eindhoven, The Netherlands.
feijs@win.tue.nl, goga@win.tue.nl, sjouke@win.tue.nl

Abstract

We propose to extend the TorX algorithm for automatic test derivation with ex-
plicit probabilities. Using these probabilities, the generated test suite can be tuned
and optimised with respect to the chances of finding errors in the implementation.
The main result of this paper is a theorem that shows that the optimal balance be-
tween giving stimuli and checking responses is determined by the ration of inputs and
outputs along a typical test trace. A simulation experiment demonstrates that this
gives rise to an improved error detection capability.

Keywords: testing, test generation, probabilities, tools.

1 Introduction

The part of the software development process where the application of formal methods is
expected to have considerable impact in the near future is the phase of testing. Manual
derivation and execution of test cases leads to an expensive, time consuming and sub-
optimal testing process. We think that problem areas such as regression testing and
conformance testing will benefit from a more formal approach. In the work presented in
this paper, the central concepts of SDL and MSC play an important role: inputs, outputs
and event sequences (although the precise syntax of SDL and MSC is not needed for
the theoretical analysis given here). Moreover we will employ HMSC which we found
convenient to represent the test suite of our example.

The formal underpinning of the testing process gains more and more interest, as wit-
nessed by the development of theoretical foundations for testing and corresponding tool
support. In 1998 a consortium of Dutch research groups from academia and industry
founded the Cdte-de-Resyste project (CdR, for short) to join efforts in the formalization
and automatization of the testing practice.

The CdR project aims at developing theory, methodology and tools which support
a formal approach towards testing. The development of the CdR tools is embedded in
the design of an open tool environment, baptized TorX. This tool environment allows
for an easy integration of a wide range of third party tools which support the spectrum
from (automatic) test generation to (automatic) test execution (such as the SDT tools
[KGHS98], Lotos tools [FKG96], Verilog tools). For a detailed description of the CdR
project and the TorX tools, we refer to [Tret99].

Of course, tools developed within the project can also be linked to the TorX tool
architecture. The tool development within the CdR project currently concentrates on

building a tool for automatic test generation. Several case studies have already been
performed with this tool (see e.g. [BFVT99]).

The TorX test generation tool is based on the ioco theory (input/output conformance)
developed at the University of Twente ([Tret96]). The heart of the theory is the ioco
relation, which formally expresses the assumptions about stimulation and observation
during testing. An algorithm for deriving a sound and complete test suite with respect
to this relation forms the center of the TorX test generation tool. This algorithm is
incorporated in such a way that it can be used both for on—the—fly testing (test generation
and test execution are combined in one phase) and batch oriented testing (test generation
and test execution are separated phases).

This algorithm is non-deterministic in the sense that in every state where the system
can do both an input and an output a choice must be made between these two. In practice
a random generator was used to resolve this non-determinism, which resulted in an equal
distribution of chances.

Practical experiments showed that in most cases this equal distribution served very
well, but in some cases we encountered an anomalous situation. A case study, concerning
an elevator, indicated that the derived test suite was not optimal. Analysis showed that
the test suite mostly contained rather uniform test cases with respect to the ratio of inputs
and outputs. Thereby neglecting a collection of unbalanced behaviours which were very
interesting for this particular case study. The natural solution to this problem is to extend
the test derivation algorithm with explicit probabilities.

This research on the role of probabilities in test derivation is also inspired by our
experiments, performed with the SDT tool set from Telelogic (see [KGHS98]), on testing
the conference protocol (see [BFVT99]). This case study also showed that a poor test suite
may result when simply selecting at random between inputs and outputs.

These are the main motivations for the research presented in this paper. We will study
the impact of parameterizing the TorX test derivation algorithm with the probabilities of
selecting between inputs and outputs. Furthermore, we will derive the optimal values for
these probabilities given a desired ratio between inputs and outputs in the test cases.

This paper is structured as follows. In Section 2 we explain the ioco theory and the
TorX test derivation algorithm. The proposed modification is presented in Section 3. Here
we also calculate optimal values for the probabilities and we analyse a simple example.
Our findings are summarized in Section 4.

Acknowledgements

We thank the members of the CdR project for their co-operation and support. In particular
we thank Jan Tretmans for the stimulating discussions, Axel Belinfante for implementing
our ideas in the TorX tools, and Jan Feenstra for proof reading our paper.

2 Technical preliminaries

The TorX test generation algorithm is at the heart of the TorX architecture. The algorithm
has a sound theoretical base, known as the ioco theory. Below, we will give a brief summary
of this theory. For a full description of the joco theory see [Tret96].

In this theory the behaviours of the implementation system (physical, real object)
are tested by using the specification system (mathematical model of the system). The

behaviours of these systems are modelled by labelled transition systems. A labelled tran-
sition system is defined as follows.

Definition 2.1 A labelled transition system is a quadruple (S, L, —, sq), where
e S is a (countable) non empty set of states;
e [is a (countable) non empty set of observable actions;
e »C Sx (LU{r}) xS is a set of transitions;
e sy € S is the initial state.

The universe of labelled transition systems over L is denoted by LT S(L).

A labelled transition system is represented in a standard way as a graph or by a
process algebraic behaviour expression.

The special action 7 ¢ L denotes an unobservable action. A trace o is a sequence
of observable actions (0 € L*) and = means the observable transition between states
(s 2 s indicates that s’ can be reached from state s after performing the actions from
trace). The empty trace is denoted by e. In some cases the transition system will not
be distinguished from its initial state (or the state in which it is). Furthermore we will
use s — (or s =) to denote 35’ : s 5 s’ (or Is' : 5 >).

Definition 2.2 Consider a labelled transition system p = (S, L,—,sq) and let s € S,
o€ L*and A C L.

1) traces(s) =qet {0 € L* | s 2} (the set of traces from s);

2) init(s) =qef {u € LU {7} | s 5} (the set of initial actions of a state);

3) s after 0 =qor {s' € S| s = s} (the set of reachable states after o € L*).

A failure trace is a trace in which both actions and refusals, represented by a set
of refused actions, occur. For this, the transition relation — is extended with refusal
transitions (self-loop transitions labelled with a set of actions A C L, expressing that all
actions in A can be refused) and = is extended analogously to =, with ¢ € (L UP(L))*
(i is a trace which leads to a state of the system in which all the actions from a set A C L
can be refused).

Definition 2.3 Let p € LT S(L); then we define the failure traces of p as follows.
Ftraces(p) =qef {p € (LUP(L))* | p 2}

A special type of transition systems, the input output transition systems, is used. In
these systems the set of actions can be partitioned in a set of input actions L; and a set of
output actions Ly. The universe of such systems is denoted by ZOT S(L;, Lyy). Because
ZOTS(L;,Ly) = LTS(L; U Ly), these input output transition systems are also labelled
transition systems.

For modelling the absence of outputs in a state (a quiescent state) a special action
null (§ in the notation of [Tret96], null ¢ L) is introduced and the transformation of the
automaton into a suspension automaton is used. Formally a state s is quiescent (denoted
as null(s)) if Va € Ly U {1}, As' : s 5 &'

Definition 2.4 Let p € LTS(L) (L = L; U Ly). Then the suspension automaton of p is
the labelled transition system (Syui1, Lnuiis = nuit; 90) € LT S(Lpun), where

Snull = P(S) \ {Q)}:
Lyl =def LU {ﬂ?l”},

—pult=det 10 —nuil ¢ | 4.4 € Snuisa € L,q = Ugeg{s' € S|s 5 s'},Is € q,8' €
il
¢ s Y U{qg " d | ¢ ={s €q|null(s)},q#0,q # 0}

90 =def {So0}-

The suspension traces of p € LTS(L) (p is a normal automaton) are: Straces(p) =qet
Ftraces(p) N (LU{Ly})* (for Ly occuring in a suspension trace, we write null).

Informally, an implementation i is a correct implementation with respect to the specifi-
cation s and implementation relation iocor if for every trace o € F each output or absence
of outputs, that the implementation 7 can perform after having performed sequence o, is
specified by s.

Definition 2.5 Let i € ZOTS(L;, Ly), s € LTS(L; U Ly) (7 and p are normal au-
tomata), and F CL7 . then:
i iocor s =gef Vo € F : out(i after o) C out(s after o)

where out(p after o) =q¢r init(p after o) N (Ly U {null}).

The correctness of an implementation with respect to an implementation is checked by
executing test cases (which specifies a behaviour of the implementation under test). A test
case is seen as a finite labelled transition system which contains the terminal states Pass
and Fail. An intermediate state of the test case should contain either one input or a set of
outputs. The set of outputs is extended with the output # which means the observation
of a refusal (detection of the absence of actions). A test suite is a set of test cases. When
executing a test case against an implementation the test case can give a Pass verdict if
the implementation satisfies the behaviour specified by the test cases or a Fail verdict if
the implementation does not satisfy the behaviour

The conformance relation used between an implementation 4 and a specification s is
iocor. In the ideal case, the implementation should pass the test suite (completeness) if
and only if the implementation conforms. In practice because the test suite can be very
large, completeness is relaxed to the detection of non—conformance (soundness). Exhaus-
tiveness of a test suite means that the test suites can only assure conformance but it can
also reject conforming implementations. For deriving tests the following specification of
an algorithm is presented in [Tret96]:

The specification of the test derivation algorithm
Let S be the suspension automaton of a specification and let F' C traces(S); then a test
case t € TEST (L, Ly) is obtained by a finite number of recursive applications of one of
the following three nondeterministic choices:

e 1.(*terminate the test case*)

t = Pass;

e 2.(*supply an input for the implementation*)
Take a € Lj such that F, # ()
t=a;t,

where F, = {0 | ac € F} , S %,.1 Sa and t, is obtained by recursively applying
the algorithm for S, and Fj;

e 3.(*check the next output of the implementation*)
t= > {x;Fail | x € Ly U{0},T & out(S),e € F'}
+ > {x;Pass | z € Ly U{0},T ¢ out(S),e & F'}
+>{z;ty |,z € Ly UO, T € out(S)}
where T is a notation for z in which the null action is replaced by 6 action and vice

versa, F, = {o | To € F}, S '—T>nu” S and t; is obtained by recursively applying the
algorithm for S, and F,. The summation symbol > denotes the generalized choice
as usual in process algebra.

In the implementation of the algorithm initially F' equals traces(S).

The algorithm has three Choices. In every moment it can choose to supply an input
a from the set of inputs L; or to observe all the outputs (Ly U {6}) or to finish. When it
finishes, because this does not mean that the algorithm detected an error, it finishes with
a Pass verdict. After supplying an input, the input becomes part of the test case and the
algorithm is applied recursively for building the test case. When it checks the outputs,
if the current output is present in out(S), that output will become also part of the test
case and the algorithm will be applied recursively. If the output is not present in out(S)
the algorithm finishes in almost all the cases with a Fail verdict (if the empty trace is
considered an element of F'). If the empty trace is not in F' then the verdict will be Pass.

This algorithm satiesfies the following properties (for a proof see [Tret96]):

Theorem 2.6 1. A test case obtained with this algorithm is finite and sound with respect
to 1o0cor.
2. The set of all possible test cases that can be obtained with the algorithm is exhaustive.

For a good understanding of the algorithm let us take the following example: the
suspension automaton for a simple candy machine (Figure 1). The label set of this
automaton is the union of the set of inputs L; = {but;} and of the set of outputs
Ly = {null,lig,, choc,} (for the suspension automaton the set of outputs is extended
with the null output which denotes the absence of outputs). After pushing the button
but;, the machine will produce liquorice lig, or nothing null. When the button but; is
pushed again the candy machine will produce liquorice lig, or chocolate choc,. If nothing
was produced and the button is pressed, the machine will provide only the chocolate.
After the chocolate or the liquorice are given, pushing the button will give only a void
response (null output).

The implementation of this algorithm in the TorX architecture usually generates the
test cases on the fly. To simplify our explanation below we willl use a batch oriented
approach. The set F' equals the set traces(candy).

A possible execution sequence of the algorithm on this automaton is:

but j,null but ;

but butj, but; ,null
choc null

9
but ; ,null

Figure 1: The suspension automaton for a candy machine

e First Choice 2 (*select an input*) (S = Sy, F = traces(S1)):
t = but;;ty;

e To obtain t; the algorithm chooses Choice 2 (S = Sy, F = traces(Ss)):
t1 = but;; to;

e Now Choice 3 is selected (*check the output*®) for computing to (S = S5, F =
traces(Ss), € € F):
to = liqy; to1 + chocy; tog + 0; Fail;

e For lig, the algorithm finishes (Choice 1) (S = S7, F = traces(S7)):
to; = Pass;

e For choc, the algorithm again checks the output (Choice 3):
tog = ligy; Fail 4+ chocy; Fail + 0;t31 (S = Ss, F = traces(Ss), € € F);

e If the # action is produced, it chooses Choice 1 (S = Sg, F = traces(Sg)):
t31 = Pass.

The resulting test is shown in Figure 2. Because in the ioco theory the test contains
the output # for the observation of a refusal, the output 6 will replace the null output.

3 Adding probabilities

Our optimization of the TorX algorithm introduces global probabilities pi, po and p3 to
the three choices of the algorithm. To get started, we assume that the probabilities p1, po
and ps are globals by which we mean that they do not depend on the specific moment of
generation. Furthermore, we have:

p1+p2+p3=1,p1 #0,p2 #0,p3 #0

The modified TorX algorithm now reads as follows:

Pass Fail

liq,, o \choc

Fail Pass Fall

Figure 2: The test generated for the candy machine

e Choose Choice 1 (*terminate the test case*) with probability py;

e Choose Choice 2 (*supply an input for the implementation®) with probability po;
Select every input with the same probability;

e Choose Choice 8 (*check the next output of the implementation *) with probability
p3;

An important observation is that the extended algorithm still produces the same test
cases. We only control the chance of a trace to occur. This means that it keeps the
properties of the old algorithm (Theorem 2.6): a generated test-case is finite, sound and
the union of all tests is exhaustive.

After having extended the algorithm with probabilities, the question which still remains
is: what value we should give to these probabilities?

The answer to this question is related to the introductory problem of ratio between
inputs and outputs. Given a required ratio between the inputs and the outputs in a test
trace what values should the probabilities of sending an input and receiving an output
have? The answer will be formulated by the Lemma and the Theorem which will follow.

Lemma 3.1 will provide a formula for the probability that the algorithm will arrive at
the end of one given trace. Theorem 3.2 will compute a configuration for p;, po and pj
which maximizes the probability to arrive at the end of one given trace.

Now, for a good understanding, we will define a special tree which will be used in the
subsequent proofs. We call this tree the behaviour tree and it is formed by the union of all
the traces derived from a specification S. An example of this tree is given in Figure 3.

This behaviour tree is composed of the following kinds of nodes:

e Final: in this node the trace of the test stops with a verdict (Pass, Fail);

e Intermediate: this node contains the name of the input or of the output.

In the behaviour tree in Figure 3 the Pass Final state appears twice in one level because
one Pass verdict can be generated from Choice 1 and one from Choice 3. When we refer
to a given trace we refer to a trace of this tree which starts from the Root state and stops
somewhere in the tree (the traces can be infinite). The signals from the trace are mapped

Select to send one I Check output with
input with py

Lo “Sdlect to send one Check output with
// | input with p o

Qj@\\

Figure 3: A probabilistic walk through the behaviour tree

on the internal nodes of the behaviour tree. In the behaviour tree all the tests generated
for the algorithm are included.

Lemma 3.1 Consider an arbitrary but fized finite trace which does not end in a final
verdict. Let n be the number of inputs on the trace and p the length of the trace. Let ny,
[=1,2,3..n be the number of inputs which can be selected when the [-th input on the trace
is selected. Let Py, k = 1,2,3..p — n be the probability of the k-th output in the trace to
be produced by the implementation (IUT). Then the probability to generate this trace with
the TorX algorithm is computed in the following way:

n 1 Y4
P = ||—Xp2 X || (Pkqu)
ny
=1 k=n+1

The full proof of the theorem can be found in Appendix A. Here an example will be
given which is a good illustration for the way of computing the probability to generate a
given trace (see Figure 4).

Example In the considered trace there are two inputs I,, I; and three outputs Oy, O,
and O.. The number of all inputs which can be selected when I, is selected is five and for I,
it is three. Then the probability that the input I, or the input I; is chosen from the set of
inputs is % respectively % (independent events). The probability that the implementation
(IUT) sends the output Oy, O, or O, is %, % respectively % The probability of arriving
in the Root state is always one. With this the computation of arriving at the end of this

trace is:

P(S1) = P(Root) =1

P(83) = P(S1) x P(Choice 2) x P(Select input I,) =1 x (+ X ps)

P(S3) = P(S2) x P(Choice 3) x P(Oy) =1 x (£ x p2) X (3 X p3)

P(S4) = P(S3) x P(Choice 3) x P(O,) =1 x (£ x p2) X (3 X p3) x (] X p3)

P(S5) = P(S4)x P(Choice 2)x P(Select input I;) = 1x (3 xps) % (5 xp3) x (xp3) X (£ Xp2
P(S) P(S5)><P(Choice 3)x P(0e) = 1x (£ xpa) X (5 Xp3) X (3 XP3) X (£ xp2) X (3 Xp3) =

%:](ni X pa) X Hk 3(Pr x p3)
with ny =5,n0 =3, Py = ,P4_%’P5:

N[=

e':The probability of the Root is 1
1*(U5* P2) HThere are 5inputs

The probability that output Oy, is sent
TSR (USR] @ by the implementation is 1/3

Ty Y .)
g @ [The probability that output O is sent
by theimplementationis 1/4

1% (U5* Py)* (13 P g*
*(U4*Py)

K
1% (U5 Po)* (1U3*P 3*
*(VaP3) *(13Py)

Thereare 3inputs

1 (U5*Py)* (U3* Pé*/& The probability that output Og is sent
(1/4 p3) (13 PZ)* by theimplementation is 1/2
(y2 P3)

Figure 4: An example for computing the probability to generate a given trace

Once we have the formula for the probability of generating a trace we can look for
the optimal configuration of the global probabilities in function of a given ratio between
inputs and outputs. The following theorem solves this optimality problem.

Theorem 3.2 Consider an arbitrary trace which does not end in a final verdict. Let n be
the number of inputs on the trace and m the number of outputs on the trace .
a) The probability to generate this trace reaches a mazimum for py — 0, py = m—Lm X

(1 —p1) and p3 = ;7 x (1 —p1).
b) For every trace with rm‘m r = - the probabﬂ#y to generate this trace reaches a

mazimum for pr = 0, po = 25 x (1 —p1) and p3 = r+1 X (1 —=p1).

Proof : a) The probability to generate a given trace is a function of two variables po
and p3 (Lemma 3.1). For obtaining the extremal values for this probability the differential
of the probability must be 0. Before doing this we will change the probability P(po, p3) to

depend on P(p1,p2).
p1+p2+p3=1=p3=1—p —p2

Conform Lemma 3.1

n 1 n+m n+m
P(pa,p3):H(n— xp2) x] (Pexps)=ph xpy XH—X II 2=
=1 " k=n-+1 k=n-+1
n 1 p
P(p1,p2) = py x (1 —p1 —p2)" XHW—X I 2
1=1 " p=nt1

Now we observe that that [[}; —- o and J[E™ na1 Pk are constants which will be called
Cl and 02

OP oP
dP(p1,p2) = 8—171(;01,102)611?1 + 8—p2(P1,P2)dp2

2] (p1,p2)

=0
dP(p1,p2) =0 = _ 0
2 (p1,p2) =

esf

1

oP _
(p1,p2) = C1 x Co xm x (—1) x py x (1 —p1 —p2)™

dp1
8P n—1 m n m—1
8—p2(p1,p2) =C1xCyx(nxpy ~ x(1—p1—p2)"+mx(-1)xpy x(1—p1—pa)™ ")
oP
8—m(P1ap2) =0=

C]XCQXmX(—l)ngx(l_pl_pQ)m]_Oi{pgi(l) or
D2 =1=p1

The points are (p1,0), (p1,1 — p1).

oP
8—m(p1,p2) =0=

CrxCyxph ' x (1 —p1—pa)™ ' x(nx(1—p—pg) —mxpy) =0=
p2 =10 or
p2=1-—p1 or
n—nXpr—nXps—mxpy=0=py ==X (1-p)

The points are (p1,0), (p1,1 — p1), (P1, 557 < (1 —p1)).

The graph of the function is sketched in Figure 5.

P(P.p)

p, =n/(n+m) *(1-p)
p,=1p,

2

R

Figure 5: The graph of the probability function

Now

P(p1,0) = 0 point of minimum because the probability is 0 < P < 1 ;

P(p1,1 —p1) = 0 point of minimum;

P(p1, gt % (1=p1)) = C1 x Co X (5355)" x (1 — 5252)™ x (1 —p1)"*™ point of maximum.
We have the following:

n-+m

e P maximal = (1 — p) maximal = p; — 0;

e p3=1—p1—pr= ;1= x(1—p1).

b) Let us consider a finite trace with ratio % where n is the number of inputs and m the

number of outputs on the trace. Then to maximize the probability to generate this trace
we have (point a))

|s

P2 =i ¥ (1 =p1) = p2 = 2% x (1 —p1) and
ps = iffm x (L=p1) = ps = =7 x (1 p1)

Example

MSC A MSC but, MSC lig,, MSC choc, MSC null

‘ENV‘ ‘IUT‘ ‘ENV‘ ‘IUT‘ ‘ENV‘ ‘IUT‘ ‘ENV‘ ‘IUT‘

but. quu chocu null

Figure 6: Tests derived from candy machine represented in an HMSC

Let us consider all execution traces of the tests generated from the candy machine
with a length less then or equal to three. These traces are represented in the HMSC (see

[MR97]) from Figure 6. We use HMSC (High level Message Sequence Chart) to represent
the test cases because this is a convenient technique which supports reusing parts of the
diagram

In the HMSC the Fail traces {null lig,, null choc,, null null lig,, null null choc,}
are not represented because in conformance with our observation, only choosing to check
the outputs will not lead to interesting test cases (so for the sake of the simplicity we
excluded them). Our example works even if these traces are present in the set of Fail
traces considered.

The set of all the Fuil traces are represented in Figure 7. In this figure, also the ratio
between the number of inputs in that trace and the number of outputs is represented. So
for example the trace but; null lig, has one input and two outputs so the ratio is %; the
same procedure is applied to every trace in the set.

(e [l [he) Joe) Jhel Tl e

null null but but but,

PETOT

H
H

but. null null lig lig choc
u

but
I
but, but.
I I
Choc a
u
A

lig choc liq choc
u u

Figure 7: Fail traces represented in HMSC

In this set of Fail traces there are two traces with a ratio between inputs and outputs of
%, six with a ratio %, one with ratio % and one with ratio % It is clear that the number of
traces with ratio % is the longest and we will choose it to be the ratio between inputs and
outputs (5 = %) For computing the new configuration of the probabilities (Theorem 3.2)
we choose p; = 0 if the length of the trace is less than three and p; = 1 if the length
is equal to three. Because the theorem applies to the traces which do not end in a Faal

verdict, in the computation of ps and ps, p; will be zero. So by applying the Theorem 3.2
b) we obtain:
1

pQZ;IX(l—O):%zOBB
and
p3=%ﬁ><(170):%z0.67

The old configuration of the TorX algorithm of (py,ps) was (0.5,0.5); the new one is
(0.33,0.67). For computing the probability of getting a Fail when the algorithm runs one
time against an erroneous implementation (which has all the Fail traces from the set) first
the probability of every individual Fuil trace should be computed. The probability that
the TorX algorithm generates and executes a trace is given by Lemma 3.1. A graphical

The old configuration
of (p2 ,p3) is(0.5, 0.5)

S ! The probability of
| sending null is 1/3

1*(0.5% 1)*
(0.5+0.33)

””” ! The probability of
ichocy; sending liqy is 1/3

1% (0.5% 1)*
(0.5+0.33)*
(05+0.33)

Pro(fail, but nul liq,)=0.0014

Thenew configuration
of (p2 ,p3) is(0.33, 0.67)

1*(0.33*1)

T The probability of
iChOCui sending null is 1/3

1%(0.33* 1)*
(0.67%0.33)

171 [The probability of
chocyy sending liq, is 1/3

1*(0.33* 1)*
(0.67%0.33)*
(0.67%0.33)

Prn(fail, but.null lig,)=0.0018

Figure 8: The probability of generating and executing the trace but; null lig,

representation for the computation of the probability of the trace (but; null lig,) is given
in Figure 8 for the old and the new configuration of (p2, p3).

After performing the trace but;, the IUT can send three outputs null, lig,, and choc,, so
the probability of sending one of it, such as null, is 0.33. In the same way the probability
of sending liq, is also 0.33. By applying the lemma it results that the probability of
generating and executing the trace but; null lig, is 0.0014 for the old configuration of
the probabilities and 0.0018 for the new one. In a similar way the probabilities for every
individual trace which ends in a Fail are computed.

It is not entirely trivial to see that optimizing for each individual Fuil trace leads to
a better error detection capability for the suite as a whole. In order to show that this is
the case, we made some further calculation in the context of this example. The general
claims about better error detection capability are outside the scope of the present paper.

The probability Pr(Fail, TorX, 1) of getting a Fail verdict when the TorX algorithm
runs once against the IUT is obtained by summing the probabilities of every individual
Fail trace; so for the old configuration this probability is Pryg(Fail, TorX, 1) = 0.51
and for the new configuration it is Prye,(Fail, TorX, 1) = 0.64. This simple case
clearly demonstrates that a modification of the probabilities can lead to a higher chance
of discovering an erroneous implementation in the same amount of algorithm runs. This
is also clear from the graph in Figure 9 in which the probability of getting a Fail (Pr(
Fail, TorX, n)) in function of the number n of test generation—executions is expressed (for
the old and for the new probabilities configuration).

Pr(Fail, TorX, n) (p,B,)= (0.33,0.67)
l g g U WY

08t
06t
04-1

0.2+

Pr(Fail, TorX, n)=1-(1-Pr(Fail, TorX,1)) "

Figure 9: The probability of getting a Fail in function of the number of test runs

4 Conclusions

In this paper we proposed to modify the TorX test derivation algorithm such that the
probabilities of the non-deterministic alternatives are made explicit.

We argued that in some cases the generated test suite can be optimized by adapting
the values of these probabilities. Case studies gave evidence that assuming an equal
distribution of chances, the TorX algorithm will sometimes yield relatively few really
interesting test cases. Our calculations on the example of the candy machine also showed
that an appropriate choice of the probabilities improves the ability to detect errors in the
implementation.

An important question is, of course, whether there are heuristics which help in selecting
appropriate values for the probabilities. In the case studies which we performed, clearly
the ratio between the number of inputs and the number of outputs in a test trace influenced
the quality of the test cases. Therefore, we derived in this paper the optimal values for
the probabilities in the algorithm given some prefered ratio between the number of inputs
and outputs.

The proposed modification of the TorX algorithm has already been implemented. It
is an option for futher research to study the impact of this work on the ongoing series of
case studies performed in the CdR project.

An important option for follow up of the current research is the extension of the
testing theory from [HT96] in more ways with probabilities. In particular the study of the
probabilistic coverage seems promising.

References

[Tret96] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103-120, 1996. Also: Technical Report No.
96-26, Centre for Telematics and Information Technology, University of Twente,
The Netherlands.

[BFVT99] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
L. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz,
and K. Tarnay, editors, 12th Int. Workshop on Testing of Communicating Systems,
pages 179 196. Kluwer Academic Publishers, 1999.

[MR97]

[KGHS98]

[Tret99]

[FGKMO96]

[HT96]

S. Mauw, M.A. Reniers. High-level Message Sequence Charts. In A. Cavalli and A.
Sarma, editors, SDL’97: Time for Testing - SDL, MSC and Trends, Proceedings of
the Eighth SDL Forum, pages 291 306, Evry, France, September 1997.

B. Koch, J. Grabowski, D. Hogrefe, M. Schmitt. Autolink - A Tool for Automatic
Test Generation from SDL Specifications. IEEE International Workshop on Indus-
trial Strength Formal Specification Techniques,(WIFT98), Boca Raton, Florida, Oct.
21-23, 1998.

J. Tretmans, A. Belinfante. Automatic testing with formal methods. In EuroStar’99:
7th European Int. Conference on Software Testing, Analysis and Review, Barcelona,
Spain, November 8-12, 1999. EuroStar Conferences, Galway, Ireland. Also: Technical
Report TR-CTIT-17, Centre for Telematics and Information Technology, University
of Twente, The Netherlands.

J.C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, M. Sighireanu.
CADP (caesar/aldebaran development package): A protocol validation and verifica-
tion toolbox. In R. Alur and T.A. Henziner, editors, Computer Aided Verification
CAV’96. Lecture Notes in Computer Science 1102, Springer Verlag, 1996.

L. Heerink, J. Tretmans. Formal methods in conformance testing: a probabilistic
refinement. In Bernd Baumgarten, Heinz-Jiirgen Burkhardt and Alfred Giessler,
editors, Ninth International Workshop on Testing of Communicating Systems, pages
261-276, Chapman & Hall, 1996.

A Proof of Lemma 3.1

Proof : (By induction):

1)Basic step:

Node= Node after Root

ect to
%put wi

tﬁnpg one

Figure 10: Root situation.

The Choices: 1, 2 and & are independent events.

The Root state has probability 1 (sure event).

The probability to select an input I;,¢ = 1,2,3..u from the set of the inputs is % (inde-
pendent events).

Now:

a)Node= Contains an input:

1 1 1

1
Py = P(Choice 2)xP(Select an input from the set of inputs) = pox — = H(—pr)x H (Ppxp3)
u

=1 "1 k=2

with n; = u;
a)Node= Contains an output O;

0 1
1
Py = P(Choice 3) x P(output O; is sent) = ps x Pp, = H(— X pg) X H(Pk X p3)
=1 ™ k=1
with P, = Pp;;
2)Induction step:
Let us assume that the probability for the current node is computed like

nn PN

Py = 1_[(ni xpa) X [[(Pxxps)

1=1 M k=npy+1

then the probability to arrive in one of the next nodes (except Final state) is computed
like:

NN 41 1 PN 41
PN+1:H(—><P2)>< H (P % p3)
=1 nl k:TLN+1+1

The probability to arrive in thisnode is R

Select to send one I Check output with
input with py D

ol

Figure 11: Intermediary situation.

The probability to select an input from the set of inputs in this case is + (independent
events):
Now:
a)Next node= Contains an input:
Pyy1 = P(Current node) x P(Choice 2) x P(Select an input from the set of inputs) =

= n?ﬁﬂ(%ﬁ X pa) X HzgnN+](Pk X p3)) X p2 X 5 =
= [(;, X p2) X HkiZ;VHH (P % p3)

with nyi1 =ny +1, pyy1 =pn, Py = Py, nny = v;
b)Next node= Contains an output O;:

Pyi1 = P(Current node) x P(Choice 3) x P(O;) =

= ?:]\]1(”% X pa) X HZZnNH(Pk x p3)) X pa2 X Po, =
n
= l:N1+1(nil X pg) X ZZ:,;V“_FNPIC X p3)

with ny41 =ny, pyy1 =pny + 1 OpN+1 = 0;.

