Test Selection, Trace Distance and Heuristics *

L.M.G. Feijs, N. Goga, S. Mauw f J. Tretmans *
feijs, goga, sjouke@win.tue.nl tretmans@cs.utwente.nl

September 12, 2001, version 0.1

Abstract: Since exhaustive testing is in general impossible, an important step in
the testing process is the development of a carefully selected test suite. Selection
of test cases is not a trivial task. We propose to base the selection process on a
well-defined strategy. For this purpose, we formulate two heuristic principles: the
reduction heuristic and the cycling heuristic. The first assumes that few outgoing
transitions of certain states show essentially different behaviour. The second assumes
that the probability to detect erroneous behaviour in a loop decreases after each correct
execution of the loop behaviour. We formalize these heuristic principles and we define
a coverage function which serves as a measure for the error—detecting capability of a
test suite. For this purpose we introduce the notion of a marked trace and a distance
function on such marked traces.

Keywords: test selection, test coverage, trace distance, test selection heuristics, edit
distance.

1 Introduction

Systematic testing is an important technique to check and control the quality of software
systems. Testing consists of systematically developing a set of experiments or test cases,
then running these experiments on the software system that has to be tested, also referred
to as the IUT (the implementation under test), and subsequently concluding from the
observations made during the execution whether the IUT behaved as expected leading to
a verdict about the IUT’s correctness. Because of time and resource limitations, any form
of testing can only exercise a small subset of all possible system behaviour. Therefore,
testing can never give certainty about the correctness of a system; it can only increase
confidence.

Since in practice exhaustive testing is impossible, an important step in the testing
process is the development of a carefully selected test suite, i.e., a set of test cases. Such a
test suite should have a large potential of revealing errors in the implementation. Moreover,
we would like to be able to compare different test suites in order to select the best one,
and to quantify their error-detecting capability.

The selection of an appropriate set of tests from all possible ones (usually infinitely
many test cases), is not a trivial task. We refer to this task as test selection. Traditionally,
test selection is based on a number of heuristic criteria. Well-known heuristics include
equivalence partitioning, boundary value analysis, and use of code-coverage criteria like
statement-, decision- and path-coverage [Mye79]. Although these criteria provide some
heuristics for selecting test cases, they are rather informal and they do not allow to measure
the error-detecting capability of a test suite.

If test cases are derived from a formal specification, in particular if it is done algorith-
mically using tools for automatic test generation, e.g., AUTOLINK [SKGH97], TGV [JM99]

*This research was supported by the Dutch Technology Foundation STW under project STW TIF.4111:

Céte de Resyste — COnformance TEsting of REactive SYSTEms; URL: http://fmt.cs.utwente.nl/CdR.
tEindhoven University of Technology, P.O. Box 513, NL 5600 MB Eindhoven, The Netherlands
iUniversity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

or TOrRX [BFVT99], then the test selection problem is even more apparent. These test
tools can generate a large number of test cases, when given a specification in the appropri-
ate formalism, without much user intervention. All these generated test cases can detect
potential errors in implementations, and errors detected with these test cases indeed indi-
cate that an implementation is not correct with respect to its specification. However, the
number of potentially generated test cases may be very large, or even infinite. In order
to control and get insight in the selection of the tests, and by that get confidence in the
correctness of an TUT that passes the tests, it is important that the selection process is
formally described and based on a well-defined strategy.

It should be noted, however, that test selection is an activity that in principle cannot
be based solely on a formal specification of a system. In order to decide which test
cases are more valuable than others, either extra information outside the realm of the
specification formalism is necessary, or assumptions about the occurrence of errors in the
implementation must be made. Such extra information may include knowledge about
which errors are frequently made by implementers, which kind of errors are important,
e.g., in the sense of having catastrophic consequences, what functionality is difficult to
implement, which functionality is crucial for the well functioning of the system, etc. An
approach to formalizing this extra information was given in [BTV91]. On the other hand,
assumptions can be made about the occurrence of errors in implementations, e.g., that
errors will not occur in isolation, i.e., if some behaviour is erroneous then there is a large
probability that some other behaviour close to it is also erroneous. So we only have to
test one of these behaviours (equivalence partitioning: the behaviours are equivalent with
respect to the occurrence of errors). Another often used assumption is that errors are
most likely to occur on the boundaries of valid data intervals (boundary value analysis).

This paper approaches the problem of test selection by making assumptions in an
automata-based, or labelled transition system-based formalism. Section 2 introduces the
labeled transition systems and automata. Two different kinds of assumptions are intro-
duced and expressed as heuristic principles in Section 3 starting with the ideas of [CG96].
The first one, called reduction heuristic, assumes that few outgoing transitions of cer-
tain states show essentially different behaviour. The second one, referred to as cycling
heuristic, assumes that the probability to detect erroneous behaviour in a loop decreases
after each correct execution of the loop behaviour. After that we propose a mathematical
framework, defining a heuristic as a function on the set of behaviours (traces). This is
done in Section 4. When we want to make the two heuristics more precise, defining them
as functions according to the definition from Section 4, we observe that an appropriate
behaviour representation for them is needed. Therefore in Section 5 we define the marked
trace representation. After these preparations the definitions of the heuristics as functions
on marked traces are straight forward (Section 6). Subsequently, the notion of isolation
and closeness of errors is formalized in Section 7 by defining a distance function between
behaviours. This idea is taken from [ACV93, ACV97] and extended on marked traces.
The trace distance implements the considered heuristics in the sense that the traces which
are selected by the heuristics are remote from each other. Every trace which is excluded
by the heuristics is close to one of the selected traces. A coverage function which may
serve as a measure for the error-detecting capability of a test suite is defined based on
the maximum distance between selected and non-selected behaviours and a formula for
approximating the coverage is given in Section 8.

2 Preliminaries

The basic formalism for our discussion about test selection is the labelled transition system,
or the automaton. A labelled transition system provides means to specify, model, analyze
and reason about (concurrent) system behaviour. A labelled transition system is defined
in terms of states and labelled transitions between states. In this section we recall some

basic definitions.

Definition 2.1 A [abelled transition system is a 4-tuple (Q, L, T, qo), where) is a non-
empty set of states, L is a set of labels, T C) x L x () is the transition relation, and
qo € Q is the initial state.

The labels in L represent the actions of a system. An action a € L is executable in
state ¢ € Q if (q,a,q") € T for some state ¢’ € @), which is said to be the new state after
execution of a; we also write ¢ = ¢/. A finite sequence of pairs (state, action) ending into
a state is called a path. Similarly, a finite sequence of actions is called a trace. The set of
all traces over L is denoted by L*, with € denoting the empty sequence. Abusing notation,
we will use p to denote both the labelled transition system and the current (or initial)
state of the system.

The traces of a labelled transition system p are all sequences of action that p can
execute from its initial state qo: traces(p) =g {0 € L* | qo = }. Here we use the
following additional definitions (n € N, i < n, q, ¢, ¢; € Q, a; € L, 0 € L*):

¢ 5" =ae Fqo, @ a=q D@3 B g =
o a.
q-> =gt 3¢ : g4

For our presentation and formalization we use minimal, deterministic, finite-state tran-
sition systems. A finite-state labelled transition system has a finite number of states, i.e.,
@ is finite. A transition system is deterministic if for any state ¢ € () and action a € L
there is at most one successor state, i.e., T': Q@ x L — Q is a (partial) function. A tran-
sition system is minimal if there are no equivalent states, i.e., no two states with exactly
the same traces, which means: 7q,q' € Q : traces(q) = traces(q'). We (ab)use the word
automaton for these minimal, deterministic, finite-state transition systems.

Although it may seem a severe limitation to restrict to automata an important formal
test theory, viz. ioco-testing [Tre96], can be expressed, for the larger part, in terms of
automata. So the test selection approach which is presented in this paper can be integrated
with ioco-testing.

In testing, the traces of the minimal, deterministic, finite automata are used. A com-
plete (maximal) test suite for an automaton specification s is expressed as traces(s).
However, even if s is finite-state, its set of traces will usually be infinite and contain traces
of unbounded length. Hence, a complete test suite will have infinitely many tests of un-
bounded length. Such a test suite can never be executed within any reasonable limits of
time and resources. Consequently, the problem of test selection consists of selecting a finite
subset T' C traces(s), such that we end up with a reasonably sized set of bounded-length
test cases.

The challenge of test selection now is to choose T' such that the resulting test suite
keeps a large error-detecting capability. Moreover, we wish to quantify this capability in
order to compare and select test suites. The next sections will present and formalize an
approach to selection and quantification.

3 Introduction to heuristics, distance and coverage

In this section we introduce the concepts of heuristics and coverage. Two specific heuristics
will be proposed in Section 3.1. They are illustrated by an example in Section 3.2.

3.1 The heuristics principles for the test selection

As motivated in Section 2, the specification is seen as a minimal finite-state automaton.
The specification has a set of traces which usually is too large; for this reason, we want to
obtain a smaller set of traces. As we explained in Section 1, this goal can be reached by
making assumptions on automata, assumptions which are expressed as heuristic principles.
The heuristic principles with which we are working in this paper are:

3

e Reduction: if the specification automaton contains for certain states a large number
of outgoing transitions, only a small number of these transitions need to be selected;

e (ycling: each cycle in the automaton needs to be traversed only a limited number
of times by every single trace.

3.2 A first illustration of the test selection

Now we will give an example on which we will apply our heuristics for test selection.

Let s be the specification automaton from the left hand side of Figure 1. The spec-
ification has four states. The labelset is L = {b,c,d,e, f} U{a; | i € IN} and the initial
state is the state I. This state has infinitely many outgoing transitions ({a; | i € IN}). Via
a transition a; from the initial state, one arrives at II. This state contains a cycle which
goes via III using the transitions b and d; the state III contains another cycle, via the
transition c. From I one arrives at IV using e or f. For simplicity, we will consider only
the traces of s that end in IV. Let T be the set of traces of s.

CYCN I bf%
Il
cJil | = C "
d Reduction d
el)f el /f
v v

Figure 1: A minimal automaton of a specification

Now let us consider ag as being the representative transition in the initial state; by
choosing this transition the Reduction heuristic is applied in this state. By this application
we reduce the labelset to a finite one L' = {ag, b, ¢, d, e, f}. This labelset L' corresponds to
the reduced automaton from the right hand side of Figure 1. Now our initial set of traces
becomes T Feduction anq it contains all the traces of the automaton which are starting from
state I, arriving in state IV and going through transition aq in I (T %eduction equals also the
set of traces of the reduced automaton). In this example one representative is selected; in
a more general example it could also be two or more of the a;.

The following heuristic to be applied is the Cycling heuristic. The traces are cycling
via the states II and III of the automaton. In this automaton the state II has a cycle
via the sequence of transitions bd and the state III has another cycle via the transition c.
We can fix the cycle limit number to 1 for the cycling states I7 and 1. So the transitions
¢ from IIT and bd from II can be traversed only once by every single trace of Tfeduction
The traces which respect this condition and form the set of traces T feduction, Cycling 5yq.

T feduction, Cycling _ {age, agbde, agbcde, aq f, agbdf , apbedf }

s a1

ei di fi
Figure 2: An application of the Cycling heuristic

- 0.0 _ o/ &

e

The application of the Cycling heuristic is represented graphically in Figure 2. The
full set is represented at the left hand side and the reduced set at the right. As it can be
seen the set Tfeduction, Cycling is o finite set and all its traces have a length of at most 5
(finite length).

Our method deals with bigger cycles as well, such as going via the transitions bd several
times; the technique of [ACV93] deals only with simple cycles such as going via transition

¢ several times. Another advantage is that with the proposed test selection technique one
can deal with an infinite branching of transitions (see the initial state of this automaton).
As we saw in our example, limiting the cycle number implicitly limits the length and
therefore a length heuristic, which is considered by [ACV93], is not necessary for us.

Now we are going to express the heuristic principles in terms of distances among traces.
A distance is a measure which expresses how far apart two traces are. A particular way
to compute such a trace distance is given in Section 7.2. For getting a feeling of how the
trace distance is related to the heuristic principles, let us take as an example the distance
between the traces agbdf and agbdbdf. In Figure 3, it can be seen that the distance
between the traces agbdf and agbdbdf is smaller than the distance for example between
aof and agbdbdf. This happens because the trace agbdf cycles one time via the state 11,
aopbdbdf cycles two times and ag f cycles zero times. Therefore intuitively, the trace aybdf
should be closer to agbdbdf than to the other traces (exactly as we assume in the Cycling
heuristic that the later cycles are less important, so the distance between two traces which
are cycling more often through a state will decrease).

Figure 3: A covering of the initial set using trace distance

In Figure 3, every trace from the reduced set 7 feduction, Cycling jq the center of a sphere.
The initial set T is covered by the reduced set T feduction, Cycling gych that every trace from
T has a corresponding trace in T feduction, Cycling ¢ which the distance is smaller than a
given limit € (e is the radius of the spheres). This process of selecting one representative for
each sphere leads to a notion of coverage. When taking big spheres only few representatives
are selected and the error detection capability is low. Small spheres, on the other hand give
a large coverage. If we scale things in such a way that 0 < e < 1, then the coverage can be
expressed as 1 — €. The coverage of the reduction from T to T Feduction, Cycling ig denoted
as CO’U(T,TRedUCtion’ Cycling) ’TReduction, Cycling) =1—¢.

This gave some intuition about how the heuristics and the trace distance are used in
the test selection and computation of the coverage. Now we are going to be more formal.

. Therefore we express cov(T

4 The trace distance and the test heuristics

In our test selection method we use heuristics which are applied on traces and distances
between traces. This section describes the formal definitions of these notions.

In a formal way a trace heuristic is a function between two sets of traces such that the
range is a proper subset of the domain (so the heuristic reduces the size of the initial set).

Definition 4.1 A trace heuristic h is a function h : T — T, where T is a set of traces
and Ran(h) C T.

Definition 4.2 Let T be a set. Then a function d : T x T — R is a distance iff: 1)
d(z,x) = 0; 2) d(z,y) = d(y,2); 3) d(z,y) < d(z,2) +d(z,y); for all z,y,2 € T.

In particular we use Definition 4.2 for sets of traces and such distances are called trace
distances. The pair (T,d) is a metric space. It is customary to express coverages by
numbers in the range [0, 1] and therefore we restrict ourselves to distance functions such
that 0 < d(z,y) < 1 for all z,y. This can be done without loss of generality (suppose we
would have distances in [0, 00) and € numbers in the range [0, oo] then we could scale them

back to [0,1] using a suitable monotonic and continuous bijection b : [0, co] — [0,1]). In
order to use a trace distance for test selection the concept of € cover is useful.

Definition 4.3 A set T" is an e—cover of T' (T' C T,e > 0) if for every ¢ € T there exists
t' € T' such that d(t,t') <e.

The property of e—cover gives rise to the property of total boundedness for a metric
space.

Definition 4.4 A metric space (T, d) is totally bounded if for every £ > 0 it is possible
to find a finite set T, C T such that T} is an e—cover of T' with respect to distance d.

Now a link between a heuristic and a trace distance is established: if for that heuristic
the subset obtained by the application of that heuristic is an € cover of the original set,
then the trace distance implements the heuristic.

Definition 4.5 Let T be a set of traces and h be a trace heuristic such that h: T — T.
Let d be a trace distance defined on T. Then d implements the heuristic b iff: de; > 0 :
Ran(h) is an ep—cover of T' with respect to the distance d.

The following definition shows how to obtain the coverage.

Definition 4.6 Let T be a set of traces and T" C T be an e—cover of T' with respect to a
trace distance d. Let e, = inf{e > 0| T" is an ¢ cover of T'} be the inferior minimum of
the € values. Then the coverage of T with respect to T is cov(T',T) = 1 — e,.

5 The marked trace representation

When we want to make the two heuristics more precise, defining them as functions ac-
cording to Definition 4.1, we observe that an appropriate trace representation for them
is needed. When we apply the Cycling heuristic on a trace, we observe that the trace
does not have enough information regarding how it was generated, what states it has been
going through and how often it went through them. As a result, we will represent the
trace in such a way that the information regarding its generation from the automaton will
be included. This leads us to a concept called marked traces, which will be developed in
Section 5.1. In general a given trace can be interpreted in several ways as being the re-
sult of running through cycles in the automaton. This introduces a problem of ambiguity
which is addressed in Section 5.2.

5.1 The marked traces

The first example in this section will explain why a new representation for the traces is
needed.
Example Let us consider the automaton from Figure 4 and one of its traces abcbed. This
trace is traversing (cycling) twice via the state II. But this information is not present in
the trace. Therefore this representation is not appropriate for working with cycles. Now
let us transform it into a path, which is TallbIIlcIIbIIIcIIdIV . We can observe that the
path contains extra information which is not needed for cycles: for example it contains the
states I and I'V which are not part of any cycle. Summing up the observations, we arrive
at the conclusion that a new representation is needed. An intuitive one is a[(bc)(bc)]?'d
where [(bc)({bc)]?!! indicates that two cycles of the transitions bc are performed through
the state I1.

As we saw in the introductory example, we associate the cycles with how many times
a trace is traversing a state. The name of the state, which is seen as a mark, will represent
the identifier of the cycle. Also we will include the number of cycles through a state. We

Figure 4: A trace which cycles through an automaton

call such an extended trace a marked trace. Now we have all the ingredients to define a
marked representation of a trace.

Definition 5.1 Let L be a labelset and @) a set of states. Then a marked trace is induc-
tively defined by

1. a € L, e and [] (q € Q) are marked traces;
2. if u and v are marked traces then uv is a marked trace;
3. if u and [0]™9 (n € N, q € Q) are marked traces then [o{u)]" 19 is a marked trace.

In the definition from above o is a sequence of type (o1)...(0,,) where o; are marked
traces (i = 1,...n).
Example Some examples of marked traces are: a[(bc)]"''d and a[(bc)(bc)]?>'d with IT€ Q.

We will denote the set of all the marked traces over a labelset L and a set of marks
Q as L. The transformation between the marked representation of a trace and a normal
representation of a trace can be made easily by eliminating all the parentheses which occur
in the marked representation. For example the marked trace a[(bc)(bc)]?'d is transformed
in the trace abcbed. We will call this transformation unfold.

Definition 5.2 Let L be a labelset, let) be the set of marks and let L’é be the set of
marked traces. Then the function unfold : Ly, — L* which transforms a marked trace
into a trace is

1. ifa € L,q € Q then unfold(a) = a, unfold(e) = ¢, unfold([]°9) = ¢;

2. if u and v are marked traces then unfold(uv) =unfold(u)unfold(v);

3. if u and [0]™? (¢ € Q,n € IN) are marked traces then

unfold([o (u)]"T19) =unfold([o]™?) unfold(u).

In the following example, we will illustrate a way in which a trace can be transformed
into a marked trace. In general, this transformation is not unique. To illustrate this, we
need a more complex example.

Example Consider the automaton from Figure 1. The states of the automaton are marked
with I, II, III, IV. The cycling states are the states Il and II1. Consider the trace agbcdbcde.

Adding boxes to reflect nesting structure, the corresponding path is Ia,ob c

db c deIV. The state IT (surrounded with a box in the path) is repeated

three times. Between two occurrences of state IT in the path, the state III (surrounded
with two boxes) appears twice. If we match every new occurrence of state I in the path
with its first occurrence (we will call this way of matching the states first state matching),
the path will be divided in 4 component paths: 1agu[(11bircuidinyrbnicirdm? 1 erv .
—— ~ ~ ~ —

1 2 3 4
If we do the same for III in the paths 2) IIbIII cIIIdIl and 3) IIbIIIcIIIdII and eliminate
all the states, we obtain the marked trace ao[(b[(c)]}/!d)(b[(c)]*"d)]*>He. This marked
trace corresponds to the initial trace agbcdbede. However, there are also other ways of
transforming it into a marked trace. For example, the states of the same trace can be

grouped in another way as Tag IIb| I1I|c| III|dIT0| I1I|c| III|dITeIV and the same trace has
another correspondent marked trace which is agb[(c)(db){c)]> " de.

For this example we see that there is not a unique way of transforming a trace in
a marked trace. Therefore we leave it as an option to the implementer (the user of
our theory) to choose the way by which he transforms a trace into a marked trace (one
algorithm will be given in the next subsection Subsection 5.2). We will only define the
set of marked traces of an automaton which will be the set of all possible marked traces
which can be derived from the traces of an automaton. After that we make a partition
on the set of marked traces (an equivalence class of marked traces contains all the marked
traces which unfold to the same trace) and we assume that the implementer chooses a set
of representatives from the equivalence classes of marked traces. Below we will define the
set of marked traces of an automaton. In this definition, we use C[z] to denote a term
with an occurrence of a substring z. C[] is called the context in which z occurs.

Definition 5.3 Let s be an automaton. Let path(s) be the set of its paths; let) be the
set of its states. Then

1. the set of marked paths MPath(s) of s is:

(a) if p € path(s) then p € MPath(s);
(b) if m € MPath(s), m = C[p], p € path(s) such that p = p1gpaq...qpy, then

Clpral(gp2q)---(gpn—19)]"*%p,] € MPath(s)
with ¢ € Q, n € N, p1q, qpiq, qpn € path(s), i = 2,..,n — 1;
2. the set of marked traces of an automaton is: MTraces(s) = {m |yace|] m € MPath(s)},
where |pqce transforms a path to a trace by eliminating all the states which appear
in the path and keeping all the labels.

At this point it is not necessary to demand that the procedure from step 1.b) is applied
until it cannot be done further; we come back to this in Section 5.2. Considering the way
we constructed MTraces(s), it is evident that every trace has at least one corresponding
marked trace. Two marked traces will be equivalent if their unfold will give the same
trace.

Definition 5.4 Let mq, m9 be two marked traces. Then m; is equivalent with msg, de-
noted as my ~ my, iff: unfold(my) = unfold(ms).

The equivalence relation gives a partition on MTraces(s) in a set of equivalence classes.
By choosing a representative for every class, the implementer builds the set of represen-
tatives traces™(s). A way to obtain such a set is given in the beginning of the next
subsection. For the remainder of this paper we will work only with the set of representa-
tives traces™(s) and we will abuse the words marked trace for such representative marked
trace.

5.2 An algorithm for obtaining a set of representatives
In the beginning of this subsection we give a way to implement the transformation of a
trace in a representative marked trace and to obtain the set of representatives.

This set is obtained by applying the following function (A LG) on each trace (path) of a
finite-state minimal deterministic automaton s. The function builds a marked trace from
a trace using a first state match technique like the one we used for the trace agbcdbede
at the beginning of the previous example. In ALG we use the following function and
procedure: 1) the function NotRepetitivesState(p,Q), p a path, @ a set of states, returns
true if every state of p which is contained in @ occurs only once in p and 2) the procedure
Divide(p, Q, q, p1, ..., pn) finds ¢ € Q and splits p in p1,....,p, (n E N, i =2,...,n— 1, p1q,

qpiq, qp, paths) such that: i) ¢ € @ is the first repetitive state in p, ii) p = p1gp2q...qp,
and iii) the set of states of p; does not contain ¢ (j =1,...,n).

function ALG (p : Path, Q : SetStates) : MarkedTrace;
var q : State;
D1, ...y Pn ¢ (e+Label)(State Label)*(e+State);
begin
if (NotRepetitiveState(p, Q)) then
return p ‘trace;

else
Divide(p, Q, q, p1, .-y Pn);
Q=0Q\{q};

return ALG(p1q, Q)[(ALG(qp2q, Q))...(ALG(qpn—14, Q))]" *7ALG(qpy, Q);
end

Initially, the function ALG is applied on a path p and on the set of states () of the
automaton. When a) p does not contain states from) which are repetitive, ALG returns
the trace corresponding to p (P |trace)- When a) does not hold, ALG finds the first
repetitive state ¢ € @ in p and divides p in n parts p1,...,p,. Every p; (1 = 2,...,n — 1)
lies between two occurrences of ¢ in p; p; and p, are the initial part (ending with q)
and respectively the last part (starting with ¢) of p. After this the state ¢ is deleted
from @, which becomes @ \ {¢}. Making so, terms as [_[_]-9_]=¢ in which ¢ is interpreted
twice as a cycle are avoided. Without deletion, the repetition of ¢ can be reinterpreted
as a cycle by a later call of ALG, when it is applied on a component path gp;q. After
the transformation of), ALG returns the concatenations of the marked traces obtained
by recursively applying the algorithm to the components pq,...,p,, which is ALG(p1q,
Q)[(ALG(qp2q, Q))-.-(ALG(gpn_1q, Q)" > ALG(qpn, Q).

The set of representatives is traces™(s) = {ALG(p,Q) | p € path(s)}. In the remain-
der of this paper, in the examples which we use, we assume that the marked traces are
generated with ALG from the traces of an automaton.

As one can see, our way of building the set of representatives is rather complex. One
can imagine trivial solutions as for example: every marked trace is the trace itself. But the
marked traces built with ALG have nice properties which are required for the application
of our test selection theory. For example the width of such marked traces is uniformly
bounded (Lemma 5.6), a property which is used in the theorem of total boundedness
(Theorem 8.2). The marked traces generated with the trivial solution do not have this
property.

In conclusion, once we have the set of representatives, we want to know if it has some
specific properties. So for a marked trace of an automaton we want to know if the width
of it is uniformly bounded, and if the nesting depth of it is also bounded. Here uniformly
bounded means that the same upperbound applies at all nesting levels. But first let us
define these terms.

Definition 5.5 Let s be an automaton. Let L be the labelset and () the set of states of
s. Then the function width : traces™(s) — N is

1. ifa € L,q € Q then width(a) = 1, width(e) = 0, width(]]°9) = 1;
2. if u and v are marked traces then width(uv) =width(u)+width(v);
3. if u and [0]™4 (¢ € Q,n € N) are marked traces then width([o(u)]"*19) = 1.

In the definition above the terms [_]-- are counted as single terms of the marked trace.
Example Let us take the trace ag[(bd)(bd)]*>''f. Then

width(ag[(bd) (bd)| > f) = width(ag) + width([(bd)(bd)]>"T) + width(f) =14+ 1+1 =3

The following lemma shows that the width of every marked trace generated with ALG
is uniformly bounded.

Lemma 5.6 The width of a marked trace generated with ALG from an automaton and
the widths of all its component marked traces are less than or equal to 2m — 1, where m is
the number of the states of the automaton. (Without proof)

Definition 5.7 Let s be an automaton. Let L be the labelset and () the set of states of
S.
Then the function nesting : traces™(s) — IN is

1. ifa € L,q € Q then nesting(a) = 0, nesting(e) = 0, nesting([|*9) = 1;
2. if u and v are marked traces then nesting(uv) =max(nesting(u),nesting(v));
3. if u and [0]™? (¢ € Q,n € IN) are marked traces then

nesting([o (u)]"T19) = 1+maz(nesting(c),nesting(u)).

Example Let us take the trace ag[(bd)(b[(c)]""'d)]*>""f. Then
nesting(ao[(bd) (b[(e)])11 £) = mas(nesting(an), nesting([(bd) (b{(c)] 1 d) 21,

nesting(f)) = maz(0, 1 + maz(nesting(bd), nesting(b[(c)]""""'d)), 0) = max(0,2,0) = 2

The following lemma shows that the nesting depth of every marked trace generated
with ALG is bounded.

Lemma 5.8 The nesting depth of a marked trace generated with ALG from an automaton
is less than or equal to the number of the states of the automaton. (Without proof)

As we motivated before, for applying our theory of test selection we need some specific
properties to be owned by the set of representatives. So we require for the set of (represen-
tative) marked traces of an automaton that the width of every marked trace, the widths
of all its component marked traces, and its nesting depth to be uniformly bounded. In
this subsection we showed that the marked traces generated with ALG have these prop-
erties (Lemma 5.6, Lemma 5.8). Certain algorithms works as well. For example, similarly
as we did in this subsection, one can prove that the marked traces obtained with a last
state matching technique (the last repetitive state of the path is matched) have also these
properties. Independent of the way in which the set of marked traces is obtained, once it
has the required properties, our test selection theory can be applied on it.

Now we have an algorithm that makes sure that every trace of the automaton has a
unique correspondent representative marked trace, we will work with marked traces in
place of traces throughout the remainder of this paper.

6 The heuristics defined for marked traces

Below we will define the heuristics in a formal way. As we presented in Section 3.1, the
intuition behind the heuristics Reduction and Cycling is that they take into account two
aspects: the finiteness of 1) the number of outgoing transitions of certain states and of 2)
the number of times each cycle can be traversed by every single trace.

When Reduction is applied, the labelset L is split in two parts: the selected labels which
form a finite set L' C L and the set of unselected labels which is L\ L'. This application
can be seen as the application of a mapping function trans: L — L' which maps every
unselected label to a selected label from L' and every selected label to itself. One practical
way to make the selection and to obtain L’ and trans is by defining a distance dj, between
labels, such that the metric space (L,dr,) is totally bounded. Let us fix a positive real
number €7, > 0. Now L’ will be a labelset which is an 7, cover of L. The labels which
are remote from each other (their distance is greater than ey,) are selected and the labels
from L\ L' remain unselected. The function trans: L — L' can be defined in this case
such that trans(a) = b with a € L,b € L' and d,(a,b) minimum.

10

For the Cycling heuristic we relate the cycles of the automaton to the marked represen-
tation of the trace; limiting the numbers of times of traversing the cycles means limiting
the powers of the marked symbols in the marked traces. Now, let us define these heuristics
in a formal way.

Definition 6.1 Let s be an automaton. Let L be the labelset and () the set of states of
s. Let L' C L be a finite subset of L and let trans: . — L' be the mapping function.
Then the heuristic Reduction : traces™(s) — traces™(s) is

1. ifa € L,q € Q then Reduction(a) =trans(a), Reduction(e) = €, Reduction(]) =
[1%4;

2. if u and v are marked traces then Reduction(uv) =Reduction(u)Reduction(v);

3. if u and [0]™? (¢ € Q,n € IN) are marked traces then

Reduction([o(u)]"t19) = [Reduction(o),Reduction(u)]" 14,

Example Let us consider the automaton from Figure 1. For this automaton the set of
labels is L = {¢,b,d,e, f} U{a; | i =0,1,...}.
Let L' = {ag,c,b,d,e, f} be a finite subset of L and trans: L — L'
trans(x) = @0 &= ai’.i €N
x otherwise

Then Reduction(ase) =Reduction(as)Reduction(e) =trans(ag)trans(e) = age.

Definition 6.2 Let s be an automaton. Let L be the labelset and () the set of states of
s. Let I. be the cycle limit. Then the heuristic Cycling : traces™(s) — traces™(s) is

1. ifa € L,q € Q then Cycling(a) = a, Cycling(e) = €, Cycling([]°7) = []%9;
2. if u and v are marked traces then Cycling(uv) =Cycling(u) Cycling(v);
3. if u and [0]™? (¢ € Q,n € IN) are marked traces then

(a) Cycling([o(u)]"T19) = [Cycling(o) Cycling(u)]" 14, for I, > n;

(b) Cycling([o(u)]"*+149) = [Cycling(o’)]'?, for I, < n
where 0 = (01)...(0,,) and o' = (01)...(0;.) is obtained by cutting o after [,
symbols.

Example Let us consider the automaton from Figure 1. Let us fix [, to 2. Then
Cycling(ao[(bd) (bd) (bd)]*!e) = Cycling(ag) Cycling([(bd)(bd)(bd)]*!1) Cycling(e) =
aol{bd) (b e

Lemma 6.3 Reduction(Cycling(z))=Cycling(Reduction(z)) (Without proof)

7 The trace distance for marked traces

In this section we make the trace distance more precise, defining it as a distance function
according to Definition 4.2. As explained in Section 4, this gives us an alternative for-
malization of the ideas behind the heuristics (they will be compared in Section 8). We
will combine these ideas with another well known idea, viz. the edit distance. Section 7.1
introduces the edit distance. After this preparation, the definition of the trace distance
function can be given (Section 7.2).

7.1 The edit distance between strings

Because in our trace distance we use the concept of edit distance we shall present this first.
The concept is applied in problems such as string search, words substitution using dictio-
naries, etc. Informally the edit distance is defined as the minimum number of insertions,
deletions and substitutions required to transform one string into another.

Levenshtein ([Ste92]) defined the edit distance d(z,y) between two strings = and y as
the minimum of the cost of editing z to transform it into y. The cost of editing is the sum
of the costs of a number of atomic edit actions. According to Levenshtein the costs are as
follows: inserting a symbol costs 1, deleting a symbol costs 1 and changing an «a into a b
costs 1 too.

11

Wagner and Fisher ([Ste92]) generalized the definition of Levenshtein by adopting dif-
ferent costs for the various atomic edit actions. According to Wagner Fisher transforming
a into a b costs w(a,b). Extending this notation, w(a,¢€) is the cost of deleting a and
w(e, b) is the cost of inserting b. Again, the cost of editing is the sum of the costs of the
atomic edit actions, and d(z,y) is the minimum cost over all possible edit sequences that
transform z into y.

Definition 7.1 Let w(a,b) be the weighting for the cost of transforming symbol a in
symbol b, w(a, €) be the cost of deleting a and w(e, b) be the cost of inserting b. Of course
w(a,a) = 0. Then the edit distance between the strings z and y is denoted as ED(z,y)
and it is computed as

1. ED(au,bv) = min(w(a,b) + ED(u,v),w(a,€) + ED(u,bv), w(e, b) + ED(au,v));

2. ED(au,€) = w(a,€)+ED(u,€); ED(e,bv) = w(e, b)+ED(e,v); ED(e,€) = 0;

where a,b are symbols and u,v are strings.

This definition will be used throughout the paper.
Example Let us take the labelset L = {a,b,c} with the cost 1 for insertion, deletion,
and for transforming a symbol in another symbol. The edit distance between a and ba is
computed as

ED(a,ba) = min(w(a,b)+ED(e,a), w(a, €)+ED(e, ba), w(e, b)+ED(a,a)) = min(l4+w(e, a)
+w(e, €), 1+ w(e,b) + w(e,a) + w(e e), 1 + min(w(a,a) + ED(e, €),w(a, €) + ED(e, a),

w(e,a) + ED(a,€))) =min(1+1,1+2,1+0) =1
So the edit distance between a and ba is 1 which corresponds to the deletion of b.

7.2 Defining the trace distance

Our test selection technique uses two heuristics. For expressing these heuristics in the trace
distance, it is important to remember that in the formalization of the Reduction heuristic
a label distance was used. The incorporation of this heuristic in the trace distance is
achieved in a simple way by using the label distance in the formula of the trace distance.
Now a solution should be found for the Cycling heuristic.

For the Cycling heuristic we simply weight every level k of a cycling symbol (a marked
trace of type [|"% n € N,q € Q) with a weight from a series of positive numbers py.
This series has the property that >.7°; pr = 1. The logic behind this weighting is that
summing the weights after a given limit (which is the cycle limit) will contribute with a
small number reflecting our assumption that the first cycles are more important than the
later cycles.

We will define the trace distance for all the possible combinations of the points (1),
(2), (3) of Definition 5.1 (which are generating marked traces). We summarize these
combinations below

e between the marked traces generated with point (1) (such as []°, ¢ € Q and a € L)
we will define a distance function called AtomicDistance because these are the atomic
elements which form the marked trace; of course the AtomicDistance between two
labels will be given by dj,, the distance between these labels; between a label and a
marked trace such as []%¢ it will be maximum (one) and between two marked traces
such as [127 ,[199 (¢,¢' € Q,q # ¢') it will also be one;

e between the marked traces generated with point (2) (such as af or ae) we will use a
distance function called EditDistance; we took this option because these traces are
generated in a similar style as the strings are formed and it is quite natural to use
it because it compares in a good way the terms which form the marked traces (for
example in the traces age and ag[(bd)]"*"'e the edit distance will recognize that the
labels ag and e from the first trace are present in the second trace);

12

e between the marked traces generated with point (3) (such as building [(bd)]**

we know that []%is a marked trace) we employ the principle that cycles of different
marks are very remote and hence have the maximum distance, i.e, 1; when dealing
with cycles of the same mark we employ weighting factors py with the effect that
the later iterations are considered less important than e.g. the first iteration; this
can be done by using a function EditDistance Weighted which is an edit distance for
which the formula of Definition 7.1 is modified in such a way to take into account
the weights.

once

The rest of the possible combinations such as (1) with (2), (2) with (3) etc. are de-
fined in a similar style by using one of the techniques mentioned above (EditDistance or
AtomicDistance).

We observe also that this trace distance is to be used in the computation of coverage
which should be in the range [0,1]. For simplifying the computation of coverage, we
want the trace distance values to be in the range [0, 1]. This can be done by dividing all
the above mentioned values (generated with an EditDistance or AtomicDistance) by the
maximum width of the marked traces from traces™(s) (the maximum width is finite, see
Section 5.2). For completing the picture it is necessary to add that the trace distance
between a null trace (¢) and any other marked trace is maximum (1).

Now we have all the ingredients to define a trace distance on marked traces. We will call
it d. In the definition, the distances already mentioned (EditDistance and AtomicDistance)
will be used; also it is implicitly assumed that the definition is symmetric in the sense that
d(z,y) = d(y,x), © and y being marked traces and that d(z,z) = 0.

As explained above (first bullet), the function AtomicDistance deals with the cases e,
a € L and []%-. We generalize it to marked traces of the form []-- as well.

Definition 7.2 Let s be an automaton. Let L be the labelset of s, dj, the label distance
defined on it and @ the set of states of s. The metric space (L,dy) is totally bounded
and dy, has all its values in the range [0,1]. Let /,, be the maximum of the width of the
marked traces from fraces™(s). Let p (k = 1,2,...) be a series of positive numbers such
that > ;= pr = 1. The trace distance d is symmetric in the sense that d(z,y) = d(y,z),
and y being marked traces and that d(z,z) = 0. Then

1. d(a,b) _ Atomici)]istance(a,b)

d(a,) = d(e,[1°9) = 1.

d(a,7 []U,li) — AtomicDistance(a,| }O,q);

lm

0, 0,¢'\ _ AtomicDistance([]%9,] }O’ql)
a([4, [177) = I
with a,b € L,q,q' € Q;
2. d(a,uv) = LditDistance(a.uv)

b

d(e,uv) = 1;

d([]O,q’ U?)) __ EditDistance(] 199 uw)

Im

with u, v marked traces and a € L,q € Q;
3. d(a [u(v)]"+1"’) _ AtomicDistance(a,[u(v)]?+1:9)

Im

d(e, [u{v)]" 1) = 1;

d([]()’q7 [u(v)]"+1"’) _ _AtomicDistance(] }O*Q,[u(vﬂ"Jr]*q’)

m

with v and [u]™¢ marked traces (n € N,¢' € Q) and a € L,¢' € Q;
__ EditDistance(uv,rt)
4. d(uv,rt) =

b

with u, v, r,t marked traces;

13

n+1,q)

5. d(uv, [’I“<t>]n+]’q) _ _EditDistance(uv,[r(t)]

m

with u, v, ¢, [r]™? marked traces (n € N, q € Q);
6. d([u(v)]"1a, [(£)]n'+1') — AtomicDistance([u(v)|" 19, [r (] 10

m

with v, ¢, [u]™?, [r]"9 marked traces (n,n’ € N,q,¢' € Q);
where

dr(z,y) r,y €L

EditDistance Weighted(z,y) = =[]™%,y=[]"9q€ Q
n,n' € N,n #0,n" #0

1 otherwise

e EditDistance(uv, rt) = min(AtomicDistance(u,r) + EditDistance(v,t),

e AtomicDistance(z,y) =

AtomicDistance(u, €) + EditDistance(v, rt)

AtomicDistance(e,r) + EditDistance(uv,t));
EditDistance(uv,€) = AtomicDistance(u, €)+ EditDistance(v, €);
EditDistance(e,rt) = AtomicDistance(e, r)+ EditDistance (e, t);
EditDistance(e,e) =0

with u, v, r,t marked traces;
e EditDistance Weighted([(u1)...(w,)™, [(v1)-..(v,)]P9) = EDW ' ([{u1)...{un)]™9, [(v1)...
(vp)]P9)

with u; and v; marked traces (i =1,...,n, j=1,...,p, n,p e N, g € Q).

We add some explanation. It is easy to check that the definition of EditDistance
and EditDistance Weighted are copied from Definition 7.1 except for the fact that suitable
weighting factors p; have been incorporated. To complete the definition we only have to
give the auxiliary EDW

EDWE([(u)o]™9, [(v)0']199) = min(py x d(u,v) + EDW*H([o]h—19 [o]9~19),
pi X d(u, €) + EDWFH([0]h=14, [(v)0']99),
P X d(e,v) + EDW([(u)o]™9, [0]9719));

EDW*([(u)o]"9,[109) = py x d(u,€) + EDW ! ([o]" 19, [1%9);

EDW*([1%9,[(v)0"194) = py, x d(e,v) + EDW**1([109,[0']9~19);

EDWH([]1%9,[1%9) =0

with k,h,g € N, ¢ € Q and u,v, [0]" 19, [0']9717 marked traces;

The parameter k in EDW* indicates the position at which the next edit action takes
place. Please note that the recursive definition of EDW* is well defined because at least
one of the right hand sides of the equation is one symbol shorter than the corresponding
left—hand side (therefore, the fact that & is increasing causes no problem). The base case
is EDWF([194,[1%9) = 0. We will illustrate how the EditDistance Weighted function
is working. Let us consider two strings ab and ¢, (although FEditDistance Weighted is
defined on marked traces, for making the example more understandable, let us show
how it works on common strings). For transforming one string into another, there are
five possible combinations: 1)(ab, ce), 2)(ab, ec), 3)(eab, cee), 4)(aeb, ece), 5)(abe, eec). The
EditDistance Weighted will be the minimum from the costs of the five combinations. The
cost for every combination is computed as the sum of the edit actions multiplied with
the corresponding weights. For example, the combination (abe, eec), which means two
insertions followed by one deletion, we encounter weighting factors for d(a,¢), d(b,e) and
d(e, c), which are p1, po and ps, respectively. The cost of this combination will be p; x
d(a,e) +p2 X d(b,e) + p3 x d(e,¢). In a similar style the cost of the other combinations is

14

computed and the minimum is chosen for EditDistance Weighted.

Example Let us consider the automaton from Figure 1. For this automaton the maximum
width of the marked trace is 3. Let p, = ;—k,k = 1,2,.... Let d;, be the following label
distance

0 r=1y
1 1 ..
dr(z,y) =4 |7 — = | T=ai,y=a;,4,j €N
1 otherwise

1. Let us consider the traces age and ag[(bd)]"'e.

?((bcz;ﬁi clt}))[)(bd)]ll’ﬂe) = 1 x (EditDistance(age, ag[(bd)]""e)) = 1 x (AtomicDistance(e,
) — §

The trace distance recognizes that the symbols ag and e from the first trace are
present in the second trace.
2. The cycling effect:

Let us take the traces ag[(bd)]""e, ao[(bd)(bd)]*>"'e and aq[(bd){bd){bd)]> e;
d(ao[(bd)]""e, ao[(bd)(bd)]*>"Te) = % x (EditDistance(ao[(bd)]"""e, ag[(bd)(bd)]|*"Te)) =

1 x (EditDistance Weighted([(bd)]""", [(bd)(bd)]*>"")) = B2 = L

d(ao[(bd)(bd))>"e, ag[(bd)(bd)(bd)|*!"e) = % x (EditDistance(ay[(bd)(bd)]> e, ap[(bd) (b
d)(bd)>!e)) = 3 x (EditDistance Weighted([(bd)(bd)]>™, [(bd)(bd)(bd)|*")) = B =
i

57

When two marked traces are cycling more times through the same cycle, the values
of the trace distance start to decrease.
3. The reduction effect:

Let us take the traces age, aie and age

d(age, aze) = % x (EditDistance(age, ase)) = M = 023,
d(are,ase) = % x (EditDistance(aye, aze)) = M = %

When the label distance between the labels (which compose the marked traces) is
decreasing, the trace distance is also decreasing.

8 Transforming the heuristics into a coverage

The trace distance formula depends on the label distance d;, which implements the Re-
duction heuristic and the weights p;, which implement the Cycling heuristic. On the other
hand, by choosing for each automaton s a finite set L. C L which is an e,—cover of L with
respect to dy and a cycling limit /., a finite set of marked traces T' C traces™(s) can be
obtained. This is done by the application of the Cycling and the Reduction heuristics on
traces™(s) by taking T' =Ran(Cycling o Reduction). Now for this T and using d we want to
compute its e—cover of traces™(s) so that we can compute the coverage cov(T, traces™(s))
— see Definition 4.6. Intuitively £ should depend on €7, and [.. Its formula is given by
Theorem 8.1.

The next theorems are about other properties of the trace distance d: Theorem 8.2
shows that for any desired € it is possible to obtain an e cover by choosing a suitable
cycle limit and a suitable label approximation, with other words that the metric space
(traces™(s),d) is a metric space that is totally bounded. Theorem 8.3 shows that the
distance d implements the Reduction and Cycling heuristics.

Theorem 8.1 Let s be an automaton. Let L be the labelset of s and dj, the label dis-
tance defined on it. The metric space (L,dy) is totally bounded and dy has all its values

15

in the range [0,1]. Let l. be the cycle limit. Let pp (k = 1,2,...) be a series of posi-
tive numbers such that > 3~ px = 1. Let Iy, be the mazimum of the width and z the
mazimum of the nesting depth of the marked traces from traces™(s). Let L. C L be
an €1, cover of L. Then the finite set T =Ran(Reduction o Cycling) of traces obtained
by the application of the two heuristics on traces™(s) is an e—cover of traces™(s) with
e=c*and ® = ep; fori=1,...,2: € = Zf,’c“:lpk x (maxj—o,...i—1(¢7)) + S22 11 ks

(cyclesxai—k(l[mfcycles) XET,) (Without pTOOf)

‘m,

i __
€ = MaXcycles=0,...,Im

The following theorem shows that the metric space (traces™(s),d) is a totally bounded
metric space.

Theorem 8.2 Let s be an automaton. Let L be the labelset of s and dj, the label distance
defined on it. The metric space (L,dr,) is totally bounded and dy, has all its values in the
range [0,1]. Let py (k =1,2,...) be a series of positive numbers such that > 7> pr = 1. Let
I, be the mazimum of the width and z the mazimum of the nesting depth for the marked
traces from traces™(s). Then for every € a positive real number in the range [0,1], there
exists a cycling limit l. and a label approzimation e, with ep, = Y ¢, | px < 5= such that
the finite set T =Ran(Reduction o Cycling) of traces obtained by the application of the two
heuristics on traces™ is an € cover of traces™(s) and the metric space (traces™(s),d) is

totally bounded. (Without proof)

The following theorem shows that the trace distance d implements the Cycling and the
Reduction heuristics, in the sense of Definition 4.5.

Theorem 8.3 Let s be an automaton. Let L be the labelset of s and dj, the label distance
defined on it. The metric space (L,dr,) is totally bounded and dj, has all its values in the
range [0,1]. Let l. be the cycle limit. Let py (k = 1,2,...) be a series of positive numbers
such that Y 3= pr = 1. Let l,, be the mazimum of the width and z the mazimum of the
nesting depth for the marked traces from traces™(s). Then the distance d implements the
Reduction and the Cycling heuristics. (Without proof)

For the computation of the coverage we approximate the minimum e, from Defini-

tion 4.6 with the €* computed in Theorem 8.1. We will illustrate the computation of the
coverage in the following example.
Example Consider the automaton from Figure 1. Let us fix the final state to be IV.
Let us consider the reduced set L. = {ag,b,c,d, e, f} which is an e;,—cover of the labelset
L with e, = 0.25 (e, is computed with respect to the dj defined in the example from
Section 7.2). For this automaton the maximum width is [, = 3 and the maximum nesting
depth is z = 2. Let us fix the series py = QL,C(k € IN) and in the beginning [, = 1.

Then the set of traces T which is obtained by the application of the heuristics Reduction
and Cycling is an € cover of the whole set of traces traces™(s) with e computed with the
formula from Theorem 8.1 as

1. l.=1, L. ={ag,b,c,d,e, f}
el =er, =025 el = p 1 pr x ¥+ R 1ok = 52+ 0 41 55 = 0.63;

1 et (lm —cycl
el = maIcycles:[],...,B(Cyc esxeg+(lm —cyc eS)XEL) =0.63; ¢ = 2 = 0.81;

Im
The coverage is computed via Definition 4.6 and it is cov(T, traces™(s)) =1 —¢ =
0.19;
2. lc - 27 LE - {a()abacadae?f}
When we enlarge the set T to T" for I, = 2 we find that cov(T’, traces™(s)) = 0.51;
3.le=1 Lo = {(1,0,(1,1, b, c, daeaf}
When we enlarge the set T' to T" for L.» = {ag,a1,b,c,d, e, f} we find that €] = 0.06
and that cov(T",traces™(s)) = 0.29.

16

In this example, one can see that the coverage increases more by adopting a higher
value for the cycling limit than by using a larger label subset. Consequently, one can
conclude that it is better to increase the cycling limit for obtaining a better coverage. But
this is not always true because we defined specific values for p; and dj, (for other values,
to increase the label subset will be better).

It can be seen from this example that the monotonicity property required in [BTV91]
that T C T' = cov(T) < cov(T") is respected by our coverage. From an intuitive point
of view this property is reasonable: if one wants a better coverage, one needs to generate
more tests.

We want to prove it in the general case. For this we will make an assumption which
is quite natural: for a label set I, when we have L. and L. such that these sets are an
er—cover and respectively an e —cover of L, L. C L. then g7, > €',

Theorem 8.4 Let s be a minimal finite deterministic automaton. Let L be the labelset of
s and dy, the label distance defined on it. The metric space (L,dy,) is totally bounded and
dy, has all its values in the range [0,1]. Let l. and I, be two cycle limits (I. <1.). Let I,
be the mazimum of the width and z the mazimum nesting depth of the marked traces from
traces™(s). Let pp (k = 1,2,...) be a series of positive numbers such that > 3=, pr = 1.
Let L. C L be an er,—cover of L and L. C L be an €} —cover of L such that L. C L. and
er, > €. Let T =Ran(Reduction o Cycling) and T' =Ran(Reduction o Cycling) be the two
finite sets of traces obtained by the application of the two heuristics on traces™(s) using
L., l. and respectively L., l.. Then cov(T,traces™(s)) < cov(T' traces™(s)). (Without
proof)

9 Conclusions

In this paper we have studied two heuristics for reducing the number of traces in a test
suite. The underlying assumption is that when automatically generating a set of traces,
many traces will show similar behaviour. Test traces can be deleted without essentially
reducing the error detection power of the test suite.

The first heuristic studied deals with restricting the branching degree of the nodes,
when representing a set of test cases as a finite automaton. The basic idea is that in
practice a high branching degree is generated because at the branching point an action is
allowed which is parameterized by an element from a (large) data domain. The observation
is that only a few values from such a data domain will show essentially different behaviour.

The second heuristic concerns the number of times a cycle in a finite automaton rep-
resentation may be traversed. This is connected to the assumption that only for a few
numbers of traversals the test cases will show essentially different behaviour.

The fact that we studied only these two heuristics in this paper, does not mean that
these are the only interesting heuristics. More heuristics can be defined, e.g. with respect
to the general length of a trace and with respect to the uniformity of the number of
outgoing transitions from a state. We embedded the two heuristics chosen in a more
general framework which allows the extension of our work with other heuristics.

A heuristic is a general guideline for reducing test suites, which must be made more
precise to be practically applicable. Especially for the cycling heuristic we had to introduce
additional notation. The reason is that the cycling structure of a trace through a finite
automaton must be made explicit. We introduced marked traces for this purpose, which
enabled us to extend the work on cycle reduction by Vuong [ACV93, ACV97].

In order to introduce a notion of coverage for the test suites reduced by means of the
above mentioned heuristics, we defined a trace distance on marked traces. The results of
our studies can be used to effectively calculate the coverage of a test suite reduced with
our techniques.

17

Although our formal definitions of Reduction and Cycling work on large, sometimes
even infinite sets this need not cause practical or algorithmic problems. For example, the
practical generation of traces could be done in a similar way to [ACV97], starting with
a first trace and then suppress the generation of a subsequent trace if it is close to an
already generated trace. Other solutions could be based on a suitable transformation of
the automaton, as in fact we did in Figure 1. A similar remark applies to the calculation
of the ¢ value for a generated test suite. A solution is to choose [, and €7, and calculate ¢
arithmetically using the results of Section 8.

One issue deserves attention, viz. the choice of representatives embodied in the algo-
rithms of Sections 5.1 and 5.2. At first sight, the reader may think that the distance d
defined in Section 7.2 is independent of the choice of the representatives. However, this
does not hold in general because of the essential ambiguity in the concept of cycle when
using an automaton as a specification.

The proposed test selection technique can be compared to the existing theories in this
area. In particular, these are the hypothesis theory developed by [CG97] and the trace
distance theory of [ACV93, ACV97]. The hypothesis theory embodies the trace distance
theory (see [CGY7]), but the nice thing about trace distance theory is that it gives a
measure for the degree to which a reduced set of traces approximates the original one. So
we chose an approach which combines these two theories. In our view, first the heuristics
(test hypotheses in the theory of [CG97]) are to be defined. After that, based on these
heuristics a trace distance is built. This gives the possibility to make a test selection with
a given ¢ approximation. The change of the heuristics leads to the change of the trace
distance used in test selection.

We have started work on implementing our techniques in the TorX tool environment
([BFVT99]). An assumption for implementing our work is that a label distance exists.
Because the TorX tools support the input of finite automata defined in LOTOS [Bri88],
we defined a label distance on LOTOS labels. This is not trivial because LOTOS labels
may be parameterized by arbitrary data types.

Another restricting requirement is that we assume the specification to be given as a
minimal finite deterministic automaton. Some test generation tools already provide such a
format, but others support general finite automata. Determinizing a finite automata may
cost exponential time. In this case it would be interesting to know whether the theoretical
results achieved in this paper could be extended to non deterministic automata.

References

[ACV93] J. Alilovic-Curgus and S.T. Vuong. A metric based theory of test selection and coverage.
In A. Danthine, G. Leduc, and P. Wolper, editors, Protocol Specification, Testing, and
Verification, volume XIII, pages 289 304. North-Holland, 1993.

[ACV97] J. Alilovic-Curgus and S.T. Vuong. Sensitivity analysis of the metric based test se-
lection. In M. Kim, S. Kang, and K. Hong, editors, Int. Workshop on Testing of
Communicating Systems, volume X, pages 200-219. Chapman & Hall, 1997.

[BFV+99] A. Belinfante, J. Feenstra, R.G. Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, and
L. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz,
and K. Tarnay, editors, Intenational Workshop on Testing of Comunication Systems,
pages 179-196. Kluwer Academic, 1999.

[Bri8&8] E. Brinksma. On the design of extended lotos. Phd. Thesis, University of Twente,
Netherland, 1988.

[BTV91] E. Brinksma, J. Tretmans, and L. Verhaard. A framework for test selection. In B. Jon-
sson, J. Parrow, and B. Pehrson, editors, Protocol, Specification, Testing, and Verifica-
tion, volume XI, pages 233-248. North-Holland, 1991.

18

[CGY6]

[CGY7]

[TM99]

[Mye79]
[SKGH97]

[Ste92]

[Tre96]

O. Charles and R. Groz. Formalisation d’hypothéses pour I’evaluation de la couverture
de test. In Actes du Collogue Francophone sur I’Ingénierie des Protocoles (CFIP’96),
Editions Hermes, 1996.

O. Charles and R. Groz. Basing test coverage on a formalization of test hypotheses. In
M. Kim, S. Kang, and K. Hong, editors, Int. Workshop on Testing of Communicating
Systems, volume X, pages 109-124. Chapman & Hall, 1997.

T. Jéron and P. Morel. Test generation derived from model-checking. In N. Halbwachs
and D. Peled, editors, Computer Aided Verification CAV’99, volume 1633 of Lecture
Notes in Computer Science, pages 108 121. Springer-Verlag, 1999.

G.J. Myers. The art of software testing. John Wiley & Sons Inc, 1979.

M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink — a tool for the automatic
and semi-automatic test generation. In A. Wolisz, I. Schieferdecker, and A. Rennoch, ed-

itors, Formale Beschreibungstechniken fiir verteilte Systeme, volume 315. GMD-Studien,
St. Augustin, GI/ITG-Fachgesprich, GMD, 1997.

G.A. Stephen. String search. Technical Report TR-92-gas-01, School of Electronic
Engineering Science, University College of North Wales, 1992.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software
Concepts and Tools, 17(3):103 120, 1996. Also: Technical Report No. 96-26, Centre
for Telematics and Information Technology, University of Twente, The Netherlands.

19

