
Probabilities in the TorX test derivation algorithmL.M.G. Feijs, N. Goga, S. MauwDepartment of Mathemati
s and Computing S
ien
e,Eindhoven University of Te
hnology,P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands.feijs�win.tue.nl, goga�win.tue.nl, sjouke�win.tue.nlAbstra
tWe propose to extend the TorX algorithm for automati
 test derivation with ex-pli
it probabilities. Using these probabilities, the generated test suite
an be tunedand optimised with respe
t to the
han
es of �nding errors in the implementation.The main result of this paper is a theorem that shows that the optimal balan
e be-tween giving stimuli and
he
king responses is determined by the ration of inputs andoutputs along a typi
al test tra
e. A simulation experiment demonstrates that thisgives rise to an improved error dete
tion
apability.Keywords: testing, test generation, probabilities, tools.1 Introdu
tionThe part of the software development pro
ess where the appli
ation of formal methods isexpe
ted to have
onsiderable impa
t in the near future is the phase of testing. Manualderivation and exe
ution of test
ases leads to an expensive, time
onsuming and sub-optimal testing pro
ess. We think that problem areas su
h as regression testing and
onforman
e testing will bene�t from a more formal approa
h. In the work presented inthis paper, the
entral
on
epts of SDL and MSC play an important role: inputs, outputsand event sequen
es (although the pre
ise syntax of SDL and MSC is not needed forthe theoreti
al analysis given here). Moreover we will employ HMSC whi
h we found
onvenient to represent the test suite of our example.The formal underpinning of the testing pro
ess gains more and more interest, as wit-nessed by the development of theoreti
al foundations for testing and
orresponding toolsupport. In 1998 a
onsortium of Dut
h resear
h groups from a
ademia and industryfounded the Côte-de-Resyste proje
t (CdR, for short) to join e�orts in the formalizationand automatization of the testing pra
ti
e.The CdR proje
t aims at developing theory, methodology and tools whi
h supporta formal approa
h towards testing. The development of the CdR tools is embedded inthe design of an open tool environment, baptized TorX. This tool environment allowsfor an easy integration of a wide range of third party tools whi
h support the spe
trumfrom (automati
) test generation to (automati
) test exe
ution (su
h as the SDT tools[KGHS98℄, Lotos tools [FKG96℄, Verilog tools). For a detailed des
ription of the CdRproje
t and the TorX tools, we refer to [Tret99℄.Of
ourse, tools developed within the proje
t
an also be linked to the TorX toolar
hite
ture. The tool development within the CdR proje
t
urrently
on
entrates on

building a tool for automati
 test generation. Several
ase studies have already beenperformed with this tool (see e.g. [BFVT99℄).The TorX test generation tool is based on the io
o theory (input/output
onforman
e)developed at the University of Twente ([Tret96℄). The heart of the theory is the io
orelation, whi
h formally expresses the assumptions about stimulation and observationduring testing. An algorithm for deriving a sound and
omplete test suite with respe
tto this relation forms the
enter of the TorX test generation tool. This algorithm isin
orporated in su
h a way that it
an be used both for on{the{
y testing (test generationand test exe
ution are
ombined in one phase) and bat
h{oriented testing (test generationand test exe
ution are separated phases).This algorithm is non-deterministi
 in the sense that in every state where the system
an do both an input and an output a
hoi
e must be made between these two. In pra
ti
ea random generator was used to resolve this non-determinism, whi
h resulted in an equaldistribution of
han
es.Pra
ti
al experiments showed that in most
ases this equal distribution served verywell, but in some
ases we en
ountered an anomalous situation. A
ase study,
on
erningan elevator, indi
ated that the derived test suite was not optimal. Analysis showed thatthe test suite mostly
ontained rather uniform test
ases with respe
t to the ratio of inputsand outputs. Thereby negle
ting a
olle
tion of unbalan
ed behaviours whi
h were veryinteresting for this parti
ular
ase study. The natural solution to this problem is to extendthe test derivation algorithm with expli
it probabilities.This resear
h on the role of probabilities in test derivation is also inspired by ourexperiments, performed with the SDT tool set from Telelogi
 (see [KGHS98℄), on testingthe
onferen
e proto
ol (see [BFVT99℄). This
ase study also showed that a poor test suitemay result when simply sele
ting at random between inputs and outputs.These are the main motivations for the resear
h presented in this paper. We will studythe impa
t of parameterizing the TorX test derivation algorithm with the probabilities ofsele
ting between inputs and outputs. Furthermore, we will derive the optimal values forthese probabilities given a desired ratio between inputs and outputs in the test
ases.This paper is stru
tured as follows. In Se
tion 2 we explain the io
o theory and theTorX test derivation algorithm. The proposed modi�
ation is presented in Se
tion 3. Herewe also
al
ulate optimal values for the probabilities and we analyse a simple example.Our �ndings are summarized in Se
tion 4.A
knowledgementsWe thank the members of the CdR proje
t for their
o-operation and support. In parti
ularwe thank Jan Tretmans for the stimulating dis
ussions, Axel Belinfante for implementingour ideas in the TorX tools, and Jan Feenstra for proof reading our paper.2 Te
hni
al preliminariesThe TorX test generation algorithm is at the heart of the TorX ar
hite
ture. The algorithmhas a sound theoreti
al base, known as the io
o theory. Below, we will give a brief summaryof this theory. For a full des
ription of the io
o theory see [Tret96℄.In this theory the behaviours of the implementation system (physi
al, real obje
t)are tested by using the spe
i�
ation system (mathemati
al model of the system). The

behaviours of these systems are modelled by labelled transition systems. A labelled tran-sition system is de�ned as follows.De�nition 2.1 A labelled transition system is a quadruple hS;L;!; s0i, where� S is a (
ountable) non empty set of states;� L is a (
ountable) non empty set of observable a
tions;� !� S � (L [f�g) � S is a set of transitions;� s0 2 S is the initial state.The universe of labelled transition systems over L is denoted by LT S(L).A labelled transition system is represented in a standard way as a graph or by apro
ess{algebrai
 behaviour expression.The spe
ial a
tion � 62 L denotes an unobservable a
tion. A tra
e � is a sequen
eof observable a
tions (� 2 L�) and) means the observable transition between states(s �) s0 indi
ates that s0
an be rea
hed from state s after performing the a
tions fromtra
e �). The empty tra
e is denoted by �. In some
ases the transition system will notbe distinguished from its initial state (or the state in whi
h it is). Furthermore we willuse s a! (or s �)) to denote 9s0 : s a! s0 (or 9s0 : s �) s0).De�nition 2.2 Consider a labelled transition system p = hS;L;!; s0i and let s 2 S,� 2 L� and A � L.1) tra
es(s) =def f� 2 L� j s �)g (the set of tra
es from s);2) init(s) =def f� 2 L [f�g j s �!g (the set of initial a
tions of a state);3) s after � =def fs0 2 S j s �) s0g (the set of rea
hable states after � 2 L�).A failure tra
e is a tra
e in whi
h both a
tions and refusals, represented by a setof refused a
tions, o

ur. For this, the transition relation ! is extended with refusaltransitions (self{loop transitions labelled with a set of a
tions A � L, expressing that alla
tions in A
an be refused) and) is extended analogously to '), with ' 2 (L [P(L))�(' is a tra
e whi
h leads to a state of the system in whi
h all the a
tions from a set A � L
an be refused).De�nition 2.3 Let p 2 LT S(L); then we de�ne the failure tra
es of p as follows.Ftra
es(p) =def f' 2 (L [P(L))� j p ')g.A spe
ial type of transition systems, the input{output transition systems, is used. Inthese systems the set of a
tions
an be partitioned in a set of input a
tions LI and a set ofoutput a
tions LU . The universe of su
h systems is denoted by IOT S(LI ; LU). Be
auseIOT S(LI ; LU) = LT S(LI [LU), these input{output transition systems are also labelledtransition systems.For modelling the absen
e of outputs in a state (a quies
ent state) a spe
ial a
tionnull (Æ in the notation of [Tret96℄, null 62 L) is introdu
ed and the transformation of theautomaton into a suspension automaton is used. Formally a state s is quies
ent (denotedas null(s)) if 8a 2 LU [f�g; 6 9s0 : s a! s0.

De�nition 2.4 Let p 2 LT S(L) (L = LI [LU). Then the suspension automaton of p isthe labelled transition system hSnull; Lnull;!null; q0i 2 LT S(Lnull), where� Snull = P(S) n f;g;� Lnull =def L [fnullg;� !null=def fq a�!null q0 j q; q0 2 Snull; a 2 L; q0 = [s2qfs0 2 S j s a! s0g;9s 2 q; s0 2q0; s a! s0g [fq null�!null q0 j q0 = fs 2 q j null(s)g; q 6= ;; q0 6= ;g;� q0 =def fs0g.The suspension tra
es of p 2 LT S(L) (p is a normal automaton) are: Stra
es(p) =defFtra
es(p) \ (L [fLUg)� (for LU o

uring in a suspension tra
e, we write null).Informally, an implementation i is a
orre
t implementation with respe
t to the spe
i�-
ation s and implementation relation io
oF if for every tra
e � 2 F ea
h output or absen
eof outputs, that the implementation i
an perform after having performed sequen
e �, isspe
i�ed by s.De�nition 2.5 Let i 2 IOT S(LI ; LU), s 2 LT S(LI [LU) (i and p are normal au-tomata), and F �L�null, then:i io
oF s =def 8� 2 F : out(i after �) � out(s after �)where out(p after �) =def init(p after �) \ (LU [fnullg).The
orre
tness of an implementation with respe
t to an implementation is
he
ked byexe
uting test
ases (whi
h spe
i�es a behaviour of the implementation under test). A test
ase is seen as a �nite labelled transition system whi
h
ontains the terminal states Passand Fail. An intermediate state of the test
ase should
ontain either one input or a set ofoutputs. The set of outputs is extended with the output � whi
h means the observationof a refusal (dete
tion of the absen
e of a
tions). A test suite is a set of test
ases. Whenexe
uting a test
ase against an implementation the test
ase
an give a Pass verdi
t ifthe implementation satis�es the behaviour spe
i�ed by the test
ases or a Fail verdi
t ifthe implementation does not satisfy the behaviourThe
onforman
e relation used between an implementation i and a spe
i�
ation s isio
oF . In the ideal
ase, the implementation should pass the test suite (
ompleteness) ifand only if the implementation
onforms. In pra
ti
e be
ause the test suite
an be verylarge,
ompleteness is relaxed to the dete
tion of non{
onforman
e (soundness). Exhaus-tiveness of a test suite means that the test suites
an only assure
onforman
e but it
analso reje
t
onforming implementations. For deriving tests the following spe
i�
ation ofan algorithm is presented in [Tret96℄:The spe
i�
ation of the test derivation algorithmLet S be the suspension automaton of a spe
i�
ation and let F � tra
es(S); then a test
ase t 2 T EST (LI ; LU) is obtained by a �nite number of re
ursive appli
ations of one ofthe following three nondeterministi

hoi
es:� 1.(*terminate the test
ase*)t = Pass;

� 2.(*supply an input for the implementation*)Take a 2 LI su
h that Fa 6= ;t = a; tawhere Fa = f� j a� 2 Fg , S a!null Sa and ta is obtained by re
ursively applyingthe algorithm for Sa and Fa;� 3.(*
he
k the next output of the implementation*)t = ∑fx;Fail j x 2 LU [f�g; x 62 out(S); � 2 Fg+∑fx;Pass j x 2 LU [f�g; x 62 out(S); � 62 Fg+∑fx; tx j; x 2 LU [�; x 2 out(S)gwhere x is a notation for x in whi
h the null a
tion is repla
ed by � a
tion and vi
eversa, Fx = f� j x� 2 Fg, S x!null Sx and tx is obtained by re
ursively applying thealgorithm for Sx and Fx. The summation symbol ∑ denotes the generalized
hoi
eas usual in pro
ess algebra.In the implementation of the algorithm initially F equals tra
es(S).The algorithm has three Choi
es. In every moment it
an
hoose to supply an inputa from the set of inputs LI or to observe all the outputs (LU [f�g) or to �nish. When it�nishes, be
ause this does not mean that the algorithm dete
ted an error, it �nishes witha Pass verdi
t. After supplying an input, the input be
omes part of the test
ase and thealgorithm is applied re
ursively for building the test
ase. When it
he
ks the outputs,if the
urrent output is present in out(S), that output will be
ome also part of the test
ase and the algorithm will be applied re
ursively. If the output is not present in out(S)the algorithm �nishes in almost all the
ases with a Fail verdi
t (if the empty tra
e is
onsidered an element of F). If the empty tra
e is not in F then the verdi
t will be Pass.This algorithm saties�es the following properties (for a proof see [Tret96℄):Theorem 2.6 1. A test
ase obtained with this algorithm is �nite and sound with respe
tto io
oF .2. The set of all possible test
ases that
an be obtained with the algorithm is exhaustive.For a good understanding of the algorithm let us take the following example: thesuspension automaton for a simple
andy ma
hine (Figure 1). The label set of thisautomaton is the union of the set of inputs LI = fbutig and of the set of outputsLU = fnull; liqu;
ho
ug (for the suspension automaton the set of outputs is extendedwith the null output whi
h denotes the absen
e of outputs). After pushing the buttonbuti, the ma
hine will produ
e liquori
e liqu or nothing null. When the button buti ispushed again the
andy ma
hine will produ
e liquori
e liqu or
ho
olate
ho
u. If nothingwas produ
ed and the button is pressed, the ma
hine will provide only the
ho
olate.After the
ho
olate or the liquori
e are given, pushing the button will give only a voidresponse (null output).The implementation of this algorithm in the TorX ar
hite
ture usually generates thetest
ases on{the{
y. To simplify our explanation below we willl use a bat
h orientedapproa
h. The set F equals the set tra
es(
andy).A possible exe
ution sequen
e of the algorithm on this automaton is:

but i

but i

but i but i but i

liq u

liq u

choc u

choc u

but i

but i

but i

null

null

null

null

null

,

, ,null

,

null

but i

2

543

6

1

7 8

9Figure 1: The suspension automaton for a
andy ma
hine� First Choi
e 2 (*sele
t an input*) (S = S1, F = tra
es(S1)):t = buti; t1;� To obtain t1 the algorithm
hooses Choi
e 2 (S = S2, F = tra
es(S2)):t1 = buti; t2;� Now Choi
e 3 is sele
ted (*
he
k the output*) for
omputing t2 (S = S5, F =tra
es(S5), � 2 F):t2 = liqu; t21 +
ho
u; t22 + �; Fail;� For liqu the algorithm �nishes (Choi
e 1) (S = S7, F = tra
es(S7)):t21 = Pass;� For
ho
u the algorithm again
he
ks the output (Choi
e 3):t22 = liqu; Fail +
ho
u; Fail + �; t31 (S = S8, F = tra
es(S8), � 2 F);� If the � a
tion is produ
ed, it
hooses Choi
e 1 (S = S8, F = tra
es(S8)):t31 = Pass.The resulting test is shown in Figure 2. Be
ause in the io
o theory the test
ontainsthe output � for the observation of a refusal, the output � will repla
e the null output.3 Adding probabilitiesOur optimization of the TorX algorithm introdu
es global probabilities p1, p2 and p3 tothe three
hoi
es of the algorithm. To get started, we assume that the probabilities p1, p2and p3 are globals by whi
h we mean that they do not depend on the spe
i�
 moment ofgeneration. Furthermore, we have:p1 + p2 + p3 = 1; p1 6= 0; p2 6= 0; p3 6= 0The modi�ed TorX algorithm now reads as follows:

buti

buti

liq u

liq u

Pass Fail

Fail Pass Fail

uchoc

chocu

Figure 2: The test generated for the
andy ma
hine� Choose Choi
e 1 (*terminate the test
ase*) with probability p1;� Choose Choi
e 2 (*supply an input for the implementation*) with probability p2;Sele
t every input with the same probability;� Choose Choi
e 3 (*
he
k the next output of the implementation *) with probabilityp3;An important observation is that the extended algorithm still produ
es the same test
ases. We only
ontrol the
han
e of a tra
e to o

ur. This means that it keeps theproperties of the old algorithm (Theorem 2.6): a generated test-
ase is �nite, sound andthe union of all tests is exhaustive.After having extended the algorithm with probabilities, the question whi
h still remainsis: what value we should give to these probabilities?The answer to this question is related to the introdu
tory problem of ratio betweeninputs and outputs. Given a required ratio between the inputs and the outputs in a testtra
e what values should the probabilities of sending an input and re
eiving an outputhave? The answer will be formulated by the Lemma and the Theorem whi
h will follow.Lemma 3.1 will provide a formula for the probability that the algorithm will arrive atthe end of one given tra
e. Theorem 3.2 will
ompute a
on�guration for p1, p2 and p3whi
h maximizes the probability to arrive at the end of one given tra
e.Now, for a good understanding, we will de�ne a spe
ial tree whi
h will be used in thesubsequent proofs. We
all this tree the behaviour tree and it is formed by the union of allthe tra
es derived from a spe
i�
ation S. An example of this tree is given in Figure 3.This behaviour tree is
omposed of the following kinds of nodes:� Final: in this node the tra
e of the test stops with a verdi
t (Pass, Fail);� Intermediate: this node
ontains the name of the input or of the output.In the behaviour tree in Figure 3 the Pass Final state appears twi
e in one level be
auseone Pass verdi
t
an be generated from Choi
e 1 and one from Choi
e 3. When we referto a given tra
e we refer to a tra
e of this tree whi
h starts from the Root state and stopssomewhere in the tree (the tra
es
an be in�nite). The signals from the tra
e are mapped

2

Finish with p

input with p 2 1

1Select to send one
input with p

I Pass Fail1 2 n

1 Pass Fail Pass

I I
1

O1 m1

n 2 1 2

Root

I’ I’ O’

3p
Check output with

p3
Check output with Finish with pSelect to send one

O

mO’

Pass

Figure 3: A probabilisti
 walk through the behaviour treeon the internal nodes of the behaviour tree. In the behaviour tree all the tests generatedfor the algorithm are in
luded.Lemma 3.1 Consider an arbitrary but �xed �nite tra
e whi
h does not end in a �nalverdi
t. Let n be the number of inputs on the tra
e and p the length of the tra
e. Let nl,l = 1; 2; 3::n be the number of inputs whi
h
an be sele
ted when the l-th input on the tra
eis sele
ted. Let Pk, k = 1; 2; 3::p � n be the probability of the k-th output in the tra
e tobe produ
ed by the implementation (IUT). Then the probability to generate this tra
e withthe TorX algorithm is
omputed in the following way:P = n
∏l=1(1nl � p2)� p

∏k=n+1(Pk � p3)The full proof of the theorem
an be found in Appendix A. Here an example will begiven whi
h is a good illustration for the way of
omputing the probability to generate agiven tra
e (see Figure 4).Example In the
onsidered tra
e there are two inputs Ia, Id and three outputs Ob, O
and Oe. The number of all inputs whi
h
an be sele
ted when Ia is sele
ted is �ve and for Idit is three. Then the probability that the input Ia or the input Id is
hosen from the set ofinputs is 15 respe
tively 13 (independent events). The probability that the implementation(IUT) sends the output Ob, O
 or Oe is 13 , 14 respe
tively 15 . The probability of arrivingin the Root state is always one. With this the
omputation of arriving at the end of thistra
e is:P (S1) = P (Root) = 1P (S2) = P (S1)� P (Choi
e 2)� P (Sele
t input Ia) = 1� (15 � p2)P (S3) = P (S2)� P (Choi
e 3)� P (Ob) = 1� (15 � p2)� (13 � p3)P (S4) = P (S3)� P (Choi
e 3)� P (O
) = 1� (15 � p2)� (13 � p3)� (14 � p3)P (S5) = P (S4)�P (Choi
e 2)�P (Sele
t input Id) = 1�(15�p2)�(13�p3)�(14�p3)�(15�p2)P (S6) = P (S5)�P (Choi
e 3)�P (Oe) = 1�(15�p2)�(13�p3)�(14�p3)�(15�p2)�(12�p3) =
∏2l=1(1nl � p2)�∏5k=3(Pk � p3)with n1 = 5; n2 = 3; P3 = 13 ; P4 = 14 ; P5 = 12

 21*(1/5*P)

 2 31*(1/5*P)*(1/3*P)*

Root

I

I

O

O

a

b

c

d

Oe

The probability of the Root is 11

 2 31*(1/5*P)*(1/3*P)*

3*(1/4*P) 2

 2 31*(1/5*P)*(1/3*P)*

3*(1/4*P) *(1/3*P)2

3*(1/4*P)

 2 31*(1/5*P)*(1/3*P)

*(1/3*P)*

*(1/2*P)
3

There are 5 inputs

by the implementation is 1/3

There are 3 inputs

b

c

by the implementation is 1/2

by the implementation is 1/4

e

The probability that output O is sent

The probability that output O is sent

The probability that output O is sentFigure 4: An example for
omputing the probability to generate a given tra
eOn
e we have the formula for the probability of generating a tra
e we
an look forthe optimal
on�guration of the global probabilities in fun
tion of a given ratio betweeninputs and outputs. The following theorem solves this optimality problem.Theorem 3.2 Consider an arbitrary tra
e whi
h does not end in a �nal verdi
t. Let n bethe number of inputs on the tra
e and m the number of outputs on the tra
e .a) The probability to generate this tra
e rea
hes a maximum for p1 ! 0, p2 = nn+m �(1� p1) and p3 = mn+m � (1� p1).b) For every tra
e with ratio r = nm the probability to generate this tra
e rea
hes amaximum for p1 ! 0, p2 = rr+1 � (1� p1) and p3 = 1r+1 � (1� p1).Proof : a) The probability to generate a given tra
e is a fun
tion of two variables p2and p3 (Lemma 3.1). For obtaining the extremal values for this probability the di�erentialof the probability must be 0. Before doing this we will
hange the probability P (p2; p3) todepend on P (p1; p2). p1 + p2 + p3 = 1) p3 = 1� p1 � p2Conform Lemma 3.1P (p2; p3) = n
∏l=1(1nl � p2)� n+m

∏k=n+1(Pk � p3) = pn2 � pm3 � n
∏l=1 1nl � n+m

∏k=n+1Pk)P (p1; p2) = pn2 � (1� p1 � p2)m � n
∏l=1 1nl � p

∏k=n+1PkNow we observe that that ∏nl=1 1nl and ∏n+mk=n+1 Pk are
onstants whi
h will be
alledC1 and C2.

dP (p1; p2) = �P�p1 (p1; p2)dp1 + �P�p2 (p1; p2)dp2dP (p1; p2) = 0) { �P�p1 (p1; p2) = 0�P�p2 (p1; p2) = 0�P�p1 (p1; p2) = C1 � C2 �m� (�1)� pn2 � (1� p1 � p2)m�1�P�p2 (p1; p2) = C1 �C2 � (n� pn�12 � (1� p1 � p2)m +m� (�1)� pn2 � (1� p1 � p2)m�1)�P�p1 (p1; p2) = 0)C1 �C2 �m� (�1)� pn2 � (1� p1 � p2)m�1 = 0) { p2 = 0 orp2 = 1� p1The points are (p1; 0); (p1; 1� p1). �P�p2 (p1; p2) = 0)C1 � C2 � pn�12 � (1� p1 � p2)m�1 � (n� (1� p1 � p2)�m� p2) = 0)










p2 = 0 orp2 = 1� p1 orn� n� p1 � n� p2 �m� p2 = 0) p2 = nn+m � (1� p1)The points are (p1; 0); (p1; 1� p1); (p1; nn+m � (1� p1)).The graph of the fun
tion is sket
hed in Figure 5.
p

2

P(p ,p)
21

2

2
p =1-p

p
1

1

1
p =n/(n+m) *(1-p)

Figure 5: The graph of the probability fun
tionNow

P (p1; 0) = 0 point of minimum be
ause the probability is 0 � P � 1 ;P (p1; 1� p1) = 0 point of minimum;P (p1; nn+m� (1�p1)) = C1�C2� (nn+m)n� (1� nn+m)m� (1�p1)n+m point of maximum.We have the following:� P maximal) (1� p1)n+m maximal) p1 ! 0;� p3 = 1� p1 � p2 = mn+m � (1� p1).b) Let us
onsider a �nite tra
e with ratio nm where n is the number of inputs and m thenumber of outputs on the tra
e. Then to maximize the probability to generate this tra
ewe have (point a))p2 = nn+m � (1� p1)) p2 = nmnm+1 � (1� p1) andp3 = mn+m � (1� p1)) p3 = 1nm+1 � (1� p1)Example
liqu nullchoc u

null

pass

fail fail

buti liqu choc u

buti liqu choc u

butiliqu nullchoc u

fail fail pass pass

null

 A

liqu

 A

choc u

fail

buti

butiliqu nullchoc u

failpass passpass

buti

 A

buti

MSC

IUT

MSC

IUT

MSC tree

MSC A MSC

IUT

MSC

IUT

null

null

ENV ENV ENV ENV

Figure 6: Tests derived from
andy ma
hine represented in an HMSCLet us
onsider all exe
ution tra
es of the tests generated from the
andy ma
hinewith a length less then or equal to three. These tra
es are represented in the HMSC (see

[MR97℄) from Figure 6. We use HMSC (High level Message Sequen
e Chart) to representthe test
ases be
ause this is a
onvenient te
hnique whi
h supports reusing parts of thediagramIn the HMSC the Fail tra
es fnull liqu, null
ho
u, null null liqu, null null
ho
ugare not represented be
ause in
onforman
e with our observation, only
hoosing to
he
kthe outputs will not lead to interesting test
ases (so for the sake of the simpli
ity weex
luded them). Our example works even if these tra
es are present in the set of Failtra
es
onsidered.The set of all the Fail tra
es are represented in Figure 7. In this �gure, also the ratiobetween the number of inputs in that tra
e and the number of outputs is represented. Sofor example the tra
e buti null liqu has one input and two outputs so the ratio is 12 ; thesame pro
edure is applied to every tra
e in the set.
0:1 0:1 1:2 1:2 1:2 1:2

choc
u

fail fail

null

but
i

fail

liq
u

fail fail

choc
u

but
i

null

but
i

null

but
i

liq
u

fail

null

choc
u

1:2 1:2

liq
u

fail

but
i

liq
u

but
i

but
i

fail

but
i

choc
u

liq
u

fail

choc
u

but
i

fail

null

u
liq

1:1 2:1

Figure 7: Fail tra
es represented in HMSCIn this set of Fail tra
es there are two tra
es with a ratio between inputs and outputs of01 , six with a ratio 12 , one with ratio 11 and one with ratio 21 . It is
lear that the number oftra
es with ratio 12 is the longest and we will
hoose it to be the ratio between inputs andoutputs (nm = 12). For
omputing the new
on�guration of the probabilities (Theorem 3.2)we
hoose p1 = 0 if the length of the tra
e is less than three and p1 = 1 if the lengthis equal to three. Be
ause the theorem applies to the tra
es whi
h do not end in a Failverdi
t, in the
omputation of p2 and p3, p1 will be zero. So by applying the Theorem 3.2b) we obtain:p2 = 1212+1 � (1� 0) = 13 � 0:33andp3 = 112+1 � (1� 0) = 23 � 0:67The old
on�guration of the TorX algorithm of (p2; p3) was (0:5; 0:5); the new one is(0:33; 0:67). For
omputing the probability of getting a Fail when the algorithm runs onetime against an erroneous implementation (whi
h has all the Fail tra
es from the set) �rstthe probability of every individual Fail tra
e should be
omputed. The probability thatthe TorX algorithm generates and exe
utes a tra
e is given by Lemma 3.1. A graphi
al

p =0.5

p =0.5
3

3

null

fail

liqu
null

liq
u

chocu

chocu

buti

p =0.5
2

The old configuration
(0.5, 0.5)2of (p ,p) is3

There is 1 input

sending null is 1/3
The probability of

2of (p ,p) is3 (0.33, 0.67)

null

fail

liqu
null

liq
u

chocu

chocu

buti

2
p =0.33

3

3

p =0.67

p =0.67

1*(0.33*1)

(0.67*0.33)
1*(0.33*1)*

1*(0.33*1)*
(0.67*0.33)*
(0.67*0.33)

The new configuration

1*(0.5*1)

There is 1 input

sending null is 1/3
The probability of

1*(0.5*1)*
(0.5*0.33)

1*(0.5*1)*
(0.5*0.33)*
(0.5*0.33)

 Pr (fail, but null liq)=0.0014o Pr (fail, but null liq)=0.0018n u

The probability ofThe probability of

i u i

usending liq is 1/3 usending liq is 1/3

Figure 8: The probability of generating and exe
uting the tra
e buti null liqurepresentation for the
omputation of the probability of the tra
e (buti null liqu) is givenin Figure 8 for the old and the new
on�guration of (p2; p3).After performing the tra
e buti, the IUT
an send three outputs null, liqu, and
ho
u, sothe probability of sending one of it, su
h as null, is 0:33. In the same way the probabilityof sending liqu is also 0:33. By applying the lemma it results that the probability ofgenerating and exe
uting the tra
e buti null liqu is 0:0014 for the old
on�guration ofthe probabilities and 0:0018 for the new one. In a similar way the probabilities for everyindividual tra
e whi
h ends in a Fail are
omputed.It is not entirely trivial to see that optimizing for ea
h individual Fail tra
e leads toa better error dete
tion
apability for the suite as a whole. In order to show that this isthe
ase, we made some further
al
ulation in the
ontext of this example. The general
laims about better error dete
tion
apability are outside the s
ope of the present paper.The probability Pr(Fail, TorX, 1) of getting a Fail verdi
t when the TorX algorithmruns on
e against the IUT is obtained by summing the probabilities of every individualFail tra
e; so for the old
on�guration this probability is Prold(Fail, TorX, 1) = 0:51and for the new
on�guration it is Prnew(Fail, TorX, 1) = 0:64. This simple
ase
learly demonstrates that a modi�
ation of the probabilities
an lead to a higher
han
eof dis
overing an erroneous implementation in the same amount of algorithm runs. Thisis also
lear from the graph in Figure 9 in whi
h the probability of getting a Fail (Pr(Fail, TorX, n)) in fun
tion of the number n of test generation{exe
utions is expressed (forthe old and for the new probabilities
on�guration).

(p ,p)= (0.5, 0.5)
21

Pr(Fail, TorX, n)

n1 2 3 4

0.2

0.4

0.6

0.8

1
21

(p ,p)= (0.33, 0.67)

Pr(Fail, TorX, n)=1-(1-Pr(Fail, TorX,1)) nFigure 9: The probability of getting a Fail in fun
tion of the number of test runs4 Con
lusionsIn this paper we proposed to modify the TorX test derivation algorithm su
h that theprobabilities of the non-deterministi
 alternatives are made expli
it.We argued that in some
ases the generated test suite
an be optimized by adaptingthe values of these probabilities. Case studies gave eviden
e that assuming an equaldistribution of
han
es, the TorX algorithm will sometimes yield relatively few reallyinteresting test
ases. Our
al
ulations on the example of the
andy ma
hine also showedthat an appropriate
hoi
e of the probabilities improves the ability to dete
t errors in theimplementation.An important question is, of
ourse, whether there are heuristi
s whi
h help in sele
tingappropriate values for the probabilities. In the
ase studies whi
h we performed,
learlythe ratio between the number of inputs and the number of outputs in a test tra
e in
uen
edthe quality of the test
ases. Therefore, we derived in this paper the optimal values forthe probabilities in the algorithm given some prefered ratio between the number of inputsand outputs.The proposed modi�
ation of the TorX algorithm has already been implemented. Itis an option for futher resear
h to study the impa
t of this work on the ongoing series of
ase studies performed in the CdR proje
t.An important option for follow up of the
urrent resear
h is the extension of thetesting theory from [HT96℄ in more ways with probabilities. In parti
ular the study of theprobabilisti

overage seems promising.Referen
es[Tret96℄ J. Tretmans. Test generation with inputs, outputs and repetitive quies
en
e.Software|Con
epts and Tools, 17(3):103{120, 1996. Also: Te
hni
al Report No.96-26, Centre for Telemati
s and Information Te
hnology, University of Twente,The Netherlands.[BFVT99℄ A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,L. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz,and K. Tarnay, editors, 12th Int. Workshop on Testing of Communi
ating Systems,pages 179{196. Kluwer A
ademi
 Publishers, 1999.

[MR97℄ S. Mauw, M.A. Reniers. High-level Message Sequen
e Charts. In A. Cavalli and A.Sarma, editors, SDL'97: Time for Testing - SDL, MSC and Trends, Pro
eedings ofthe Eighth SDL Forum, pages 291{306, Evry, Fran
e, September 1997.[KGHS98℄ B. Ko
h, J. Grabowski, D. Hogrefe, M. S
hmitt. Autolink - A Tool for Automati
Test Generation from SDL Spe
i�
ations. IEEE International Workshop on Indus-trial Strength Formal Spe
i�
ation Te
hniques,(WIFT98), Bo
a Raton, Florida, O
t.21-23, 1998.[Tret99℄ J. Tretmans, A. Belinfante. Automati
 testing with formal methods. In EuroStar'99:7th European Int. Conferen
e on Software Testing, Analysis and Review, Bar
elona,Spain, November 8-12, 1999. EuroStar Conferen
es, Galway, Ireland. Also: Te
hni
alReport TR-CTIT-17, Centre for Telemati
s and Information Te
hnology, Universityof Twente, The Netherlands.[FGKM96℄ J.C. Fernandez, H. Garavel, A. Kerbrat, R. Matees
u, L. Mounier, M. Sighireanu.CADP (
aesar/aldebaran development pa
kage): A proto
ol validation and veri�
a-tion toolbox. In R. Alur and T.A. Henziner, editors, Computer Aided Veri�
ationCAV'96. Le
ture Notes in Computer S
ien
e 1102, Springer{Verlag, 1996.[HT96℄ L. Heerink, J. Tretmans. Formal methods in
onforman
e testing: a probabilisti
re�nement. In Bernd Baumgarten, Heinz-J�urgen Burkhardt and Alfred Giessler,editors, Ninth International Workshop on Testing of Communi
ating Systems, pages261{276, Chapman & Hall, 1996.A Proof of Lemma 3.1Proof : (By indu
tion):1)Basi
 step:Node= Node after Root
2

Finish with p

1Select to send one
input with p

I Pass Fail1 2I I O1

Root

3p
Check output with

O Passwu Figure 10: Root situation.The Choi
es: 1, 2 and 3 are independent events.The Root state has probability 1 (sure event).The probability to sele
t an input Ii; i = 1; 2; 3::u from the set of the inputs is 1u (inde-pendent events).Now:a)Node= Contains an input:PN = P(Choi
e 2)�P(Sele
t an input from the set of inputs) = p2�1u = 1
∏l=1(1n1�p2)� 1

∏k=2(Pk�p3)

with n1 = u;a)Node= Contains an output OiPN = P(Choi
e 3)� P(output Oi is sent) = p3 � POi = 0
∏l=1(1nl � p2)� 1

∏k=1(Pk � p3)with Pk = POi ;2)Indu
tion step:Let us assume that the probability for the
urrent node is
omputed likePN = nN
∏l=1(1nl � p2)� pN

∏k=nN+1(Pk � p3)then the probability to arrive in one of the next nodes (ex
ept Final state) is
omputedlike: PN+1 = nN+1
∏l=1 (1nl � p2)� pN+1

∏k=nN+1+1(Pk � p3)
2

Finish with p

1Select to send one
input with p

I Pass Fail1 2I I O1

3p
Check output with

O Pass

 Node NThe probability to arrive in this node is P

tvFigure 11: Intermediary situation.The probability to sele
t an input from the set of inputs in this
ase is 1v (independentevents):Now:a)Next node= Contains an input:PN+1 = P(Current node) � P(Choi
e 2)� P(Sele
t an input from the set of inputs) == (∏nNl=1(1nl � p2)�∏pNk=nN+1(Pk � p3))� p2 � 1v == ∏nN+1l=1 (1nl � p2)�∏pN+1k=nN+1+1(Pk � p3)with nN+1 = nN + 1, pN+1 = pN , Pk = Pk�1, nnN = v;b)Next node= Contains an output Oi:PN+1 = P(Current node) � P(Choi
e 3)� P(Oi) == (∏nNl=1(1nl � p2)�∏pNk=nN+1(Pk � p3))� p2 � POi == ∏nN+1l=1 (1nl � p2)�∏pN+1k=nN+1+1(Pk � p3)with nN+1 = nN , pN+1 = pN + 1 OpN+1 = Oi.

