
Distributed Computing manusript No.(will be inserted by the editor)
An algorithm for the asynhronous Write-All problem based on proessollision⋆Jan Friso Groote1;2, Wim H. Hesselink3, Sjouke Mauw1;2, Rogier Vermeulen11 Eindhoven University of Tehnology, P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands. e-mail: sjouke�win.tue.nl2 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands. e-mail: jfg�wi.nl3 University of Groningen, P.O. Box 800, NL-9700 AV Groningen, The Netherlands. e-mail: wim�s.rug.nlSummary. The problem of using P proesses to writea given value to all positions of a shared array of size Nis alled the Write-All problem. We present and analyzean asynhronous algorithm with work omplexity O(N �P log( x+1x )), where x = N1= log(P ) (assuming N = xk andP = 2k). Our algorithm is a generalization of the naivetwo-proessor algorithm where the two proesses eahstart at one side of the array and walk towards eahother until they ollide.Key words: write-all problem { wait-free { distributedalgorithms { work omplexity { PRAM { dynami loadbalaning.1 IntrodutionThe Write-All problem is de�ned as follows. Use P pro-esses (or proessors) to write a given value to all posi-tions of a shared array of size N . Without loss of gener-ality, we shall assume that the array is an integer arrayand that 1 is the value to be written to all its positions.If the proesses are reliable and run equally fast, it iseasy to ome up with straightforward, optimal solutionsfor this problem. The situation is quite di�erent, how-ever, if proesses an be faulty or run at widely varyingspeeds while at least one proess remains ative. Kedemet al. [10℄ have shown that under these irumstanes anN + 
(P logN) lower bound exists on the amount ofwork proesses must arry out when proesses an fail.This means that even if all proesses run fully in paralleland no proess is atually failing, at least 
(logN) timeis required to set the array.The original motivation for the Write-All problemomes from [7℄. Here it was shown that any program on a? Corresponding author: Dr. S. Mauw, Department ofMathematis and Computing Siene, Eindhoven Universityof Tehnology, P.O. Box 513, NL-5600 MB Eindhoven, TheNetherlands, Tel. +31 40 2472908, (ser. 2474124), Fax +3140 2475361, E-mail sjouke�win.tue.nl

P proess synhronous PRAM (Parallel Random AessMahine) running in time T an be exeuted on anyunreliable PRAM with work omplexity W (P ):T whereW (P ) is the work omplexity of any algorithm solvingthe Write-All problem of size P . In [9℄ an overview isgiven of the algorithms and PRAM simulations that havebeen developed so far.Our motivation is quite di�erent. It omes from thedesign of wait-free or asynhronous algorithms [4{6℄, toobtain fast, reliable programs for general purpose paral-lel omputers with typially a few dozen proesses thatrun under widely varying loads.A ommon problem on suh mahines is to arry outa task, onsisting of N independent subtasks, with Pproesses, as quikly as possible. Suh tasks are, for in-stane, opying an array, searhing an unordered table,and applying a funtion to all elements of a matrix. Weenountered this problem when we had to �nd a paral-lel solution to refresh a hashtable by opying all validelements to a new array [4℄.If we abstrat from the nature of the subtasks, theproblem of exeuting N independent tasks is adequatelyharaterized by the Write-All problem.In this paper we present a rather straightforwardalgorithm to solve the Write-All problem on an asyn-hronous PRAM, i.e. a mahine on whih the proessesan be stopped and restarted at will. This means that itis also suitable for all other fault models as mentioned inKanellakis and Shvartsman, page 13 [9℄. Using di�erentterminology we an say that our algorithm is wait-free,whih means that eah non-faulty proess will be ableto �nish the whole task, within a predetermined amountof steps, independent of the ations (or failures) of otherproesses.For a shared array of size N and P proesses, ouralgorithm has to arry out O(N P log( x+1x )) amount ofwork where x = N 1log P . The omplexity of parallel al-gorithms is generally haraterized by the total amountof steps that all proesses must exeute, whih is alledthe work of the algorithm, instead of the exeution time,whih under ideal irumstanes, an be obtained by di-viding the work by the number of available proesses. It



2 Jan Friso Groote et al.: An algorithm for the asynhronous Write-All problem based on proess ollisionshould be noted that the worst ase behaviour leadingto the upper bound O(N P log( x+1x )) an only be ahievedunder a rare lok step senario of the proesses. So, weexpet average omplexity to be muh better, whih hasbeen on�rmed by experiment. In order to understandthe asymptoti behaviour of the bound O(N P log(x+1x ))it is interesting to look at the role of x. The value xroughly denotes the ratio between the length of the ar-ray (N) and the number of proesses (P ). In the limitase, where x goes to in�nity, the work omplexity on-verges to O(N). This means that if there are only fewproesses, relative to the length of the array, omplex-ity of our algorithm beomes linear in the length of thearray.There are a number of existing solutions to theWrite-All problem (see [9℄ for an exellent overview). We om-pare our algorithm to the algorithms X , X 0, AW, AW Tand Y that are all suitable for asynhronous PRAMs,ignoring the solutions suitable for more restrited faultmodels. From ertain perspetives our algorithm improvesupon all of these.Algorithm X is the �rst asynhronous algorithm fortheWrite-All problem [3℄. It is designed for the situationwhere P � N and has work O(N P log( 32 )). In [9℄ a gener-alisation of X , alled X 0 is presented for the ase P � Nwhih has the same upper bound O(N P log( 32 )) for theamount of work. For N = P the algorithm presentedhere has the same upper bound as X 0. For P < N ouralgorithm is an improvement over X 0, sine for P < Nwe have x > 2 and then O(N P log(x+1x )) is better thanO(N P log( 32 )).In [1℄ two partiularly lever algorithms are proposed,alled AW and AW T .Algorithm AW requires workO(P 2+N logP ). WhenP � pN this redues to O(N logN) whih is partiu-larly good. However, this bound an only be ahievedassuming that a set of permutations of 1 : : : P with a spe-i� property is given, whih requires exponential timeto alulate. Suh a set an be generated at random,but then the result `only' holds with high probability. Inorder to overome this problem algorithm Y has beenproposed [8℄. Algorithm Y is onjetured to have (nonprobabilisti) work upper bound O(N logN), whih ison�rmed by experiments, but whih is unproven.Algorithm AW T needs work O(q N P �) where � =logq log q for some onstant q that an be freely hosen,and a onstant  whih, aording to the proof in [9℄, anbe hosen to be 2. As logq log q2 goes to 0 when q goes toin�nity, algorithm AW T has superior omplexity. How-ever, the onstant amount of work that must be done inthe preproessing phase (whih is independent of N andP ) is exponential in q (see [1℄). In order to outperformalgorithm X 0 for any N and P , it must be the ase that� < log( 32 ). From this it follows that q must be largerthan 80. Therefore, to outperform our algorithm, q mustbe hosen even larger. In the setting for whih we de-veloped our algorithm, we generally have P < pN (andthus x > 4), so one must hoose � < log 54 to make al-gorithm AW T perform better than our algorithm. This

means that q needs to be larger than 105. This is thereason why we expet that our algorithm performs muhbetter under pratial irumstanes.The present paper has the following struture. In Se-tion 2 we present the algorithm. In Setion 3 we prove itsorretness and show spae and time bounds. Setion 4ontains some onsiderations on using a non-uniform treeas the shared data struture. Finally, Setion 5 is re-served for onlusions and further onsiderations.2 A ollision-based algorithm2.1 Basi aseAlthough the asynhronousWrite-All problem in its gen-eral setting is far from trivial, the ase that there are onlytwo proesses (P = 2), allows for a very intuitive and op-timal solution. This algorithm solves the problem for anyvalue of N in N + o(N) steps. One proess starts at theleft of the array and walks to the right, in the meanwhilesetting the values of the array elements enountered to 1.The other proess does the same from right to left. If thetwo proesses ollide, the whole array is proessed andthe proesses an stop. In the worst ase, one element ofthe array is proessed twie. We all this algorithm theBasi Collision algorithm.In [3℄ an extension of this algorithm is desribed,whih works with three proesses. It is alled algorithmT. Two proesses have the same behaviour as desribedabove, but the third proess behaves di�erently. It startsin the middle of the array and �lls the array alternatelyto the left and to the right. If the �rst two proesses ol-lide, it means that the whole array is proessed. If, e.g.,the �rst and the third proess ollide, it means that theleft part of the array is proessed. Therefore they moveto the segment of the array that is not proessed yet.The �rst proess starts at the left of this segment, thethird proess starts again in the middle of this segment,and the seond proess is still busy �lling the segmentfrom the right. This proedure repeats until the arrayis ompletely proessed. This algorithm is also optimaland the work of this algorithm, measured in terms ofatual elements proessed, is N + o(N). Algorithm Tdoes not appear to be generalizable to larger numbers ofproesses.2.2 Generalized aseOur algorithm generalizes the Basi Collision algorithmin a di�erent way. We will all it the Generalized Colli-sion algorithm. It is best explained by looking at a simpleexample with four proesses (P = 4). We hoose N = 25in our example.The proesses operate in pairs. Every pair of pro-esses exeutes the Basi Collision algorithm on sues-sive segments of the array. Eah segment has length 5,so there are 5 segments. The four proesses start at the
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pFig. 1. Initial on�gurationloations indiated in Figure 1. The arrows indiate thediretion in whih eah proess traverses the segment.Every time that a segment of the array has been pro-essed by a pair, operation ontinues at the next seg-ment. The �rst proess of a pair to �nish a segment andiretly ontinue with the next segment, without hav-ing to wait for the other proess. In this way, the pairswalk towards eah other through the array in steps oflength 5 until they ollide. A typial path of the fourproesses in our example is shown in Figure 2. This �g-ure shows just one possible path, in whih all proessesroughly operate at the same speed. The algorithm, how-ever, is ompletely robust with respet to proess delays,failures and restarts. This is beause every proess po-tentially visits all array elements. As long as one proesssurvives, the whole array will be proessed.
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Fig. 2. Possible paths of the proessesFrom a higher point of view, the four proesses alsoexeute the Basi Collision algorithm where the grainsize of the work is 5. To see this, we have to onsiderevery pair as a single aggregated proess and every seg-ment of length 5 as a single aggregated array element. Aollision now takes plae at a omplete segment, ratherthan at a single array element. This explains why themiddle segment in Figure 2 is proessed twie.It is now lear how to generalize this example if wedouble the numbers of proesses and assume 125 arrayelements. We simply add one level to the hierarhy andhave lusters of four proesses operate on segments oflength 25, until the lusters ollide.This implies that our algorithmworks for any numberof proesses whih is a power of two, so P = 2k for somek � 1. Furthermore, we have that the length of the arrayis the length of a basi segment to the same power, soN = xk for some x � 2. In the above example we havehosen k = 2 and x = 5.In Figure 3 the generalization of the Basi Collisionalgorithm is illustrated in a ube whih has to be �lledwith 1's by 8 proesses. The piture shows pairs of pro-esses, lusters of 2 proesses, and lusters of 4 proessesraing eah other. In this example k = 3 (the dimensionof the ube) so there are 8 proesses, and the length ofan edge of the ube is x, so that there are x3 ells to be�lled. This is the biggest example that we an easily vi-

sualize in this way. An example with 16 proesses wouldrequire a 4-dimensional �gure.
Fig. 3. Generalization of the ollision priniple illustrated ina ube.2.3 Data struturesAdditional data strutures are needed in order to enablethe proesses to deide whih array element should beproessed next. First of all, every proess has a proessidenti�er (pid) onsisting of a bit string of length k. Theset of all proess identi�ers is alled PID. We use thefuntions head and tail to return the �rst element of a bitstring and the bit string with the �rst element deleted.The bit strings will be used to diret the proesses todi�erent parts of the array. There is a nie relation be-tween the pids of the proesses and the initial position ofthe proesses in the ube from Figure 3. If we onsiderthe general Boolean k-dimensional hyperube, the pidsorrespond to the proesses's initial o-ordinates.Next, we assume that the proesses share a tree ofdepth k. Aording to the above explanation, the treeshould have a uniform fan-out x. This means that thereare exatly xk leaves, whih orrespond with the ele-ments of the array. However, we will formulate our algo-rithm in suh a way that it also works for trees with anon-uniform fan-out, for reasons explained in Setion 4.Every leaf l has an attribute l:value : int that mustbe set to 1. The relation between the tree and the ubefrom Figure 3 is straightforward. Eah level in the treeorresponds with a dimension, and a ell (0; 1; 2) ofthe ube orresponds with the leaf that we arrive at ifwe travel down the tree �rst taking the 0-th branh,then the 1-th branh, and �nally the 2-th branh.The internal nodes of the tree maintain informationon how far the orresponding subtree has been proessedalready. Every internal node n has the following threeattributes.� n:fan : intThis onstant denotes the number of hildren of thenode.� n:nl : 0 :: n:fan, initially 0This variable denotes the number of hild nodes thathave already been proessed, from left to right.� n:nr : 0 :: n:fan, initially 0This variable denotes the number of hild nodes thathave already been proessed, from right to left.Note that the subtree of node n has been proessedompletely if n:nl + n:nr � n:fan.



4 Jan Friso Groote et al.: An algorithm for the asynhronous Write-All problem based on proess ollisionThe root of the tree is denoted by root and the pred-iate is leaf determines if a node is a leaf. Similar toalgorithm T in [3℄, we make use of an atomi ompare-and-swap-like instrution (see e.g. [5℄). In the algorithmbelow this is denoted by plaing angular brakets aroundthe statement (`h' and `i').2.4 The algorithmAll proesses operate in parallel and perform the samereursive proedure traverse with as the �rst argumentthe proess identi�er and the seond argument the rootof the tree. The reursive alls have as arguments smallerbit strings and other nodes of the tree. We use notationfrom [9℄ to express this.forall pid in PID parbegintraverse(pid,root)parendProedure traverse is de�ned below.proedure traverse(bs,node)var i: 0 :: node:fan;beginif is leaf(node) thennode.value := 1elseif head(bs) = 0 theni := node.nl;while i+ node:nr < node:fan dotraverse(tail(bs),hild(node,i));h if node.nl = i then node.nl := i+ 1 � i;i := node.nlodelsei := node.nr;while node:nl + i < node:fan dotraverse(tail(bs),hild(node,node:fan � 1� i));h if node.nr = i then node.nr := i+ 1 � i;i := node.nrod��endIn the base ase where the node is a leaf, the proe-dure writes the intended value in the array. Otherwise,the proedure treats the hildren of the node in a repe-tition from left to right or from right to left. The hoiebetween starting left or right is irrelevant for orret-ness. For the sake of the omplexity alulations, we letthe hoie depend on the head of the �rst argument bs,whih is a suÆx of the proess's pid. The reursive allshave the tail of the bit string bs as �rst argument, so thatthe proesses start their ations at di�erent points in thearray. Private variable i is introdued to allow modi�a-tion of the shared variables node.nl and node.nr by otherproesses.It is worthwhile to notie that in the ase that N = Pthe above algorithm is equal to algorithm X (see [3℄).

Sine in this ase we have x = 2 and the tree beomesa binary tree, whih is traversed in exatly the sameway as in algorithm X. The work alulations from Se-tion 3.3 will show that in this ase the upper bounds ofthe Generalized Collision algorithm and algorithm X arealso idential.3 Analysis of the algorithm3.1 CorretnessThe proof of orretness of the distributed algorithmonsists of two steps. First, we prove partial orretness(i.e. if one of the proesses suessfully �nishes, the wholetree has been proessed) and, next, we prove termination(at least one proess �nishes suessfully). If all leaves ofa (sub)tree have been set to 1, we say that the (sub)treehas been proessed.Lemma 1. The Generalized Collision algorithm is par-tially orret.Proof. Assuming that at least one of the proesses �n-ishes suessfully, we have to prove that the whole treehas been proessed. This follows immediately from thefollowing two properties.1. For every internal node n of the shared tree, it in-variably holds that n.nl subtrees of node n from leftto right have been proessed. Likewise n.nr subtreeshave been proessed from right to left.2. If a all traverse(�,n) (for some bit string � and somenode n) �nishes suessfully, the subtree rooted innode n has been proessed.These two properties are proven with simultaneous in-dution on the depth of node n. The base ase, wherenode n is a leaf is trivial. For the indutive ase, we sup-pose that node n is an internal node.1. The value of shared variable n.nl is only inrementedfrom i to i + 1 if proedure traverse has �nished onthe ith subtree of node n. By indution we then havethat this subtree has been proessed, whih erti�esthis invariant. The variable n.nr is treated similarly.2. If a all traverse(�,n) �nishes, one of the guards i+n:nr < n:fan and n:nl + i < n:fan must be false.Notie that in the �rst ase we have i � n:nl andin the seond ase i � n:nr. This is due to the fatthat the values of n:nr and n:nl are non-dereasing.Therefore, if the all traverse(�,n) �nishes we haven:nl + n:nr � n:fan. Using the indution hypothe-sis, we an onlude that all subtrees of node n areproessed, so the tree rooted in n is proessed. utNext, we will prove termination of the algorithm.Lemma 2. The Generalized Collision algorithm termi-nates, i.e. at least one of the proesses �nishes suess-fully.



Jan Friso Groote et al.: An algorithm for the asynhronous Write-All problem based on proess ollision 5Proof. For this we formulate the following terminationfuntion:
∑n2internalnodes n:nl+ n:nrThe fat that this is a proper termination funtionfollows from the following observations.First, the funtion is bounded. Sine for every in-ternal node n the values of n.nl and n.nr are boundedby the onstant n:fan, the funtion is bounded by 2N2(whih is not a tight bound, see Setion 3.3). Seond, re-all that the fault model implies that all but one proessmay fail. Sine there are no bloking statements, the sur-viving proess will ontinually invoke alls to proeduretraverse, as long as it is not �nished. After every all ofthis proedure (to, say, node n), the value of n:nl+n:nris stritly larger than before this all. Namely, it is inre-mented with 1 by the alling proess, or it is inrementedwith at least 1 by one or more other proesses. utIn onlusion, we have that at least one all of tra-verse(pid,root) �nishes suessfully (termination) and thatthis implies that the omplete tree rooted in root hasbeen proessed.Corollary 1. The Generalized Collision algorithm solvesthe asynhronous Write-All problem.3.2 Spae usageWe will show that the proesses have only moderatespae requirements.Lemma 3. The spae omplexity of the Generalized Col-lision algorithm is O(N logN + P log2N).Proof. The shared data struture onsists of the givenarray of N bits, together with the data at the internalnodes of the tree (see e.g. [9℄ for a desription of howto represent a tree in a heap without overhead). Thereare less than N internal nodes. Every internal node nholds two shared variables of size logn:fan. So the sharedmemory has size of O(N logN).Every proess needs a private data struture withspae for k stak frames, sine the reursion depth is k.Eah stak frame holds a loal variable of size logn:fanand two parameters of sizes k and logN . Sine k is oforder logN , eah proess needs memory of order log2N .ut3.3 Work omplexityAs was mentioned before, the work omplexity of a paral-lel algorithm is the worst ase total amount of work per-formed by the proesses involved. With `total amount ofwork' one generally means the number of instrutions ex-euted by all proesses. We measure the work by ount-ing the total number of alls of proedure traverse in aworst ase senario. The program text learly shows thatthe number of instrutions exeuted per all of traverse

is bounded by a onstant. Therefore, the total numberof proedure alls is an appropriate estimate here.In the alulations below we will assume that thenumber of proesses is 2k and that the length of thearray is xk for some k � 1 and x � 2. This allows forthe onstrution of a tree with a uniform fan-out. Wewill briey onsider the ase of a tree with non-uniformfan-out in Setion 4.Beause of the reursive struture of the input of thealgorithm, the shared tree with fan-out x, we de�ne thework indutively, i.e. express the work assoiated witha tree of height i in terms of the work assoiated withits subtrees of height i � 1. Note, that the number ofproesses, whih of ourse plays an important role in de-termining the work, is 2i (given a tree of height i). Inour �rst indutive de�nition of work, however, we willdeouple the number of proesses and the height of theinput tree, beause, as we will see, subtrees of the in-put tree an be overloaded with proesses (and will beoverloaded in a worst ase senario).We introdue Wi;j as an upper bound on the workon a tree of height i � j for a subsystem of 2j proesseswith pids uniformly distributed for i. Here, we use thede�nition that a subsystem of 2j proesses has pids uni-formly distributed for i if every bit sequene of length iis a suÆx of the pids of preisely 2j�i proesses of thesubsystem.Lemma 4. The work estimates Wi;j satisfy the follow-ing reursive equations.W0;j = 2j (1)Wi+1;j = 2j + (x� 1)Wi;j�1 +Wi;j (2)Proof. Equation (1) is justi�ed by the observation that,when 2j proesses start to work on a tree of height 0, asingle leaf, they will all all proedure traverse one toset the array item assoiated with the leaf to 1, resultingin a work of 2j .Equation (2) is proved in the following way (see alsoFigure 4). When 2j proesses with pids uniformly dis-tributed for i + 1 treat a tree of height i + 1, all ofthem �rst have to all proedure traverse at the rootof the subtree. This aounts for the summand 2j in theright-hand side of (2). Next, the proesses split up in twogroups of proesses, aording to the bit at position i+1from the end of their pids. Sine the pids are uniformlydistributed over i + 1, both groups have size 2j�1 andhave pids uniformly distributed over i. One group treatsthe subtrees from left to right and the other group vieversa. The ollision priniple implies that the two groupsinterfere in at most one of the x subtrees, the one wherethey ollide (the shaded sub-tree in Figure 4). The workassoiated with the subtrees an therefore be split in x�1times the work of 2j�1 proesses on a tree of height i (thesummand (x � 1)Wi;j�1), and the work of 2j proesseson a single tree of height i (the summand Wi;j). utIn order to be able to simplify the reurrene relationfrom Lemma 4, we need the following property whihstates that doubling the number of proesses doublesthe work:
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Fig. 4. Worst ase distribution of proesses over subtrees.Lemma 5. For j > i, we have2 �Wi;j�1 = Wi;j (3)Proof. We prove this by indution on i. For i = 0 wehave 2 �W0;j�1 = 2 � 2j�1 = 2j = W0;j . Assuming thatthe property holds for i, we derive for i+1: 2�Wi+1;j�1 =2 � (2j�1 + (x � 1) �Wi;j�2 +Wi;j�1) = 2j + (x � 1) � 2 �Wi;j�2+2 �Wi;j�1 = 2j+(x�1)Wi;j�1+Wi;j = Wi+1;j .utThe above property an also be explained in termsof pids. When the number of proesses is doubled, theywill have to share pids (beause j > i). Eah proess willhave a doppelg�anger that follows the exat same routethrough the tree. This imitative behaviour explains thedoubling of the work.This leads to the introdution of wi, whih, for i � 0,denotes the work of 2i proesses on a tree of height i, sowk = Wk;k .Lemma 6. The work estimates wk satisfy the followingreursive equations.w0 = 1 (4)wi+1 = 2i+1 + (x+ 1)wi (5)Proof. Beause of Lemma 5 we an rewrite the seondequation of the de�nition of W as follows:Wi+1;j = 2j + (x � 1)Wi;j�1 + 2 �Wi;j�1= 2j + (x + 1)Wi;j�1The equations now follow easily by setting j = i+ 1. utFinally, we alulate an appropriate upper bound forwk.Theorem 1. The Generalized Collision algorithm solvesthe asynhronous Write-All problem with work omplex-ity O(N � P log( x+1x )), where x = N1= log(P ).Proof. Starting from the equations of Lemma 6, we ar-rive at the desired result with straightforward alula-

tions. wk= f solve the reurrene relation gk
∑i=0 2k�i(x+ 1)i= f simple math g(x + 1)k+1 � 2k+1x� 1= f even more simple math gx+ 1x� 1(x+ 1)k � 2k+1x� 1� f x � 2, hene x+ 1x� 1 � 3 and 2k+1x� 1 > 0 g3 � (x+ 1)kHene, we have wk = O((x + 1)k). We would like toexpress the work in terms of N and P , so we do somemore alulations on (x+1)k , using the equalitiesN = xkand P = 2k: (x+ 1)k = xk (x+ 1)kxk= xk(x+ 1x )k= N �(x+ 1x )log(P )= N � P log( x+1x ) ut4 Non-uniform fan-outAlthough we were able to prove orretness of the algo-rithm for trees with non-uniform fan-out, we did assumeuniform fan-out for our omplexity alulations. This as-sumption proved very useful for obtaining a result whihan easily be ompared with work alulations for otheralgorithms.Nonetheless, we laim that this assumption is notritial for the performane of our algorithm. Calula-tions and experimentation support this laim. Examplesshow that, stritly speaking, an optimal work omplex-ity is almost never ahieved with a uniform fan-out. Inalmost all ases the work omplexity an be slightly im-proved by rebalaning the tree, while still keeping itquasi-uniform. By quasi-uniform we mean that the nodesat the same level of a tree have equal fan-out.In the ase of quasi-uniform fan-out the work loadan be given as a losed expression that ontains sum andprodut quanti�ers. This goes as follows. Let us assumethat every node at level i has fan-out xi. The nodes atlevel 0 are leaves. So we have x0 = 0. The analysis ofSetion 3.3 an be repeated and then yields instead of



Jan Friso Groote et al.: An algorithm for the asynhronous Write-All problem based on proess ollision 7formula (5) the reursive equationwi+1 = 2i+1 + (xi+1 + 1)wiThis implies that the total work load satis�eswk = k
∑i=0 2i k

∏j=i+1(xj + 1)We now have to minimize the value of wk under the on-straint∏kj=1 xj � N for given value of k. It is not hard tomake a funtional program, e.g., in the language Haskell,to solve this optimization problem for given values of Nand k.It is even possible to �nd an approximate solutionby analyti means. For that purpose, we de�ne the realfuntions f(x) and g(x) with x = (x1; : : : ; xk) 2 IRk byf(x) = k
∑i=0 2i k

∏j=i+1(xj + 1) ; g(x) = k
∏j=1 xj �NWe are only interested in vetors x with all oordinatesxi > 0 (and preferably natural). So, now we have to min-imize f(x) under the onstraint g(x) = 0 and all xi > 0.Aording to the method of Lagrange multipliers (seee.g. [2℄ p. 315), we have that, if funtion f has an ex-tremum at x under the onstraint g(x) = 0, the gradientof f at x is a real multiple of the gradient of g. In thisway, one �nds that there is one optimal vetor x andthat it satis�es the reurrene relationxr = x1=(1 + 2 r�1

∑i=1 i
∏j=2 2(xj + 1)�1)Note that this formula is independent of k. It implies thatthe numbers xr form a dereasing sequene of positivereals. In partiular, we have x2 = 13x1. Of ourse, thisonly yields the optimum if the numbers xi are allowedto be real.The Haskell program mentioned above shows thatfor N = 12000 and k = 5, the optimal work load isobtained for the sequene x with x1 = 16, x2 = 6, andx3 = x4 = x5 = 5 In the general ase we see that anoptimal work omplexity is obtained if the fan-out forall levels are approximately the same, exept for the fan-out at the level above the leaves, whih should be threetimes larger.We expet that in pratie rebalaning the tree willyield at most a onstant speed up in performane.5 Observations and onlusionsWe have presented an algorithm for the asynhronousWrite-All problem. This algorithm is suitable for a mul-tiproess environment. It has good performane due tothe lak of expliit synhronization. In partiular this isthe ase when the task of setting a variable to one is re-plaed by a more time onsuming operation. Moreover,

the algorithm is fault tolerant in the sense that it worksorretly even if individual proesses an fail or an stopand resume arbitrarily, assuming that not all proessesdie. Finally, our algorithm performs a kind of dynamiload balaning. Every proess heks in a spei� orderall the tasks that must be exeuted and if it �nds onethat has not been performed, it arries it out. Due tothe data strutures involved, this an be done with min-imal dupliation of work. This guarantees a distributionof tasks over proesses, where no proess will idle whenwork an be done.A potential drawbak of our algorithm is that it uti-lizes on ompare and swap registers. An interesting ques-tion is whether these an be replaed by atomi readsand writes. We believe that orretness of the algorithmis maintained by replaing the ompare and swap regis-ter in a straightforward way by atomi reads and writes,but that the work inreases. We believe that this is eventhe ase when the ompare and swap register is replaedby a test and set register.Our algorithm improves upon existing asynhronousalgorithms in several ways. In omparison with mostpublished algorithms it has a better order of perfor-mane. This does not hold for algorithms AW and AW T ,whih are based on a rather di�erent algorithmi on-ept than our algorithm. Algorithm AW `only' improvesupon our algorithm with high probability, although weexpet that in pratie this algorithm has a good perfor-mane. From a theoretial perspetive AW T performsbetter than our algorithm, but due to a high initial on-stant amount of work AW T is not suitable for any pra-tial purposes.To asertain these �ndings, we have implemented ouralgorithm and have run it for di�erent numbers of pro-esses, where we ompared the number of proess stepswith the worst ase estimate of the amount of work thatneeds to be done. Without going into detail, as we believethat it is very hard to draw universal onlusions fromexperiments, we found that the work always remainedfar below our worst ase estimate.Finally, we make some observations onerning therestritions on the values for N and P. In the ase thatwe use a tree with uniform fan-out as the shared datastruture, an array of size N = xk an be aommo-dated. However, suh uniform fan-out is not needed forobtaining an optimal work omplexity. By adjusting thefan-out of the nodes in the tree, it is possible to aom-modate an array with arbitrary size N . Furthermore,sine proesses need not exeute, we an take P � 2k,provided all proess identi�ers di�er and have a lengthat least equal to the depth of the tree. The work remainsessentially the same.Aknowledgements. We thank Dragan Bo�sna�ki, Andr�e En-gels, Peter Hilbers, Jan Jongejan, Izak van Langevelde, JohanLukkien, Alex Shvartsman, and the anonymous referees foromments, ideas and referenes.
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