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t: Sin
e exhaustive testing is in general impossible, an important step inthe testing pro
ess is the development of a 
arefully sele
ted test suite. Sele
tionof test 
ases is not a trivial task. We propose to base the sele
tion pro
ess on awell{de�ned strategy. For this purpose, we formulate two heuristi
 prin
iples: theredu
tion heuristi
 and the 
y
ling heuristi
. The �rst assumes that few outgoingtransitions of 
ertain states show essentially di�erent behaviour. The se
ond assumesthat the probability to dete
t erroneous behaviour in a loop de
reases after ea
h 
orre
texe
ution of the loop behaviour. We formalize these heuristi
 prin
iples and we de�nea 
overage fun
tion whi
h serves as a measure for the error{dete
ting 
apability of atest suite. For this purpose we introdu
e the notion of a marked tra
e and a distan
efun
tion on su
h marked tra
es.Keywords: test sele
tion, test 
overage, tra
e distan
e, test sele
tion heuristi
s, editdistan
e.1 Introdu
tionSystemati
 testing is an important te
hnique to 
he
k and 
ontrol the quality of softwaresystems. Testing 
onsists of systemati
ally developing a set of experiments or test 
ases,then running these experiments on the software system that has to be tested, also referredto as the IUT (the implementation under test), and subsequently 
on
luding from theobservations made during the exe
ution whether the IUT behaved as expe
ted leading toa verdi
t about the IUT's 
orre
tness. Be
ause of time and resour
e limitations, any formof testing 
an only exer
ise a small subset of all possible system behaviour. Therefore,testing 
an never give 
ertainty about the 
orre
tness of a system; it 
an only in
rease
on�den
e.Sin
e in pra
ti
e exhaustive testing is impossible, an important step in the testingpro
ess is the development of a 
arefully sele
ted test suite, i.e., a set of test 
ases. Su
h atest suite should have a large potential of revealing errors in the implementation. Moreover,we would like to be able to 
ompare di�erent test suites in order to sele
t the best one,and to quantify their error-dete
ting 
apability.The sele
tion of an appropriate set of tests from all possible ones (usually in�nitelymany test 
ases), is not a trivial task. We refer to this task as test sele
tion. Traditionally,test sele
tion is based on a number of heuristi
 
riteria. Well-known heuristi
s in
ludeequivalen
e partitioning, boundary value analysis, and use of 
ode-
overage 
riteria likestatement-, de
ision- and path-
overage [Mye79℄. Although these 
riteria provide someheuristi
s for sele
ting test 
ases, they are rather informal and they do not allow to measurethe error-dete
ting 
apability of a test suite.If test 
ases are derived from a formal spe
i�
ation, in parti
ular if it is done algorith-mi
ally using tools for automati
 test generation, e.g., Autolink [SKGH97℄, TGV [JM99℄�This resear
h was supported by the Dut
h Te
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or TorX [BFV+99℄, then the test sele
tion problem is even more apparent. These testtools 
an generate a large number of test 
ases, when given a spe
i�
ation in the appropri-ate formalism, without mu
h user intervention. All these generated test 
ases 
an dete
tpotential errors in implementations, and errors dete
ted with these test 
ases indeed indi-
ate that an implementation is not 
orre
t with respe
t to its spe
i�
ation. However, thenumber of potentially generated test 
ases may be very large, or even in�nite. In orderto 
ontrol and get insight in the sele
tion of the tests, and by that get 
on�den
e in the
orre
tness of an IUT that passes the tests, it is important that the sele
tion pro
ess isformally des
ribed and based on a well-de�ned strategy.It should be noted, however, that test sele
tion is an a
tivity that in prin
iple 
annotbe based solely on a formal spe
i�
ation of a system. In order to de
ide whi
h test
ases are more valuable than others, either extra information outside the realm of thespe
i�
ation formalism is ne
essary, or assumptions about the o

urren
e of errors in theimplementation must be made. Su
h extra information may in
lude knowledge aboutwhi
h errors are frequently made by implementers, whi
h kind of errors are important,e.g., in the sense of having 
atastrophi
 
onsequen
es, what fun
tionality is diÆ
ult toimplement, whi
h fun
tionality is 
ru
ial for the well fun
tioning of the system, et
. Anapproa
h to formalizing this extra information was given in [BTV91℄. On the other hand,assumptions 
an be made about the o

urren
e of errors in implementations, e.g., thaterrors will not o

ur in isolation, i.e., if some behaviour is erroneous then there is a largeprobability that some other behaviour 
lose to it is also erroneous. So we only have totest one of these behaviours (equivalen
e partitioning: the behaviours are equivalent withrespe
t to the o

urren
e of errors). Another often used assumption is that errors aremost likely to o

ur on the boundaries of valid data intervals (boundary value analysis).This paper approa
hes the problem of test sele
tion by making assumptions in anautomata-based, or labelled transition system-based formalism. Se
tion 2 introdu
es thelabeled transition systems and automata. Two di�erent kinds of assumptions are intro-du
ed and expressed as heuristi
 prin
iples in Se
tion 3 starting with the ideas of [CG96℄.The �rst one, 
alled redu
tion heuristi
, assumes that few outgoing transitions of 
er-tain states show essentially di�erent behaviour. The se
ond one, referred to as 
y
lingheuristi
, assumes that the probability to dete
t erroneous behaviour in a loop de
reasesafter ea
h 
orre
t exe
ution of the loop behaviour. After that we propose a mathemati
alframework, de�ning a heuristi
 as a fun
tion on the set of behaviours (tra
es). This isdone in Se
tion 4. When we want to make the two heuristi
s more pre
ise, de�ning themas fun
tions a

ording to the de�nition from Se
tion 4, we observe that an appropriatebehaviour representation for them is needed. Therefore in Se
tion 5 we de�ne the markedtra
e representation. After these preparations the de�nitions of the heuristi
s as fun
tionson marked tra
es are straight forward (Se
tion 6). Subsequently, the notion of isolationand 
loseness of errors is formalized in Se
tion 7 by de�ning a distan
e fun
tion betweenbehaviours. This idea is taken from [ACV93, ACV97℄ and extended on marked tra
es.The tra
e distan
e implements the 
onsidered heuristi
s in the sense that the tra
es whi
hare sele
ted by the heuristi
s are remote from ea
h other. Every tra
e whi
h is ex
ludedby the heuristi
s is 
lose to one of the sele
ted tra
es. A 
overage fun
tion whi
h mayserve as a measure for the error-dete
ting 
apability of a test suite is de�ned based onthe maximum distan
e between sele
ted and non-sele
ted behaviours and a formula forapproximating the 
overage is given in Se
tion 8.2 PreliminariesThe basi
 formalism for our dis
ussion about test sele
tion is the labelled transition system,or the automaton. A labelled transition system provides means to spe
ify, model, analyzeand reason about (
on
urrent) system behaviour. A labelled transition system is de�nedin terms of states and labelled transitions between states. In this se
tion we re
all some2



basi
 de�nitions.De�nition 2.1 A labelled transition system is a 4-tuple hQ;L; T; q0i, where Q is a non-empty set of states, L is a set of labels, T � Q � L � Q is the transition relation, andq0 2 Q is the initial state.The labels in L represent the a
tions of a system. An a
tion a 2 L is exe
utable instate q 2 Q if (q; a; q0) 2 T for some state q0 2 Q, whi
h is said to be the new state afterexe
ution of a; we also write q a! q0. A �nite sequen
e of pairs hstate, a
tioni ending intoa state is 
alled a path. Similarly, a �nite sequen
e of a
tions is 
alled a tra
e. The set ofall tra
es over L is denoted by L�, with � denoting the empty sequen
e. Abusing notation,we will use p to denote both the labelled transition system and the 
urrent (or initial)state of the system.The tra
es of a labelled transition system p are all sequen
es of a
tion that p 
anexe
ute from its initial state q0: tra
es(p) =def f � 2 L� j q0 �! g. Here we use thefollowing additional de�nitions (n 2 IN, i � n, q, q0, qi 2 Q, ai 2 L, � 2 L�):q a1�:::�an! q0 =def 9q0; : : : ; qn : q = q0 a1! q1 a2! : : : an! qn = q0q �! =def 9q0 : q �! q0For our presentation and formalization we use minimal, deterministi
, �nite-state tran-sition systems. A �nite-state labelled transition system has a �nite number of states, i.e.,Q is �nite. A transition system is deterministi
 if for any state q 2 Q and a
tion a 2 Lthere is at most one su

essor state, i.e., T : Q � L ! Q is a (partial) fun
tion. A tran-sition system is minimal if there are no equivalent states, i.e., no two states with exa
tlythe same tra
es, whi
h means: 69q; q0 2 Q : tra
es(q) = tra
es(q0). We (ab)use the wordautomaton for these minimal, deterministi
, �nite-state transition systems.Although it may seem a severe limitation to restri
t to automata an important formaltest theory, viz. io
o-testing [Tre96℄, 
an be expressed, for the larger part, in terms ofautomata. So the test sele
tion approa
h whi
h is presented in this paper 
an be integratedwith io
o-testing.In testing, the tra
es of the minimal, deterministi
, �nite automata are used. A 
om-plete (maximal) test suite for an automaton spe
i�
ation s is expressed as tra
es(s).However, even if s is �nite-state, its set of tra
es will usually be in�nite and 
ontain tra
esof unbounded length. Hen
e, a 
omplete test suite will have in�nitely many tests of un-bounded length. Su
h a test suite 
an never be exe
uted within any reasonable limits oftime and resour
es. Consequently, the problem of test sele
tion 
onsists of sele
ting a �nitesubset T � tra
es(s), su
h that we end up with a reasonably sized set of bounded-lengthtest 
ases.The 
hallenge of test sele
tion now is to 
hoose T su
h that the resulting test suitekeeps a large error-dete
ting 
apability. Moreover, we wish to quantify this 
apability inorder to 
ompare and sele
t test suites. The next se
tions will present and formalize anapproa
h to sele
tion and quanti�
ation.3 Introdu
tion to heuristi
s, distan
e and 
overageIn this se
tion we introdu
e the 
on
epts of heuristi
s and 
overage. Two spe
i�
 heuristi
swill be proposed in Se
tion 3.1. They are illustrated by an example in Se
tion 3.2.3.1 The heuristi
s prin
iples for the test sele
tionAs motivated in Se
tion 2, the spe
i�
ation is seen as a minimal �nite-state automaton.The spe
i�
ation has a set of tra
es whi
h usually is too large; for this reason, we want toobtain a smaller set of tra
es. As we explained in Se
tion 1, this goal 
an be rea
hed bymaking assumptions on automata, assumptions whi
h are expressed as heuristi
 prin
iples.The heuristi
 prin
iples with whi
h we are working in this paper are:3



� Redu
tion: if the spe
i�
ation automaton 
ontains for 
ertain states a large numberof outgoing transitions, only a small number of these transitions need to be sele
ted;� Cy
ling: ea
h 
y
le in the automaton needs to be traversed only a limited numberof times by every single tra
e.3.2 A �rst illustration of the test sele
tionNow we will give an example on whi
h we will apply our heuristi
s for test sele
tion.Let s be the spe
i�
ation automaton from the left{hand side of Figure 1. The spe
-i�
ation has four states. The labelset is L = fb; 
; d; e; fg [ fai j i 2 INg and the initialstate is the state I. This state has in�nitely many outgoing transitions (fai j i 2 INg). Viaa transition ai from the initial state, one arrives at II. This state 
ontains a 
y
le whi
hgoes via III using the transitions b and d; the state III 
ontains another 
y
le, via thetransition 
. From II one arrives at IV using e or f . For simpli
ity, we will 
onsider onlythe tra
es of s that end in IV. Let T be the set of tra
es of s.
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IVFigure 1: A minimal automaton of a spe
i�
ationNow let us 
onsider a0 as being the representative transition in the initial state; by
hoosing this transition the Redu
tion heuristi
 is applied in this state. By this appli
ationwe redu
e the labelset to a �nite one L0 = fa0; b; 
; d; e; fg. This labelset L0 
orresponds tothe redu
ed automaton from the right{hand side of Figure 1. Now our initial set of tra
esbe
omes TRedu
tion and it 
ontains all the tra
es of the automaton whi
h are starting fromstate I, arriving in state IV and going through transition a0 in I (TRedu
tion equals also theset of tra
es of the redu
ed automaton). In this example one representative is sele
ted; ina more general example it 
ould also be two or more of the ai.The following heuristi
 to be applied is the Cy
ling heuristi
. The tra
es are 
y
lingvia the states II and III of the automaton. In this automaton the state II has a 
y
levia the sequen
e of transitions bd and the state III has another 
y
le via the transition 
.We 
an �x the 
y
le limit number to 1 for the 
y
ling states II and III. So the transitions
 from III and bd from II 
an be traversed only on
e by every single tra
e of TRedu
tion.The tra
es whi
h respe
t this 
ondition and form the set of tra
es TRedu
tion, Cy
ling are:TRedu
tion, Cy
ling = fa0e; a0bde; a0b
de; a0f; a0bdf; a0b
dfg
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Figure 2: An appli
ation of the Cy
ling heuristi
The appli
ation of the Cy
ling heuristi
 is represented graphi
ally in Figure 2. Thefull set is represented at the left{hand side and the redu
ed set at the right. As it 
an beseen the set TRedu
tion, Cy
ling is a �nite set and all its tra
es have a length of at most 5(�nite length).Our method deals with bigger 
y
les as well, su
h as going via the transitions bd severaltimes; the te
hnique of [ACV93℄ deals only with simple 
y
les { su
h as going via transition4




 several times. Another advantage is that with the proposed test sele
tion te
hnique one
an deal with an in�nite bran
hing of transitions (see the initial state of this automaton).As we saw in our example, limiting the 
y
le number impli
itly limits the length andtherefore a length heuristi
, whi
h is 
onsidered by [ACV93℄, is not ne
essary for us.Now we are going to express the heuristi
 prin
iples in terms of distan
es among tra
es.A distan
e is a measure whi
h expresses how far apart two tra
es are. A parti
ular wayto 
ompute su
h a tra
e distan
e is given in Se
tion 7.2. For getting a feeling of how thetra
e distan
e is related to the heuristi
 prin
iples, let us take as an example the distan
ebetween the tra
es a0bdf and a0bdbdf . In Figure 3, it 
an be seen that the distan
ebetween the tra
es a0bdf and a0bdbdf is smaller than the distan
e for example betweena0f and a0bdbdf . This happens be
ause the tra
e a0bdf 
y
les one time via the state II,a0bdbdf 
y
les two times and a0f 
y
les zero times. Therefore intuitively, the tra
e a0bdfshould be 
loser to a0bdbdf than to the other tra
es (exa
tly as we assume in the Cy
lingheuristi
 that the later 
y
les are less important, so the distan
e between two tra
es whi
hare 
y
ling more often through a state will de
rease).
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Figure 3: A 
overing of the initial set using tra
e distan
eIn Figure 3, every tra
e from the redu
ed set TRedu
tion, Cy
ling is the 
enter of a sphere.The initial set T is 
overed by the redu
ed set TRedu
tion, Cy
ling, su
h that every tra
e fromT has a 
orresponding tra
e in TRedu
tion, Cy
ling to whi
h the distan
e is smaller than agiven limit " (" is the radius of the spheres). This pro
ess of sele
ting one representative forea
h sphere leads to a notion of 
overage. When taking big spheres only few representativesare sele
ted and the error dete
tion 
apability is low. Small spheres, on the other hand givea large 
overage. If we s
ale things in su
h a way that 0 � " � 1 , then the 
overage 
an beexpressed as 1� ". The 
overage of the redu
tion from T to TRedu
tion, Cy
ling is denotedas 
ov(T; TRedu
tion, Cy
ling). Therefore we express 
ov(T; TRedu
tion, Cy
ling) = 1� ".This gave some intuition about how the heuristi
s and the tra
e distan
e are used inthe test sele
tion and 
omputation of the 
overage. Now we are going to be more formal.4 The tra
e distan
e and the test heuristi
sIn our test sele
tion method we use heuristi
s whi
h are applied on tra
es and distan
esbetween tra
es. This se
tion des
ribes the formal de�nitions of these notions.In a formal way a tra
e heuristi
 is a fun
tion between two sets of tra
es su
h that therange is a proper subset of the domain (so the heuristi
 redu
es the size of the initial set).De�nition 4.1 A tra
e heuristi
 h is a fun
tion h : T �! T , where T is a set of tra
esand Ran(h) � T .De�nition 4.2 Let T be a set. Then a fun
tion d : T � T �! IR�0 is a distan
e i�: 1)d(x; x) = 0; 2) d(x; y) = d(y; x); 3) d(x; y) � d(x; z) + d(z; y); for all x; y; z 2 T .In parti
ular we use De�nition 4.2 for sets of tra
es and su
h distan
es are 
alled tra
edistan
es. The pair (T; d) is a metri
 spa
e. It is 
ustomary to express 
overages bynumbers in the range [0; 1℄ and therefore we restri
t ourselves to distan
e fun
tions su
hthat 0 � d(x; y) � 1 for all x; y. This 
an be done without loss of generality (suppose wewould have distan
es in [0;1) and " numbers in the range [0;1℄ then we 
ould s
ale them5



ba
k to [0; 1℄ using a suitable monotoni
 and 
ontinuous bije
tion b : [0;1℄ �! [0; 1℄). Inorder to use a tra
e distan
e for test sele
tion the 
on
ept of "{
over is useful.De�nition 4.3 A set T 0 is an "{
over of T (T 0 � T; " � 0) if for every t 2 T there existst0 2 T 0 su
h that d(t; t0) � ".The property of "{
over gives rise to the property of total boundedness for a metri
spa
e.De�nition 4.4 A metri
 spa
e (T; d) is totally bounded if for every " > 0 it is possibleto �nd a �nite set T" � T su
h that T" is an "{
over of T with respe
t to distan
e d.Now a link between a heuristi
 and a tra
e distan
e is established: if for that heuristi
the subset obtained by the appli
ation of that heuristi
 is an "{
over of the original set,then the tra
e distan
e implements the heuristi
.De�nition 4.5 Let T be a set of tra
es and h be a tra
e heuristi
 su
h that h : T �! T .Let d be a tra
e distan
e de�ned on T . Then d implements the heuristi
 h i�: 9"h � 0 :Ran(h) is an "h{
over of T with respe
t to the distan
e d.The following de�nition shows how to obtain the 
overage.De�nition 4.6 Let T be a set of tra
es and T 0 � T be an "{
over of T with respe
t to atra
e distan
e d. Let "m = inff" � 0 j T 0 is an "{
over of Tg be the inferior minimum ofthe " values. Then the 
overage of T 0 with respe
t to T is 
ov(T 0; T ) = 1� "m.5 The marked tra
e representationWhen we want to make the two heuristi
s more pre
ise, de�ning them as fun
tions a
-
ording to De�nition 4.1, we observe that an appropriate tra
e representation for themis needed. When we apply the Cy
ling heuristi
 on a tra
e, we observe that the tra
edoes not have enough information regarding how it was generated, what states it has beengoing through and how often it went through them. As a result, we will represent thetra
e in su
h a way that the information regarding its generation from the automaton willbe in
luded. This leads us to a 
on
ept 
alled marked tra
es, whi
h will be developed inSe
tion 5.1. In general a given tra
e 
an be interpreted in several ways as being the re-sult of running through 
y
les in the automaton. This introdu
es a problem of ambiguitywhi
h is addressed in Se
tion 5.2.5.1 The marked tra
esThe �rst example in this se
tion will explain why a new representation for the tra
es isneeded.Example Let us 
onsider the automaton from Figure 4 and one of its tra
es ab
b
d. Thistra
e is traversing (
y
ling) twi
e via the state II. But this information is not present inthe tra
e. Therefore this representation is not appropriate for working with 
y
les. Nowlet us transform it into a path, whi
h is IaII bIII 
II bIII 
IIdIV . We 
an observe that thepath 
ontains extra information whi
h is not needed for 
y
les: for example it 
ontains thestates I and IV whi
h are not part of any 
y
le. Summing up the observations, we arriveat the 
on
lusion that a new representation is needed. An intuitive one is a[hb
ihb
i℄2;IIdwhere [hb
ihb
i℄2;II indi
ates that two 
y
les of the transitions b
 are performed throughthe state II .As we saw in the introdu
tory example, we asso
iate the 
y
les with how many timesa tra
e is traversing a state. The name of the state, whi
h is seen as a mark, will representthe identi�er of the 
y
le. Also we will in
lude the number of 
y
les through a state. We6
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Figure 4: A tra
e whi
h 
y
les through an automaton
all su
h an extended tra
e a marked tra
e. Now we have all the ingredients to de�ne amarked representation of a tra
e.De�nition 5.1 Let L be a labelset and Q a set of states. Then a marked tra
e is indu
-tively de�ned by1. a 2 L, � and [ ℄0;q (q 2 Q) are marked tra
es;2. if u and v are marked tra
es then uv is a marked tra
e;3. if u and [�℄n;q (n 2 IN; q 2 Q) are marked tra
es then [�hui℄n+1;q is a marked tra
e.In the de�nition from above � is a sequen
e of type h�1i:::h�ni where �i are markedtra
es (i = 1; :::n).Example Some examples of marked tra
es are: a[hb
i℄1;IId and a[hb
ihb
i℄2;IId with II2 Q.We will denote the set of all the marked tra
es over a labelset L and a set of marksQ as L�Q. The transformation between the marked representation of a tra
e and a normalrepresentation of a tra
e 
an be made easily by eliminating all the parentheses whi
h o

urin the marked representation. For example the marked tra
e a[hb
ihb
i℄2;IId is transformedin the tra
e ab
b
d. We will 
all this transformation unfold.De�nition 5.2 Let L be a labelset, let Q be the set of marks and let L�Q be the set ofmarked tra
es. Then the fun
tion unfold : L�Q �! L� whi
h transforms a marked tra
einto a tra
e is1. if a 2 L; q 2 Q then unfold(a) = a, unfold(�) = �, unfold([ ℄0;q) = �;2. if u and v are marked tra
es then unfold(uv) =unfold(u)unfold(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked tra
es thenunfold([�hui℄n+1;q) =unfold([�℄n;q)unfold(u).In the following example, we will illustrate a way in whi
h a tra
e 
an be transformedinto a marked tra
e. In general, this transformation is not unique. To illustrate this, weneed a more 
omplex example.Example Consider the automaton from Figure 1. The states of the automaton are markedwith I, II, III, IV. The 
y
ling states are the states II and III. Consider the tra
e a0b
db
de.Adding boxes to re
e
t nesting stru
ture, the 
orresponding path is Ia0 II b III 
 IIId II b III 
 III d II eIV . The state II (surrounded with a box in the path) is repeatedthree times. Between two o

urren
es of state II in the path, the state III (surroundedwith two boxes) appears twi
e. If we mat
h every new o

urren
e of state II in the pathwith its �rst o

urren
e (we will 
all this way of mat
hing the states �rst state mat
hing),the path will be divided in 4 
omponent paths: Ia0II| {z }[hIIbIII 
IIIdII| {z }ihII bIII 
IIIdII| {z }i℄2;II IIeIV| {z } .1 2 3 4If we do the same for III in the paths 2) II bIII 
III dII and 3) II bIII 
III dII and eliminateall the states, we obtain the marked tra
e a0[hb[h
i℄1;IIIdihb[h
i℄1;IIIdi℄2;IIe. This markedtra
e 
orresponds to the initial tra
e a0b
db
de. However, there are also other ways oftransforming it into a marked tra
e. For example, the states of the same tra
e 
an be7



grouped in another way as Ia0II b III 
 III dII b III 
 III dII eIV and the same tra
e hasanother 
orrespondent marked tra
e whi
h is a0b[h
ihdbih
i℄3;IIIde.For this example we see that there is not a unique way of transforming a tra
e ina marked tra
e. Therefore we leave it as an option to the implementer (the user ofour theory) to 
hoose the way by whi
h he transforms a tra
e into a marked tra
e (onealgorithm will be given in the next subse
tion { Subse
tion 5.2). We will only de�ne theset of marked tra
es of an automaton whi
h will be the set of all possible marked tra
eswhi
h 
an be derived from the tra
es of an automaton. After that we make a partitionon the set of marked tra
es (an equivalen
e 
lass of marked tra
es 
ontains all the markedtra
es whi
h unfold to the same tra
e) and we assume that the implementer 
hooses a setof representatives from the equivalen
e 
lasses of marked tra
es. Below we will de�ne theset of marked tra
es of an automaton. In this de�nition, we use C[[x℄℄ to denote a termwith an o

urren
e of a substring x. C[[ ℄℄ is 
alled the 
ontext in whi
h x o

urs.De�nition 5.3 Let s be an automaton. Let path(s) be the set of its paths; let Q be theset of its states. Then1. the set of marked paths MPath(s) of s is:(a) if p 2 path(s) then p 2 MPath(s);(b) if m 2 MPath(s), m = C[[p℄℄, p 2 path(s) su
h that p = p1qp2q:::qpn, thenC[[p1q[hqp2qi:::hqpn�1qi℄n�2;qqpn℄℄ 2 MPath(s)with q 2 Q, n 2 IN, p1q, qpiq; qpn 2 path(s), i = 2; :::; n � 1;2. the set of marked tra
es of an automaton is: MTra
es(s) = fm jtra
ej m 2 MPath(s)g,where jtra
e transforms a path to a tra
e by eliminating all the states whi
h appearin the path and keeping all the labels.At this point it is not ne
essary to demand that the pro
edure from step 1.b) is applieduntil it 
annot be done further; we 
ome ba
k to this in Se
tion 5.2. Considering the waywe 
onstru
ted MTra
es(s), it is evident that every tra
e has at least one 
orrespondingmarked tra
e. Two marked tra
es will be equivalent if their unfold will give the sametra
e.De�nition 5.4 Let m1;m2 be two marked tra
es. Then m1 is equivalent with m2, de-noted as m1 � m2, i�: unfold(m1) = unfold(m2).The equivalen
e relation gives a partition on MTra
es(s) in a set of equivalen
e 
lasses.By 
hoosing a representative for every 
lass, the implementer builds the set of represen-tatives tra
esm(s). A way to obtain su
h a set is given in the beginning of the nextsubse
tion. For the remainder of this paper we will work only with the set of representa-tives tra
esm(s) and we will abuse the words marked tra
e for su
h representative markedtra
e.5.2 An algorithm for obtaining a set of representativesIn the beginning of this subse
tion we give a way to implement the transformation of atra
e in a representative marked tra
e and to obtain the set of representatives.This set is obtained by applying the following fun
tion (ALG) on ea
h tra
e (path) of a�nite-state minimal deterministi
 automaton s. The fun
tion builds a marked tra
e froma tra
e using a �rst state mat
h te
hnique like the one we used for the tra
e a0b
db
deat the beginning of the previous example. In ALG we use the following fun
tion andpro
edure: 1) the fun
tion NotRepetitivesState(p;Q), p a path, Q a set of states, returnstrue if every state of p whi
h is 
ontained in Q o

urs only on
e in p and 2) the pro
edureDivide(p; Q; q; p1; :::; pn) �nds q 2 Q and splits p in p1; :::; pn (n 2 IN, i = 2; :::; n� 1, p1q,8



qpiq, qpn paths) su
h that: i) q 2 Q is the �rst repetitive state in p, ii) p = p1qp2q:::qpnand iii) the set of states of pj does not 
ontain q (j = 1; :::; n).fun
tion ALG (p : Path, Q : SetStates) : MarkedTra
e;var q : State;p1; :::; pn : (�+Label)(State Label)�(�+State);beginif (NotRepetitiveState(p; Q)) thenreturn p jtra
e;elseDivide(p; Q; q; p1; :::; pn);Q = Q n fqg;return ALG(p1q; Q)[hALG(qp2q; Q)i:::hALG(qpn�1q; Q)i℄n�2;qALG(qpn; Q);endInitially, the fun
tion ALG is applied on a path p and on the set of states Q of theautomaton. When a) p does not 
ontain states from Q whi
h are repetitive, ALG returnsthe tra
e 
orresponding to p (p jtra
e). When a) does not hold, ALG �nds the �rstrepetitive state q 2 Q in p and divides p in n parts p1; :::; pn. Every pi (i = 2; :::; n � 1)lies between two o

urren
es of q in p; p1 and pn are the initial part (ending with q)and respe
tively the last part (starting with q) of p. After this the state q is deletedfrom Q, whi
h be
omes Q n fqg. Making so, terms as [ [ ℄ ;q ℄ ;q in whi
h q is interpretedtwi
e as a 
y
le are avoided. Without deletion, the repetition of q 
an be reinterpretedas a 
y
le by a later 
all of ALG, when it is applied on a 
omponent path qpiq. Afterthe transformation of Q, ALG returns the 
on
atenations of the marked tra
es obtainedby re
ursively applying the algorithm to the 
omponents p1; :::; pn, whi
h is ALG(p1q;Q)[hALG(qp2q; Q)i:::hALG(qpn�1q; Q)i℄n�2;qALG(qpn; Q).The set of representatives is tra
esm(s) = fALG(p;Q) j p 2 path(s)g. In the remain-der of this paper, in the examples whi
h we use, we assume that the marked tra
es aregenerated with ALG from the tra
es of an automaton.As one 
an see, our way of building the set of representatives is rather 
omplex. One
an imagine trivial solutions as for example: every marked tra
e is the tra
e itself. But themarked tra
es built with ALG have ni
e properties whi
h are required for the appli
ationof our test sele
tion theory. For example the width of su
h marked tra
es is uniformlybounded (Lemma 5.6), a property whi
h is used in the theorem of total boundedness(Theorem 8.2). The marked tra
es generated with the trivial solution do not have thisproperty.In 
on
lusion, on
e we have the set of representatives, we want to know if it has somespe
i�
 properties. So for a marked tra
e of an automaton we want to know if the widthof it is uniformly bounded, and if the nesting depth of it is also bounded. Here uniformlybounded means that the same upperbound applies at all nesting levels. But �rst let usde�ne these terms.De�nition 5.5 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Then the fun
tion width : tra
esm(s) �! IN is1. if a 2 L; q 2 Q then width(a) = 1, width(�) = 0, width([ ℄0;q) = 1;2. if u and v are marked tra
es then width(uv) =width(u)+width(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked tra
es then width([�hui℄n+1;q) = 1.In the de�nition above the terms [ ℄ ; are 
ounted as single terms of the marked tra
e.Example Let us take the tra
e a0[hbdihbdi℄2;IIf . Thenwidth(a0[hbdihbdi℄2;IIf) = width(a0) + width([hbdihbdi℄2;II) + width(f) = 1 + 1 + 1 = 3The following lemma shows that the width of every marked tra
e generated with ALGis uniformly bounded. 9



Lemma 5.6 The width of a marked tra
e generated with ALG from an automaton andthe widths of all its 
omponent marked tra
es are less than or equal to 2m� 1, where m isthe number of the states of the automaton. (Without proof)De�nition 5.7 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Then the fun
tion nesting : tra
esm(s) �! IN is1. if a 2 L; q 2 Q then nesting(a) = 0, nesting(�) = 0, nesting([ ℄0;q) = 1;2. if u and v are marked tra
es then nesting(uv) =max(nesting(u);nesting(v));3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked tra
es thennesting([�hui℄n+1;q) = 1+max(nesting(�),nesting(u)).Example Let us take the tra
e a0[hbdihb[h
i℄1;IIdi℄2;IIf . Thennesting(a0[hbdihb[h
i℄1;IIIdi℄2;IIf) = max(nesting(a0);nesting([hbdihb[h
i℄1;IIdi℄2;II);nesting(f)) = max(0; 1 +max(nesting(bd);nesting(b[h
i℄1;IIId)); 0) = max(0; 2; 0) = 2The following lemma shows that the nesting depth of every marked tra
e generatedwith ALG is bounded.Lemma 5.8 The nesting depth of a marked tra
e generated with ALG from an automatonis less than or equal to the number of the states of the automaton. (Without proof)As we motivated before, for applying our theory of test sele
tion we need some spe
i�
properties to be owned by the set of representatives. So we require for the set of (represen-tative) marked tra
es of an automaton that the width of every marked tra
e, the widthsof all its 
omponent marked tra
es, and its nesting depth to be uniformly bounded. Inthis subse
tion we showed that the marked tra
es generated with ALG have these prop-erties (Lemma 5.6, Lemma 5.8). Certain algorithms works as well. For example, similarlyas we did in this subse
tion, one 
an prove that the marked tra
es obtained with a laststate mat
hing te
hnique (the last repetitive state of the path is mat
hed) have also theseproperties. Independent of the way in whi
h the set of marked tra
es is obtained, on
e ithas the required properties, our test sele
tion theory 
an be applied on it.Now we have an algorithm that makes sure that every tra
e of the automaton has aunique 
orrespondent representative marked tra
e, we will work with marked tra
es inpla
e of tra
es throughout the remainder of this paper.6 The heuristi
s de�ned for marked tra
esBelow we will de�ne the heuristi
s in a formal way. As we presented in Se
tion 3.1, theintuition behind the heuristi
s Redu
tion and Cy
ling is that they take into a

ount twoaspe
ts: the �niteness of 1) the number of outgoing transitions of 
ertain states and of 2)the number of times ea
h 
y
le 
an be traversed by every single tra
e.When Redu
tion is applied, the labelset L is split in two parts: the sele
ted labels whi
hform a �nite set L0 � L and the set of unsele
ted labels whi
h is L n L0. This appli
ation
an be seen as the appli
ation of a mapping fun
tion trans: L �! L0 whi
h maps everyunsele
ted label to a sele
ted label from L0 and every sele
ted label to itself. One pra
ti
alway to make the sele
tion and to obtain L0 and trans is by de�ning a distan
e dL betweenlabels, su
h that the metri
 spa
e (L; dL) is totally bounded. Let us �x a positive realnumber "L � 0. Now L0 will be a labelset whi
h is an "L{
over of L. The labels whi
hare remote from ea
h other (their distan
e is greater than "L) are sele
ted and the labelsfrom L n L0 remain unsele
ted. The fun
tion trans: L �! L0 
an be de�ned in this 
asesu
h that trans(a) = b with a 2 L; b 2 L0 and dL(a; b) minimum.10



For the Cy
ling heuristi
 we relate the 
y
les of the automaton to the marked represen-tation of the tra
e; limiting the numbers of times of traversing the 
y
les means limitingthe powers of the marked symbols in the marked tra
es. Now, let us de�ne these heuristi
sin a formal way.De�nition 6.1 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Let L0 � L be a �nite subset of L and let trans: L �! L0 be the mapping fun
tion.Then the heuristi
 Redu
tion : tra
esm(s) �! tra
esm(s) is1. if a 2 L; q 2 Q then Redu
tion(a) =trans(a), Redu
tion(�) = �, Redu
tion([ ℄0;q) =[ ℄0;q;2. if u and v are marked tra
es then Redu
tion(uv) =Redu
tion(u)Redu
tion(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked tra
es thenRedu
tion([�hui℄n+1;q) = [Redu
tion(�),Redu
tion(u)℄n+1;q .Example Let us 
onsider the automaton from Figure 1. For this automaton the set oflabels is L = f
; b; d; e; fg [ fai j i = 0; 1; :::g.Let L0 = fa0; 
; b; d; e; fg be a �nite subset of L and trans: L �! L0trans(x) = ( a0 x = ai; i 2 INx otherwiseThen Redu
tion(a3e) =Redu
tion(a3)Redu
tion(e) =trans(a3)trans(e) = a0e.De�nition 6.2 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Let l
 be the 
y
le limit. Then the heuristi
 Cy
ling : tra
esm(s) �! tra
esm(s) is1. if a 2 L; q 2 Q then Cy
ling(a) = a, Cy
ling(�) = �, Cy
ling([ ℄0;q) = [ ℄0;q;2. if u and v are marked tra
es then Cy
ling(uv) =Cy
ling(u)Cy
ling(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked tra
es then(a) Cy
ling([�hui℄n+1;q) = [Cy
ling(�)Cy
ling(u)℄n+1;q , for l
 > n;(b) Cy
ling([�hui℄n+1;q) = [Cy
ling(�0)℄l
;q, for l
 � nwhere � = h�1i:::h�ni and �0 = h�1i:::h�l
i is obtained by 
utting � after l
symbols.Example Let us 
onsider the automaton from Figure 1. Let us �x l
 to 2. ThenCy
ling(a0[hbdihbdihbdi℄3;IIe) =Cy
ling(a0)Cy
ling([hbdihbdihbdi℄3;II)Cy
ling(e) =a0[hbdihbdi℄2;IIeLemma 6.3 Redu
tion(Cy
ling(x))=Cy
ling(Redu
tion(x)) (Without proof)7 The tra
e distan
e for marked tra
esIn this se
tion we make the tra
e distan
e more pre
ise, de�ning it as a distan
e fun
tiona

ording to De�nition 4.2. As explained in Se
tion 4, this gives us an alternative for-malization of the ideas behind the heuristi
s (they will be 
ompared in Se
tion 8). Wewill 
ombine these ideas with another well{known idea, viz. the edit distan
e. Se
tion 7.1introdu
es the edit distan
e. After this preparation, the de�nition of the tra
e distan
efun
tion 
an be given (Se
tion 7.2).7.1 The edit distan
e between stringsBe
ause in our tra
e distan
e we use the 
on
ept of edit distan
e we shall present this �rst.The 
on
ept is applied in problems su
h as string sear
h, words substitution using di
tio-naries, et
. Informally the edit distan
e is de�ned as the minimum number of insertions,deletions and substitutions required to transform one string into another.Levenshtein ([Ste92℄) de�ned the edit distan
e d(x; y) between two strings x and y asthe minimum of the 
ost of editing x to transform it into y. The 
ost of editing is the sumof the 
osts of a number of atomi
 edit a
tions. A

ording to Levenshtein the 
osts are asfollows: inserting a symbol 
osts 1, deleting a symbol 
osts 1 and 
hanging an a into a b
osts 1 too. 11



Wagner and Fisher ([Ste92℄) generalized the de�nition of Levenshtein by adopting dif-ferent 
osts for the various atomi
 edit a
tions. A

ording to Wagner{Fisher transforminga into a b 
osts w(a; b). Extending this notation, w(a; �) is the 
ost of deleting a andw(�; b) is the 
ost of inserting b. Again, the 
ost of editing is the sum of the 
osts of theatomi
 edit a
tions, and d(x; y) is the minimum 
ost over all possible edit sequen
es thattransform x into y.De�nition 7.1 Let w(a; b) be the weighting for the 
ost of transforming symbol a insymbol b, w(a; �) be the 
ost of deleting a and w(�; b) be the 
ost of inserting b. Of 
oursew(a; a) = 0. Then the edit distan
e between the strings x and y is denoted as ED(x; y)and it is 
omputed as1. ED(au; bv) = min(w(a; b) + ED(u; v); w(a; �) + ED(u; bv); w(�; b) + ED(au; v));2. ED(au; �) = w(a; �)+ED(u; �); ED(�; bv) = w(�; b)+ED(�; v); ED(�; �) = 0;where a; b are symbols and u; v are strings.This de�nition will be used throughout the paper.Example Let us take the labelset L = fa; b; 
g with the 
ost 1 for insertion, deletion,and for transforming a symbol in another symbol. The edit distan
e between a and ba is
omputed asED(a; ba) = min(w(a; b)+ED(�; a); w(a; �)+ED(�; ba); w(�; b)+ED(a; a)) = min(1+w(�; a)+w(�; �); 1 + w(�; b) + w(�; a) + w(�; �); 1 +min(w(a; a) + ED(�; �); w(a; �) + ED(�; a);w(�; a) + ED(a; �))) = min(1 + 1; 1 + 2; 1 + 0) = 1So the edit distan
e between a and ba is 1 whi
h 
orresponds to the deletion of b.7.2 De�ning the tra
e distan
eOur test sele
tion te
hnique uses two heuristi
s. For expressing these heuristi
s in the tra
edistan
e, it is important to remember that in the formalization of the Redu
tion heuristi
a label distan
e was used. The in
orporation of this heuristi
 in the tra
e distan
e isa
hieved in a simple way by using the label distan
e in the formula of the tra
e distan
e.Now a solution should be found for the Cy
ling heuristi
.For the Cy
ling heuristi
 we simply weight every level k of a 
y
ling symbol (a markedtra
e of type [ ℄n;q; n 2 IN; q 2 Q) with a weight from a series of positive numbers pk.This series has the property that P1k=1 pk = 1. The logi
 behind this weighting is thatsumming the weights after a given limit (whi
h is the 
y
le limit) will 
ontribute with asmall number re
e
ting our assumption that the �rst 
y
les are more important than thelater 
y
les.We will de�ne the tra
e distan
e for all the possible 
ombinations of the points (1),(2), (3) of De�nition 5.1 (whi
h are generating marked tra
es). We summarize these
ombinations below� between the marked tra
es generated with point (1) (su
h as [ ℄0;q; q 2 Q and a 2 L)we will de�ne a distan
e fun
tion 
alled Atomi
Distan
e be
ause these are the atomi
elements whi
h form the marked tra
e; of 
ourse the Atomi
Distan
e between twolabels will be given by dL, the distan
e between these labels; between a label and amarked tra
e su
h as [ ℄0;q it will be maximum (one) and between two marked tra
essu
h as [ ℄0;q ,[ ℄0;q0 (q; q0 2 Q; q 6= q0) it will also be one;� between the marked tra
es generated with point (2) (su
h as af or ae) we will use adistan
e fun
tion 
alled EditDistan
e; we took this option be
ause these tra
es aregenerated in a similar style as the strings are formed and it is quite natural to useit be
ause it 
ompares in a good way the terms whi
h form the marked tra
es (forexample in the tra
es a0e and a0[hbdi℄1;IIe the edit distan
e will re
ognize that thelabels a0 and e from the �rst tra
e are present in the se
ond tra
e);12



� between the marked tra
es generated with point (3) (su
h as building [hbdi℄1;II on
ewe know that [ ℄0;II is a marked tra
e) we employ the prin
iple that 
y
les of di�erentmarks are very remote and hen
e have the maximum distan
e, i.e, 1; when dealingwith 
y
les of the same mark we employ weighting fa
tors pk with the e�e
t thatthe later iterations are 
onsidered less important than e.g. the �rst iteration; this
an be done by using a fun
tion EditDistan
eWeighted whi
h is an edit distan
e forwhi
h the formula of De�nition 7.1 is modi�ed in su
h a way to take into a

ountthe weights.The rest of the possible 
ombinations su
h as (1) with (2), (2) with (3) et
. are de-�ned in a similar style by using one of the te
hniques mentioned above (EditDistan
e orAtomi
Distan
e).We observe also that this tra
e distan
e is to be used in the 
omputation of 
overagewhi
h should be in the range [0; 1℄. For simplifying the 
omputation of 
overage, wewant the tra
e distan
e values to be in the range [0; 1℄. This 
an be done by dividing allthe above mentioned values (generated with an EditDistan
e or Atomi
Distan
e) by themaximum width of the marked tra
es from tra
esm(s) (the maximum width is �nite, seeSe
tion 5.2). For 
ompleting the pi
ture it is ne
essary to add that the tra
e distan
ebetween a null tra
e (�) and any other marked tra
e is maximum (1).Now we have all the ingredients to de�ne a tra
e distan
e on marked tra
es. We will 
allit d. In the de�nition, the distan
es already mentioned (EditDistan
e and Atomi
Distan
e)will be used; also it is impli
itly assumed that the de�nition is symmetri
 in the sense thatd(x; y) = d(y; x), x and y being marked tra
es and that d(x; x) = 0.As explained above (�rst bullet), the fun
tion Atomi
Distan
e deals with the 
ases �,a 2 L and [ ℄0; . We generalize it to marked tra
es of the form [ ℄ ; as well.De�nition 7.2 Let s be an automaton. Let L be the labelset of s, dL the label distan
ede�ned on it and Q the set of states of s. The metri
 spa
e (L; dL) is totally boundedand dL has all its values in the range [0; 1℄. Let lm be the maximum of the width of themarked tra
es from tra
esm(s). Let pk (k = 1; 2; :::) be a series of positive numbers su
hthat P1k=1 pk = 1. The tra
e distan
e d is symmetri
 in the sense that d(x; y) = d(y; x), xand y being marked tra
es and that d(x; x) = 0. Then1. d(a; b) = Atomi
Distan
e(a;b)lm ;d(a; �) = d(�; [ ℄0;q) = 1;d(a; [ ℄0;q) = Atomi
Distan
e(a;[ ℄0;q)lm ;d([ ℄0;q; [ ℄0;q0) = Atomi
Distan
e([ ℄0;q ;[ ℄0;q0)lmwith a; b 2 L; q; q0 2 Q;2. d(a; uv) = EditDistan
e(a;uv)lm ;d(�; uv) = 1;d([ ℄0;q; uv) = EditDistan
e([ ℄0;q ;uv)lmwith u; v marked tra
es and a 2 L; q 2 Q;3. d(a; [uhvi℄n+1;q) = Atomi
Distan
e(a;[uhvi℄n+1;q)lm ;d(�; [uhvi℄n+1;q) = 1;d([ ℄0;q; [uhvi℄n+1;q) = Atomi
Distan
e([ ℄0;q ;[uhvi℄n+1;q0 )lmwith v and [u℄n;q0 marked tra
es (n 2 IN; q0 2 Q) and a 2 L; q0 2 Q;4. d(uv; rt) = EditDistan
e(uv;rt)lmwith u; v; r; t marked tra
es; 13



5. d(uv; [rhti℄n+1;q) = EditDistan
e(uv;[rhti℄n+1;q)lmwith u; v; t; [r℄n;q marked tra
es (n 2 IN; q 2 Q);6. d([uhvi℄n+1;q ; [rhti℄n0+1;q0) = Atomi
Distan
e([uhvi℄n+1;q ;[rhti℄n0+1;q0)lmwith v; t; [u℄n;q; [r℄n0;q0 marked tra
es (n; n0 2 IN; q; q0 2 Q);where� Atomi
Distan
e(x; y) = 8>>><>>>: dL(x; y) x; y 2 LEditDistan
eWeighted(x; y) x = [ ℄n;q; y = [ ℄n0;q; q 2 Qn; n0 2 IN; n 6= 0; n0 6= 01 otherwise� EditDistan
e(uv; rt) = min(Atomi
Distan
e(u; r) + EditDistan
e(v; t);Atomi
Distan
e(u; �) + EditDistan
e(v; rt);Atomi
Distan
e(�; r) + EditDistan
e(uv; t));EditDistan
e(uv; �) = Atomi
Distan
e(u; �)+EditDistan
e(v; �);EditDistan
e(�; rt) = Atomi
Distan
e(�; r)+EditDistan
e (�; t);EditDistan
e(�; �) = 0with u; v; r; t marked tra
es;� EditDistan
eWeighted([hu1i:::huni℄n;q; [hv1i:::hvpi℄p;q) = EDW 1([hu1i:::huni℄n;q; [hv1i:::hvpi℄p;q)with ui and vj marked tra
es (i = 1; :::; n, j = 1; :::; p, n; p 2 IN, q 2 Q).We add some explanation. It is easy to 
he
k that the de�nition of EditDistan
eand EditDistan
eWeighted are 
opied from De�nition 7.1 ex
ept for the fa
t that suitableweighting fa
tors pk have been in
orporated. To 
omplete the de�nition we only have togive the auxiliary EDWEDW k([hui�℄h;q; [hvi�0℄g;q) = min(pk � d(u; v) + EDW k+1([�℄h�1;q; [�0℄g�1;q);pk � d(u; �) + EDW k+1([�℄h�1;q; [hvi�0℄g;q);pk � d(�; v) + EDW k+1([hui�℄h;q; [�0℄g�1;q));EDW k([hui�℄h;q; [ ℄0;q) = pk � d(u; �) + EDW k+1([�℄h�1;q; [ ℄0;q);EDW k([ ℄0;q; [hvi�0℄g;q) = pk � d(�; v) + EDW k+1([ ℄0;q; [�0℄g�1;q);EDW k([ ℄0;q; [ ℄0;q) = 0with k; h; g 2 IN, q 2 Q and u; v; [�℄h�1;q; [�0℄g�1;q marked tra
es;The parameter k in EDW k indi
ates the position at whi
h the next edit a
tion takespla
e. Please note that the re
ursive de�nition of EDW k is well de�ned be
ause at leastone of the right{hand sides of the equation is one symbol shorter than the 
orrespondingleft{hand side (therefore, the fa
t that k is in
reasing 
auses no problem). The base 
aseis EDW k([ ℄0;q; [ ℄0;q) = 0. We will illustrate how the EditDistan
eWeighted fun
tionis working. Let us 
onsider two strings ab and 
, (although EditDistan
eWeighted isde�ned on marked tra
es, for making the example more understandable, let us showhow it works on 
ommon strings). For transforming one string into another, there are�ve possible 
ombinations: 1)(ab; 
�), 2)(ab; �
), 3)(�ab; 
��), 4)(a�b; �
�), 5)(ab�; ��
). TheEditDistan
eWeighted will be the minimum from the 
osts of the �ve 
ombinations. The
ost for every 
ombination is 
omputed as the sum of the edit a
tions multiplied withthe 
orresponding weights. For example, the 
ombination (ab�; ��
), whi
h means twoinsertions followed by one deletion, we en
ounter weighting fa
tors for d(a; "), d(b; ") andd(�; 
), whi
h are p1, p2 and p3, respe
tively. The 
ost of this 
ombination will be p1 �d(a; ") + p2 � d(b; ") + p3 � d("; 
). In a similar style the 
ost of the other 
ombinations is14




omputed and the minimum is 
hosen for EditDistan
eWeighted.Example Let us 
onsider the automaton from Figure 1. For this automaton the maximumwidth of the marked tra
e is 3. Let pk = 12k ; k = 1; 2; :::. Let dL be the following labeldistan
edL(x; y) = 8><>: 0 x = yj 14i+1 � 14j+1 j x = ai; y = aj ; i; j 2 IN1 otherwise1. Let us 
onsider the tra
es a0e and a0[hbdi℄1;IIe.d(a0e; a0[hbdi℄1;IIe) = 13 � (EditDistan
e(a0e; a0[hbdi℄1;IIe)) = 13 � (Atomi
Distan
e(�;[hbdi℄1;II)) = 13 .The tra
e distan
e re
ognizes that the symbols a0 and e from the �rst tra
e arepresent in the se
ond tra
e.2. The 
y
ling e�e
t:Let us take the tra
es a0[hbdi℄1;IIe, a0[hbdihbdi℄2;IIe and a0[hbdihbdihbdi℄3;IIe;d(a0[hbdi℄1;IIe; a0[hbdihbdi℄2;IIe) = 13�(EditDistan
e(a0[hbdi℄1;IIe; a0[hbdihbdi℄2;IIe)) =13 � (EditDistan
eWeighted([hbdi℄1;II; [hbdihbdi℄2;II)) = p23 = 112 ;d(a0[hbdihbdi℄2;IIe; a0[hbdihbdihbdi℄3;IIe) = 13�(EditDistan
e(a0[hbdihbdi℄2;IIe; a0[hbdihbdihbdi℄3;IIe)) = 13 � (EditDistan
eWeighted([hbdihbdi℄2;II ; [hbdihbdihbdi℄3;II)) = p33 =124 .When two marked tra
es are 
y
ling more times through the same 
y
le, the valuesof the tra
e distan
e start to de
rease.3. The redu
tion e�e
t:Let us take the tra
es a0e, a1e and a2ed(a0e; a2e) = 13 � (EditDistan
e(a0e; a2e)) = dL(a0;a2)3 = 0:233 ;d(a1e; a2e) = 13 � (EditDistan
e(a1e; a2e)) = dL(a1;a2)3 = 0:063 .When the label distan
e between the labels (whi
h 
ompose the marked tra
es) isde
reasing, the tra
e distan
e is also de
reasing.8 Transforming the heuristi
s into a 
overageThe tra
e distan
e formula depends on the label distan
e dL whi
h implements the Re-du
tion heuristi
 and the weights pk whi
h implement the Cy
ling heuristi
. On the otherhand, by 
hoosing for ea
h automaton s a �nite set L" � L whi
h is an "L{
over of L withrespe
t to dL and a 
y
ling limit l
, a �nite set of marked tra
es T � tra
esm(s) 
an beobtained. This is done by the appli
ation of the Cy
ling and the Redu
tion heuristi
s ontra
esm(s) by taking T =Ran(Cy
ling Æ Redu
tion). Now for this T and using d we want to
ompute its "{
over of tra
esm(s) so that we 
an 
ompute the 
overage 
ov(T; tra
esm(s)){ see De�nition 4.6. Intuitively " should depend on "L and l
. Its formula is given byTheorem 8.1.The next theorems are about other properties of the tra
e distan
e d: Theorem 8.2shows that for any desired " it is possible to obtain an "{
over by 
hoosing a suitable
y
le limit and a suitable label approximation, with other words that the metri
 spa
e(tra
esm(s); d) is a metri
 spa
e that is totally bounded. Theorem 8.3 shows that thedistan
e d implements the Redu
tion and Cy
ling heuristi
s.Theorem 8.1 Let s be an automaton. Let L be the labelset of s and dL the label dis-tan
e de�ned on it. The metri
 spa
e (L; dL) is totally bounded and dL has all its values15



in the range [0; 1℄. Let l
 be the 
y
le limit. Let pk (k = 1; 2; :::) be a series of posi-tive numbers su
h that P1k=1 pk = 1. Let lm be the maximum of the width and z themaximum of the nesting depth of the marked tra
es from tra
esm(s). Let L" � L bean "L{
over of L. Then the �nite set T =Ran(Redu
tion Æ Cy
ling) of tra
es obtainedby the appli
ation of the two heuristi
s on tra
esm(s) is an "{
over of tra
esm(s) with" = "z and "0 = "L; for i = 1; :::; z : "i
 = Pl
k=1 pk � (maxj=0;:::;i�1("j)) +P1k=l
+1 pk;"i = max
y
les=0;:::;lm( 
y
les�"i
+(lm�
y
les)�"Llm ). (Without proof)The following theorem shows that the metri
 spa
e (tra
esm(s); d) is a totally boundedmetri
 spa
e.Theorem 8.2 Let s be an automaton. Let L be the labelset of s and dL the label distan
ede�ned on it. The metri
 spa
e (L; dL) is totally bounded and dL has all its values in therange [0; 1℄. Let pk (k = 1; 2; :::) be a series of positive numbers su
h that P1k=1 pk = 1. Letlm be the maximum of the width and z the maximum of the nesting depth for the markedtra
es from tra
esm(s). Then for every " a positive real number in the range [0; 1℄, thereexists a 
y
ling limit l
 and a label approximation "L with "L =P1k=l
+1 pk � "2z su
h thatthe �nite set T =Ran(Redu
tion Æ Cy
ling) of tra
es obtained by the appli
ation of the twoheuristi
s on tra
esm is an "{
over of tra
esm(s) and the metri
 spa
e (tra
esm(s); d) istotally bounded. (Without proof)The following theorem shows that the tra
e distan
e d implements the Cy
ling and theRedu
tion heuristi
s, in the sense of De�nition 4.5.Theorem 8.3 Let s be an automaton. Let L be the labelset of s and dL the label distan
ede�ned on it. The metri
 spa
e (L; dL) is totally bounded and dL has all its values in therange [0; 1℄. Let l
 be the 
y
le limit. Let pk (k = 1; 2; :::) be a series of positive numberssu
h that P1k=1 pk = 1. Let lm be the maximum of the width and z the maximum of thenesting depth for the marked tra
es from tra
esm(s). Then the distan
e d implements theRedu
tion and the Cy
ling heuristi
s. (Without proof)For the 
omputation of the 
overage we approximate the minimum "m from De�ni-tion 4.6 with the "z 
omputed in Theorem 8.1. We will illustrate the 
omputation of the
overage in the following example.Example Consider the automaton from Figure 1. Let us �x the �nal state to be IV.Let us 
onsider the redu
ed set L" = fa0; b; 
; d; e; fg whi
h is an "L{
over of the labelsetL with "L = 0:25 ("L is 
omputed with respe
t to the dL de�ned in the example fromSe
tion 7.2). For this automaton the maximum width is lm = 3 and the maximum nestingdepth is z = 2. Let us �x the series pk = 12k (k 2 IN) and in the beginning l
 = 1.Then the set of tra
es T whi
h is obtained by the appli
ation of the heuristi
sRedu
tionand Cy
ling is an "{
over of the whole set of tra
es tra
esm(s) with " 
omputed with theformula from Theorem 8.1 as1. l
 = 1, L" = fa0; b; 
; d; e; fg"0 = "L = 0:25; "1
 =P1k=1 pk � "0 +P1k=l
+1 pk = 0:252 +P1k=l
+1 12k = 0:63;"1 = max
y
les=0;:::;3( 
y
les�"1
+(lm�
y
les)�"Llm ) = 0:63; " = "2 = 0:81;The 
overage is 
omputed via De�nition 4.6 and it is 
ov(T; tra
esm(s)) = 1 � " =0:19;2. l
 = 2, L" = fa0; b; 
; d; e; fgWhen we enlarge the set T to T 0 for l
 = 2 we �nd that 
ov(T 0; tra
esm(s)) = 0:51;3. l
 = 1, L"0 = fa0; a1; b; 
; d; e; fgWhen we enlarge the set T to T 00 for L"00 = fa0; a1; b; 
; d; e; fg we �nd that "00L = 0:06and that 
ov(T 00; tra
esm(s)) = 0:29. 16



In this example, one 
an see that the 
overage in
reases more by adopting a highervalue for the 
y
ling limit than by using a larger label subset. Consequently, one 
an
on
lude that it is better to in
rease the 
y
ling limit for obtaining a better 
overage. Butthis is not always true be
ause we de�ned spe
i�
 values for pk and dL (for other values,to in
rease the label subset will be better).It 
an be seen from this example that the monotoni
ity property required in [BTV91℄that T � T 0 ) 
ov(T ) � 
ov(T 0) is respe
ted by our 
overage. From an intuitive pointof view this property is reasonable: if one wants a better 
overage, one needs to generatemore tests.We want to prove it in the general 
ase. For this we will make an assumption whi
his quite natural: for a label set L when we have L" and L"0 su
h that these sets are an"L{
over and respe
tively an "0L{
over of L, L" � L"0 then "L � "0L.Theorem 8.4 Let s be a minimal �nite deterministi
 automaton. Let L be the labelset ofs and dL the label distan
e de�ned on it. The metri
 spa
e (L; dL) is totally bounded anddL has all its values in the range [0; 1℄. Let l
 and l0
 be two 
y
le limits (l
 � l0
). Let lmbe the maximum of the width and z the maximum nesting depth of the marked tra
es fromtra
esm(s). Let pk (k = 1; 2; :::) be a series of positive numbers su
h that P1k=1 pk = 1.Let L" � L be an "L{
over of L and L"0 � L be an "0L{
over of L su
h that L" � L"0 and"L � "0L. Let T =Ran(Redu
tion Æ Cy
ling) and T 0 =Ran(Redu
tion Æ Cy
ling) be the two�nite sets of tra
es obtained by the appli
ation of the two heuristi
s on tra
esm(s) usingL", l
 and respe
tively L"0, l0
. Then 
ov(T; tra
esm(s)) � 
ov(T 0; tra
esm(s)). (Withoutproof)9 Con
lusionsIn this paper we have studied two heuristi
s for redu
ing the number of tra
es in a testsuite. The underlying assumption is that when automati
ally generating a set of tra
es,many tra
es will show similar behaviour. Test tra
es 
an be deleted without essentiallyredu
ing the error dete
tion power of the test suite.The �rst heuristi
 studied deals with restri
ting the bran
hing degree of the nodes,when representing a set of test 
ases as a �nite automaton. The basi
 idea is that inpra
ti
e a high bran
hing degree is generated be
ause at the bran
hing point an a
tion isallowed whi
h is parameterized by an element from a (large) data domain. The observationis that only a few values from su
h a data domain will show essentially di�erent behaviour.The se
ond heuristi
 
on
erns the number of times a 
y
le in a �nite automaton rep-resentation may be traversed. This is 
onne
ted to the assumption that only for a fewnumbers of traversals the test 
ases will show essentially di�erent behaviour.The fa
t that we studied only these two heuristi
s in this paper, does not mean thatthese are the only interesting heuristi
s. More heuristi
s 
an be de�ned, e.g. with respe
tto the general length of a tra
e and with respe
t to the uniformity of the number ofoutgoing transitions from a state. We embedded the two heuristi
s 
hosen in a moregeneral framework whi
h allows the extension of our work with other heuristi
s.A heuristi
 is a general guideline for redu
ing test suites, whi
h must be made morepre
ise to be pra
ti
ally appli
able. Espe
ially for the 
y
ling heuristi
 we had to introdu
eadditional notation. The reason is that the 
y
ling stru
ture of a tra
e through a �niteautomaton must be made expli
it. We introdu
ed marked tra
es for this purpose, whi
henabled us to extend the work on 
y
le redu
tion by Vuong [ACV93, ACV97℄.In order to introdu
e a notion of 
overage for the test suites redu
ed by means of theabove mentioned heuristi
s, we de�ned a tra
e distan
e on marked tra
es. The results ofour studies 
an be used to e�e
tively 
al
ulate the 
overage of a test suite redu
ed withour te
hniques. 17



Although our formal de�nitions of Redu
tion and Cy
ling work on large, sometimeseven in�nite sets this need not 
ause pra
ti
al or algorithmi
 problems. For example, thepra
ti
al generation of tra
es 
ould be done in a similar way to [ACV97℄, starting witha �rst tra
e and then suppress the generation of a subsequent tra
e if it is 
lose to analready generated tra
e. Other solutions 
ould be based on a suitable transformation ofthe automaton, as in fa
t we did in Figure 1. A similar remark applies to the 
al
ulationof the " value for a generated test suite. A solution is to 
hoose l
 and "L and 
al
ulate "arithmeti
ally using the results of Se
tion 8.One issue deserves attention, viz. the 
hoi
e of representatives embodied in the algo-rithms of Se
tions 5.1 and 5.2. At �rst sight, the reader may think that the distan
e dde�ned in Se
tion 7.2 is independent of the 
hoi
e of the representatives. However, thisdoes not hold in general be
ause of the essential ambiguity in the 
on
ept of 
y
le whenusing an automaton as a spe
i�
ation.The proposed test sele
tion te
hnique 
an be 
ompared to the existing theories in thisarea. In parti
ular, these are the hypothesis theory developed by [CG97℄ and the tra
edistan
e theory of [ACV93, ACV97℄. The hypothesis theory embodies the tra
e distan
etheory (see [CG97℄), but the ni
e thing about tra
e distan
e theory is that it gives ameasure for the degree to whi
h a redu
ed set of tra
es approximates the original one. Sowe 
hose an approa
h whi
h 
ombines these two theories. In our view, �rst the heuristi
s(test hypotheses in the theory of [CG97℄) are to be de�ned. After that, based on theseheuristi
s a tra
e distan
e is built. This gives the possibility to make a test sele
tion witha given " approximation. The 
hange of the heuristi
s leads to the 
hange of the tra
edistan
e used in test sele
tion.We have started work on implementing our te
hniques in the TorX tool environment([BFV+99℄). An assumption for implementing our work is that a label distan
e exists.Be
ause the TorX tools support the input of �nite automata de�ned in LOTOS [Bri88℄,we de�ned a label distan
e on LOTOS labels. This is not trivial be
ause LOTOS labelsmay be parameterized by arbitrary data types.Another restri
ting requirement is that we assume the spe
i�
ation to be given as aminimal �nite deterministi
 automaton. Some test generation tools already provide su
h aformat, but others support general �nite automata. Determinizing a �nite automata may
ost exponential time. In this 
ase it would be interesting to know whether the theoreti
alresults a
hieved in this paper 
ould be extended to non deterministi
 automata.Referen
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