Distributed Computing manuscript No.
(will be inserted by the editor)

An algorithm for the asynchronous Write-All problem based on process

collision*

Jan Friso Groote!'?2, Wim H. Hesselink®, Sjouke Mauw' 2, Rogier Vermeulen!

! Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands. e-mail: s jouke@uin.tue.nl
2 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands. e-mail: jfg@cwi.nl
3 University of Groningen, P.O. Box 800, NL-9700 AV Groningen, The Netherlands. e-mail: wim@cs.rug.nl

Summary. The problem of using P processes to write
a given value to all positions of a shared array of size N
is called the Write-All problem. We present and analyze

an asynchronous algorithm with work complexity O(N -

P8(51) where z = N/108(P) (agsuming N = z* and

P = 2k). Our algorithm is a generalization of the naive
two-processor algorithm where the two processes each
start at one side of the array and walk towards each
other until they collide.

Key words: write-all problem wait-free distributed
algorithms — work complexity — PRAM — dynamic load
balancing.

1 Introduction

The Write-All problem is defined as follows. Use P pro-
cesses (or processors) to write a given value to all posi-
tions of a shared array of size N. Without loss of gener-
ality, we shall assume that the array is an integer array
and that 1 is the value to be written to all its positions.

If the processes are reliable and run equally fast, it is
easy to come up with straightforward, optimal solutions
for this problem. The situation is quite different, how-
ever, if processes can be faulty or run at widely varying
speeds while at least one process remains active. Kedem
et al. [10] have shown that under these circumstances an
N + (Plog N) lower bound exists on the amount of
work processes must carry out when processes can fail.
This means that even if all processes run fully in parallel
and no process is actually failing, at least 2(log N) time
is required to set the array.

The original motivation for the Write-All problem
comes from [7]. Here it was shown that any program on a

* Corresponding author: Dr. S. Mauw, Department of
Mathematics and Computing Science, Eindhoven University
of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The
Netherlands, Tel. +31 40 2472908, (secr. 2474124), Fax +31
40 2475361, E-mail sjouke@win.tue.nl

P process synchronous PRAM (Parallel Random Access
Machine) running in time T can be executed on any
unreliable PRAM with work complexity W (P).T where
W (P) is the work complexity of any algorithm solving
the Write-All problem of size P. In [9] an overview is
given of the algorithms and PRAM simulations that have
been developed so far.

Our motivation is quite different. It comes from the
design of wait-free or asynchronous algorithms [4 6], to
obtain fast, reliable programs for general purpose paral-
lel computers with typically a few dozen processes that
run under widely varying loads.

A common problem on such machines is to carry out
a task, consisting of N independent subtasks, with P
processes, as quickly as possible. Such tasks are, for in-
stance, copying an array, searching an unordered table,
and applying a function to all elements of a matrix. We
encountered this problem when we had to find a paral-
lel solution to refresh a hashtable by copying all valid
elements to a new array [4].

If we abstract from the nature of the subtasks, the
problem of executing N independent tasks is adequately
characterized by the Write-All problem.

In this paper we present a rather straightforward
algorithm to solve the Write-All problem on an asyn-
chronous PRAM, i.e. a machine on which the processes
can be stopped and restarted at will. This means that it
is also suitable for all other fault models as mentioned in
Kanellakis and Shvartsman, page 13 [9]. Using different
terminology we can say that our algorithm is wait-free,
which means that each non-faulty process will be able
to finish the whole task, within a predetermined amount
of steps, independent of the actions (or failures) of other
processes.

For a shared array of size N and P processes, our
241

algorithm has to carry out O(N P'°8(*>7)) amount of

work where z = Nwe? . The complexity of parallel al-
gorithms is generally characterized by the total amount
of steps that all processes must execute, which is called
the work of the algorithm, instead of the execution time,
which under ideal circumstances, can be obtained by di-
viding the work by the number of available processes. It

2 Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision

should be noted that the worst case behaviour leading
to the upper bound O(N Pl“g(mTH)) can only be achieved
under a rare lock step scenario of the processes. So, we
expect average complexity to be much better, which has

been confirmed by experiment. In order to understand
the asymptotic behaviour of the bound O(N Pl“g(mT“))
it is interesting to look at the role of z. The value z
roughly denotes the ratio between the length of the ar-
ray (N) and the number of processes (P). In the limit
case, where = goes to infinity, the work complexity con-
verges to O(N). This means that if there are only few
processes, relative to the length of the array, complex-
ity of our algorithm becomes linear in the length of the
array.

There are a number of existing solutions to the Write-
All problem (see [9] for an excellent overview). We com-
pare our algorithm to the algorithms X, X', AW, AWT
and Y that are all suitable for asynchronous PRAMs,
ignoring the solutions suitable for more restricted fault
models. From certain perspectives our algorithm improves
upon all of these.

Algorithm X is the first asynchronous algorithm for
the Write-All problem [3]. It is designed for the situation
where P > N and has work O(N P'8(2)). In [9] a gener-
alisation of X, called X' is presented for the case P < N
which has the same upper bound O(N P'°8(2)) for the
amount of work. For NV = P the algorithm presented
here has the same upper bound as X'. For P < N our
algorithm is an improvement over X', since for P < N

o1

we have > 2 and then O(N P'°8(*37)) is better than
O(N P'os(3)),

In [1] two particularly clever algorithms are proposed,
called AW and AW".

Algorithm AW requires work O(P?+ N log P). When
P < /N this reduces to O(N log N) which is particu-
larly good. However, this bound can only be achieved
assuming that a set of permutations of 1... P with a spe-
cific property is given, which requires exponential time
to calculate. Such a set can be generated at random,
but then the result ‘only’ holds with high probability. In
order to overcome this problem algorithm Y has been
proposed [8]. Algorithm Y is conjectured to have (non
probabilistic) work upper bound O(N log N), which is
confirmed by experiments, but which is unproven.

Algorithm AW needs work O(q N P¢) where € =
log, log ¢° for some constant g that can be freely chosen,
and a constant ¢ which, according to the proof in [9], can
be chosen to be 2. As log, log ¢ goes to 0 when ¢ goes to

infinity, algorithm AWT has superior complexity. How-
ever, the constant amount of work that must be done in
the preprocessing phase (which is independent of N and
P) is exponential in ¢ (see [1]). In order to outperform
algorithm X' for any N and P, it must be the case that
€ < log(2). From this it follows that ¢ must be larger
than 80. Therefore, to outperform our algorithm, ¢ must
be chosen even larger. In the setting for which we de-
veloped our algorithm, we generally have P < v N (and
thus = > 4), so one must choose € < log% to make al-

gorithm AW perform better than our algorithm. This

means that ¢ needs to be larger than 10°. This is the
reason why we expect that our algorithm performs much
better under practical circumstances.

The present paper has the following structure. In Sec-
tion 2 we present the algorithm. In Section 3 we prove its
correctness and show space and time bounds. Section 4
contains some considerations on using a non-uniform tree
as the shared data structure. Finally, Section 5 is re-
served for conclusions and further considerations.

2 A collision-based algorithm
2.1 Basic case

Although the asynchronous Write-All problem in its gen-
eral setting is far from trivial, the case that there are only
two processes (P = 2), allows for a very intuitive and op-
timal solution. This algorithm solves the problem for any
value of N in N + o(N) steps. One process starts at the
left of the array and walks to the right, in the meanwhile
setting the values of the array elements encountered to 1.
The other process does the same from right to left. If the
two processes collide, the whole array is processed and
the processes can stop. In the worst case, one element of
the array is processed twice. We call this algorithm the
Basic Collision algorithm.

In [3] an extension of this algorithm is described,
which works with three processes. It is called algorithm
T. Two processes have the same behaviour as described
above, but the third process behaves differently. It starts
in the middle of the array and fills the array alternately
to the left and to the right. If the first two processes col-
lide, it means that the whole array is processed. If, e.g.,
the first and the third process collide, it means that the
left part of the array is processed. Therefore they move
to the segment of the array that is not processed yet.
The first process starts at the left of this segment, the
third process starts again in the middle of this segment,
and the second process is still busy filling the segment
from the right. This procedure repeats until the array
is completely processed. This algorithm is also optimal
and the work of this algorithm, measured in terms of
actual elements processed, is N + o(N). Algorithm T
does not appear to be generalizable to larger numbers of
processes.

2.2 Generalized case

Our algorithm generalizes the Basic Collision algorithm
in a different way. We will call it the Generalized Colli-
ston algorithm. It is best explained by looking at a simple
example with four processes (P = 4). We choose N = 25
in our example.

The processes operate in pairs. Every pair of pro-
cesses executes the Basic Collision algorithm on succes-
sive segments of the array. Each segment has length 5,
so there are 5 segments. The four processes start at the

Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision 3

Fig. 1. Initial configuration

locations indicated in Figure 1. The arrows indicate the
direction in which each process traverses the segment.

Every time that a segment of the array has been pro-
cessed by a pair, operation continues at the next seg-
ment. The first process of a pair to finish a segment can
directly continue with the next segment, without hav-
ing to wait for the other process. In this way, the pairs
walk towards each other through the array in steps of
length 5 until they collide. A typical path of the four
processes in our example is shown in Figure 2. This fig-
ure shows just one possible path, in which all processes
roughly operate at the same speed. The algorithm, how-
ever, is completely robust with respect to process delays,
failures and restarts. This is because every process po-
tentially visits all array elements. As long as one process
survives, the whole array will be processed.

Fig. 2. Possible paths of the processes

From a higher point of view, the four processes also
execute the Basic Collision algorithm where the grain
size of the work is 5. To see this, we have to consider
every pair as a single aggregated process and every seg-
ment of length 5 as a single aggregated array element. A
collision now takes place at a complete segment, rather
than at a single array element. This explains why the
middle segment in Figure 2 is processed twice.

It is now clear how to generalize this example if we
double the numbers of processes and assume 125 array
elements. We simply add one level to the hierarchy and
have clusters of four processes operate on segments of
length 25, until the clusters collide.

This implies that our algorithm works for any number
of processes which is a power of two, so P = 2* for some
k > 1. Furthermore, we have that the length of the array
is the length of a basic segment to the same power, so
N = z* for some z > 2. In the above example we have
chosen k =2 and z = 5.

In Figure 3 the generalization of the Basic Collision
algorithm is illustrated in a cube which has to be filled
with 1’s by 8 processes. The picture shows pairs of pro-
cesses, clusters of 2 processes, and clusters of 4 processes
racing each other. In this example k = 3 (the dimension
of the cube) so there are 8 processes, and the length of
an edge of the cube is z, so that there are 23 cells to be
filled. This is the biggest example that we can easily vi-

sualize in this way. An example with 16 processes would
require a 4-dimensional figure.

AN

/ﬂ\ Y/
> &

Fig. 3. Generalization of the collision principle illustrated in
a cube.

N\

/ﬂ\/

2.8 Data structures

Additional data structures are needed in order to enable
the processes to decide which array element should be
processed next. First of all, every process has a process
identifier (pid) consisting of a bit string of length k. The
set of all process identifiers is called PID. We use the
functions head and tail to return the first element of a bit
string and the bit string with the first element deleted.
The bit strings will be used to direct the processes to
different parts of the array. There is a nice relation be-
tween the pids of the processes and the initial position of
the processes in the cube from Figure 3. If we consider
the general Boolean k-dimensional hypercube, the pids
correspond to the processes’s initial co-ordinates.

Next, we assume that the processes share a tree of
depth k. According to the above explanation, the tree
should have a uniform fan-out z. This means that there
are exactly z* leaves, which correspond with the ele-
ments of the array. However, we will formulate our algo-
rithm in such a way that it also works for trees with a
non-uniform fan-out, for reasons explained in Section 4.

Every leaf | has an attribute l.value : int that must
be set to 1. The relation between the tree and the cube
from Figure 3 is straightforward. Each level in the tree
corresponds with a dimension, and a cell (cg,c1,c2) of
the cube corresponds with the leaf that we arrive at if
we travel down the tree first taking the co-th branch,
then the ¢;-th branch, and finally the cy-th branch.

The internal nodes of the tree maintain information
on how far the corresponding subtree has been processed
already. Every internal node n has the following three
attributes.

e n.fan : int
This constant denotes the number of children of the
node.

e n.nl:0..n.fan, initially 0
This variable denotes the number of child nodes that
have already been processed, from left to right.

e n.nr:0..n.fan, initially 0
This variable denotes the number of child nodes that
have already been processed, from right to left.

Note that the subtree of node n has been processed
completely if n.nl + n.nr > n.fan.

4 Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision

The root of the tree is denoted by root and the pred-
icate is_leaf determines if a node is a leaf. Similar to
algorithm T in [3], we make use of an atomic compare-
and-swap-like instruction (see e.g. [5]). In the algorithm
below this is denoted by placing angular brackets around
the statement (‘(’ and ‘)’).

2.4 The algorithm

All processes operate in parallel and perform the same
recursive procedure traverse with as the first argument
the process identifier and the second argument the root
of the tree. The recursive calls have as arguments smaller
bit strings and other nodes of the tree. We use notation
from [9] to express this.

forall pid in PID parbegin
traverse(pid,root)
parend

Procedure traverse is defined below.

procedure traverse(bs,node)
var i 0..node.fan;
begin
if is_leaf(node) then
node.value := 1
else
if head(bs) = 0 then
i := node.nl;
while i + node.nr < node.fan do
traverse(tail(bs),child(node,i));
(if node.nl = i then node.nl :=i+14£);
i := node.nl
od
else
i := node.nr;
while node.nl + i < node.fan do
traverse(tail(bs),child(nodenode.fan — 1 — i));
(if node.nr = i then node.nr:=i+1fi);
1 := node.nr
od
fi
fi

end

In the base case where the node is a leaf, the proce-
dure writes the intended value in the array. Otherwise,
the procedure treats the children of the node in a repe-
tition from left to right or from right to left. The choice
between starting left or right is irrelevant for correct-
ness. For the sake of the complexity calculations, we let
the choice depend on the head of the first argument bs,
which is a suffix of the process’s pid. The recursive calls
have the tail of the bit string bs as first argument, so that
the processes start their actions at different points in the
array. Private variable i is introduced to allow modifica-
tion of the shared variables node.nl and node.nr by other
processes.

It is worthwhile to notice that in the case that N = P
the above algorithm is equal to algorithm X (see [3]).

Since in this case we have z = 2 and the tree becomes
a binary tree, which is traversed in exactly the same
way as in algorithm X. The work calculations from Sec-
tion 3.3 will show that in this case the upper bounds of
the Generalized Collision algorithm and algorithm X are
also identical.

3 Analysis of the algorithm
3.1 Correctness

The proof of correctness of the distributed algorithm
consists of two steps. First, we prove partial correctness
(i.e. if one of the processes successfully finishes, the whole
tree has been processed) and, next, we prove termination
(at least one process finishes successfully). If all leaves of
a (sub)tree have been set to 1, we say that the (sub)tree
has been processed.

Lemma 1. The Generalized Collision algorithm is par-
tially correct.

Proof. Assuming that at least one of the processes fin-
ishes successfully, we have to prove that the whole tree
has been processed. This follows immediately from the
following two properties.

1. For every internal node n of the shared tree, it in-
variably holds that m.nl subtrees of node n from left
to right have been processed. Likewise n.nr subtrees
have been processed from right to left.

2. If a call traverse(o,n) (for some bit string o and some
node n) finishes successfully, the subtree rooted in
node n has been processed.

These two properties are proven with simultaneous in-
duction on the depth of node n. The base case, where
node n is a leaf is trivial. For the inductive case, we sup-
pose that node n is an internal node.

1. The value of shared variable n.nl is only incremented
from i to i + 1 if procedure traverse has finished on
the i*" subtree of node n. By induction we then have
that this subtree has been processed, which certifies
this invariant. The variable n.nr is treated similarly.

2. If a call traverse(o,n) finishes, one of the guards i +
n.nr < n.fan and n.nl + i < n.fan must be false.
Notice that in the first case we have i < n.nl and
in the second case i < n.nr. This is due to the fact
that the values of n.nr and n.nl are non-decreasing.
Therefore, if the call traverse(o,n) finishes we have
n.nl + n.nr > n.fan. Using the induction hypothe-
sis, we can conclude that all subtrees of node n are
processed, so the tree rooted in n is processed.

O

Next, we will prove termination of the algorithm.

Lemma 2. The Generalized Collision algorithm termi-
nates, i.e. at least one of the processes finishes success-

fully.

Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision 5

Proof. For this we formulate the following termination

function:
Z n.nl + n.nr

n€internalnodes

The fact that this is a proper termination function
follows from the following observations.

First, the function is bounded. Since for every in-
ternal node n the values of n.nl and n.nr are bounded
by the constant n.fan, the function is bounded by 2N?2
(which is not a tight bound, see Section 3.3). Second, re-
call that the fault model implies that all but one process
may fail. Since there are no blocking statements, the sur-
viving process will continually invoke calls to procedure
traverse, as long as it is not finished. After every call of
this procedure (to, say, node n), the value of n.nl + n.nr
is strictly larger than before this call. Namely, it is incre-
mented with 1 by the calling process, or it is incremented
with at least 1 by one or more other processes.

O

In conclusion, we have that at least one call of tra-
verse(pid,root) finishes successfully (termination) and that
this implies that the complete tree rooted in root has
been processed.

Corollary 1. The Generalized Collision algorithm solves
the asynchronous Write-All problem.

3.2 Space usage

We will show that the processes have only moderate
space requirements.

Lemma 3. The space complezity of the Generalized Col-
lision algorithm is O(N log N + Plog® N).

Proof. The shared data structure consists of the given
array of N bits, together with the data at the internal
nodes of the tree (see e.g. [9] for a description of how
to represent a tree in a heap without overhead). There
are less than N internal nodes. Every internal node n
holds two shared variables of size log n.fan. So the shared
memory has size of O(N log N).

Every process needs a private data structure with
space for k stack frames, since the recursion depth is k.
Each stack frame holds a local variable of size logn.fan
and two parameters of sizes k and log N. Since k is of
order log N, each process needs memory of order log® N.

O

3.3 Work complexity

As was mentioned before, the work complexity of a paral-
lel algorithm is the worst case total amount of work per-
formed by the processes involved. With ‘total amount of
work’ one generally means the number of instructions ex-
ecuted by all processes. We measure the work by count-
ing the total number of calls of procedure traverse in a
worst case scenario. The program text clearly shows that
the number of instructions executed per call of traverse

is bounded by a constant. Therefore, the total number
of procedure calls is an appropriate estimate here.

In the calculations below we will assume that the
number of processes is 2% and that the length of the
array is 2% for some k£ > 1 and z > 2. This allows for
the construction of a tree with a uniform fan-out. We
will briefly consider the case of a tree with non-uniform
fan-out in Section 4.

Because of the recursive structure of the input of the
algorithm, the shared tree with fan-out z, we define the
work inductively, i.e. express the work associated with
a tree of height ¢ in terms of the work associated with
its subtrees of height i — 1. Note, that the number of
processes, which of course plays an important role in de-
termining the work, is 2' (given a tree of height i). In
our first inductive definition of work, however, we will
decouple the number of processes and the height of the
input tree, because, as we will see, subtrees of the in-
put tree can be overloaded with processes (and will be
overloaded in a worst case scenario).

We introduce W; ; as an upper bound on the work
on a tree of height i < j for a subsystem of 27 processes
with pids uniformly distributed for i. Here, we use the
definition that a subsystem of 27 processes has pids uni-
formly distributed for i if every bit sequence of length 4
is a suffix of the pids of precisely 2/~% processes of the
subsystem.

Lemma 4. The work estimates W; ; satisfy the follow-
ing recursive equations.

Wo,j =2/ (1)
Wig1,j =2/ + (@ =)W, 1 + Wy (2)

Proof. Equation (1) is justified by the observation that,
when 27 processes start to work on a tree of height 0, a
single leaf, they will all call procedure traverse once to
set the array item associated with the leaf to 1, resulting
in a work of 27.

Equation (2) is proved in the following way (see also
Figure 4). When 27 processes with pids uniformly dis-
tributed for i + 1 treat a tree of height i + 1, all of
them first have to call procedure traverse at the root
of the subtree. This accounts for the summand 27 in the
right-hand side of (2). Next, the processes split up in two
groups of processes, according to the bit at position i + 1
from the end of their pids. Since the pids are uniformly
distributed over i + 1, both groups have size 27~' and
have pids uniformly distributed over i. One group treats
the subtrees from left to right and the other group vice
versa. The collision principle implies that the two groups
interfere in at most one of the = subtrees, the one where
they collide (the shaded sub-tree in Figure 4). The work
associated with the subtrees can therefore be split in z—1
times the work of 2/ 7! processes on a tree of height i (the
summand (z — 1)W; ;_1), and the work of 27 processes
on a single tree of height ¢ (the summand W ;).

O

In order to be able to simplify the recurrence relation
from Lemma 4, we need the following property which
states that doubling the number of processes doubles
the work:

6 Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision

< 2 proc.

height i + 1

height i

|

X subtrees

Fig. 4. Worst case distribution of processes over subtrees.

Lemma 5. For j > i, we have
2-Wija =W (3)

Proof. We prove this by induction on i. For i = 0 we
have 2- Wy ;1 = 2- 211 =97 = Wo,;. Assuming that
the property holds for i, we derive for i4+1: 2-W; 11 ;1 =
2. (2 (@ —1) Wijo+Wij)=2+(x—-1)-2-
Wij—2+2-Wija=2+@-1)W;j_1+W;; = Wi ;.

O

The above property can also be explained in terms
of pids. When the number of processes is doubled, they
will have to share pids (because j > i). Each process will
have a doppelginger that follows the exact same route
through the tree. This imitative behaviour explains the
doubling of the work.

This leads to the introduction of w;, which, for i > 0,
denotes the work of 27 processes on a tree of height i, so
W = Wch-

Lemma 6. The work estimates wy satisfy the following
recursive equations.

wo =1 ()
wiyr =27 + (x4 Dw; (5)

Proof. Because of Lemma 5 we can rewrite the second
equation of the definition of W as follows:

WH—Lj = 2j + (’1’? — 1)Wi7j71 + 2- Wi7j71
=2+ (z+ 1)Wij 1

The equations now follow easily by setting j =i + 1.
a

Finally, we calculate an appropriate upper bound for
Wi -

Theorem 1. The Generalized Collision algorithm solves

the asynchronous Write-All problem with work complez-
241

ity O(N - P8(°57)) where & = N1/ 108(P)

Proof. Starting from the equations of Lemma 6, we ar-
rive at the desired result with straightforward calcula-

tions.

W
= { solve the recurrence relation }
k
PP AR
i=0
= { simple math }
(z 4 1)k+T — 2k +1

z—1
= { even more simple math }
z+1 e 2K
1k —
mfl(w+) r—1
1 k+1
g{wZQ,hence$+ < 3 and 1>0}
_ -

3-(z+1)*

Hence, we have wy = O((z + 1)¥). We would like to
express the work in terms of N and P, so we do some

more calculations on (z+1)* using the equalities N = z*
and P = 2*:

g (@ + 1)k

(z+1)* =2 -

4 Non-uniform fan-out

Although we were able to prove correctness of the algo-
rithm for trees with non-uniform fan-out, we did assume
uniform fan-out for our complexity calculations. This as-
sumption proved very useful for obtaining a result which
can easily be compared with work calculations for other
algorithms.

Nonetheless, we claim that this assumption is not
critical for the performance of our algorithm. Calcula-
tions and experimentation support this claim. Examples
show that, strictly speaking, an optimal work complex-
ity is almost never achieved with a uniform fan-out. In
almost all cases the work complexity can be slightly im-
proved by rebalancing the tree, while still keeping it
quasi-uniform. By quasi-uniform we mean that the nodes
at the same level of a tree have equal fan-out.

In the case of quasi-uniform fan-out the work load
can be given as a closed expression that contains sum and
product quantifiers. This goes as follows. Let us assume
that every node at level i has fan-out x;. The nodes at
level 0 are leaves. So we have g = 0. The analysis of
Section 3.3 can be repeated and then yields instead of

Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision 7

formula (5) the recursive equation
wip1 = 27 4 (g + Dy

This implies that the total work load satisfies

k k
wk:ZQi H (x; +1)
=0 j=i+1

We now have to minimize the value of wj, under the con-
straint HI;:] x; > N for given value of k. It is not hard to
make a functional program, e.g., in the language Haskell,
to solve this optimization problem for given values of N
and k.

It is even possible to find an approximate solution
by analytic means. For that purpose, we define the real
functions f(z) and g(z) with z = (z1,...,z;) € R* by

k k k
f@=> 2" T[] @+1) . g@)=][=-N
i=0 j—i+1 =1

We are only interested in vectors x with all coordinates
x; > 0 (and preferably natural). So, now we have to min-
imize f(x) under the constraint g(z) = 0 and all z; > 0.
According to the method of Lagrange multipliers (see
e.g. [2] p. 315), we have that, if function f has an ex-
tremum at x under the constraint g(x) = 0, the gradient
of f at z is a real multiple of the gradient of ¢g. In this
way, one finds that there is one optimal vector x and
that it satisfies the recurrence relation

re= /(0423 T[20 +1)7)

i=1 j=2

Note that this formula is independent of k. It implies that
the numbers z, form a decreasing sequence of positive
reals. In particular, we have x5, = %an. Of course, this
only yields the optimum if the numbers z; are allowed
to be real.

The Haskell program mentioned above shows that
for N = 12000 and k£ = 5, the optimal work load is
obtained for the sequence =z with z; = 16, o = 6, and
r3 = x4 = x5 = 5 In the general case we see that an
optimal work complexity is obtained if the fan-out for
all levels are approximately the same, except for the fan-
out at the level above the leaves, which should be three
times larger.

We expect that in practice rebalancing the tree will
yield at most a constant speed up in performance.

5 Observations and conclusions

We have presented an algorithm for the asynchronous
Write-All problem. This algorithm is suitable for a mul-
tiprocess environment. It has good performance due to
the lack of explicit synchronization. In particular this is
the case when the task of setting a variable to one is re-
placed by a more time consuming operation. Moreover,

the algorithm is fault tolerant in the sense that it works
correctly even if individual processes can fail or can stop
and resume arbitrarily, assuming that not all processes
die. Finally, our algorithm performs a kind of dynamic
load balancing. Every process checks in a specific order
all the tasks that must be executed and if it finds one
that has not been performed, it carries it out. Due to
the data structures involved, this can be done with min-
imal duplication of work. This guarantees a distribution
of tasks over processes, where no process will idle when
work can be done.

A potential drawback of our algorithm is that it uti-
lizes on compare and swap registers. An interesting ques-
tion is whether these can be replaced by atomic reads
and writes. We believe that correctness of the algorithm
is maintained by replacing the compare and swap regis-
ter in a straightforward way by atomic reads and writes,
but that the work increases. We believe that this is even
the case when the compare and swap register is replaced
by a test and set register.

Our algorithm improves upon existing asynchronous
algorithms in several ways. In comparison with most
published algorithms it has a better order of perfor-
mance. This does not hold for algorithms AW and AW,
which are based on a rather different algorithmic con-
cept than our algorithm. Algorithm AW ‘only’ improves
upon our algorithm with high probability, although we
expect that in practice this algorithm has a good perfor-
mance. From a theoretical perspective AW? performs
better than our algorithm, but due to a high initial con-
stant amount of work AW is not suitable for any prac-
tical purposes.

To ascertain these findings, we have implemented our
algorithm and have run it for different numbers of pro-
cesses, where we compared the number of process steps
with the worst case estimate of the amount of work that
needs to be done. Without going into detail, as we believe
that it is very hard to draw universal conclusions from
experiments, we found that the work always remained
far below our worst case estimate.

Finally, we make some observations concerning the
restrictions on the values for N and P. In the case that
we use a tree with uniform fan-out as the shared data
structure, an array of size N = zF can be accommo-
dated. However, such uniform fan-out is not needed for
obtaining an optimal work complexity. By adjusting the
fan-out of the nodes in the tree, it is possible to accom-
modate an array with arbitrary size N. Furthermore,
since processes need not execute, we can take P < 2k,
provided all process identifiers differ and have a length
at least, equal to the depth of the tree. The work remains
essentially the same.

Acknowledgements. We thank Dragan BoSnacki, André En-
gels, Peter Hilbers, Jan Jongejan, Izak van Langevelde, Johan
Lukkien, Alex Shvartsman, and the anonymous referees for
comments, ideas and references.

8 Jan Friso Groote et al.: An algorithm for the asynchronous Write-All problem based on process collision

References

1. R.J. Anderson and H. Woll. Algorithms for the cer-
tified write-all problem. Siam Journal of Computing,
26(5):1277-1283, 1997.

2. T.M. Apostol. Calculus, Vol. II. Wiley 1969.

3. J.F. Buss, P.C. Kanellakis, P.L.. Ragde and A.A. Shvarts-
man. Parallel Algorithms with Processor Failures and De-
lays. Journal of Algorithms, 20:45-86, 1996.

4. J.F. Groote and W.H. Hesselink. Synchronization-free
parallel accessible hash-tables. In preparation, 2000.

5. M.P. Herlihy. Wait free synchronization. ACM Trans. on
Program. Languages and Systems 13 (1991) 124-149.

6. W.H. Hesselink and J.F. Groote. Waitfree Distributed
Memory Management by Create, and Read Until Deletion
(CRUD). Technical report SEN-R9811, CWI, Amsterdam,
1998.

7. P.C. Kanellakis and A.A. Shvartsman. Efficient parallel
algorithms can be made robust. Distributed Computing,
5(4):201-217, 1992. A preliminary version appeared in
Proceedings of the 8th ACM PODC, pages 211-222, 1989.

8. P.C. Kanellakis and A.A. Shvartsman. Fault-tolerance and
efficiency in massively parallel algorithms. In G.M. Koob
and C.G. Lau, editors, Foundations of Dependable Com-
puting — Paradigms for Dependable Applications, pages
125 154, Kluwer Academic, 1994.

9. P.C. Kanellakis and A.A. Shvartsman. Fault-tolerant par-
allel computation. Kluwer Academic Publishers, 1997.

10. Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spi-
rakis. Combining tentative and definite executions for de-
pendable parallel computing in Proceedings of the 23rd
ACM Symposium on Theory of Computing, 1991.

