
Distributed Computing manus
ript No.(will be inserted by the editor)
An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollision⋆Jan Friso Groote1;2, Wim H. Hesselink3, Sjouke Mauw1;2, Rogier Vermeulen11 Eindhoven University of Te
hnology, P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands. e-mail: sjouke�win.tue.nl2 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands. e-mail: jfg�
wi.nl3 University of Groningen, P.O. Box 800, NL-9700 AV Groningen, The Netherlands. e-mail: wim�
s.rug.nlSummary. The problem of using P pro
esses to writea given value to all positions of a shared array of size Nis
alled the Write-All problem. We present and analyzean asyn
hronous algorithm with work
omplexity O(N �P log(x+1x)), where x = N1= log(P) (assuming N = xk andP = 2k). Our algorithm is a generalization of the naivetwo-pro
essor algorithm where the two pro
esses ea
hstart at one side of the array and walk towards ea
hother until they
ollide.Key words: write-all problem { wait-free { distributedalgorithms { work
omplexity { PRAM { dynami
 loadbalan
ing.1 Introdu
tionThe Write-All problem is de�ned as follows. Use P pro-
esses (or pro
essors) to write a given value to all posi-tions of a shared array of size N . Without loss of gener-ality, we shall assume that the array is an integer arrayand that 1 is the value to be written to all its positions.If the pro
esses are reliable and run equally fast, it iseasy to
ome up with straightforward, optimal solutionsfor this problem. The situation is quite di�erent, how-ever, if pro
esses
an be faulty or run at widely varyingspeeds while at least one pro
ess remains a
tive. Kedemet al. [10℄ have shown that under these
ir
umstan
es anN +
(P logN) lower bound exists on the amount ofwork pro
esses must
arry out when pro
esses
an fail.This means that even if all pro
esses run fully in paralleland no pro
ess is a
tually failing, at least
(logN) timeis required to set the array.The original motivation for the Write-All problem
omes from [7℄. Here it was shown that any program on a? Corresponding author: Dr. S. Mauw, Department ofMathemati
s and Computing S
ien
e, Eindhoven Universityof Te
hnology, P.O. Box 513, NL-5600 MB Eindhoven, TheNetherlands, Tel. +31 40 2472908, (se
r. 2474124), Fax +3140 2475361, E-mail sjouke�win.tue.nl

P pro
ess syn
hronous PRAM (Parallel Random A

essMa
hine) running in time T
an be exe
uted on anyunreliable PRAM with work
omplexity W (P):T whereW (P) is the work
omplexity of any algorithm solvingthe Write-All problem of size P . In [9℄ an overview isgiven of the algorithms and PRAM simulations that havebeen developed so far.Our motivation is quite di�erent. It
omes from thedesign of wait-free or asyn
hronous algorithms [4{6℄, toobtain fast, reliable programs for general purpose paral-lel
omputers with typi
ally a few dozen pro
esses thatrun under widely varying loads.A
ommon problem on su
h ma
hines is to
arry outa task,
onsisting of N independent subtasks, with Ppro
esses, as qui
kly as possible. Su
h tasks are, for in-stan
e,
opying an array, sear
hing an unordered table,and applying a fun
tion to all elements of a matrix. Ween
ountered this problem when we had to �nd a paral-lel solution to refresh a hashtable by
opying all validelements to a new array [4℄.If we abstra
t from the nature of the subtasks, theproblem of exe
uting N independent tasks is adequately
hara
terized by the Write-All problem.In this paper we present a rather straightforwardalgorithm to solve the Write-All problem on an asyn-
hronous PRAM, i.e. a ma
hine on whi
h the pro
esses
an be stopped and restarted at will. This means that itis also suitable for all other fault models as mentioned inKanellakis and Shvartsman, page 13 [9℄. Using di�erentterminology we
an say that our algorithm is wait-free,whi
h means that ea
h non-faulty pro
ess will be ableto �nish the whole task, within a predetermined amountof steps, independent of the a
tions (or failures) of otherpro
esses.For a shared array of size N and P pro
esses, ouralgorithm has to
arry out O(N P log(x+1x)) amount ofwork where x = N 1log P . The
omplexity of parallel al-gorithms is generally
hara
terized by the total amountof steps that all pro
esses must exe
ute, whi
h is
alledthe work of the algorithm, instead of the exe
ution time,whi
h under ideal
ir
umstan
es,
an be obtained by di-viding the work by the number of available pro
esses. It

2 Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollisionshould be noted that the worst
ase behaviour leadingto the upper bound O(N P log(x+1x))
an only be a
hievedunder a rare lo
k step s
enario of the pro
esses. So, weexpe
t average
omplexity to be mu
h better, whi
h hasbeen
on�rmed by experiment. In order to understandthe asymptoti
 behaviour of the bound O(N P log(x+1x))it is interesting to look at the role of x. The value xroughly denotes the ratio between the length of the ar-ray (N) and the number of pro
esses (P). In the limit
ase, where x goes to in�nity, the work
omplexity
on-verges to O(N). This means that if there are only fewpro
esses, relative to the length of the array,
omplex-ity of our algorithm be
omes linear in the length of thearray.There are a number of existing solutions to theWrite-All problem (see [9℄ for an ex
ellent overview). We
om-pare our algorithm to the algorithms X , X 0, AW, AW Tand Y that are all suitable for asyn
hronous PRAMs,ignoring the solutions suitable for more restri
ted faultmodels. From
ertain perspe
tives our algorithm improvesupon all of these.Algorithm X is the �rst asyn
hronous algorithm fortheWrite-All problem [3℄. It is designed for the situationwhere P � N and has work O(N P log(32)). In [9℄ a gener-alisation of X ,
alled X 0 is presented for the
ase P � Nwhi
h has the same upper bound O(N P log(32)) for theamount of work. For N = P the algorithm presentedhere has the same upper bound as X 0. For P < N ouralgorithm is an improvement over X 0, sin
e for P < Nwe have x > 2 and then O(N P log(x+1x)) is better thanO(N P log(32)).In [1℄ two parti
ularly
lever algorithms are proposed,
alled AW and AW T .Algorithm AW requires workO(P 2+N logP). WhenP � pN this redu
es to O(N logN) whi
h is parti
u-larly good. However, this bound
an only be a
hievedassuming that a set of permutations of 1 : : : P with a spe-
i�
 property is given, whi
h requires exponential timeto
al
ulate. Su
h a set
an be generated at random,but then the result `only' holds with high probability. Inorder to over
ome this problem algorithm Y has beenproposed [8℄. Algorithm Y is
onje
tured to have (nonprobabilisti
) work upper bound O(N logN), whi
h is
on�rmed by experiments, but whi
h is unproven.Algorithm AW T needs work O(q N P �) where � =logq log q
 for some
onstant q that
an be freely
hosen,and a
onstant
 whi
h, a

ording to the proof in [9℄,
anbe
hosen to be 2. As logq log q2 goes to 0 when q goes toin�nity, algorithm AW T has superior
omplexity. How-ever, the
onstant amount of work that must be done inthe prepro
essing phase (whi
h is independent of N andP) is exponential in q (see [1℄). In order to outperformalgorithm X 0 for any N and P , it must be the
ase that� < log(32). From this it follows that q must be largerthan 80. Therefore, to outperform our algorithm, q mustbe
hosen even larger. In the setting for whi
h we de-veloped our algorithm, we generally have P < pN (andthus x > 4), so one must
hoose � < log 54 to make al-gorithm AW T perform better than our algorithm. This

means that q needs to be larger than 105. This is thereason why we expe
t that our algorithm performs mu
hbetter under pra
ti
al
ir
umstan
es.The present paper has the following stru
ture. In Se
-tion 2 we present the algorithm. In Se
tion 3 we prove its
orre
tness and show spa
e and time bounds. Se
tion 4
ontains some
onsiderations on using a non-uniform treeas the shared data stru
ture. Finally, Se
tion 5 is re-served for
on
lusions and further
onsiderations.2 A
ollision-based algorithm2.1 Basi

aseAlthough the asyn
hronousWrite-All problem in its gen-eral setting is far from trivial, the
ase that there are onlytwo pro
esses (P = 2), allows for a very intuitive and op-timal solution. This algorithm solves the problem for anyvalue of N in N + o(N) steps. One pro
ess starts at theleft of the array and walks to the right, in the meanwhilesetting the values of the array elements en
ountered to 1.The other pro
ess does the same from right to left. If thetwo pro
esses
ollide, the whole array is pro
essed andthe pro
esses
an stop. In the worst
ase, one element ofthe array is pro
essed twi
e. We
all this algorithm theBasi
 Collision algorithm.In [3℄ an extension of this algorithm is des
ribed,whi
h works with three pro
esses. It is
alled algorithmT. Two pro
esses have the same behaviour as des
ribedabove, but the third pro
ess behaves di�erently. It startsin the middle of the array and �lls the array alternatelyto the left and to the right. If the �rst two pro
esses
ol-lide, it means that the whole array is pro
essed. If, e.g.,the �rst and the third pro
ess
ollide, it means that theleft part of the array is pro
essed. Therefore they moveto the segment of the array that is not pro
essed yet.The �rst pro
ess starts at the left of this segment, thethird pro
ess starts again in the middle of this segment,and the se
ond pro
ess is still busy �lling the segmentfrom the right. This pro
edure repeats until the arrayis
ompletely pro
essed. This algorithm is also optimaland the work of this algorithm, measured in terms ofa
tual elements pro
essed, is N + o(N). Algorithm Tdoes not appear to be generalizable to larger numbers ofpro
esses.2.2 Generalized
aseOur algorithm generalizes the Basi
 Collision algorithmin a di�erent way. We will
all it the Generalized Colli-sion algorithm. It is best explained by looking at a simpleexample with four pro
esses (P = 4). We
hoose N = 25in our example.The pro
esses operate in pairs. Every pair of pro-
esses exe
utes the Basi
 Collision algorithm on su

es-sive segments of the array. Ea
h segment has length 5,so there are 5 segments. The four pro
esses start at the

Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollision 3
p
10

p
2

p
3

pFig. 1. Initial
on�gurationlo
ations indi
ated in Figure 1. The arrows indi
ate thedire
tion in whi
h ea
h pro
ess traverses the segment.Every time that a segment of the array has been pro-
essed by a pair, operation
ontinues at the next seg-ment. The �rst pro
ess of a pair to �nish a segment
andire
tly
ontinue with the next segment, without hav-ing to wait for the other pro
ess. In this way, the pairswalk towards ea
h other through the array in steps oflength 5 until they
ollide. A typi
al path of the fourpro
esses in our example is shown in Figure 2. This �g-ure shows just one possible path, in whi
h all pro
essesroughly operate at the same speed. The algorithm, how-ever, is
ompletely robust with respe
t to pro
ess delays,failures and restarts. This is be
ause every pro
ess po-tentially visits all array elements. As long as one pro
esssurvives, the whole array will be pro
essed.
p
0

p
1

p
3p

2

Fig. 2. Possible paths of the pro
essesFrom a higher point of view, the four pro
esses alsoexe
ute the Basi
 Collision algorithm where the grainsize of the work is 5. To see this, we have to
onsiderevery pair as a single aggregated pro
ess and every seg-ment of length 5 as a single aggregated array element. A
ollision now takes pla
e at a
omplete segment, ratherthan at a single array element. This explains why themiddle segment in Figure 2 is pro
essed twi
e.It is now
lear how to generalize this example if wedouble the numbers of pro
esses and assume 125 arrayelements. We simply add one level to the hierar
hy andhave
lusters of four pro
esses operate on segments oflength 25, until the
lusters
ollide.This implies that our algorithmworks for any numberof pro
esses whi
h is a power of two, so P = 2k for somek � 1. Furthermore, we have that the length of the arrayis the length of a basi
 segment to the same power, soN = xk for some x � 2. In the above example we have
hosen k = 2 and x = 5.In Figure 3 the generalization of the Basi
 Collisionalgorithm is illustrated in a
ube whi
h has to be �lledwith 1's by 8 pro
esses. The pi
ture shows pairs of pro-
esses,
lusters of 2 pro
esses, and
lusters of 4 pro
essesra
ing ea
h other. In this example k = 3 (the dimensionof the
ube) so there are 8 pro
esses, and the length ofan edge of the
ube is x, so that there are x3
ells to be�lled. This is the biggest example that we
an easily vi-

sualize in this way. An example with 16 pro
esses wouldrequire a 4-dimensional �gure.
Fig. 3. Generalization of the
ollision prin
iple illustrated ina
ube.2.3 Data stru
turesAdditional data stru
tures are needed in order to enablethe pro
esses to de
ide whi
h array element should bepro
essed next. First of all, every pro
ess has a pro
essidenti�er (pid)
onsisting of a bit string of length k. Theset of all pro
ess identi�ers is
alled PID. We use thefun
tions head and tail to return the �rst element of a bitstring and the bit string with the �rst element deleted.The bit strings will be used to dire
t the pro
esses todi�erent parts of the array. There is a ni
e relation be-tween the pids of the pro
esses and the initial position ofthe pro
esses in the
ube from Figure 3. If we
onsiderthe general Boolean k-dimensional hyper
ube, the pids
orrespond to the pro
esses's initial
o-ordinates.Next, we assume that the pro
esses share a tree ofdepth k. A

ording to the above explanation, the treeshould have a uniform fan-out x. This means that thereare exa
tly xk leaves, whi
h
orrespond with the ele-ments of the array. However, we will formulate our algo-rithm in su
h a way that it also works for trees with anon-uniform fan-out, for reasons explained in Se
tion 4.Every leaf l has an attribute l:value : int that mustbe set to 1. The relation between the tree and the
ubefrom Figure 3 is straightforward. Ea
h level in the tree
orresponds with a dimension, and a
ell (
0;
1;
2) ofthe
ube
orresponds with the leaf that we arrive at ifwe travel down the tree �rst taking the
0-th bran
h,then the
1-th bran
h, and �nally the
2-th bran
h.The internal nodes of the tree maintain informationon how far the
orresponding subtree has been pro
essedalready. Every internal node n has the following threeattributes.� n:fan : intThis
onstant denotes the number of
hildren of thenode.� n:nl : 0 :: n:fan, initially 0This variable denotes the number of
hild nodes thathave already been pro
essed, from left to right.� n:nr : 0 :: n:fan, initially 0This variable denotes the number of
hild nodes thathave already been pro
essed, from right to left.Note that the subtree of node n has been pro
essed
ompletely if n:nl + n:nr � n:fan.

4 Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollisionThe root of the tree is denoted by root and the pred-i
ate is leaf determines if a node is a leaf. Similar toalgorithm T in [3℄, we make use of an atomi

ompare-and-swap-like instru
tion (see e.g. [5℄). In the algorithmbelow this is denoted by pla
ing angular bra
kets aroundthe statement (`h' and `i').2.4 The algorithmAll pro
esses operate in parallel and perform the samere
ursive pro
edure traverse with as the �rst argumentthe pro
ess identi�er and the se
ond argument the rootof the tree. The re
ursive
alls have as arguments smallerbit strings and other nodes of the tree. We use notationfrom [9℄ to express this.forall pid in PID parbegintraverse(pid,root)parendPro
edure traverse is de�ned below.pro
edure traverse(bs,node)var i: 0 :: node:fan;beginif is leaf(node) thennode.value := 1elseif head(bs) = 0 theni := node.nl;while i+ node:nr < node:fan dotraverse(tail(bs),
hild(node,i));h if node.nl = i then node.nl := i+ 1 � i;i := node.nlodelsei := node.nr;while node:nl + i < node:fan dotraverse(tail(bs),
hild(node,node:fan � 1� i));h if node.nr = i then node.nr := i+ 1 � i;i := node.nrod��endIn the base
ase where the node is a leaf, the pro
e-dure writes the intended value in the array. Otherwise,the pro
edure treats the
hildren of the node in a repe-tition from left to right or from right to left. The
hoi
ebetween starting left or right is irrelevant for
orre
t-ness. For the sake of the
omplexity
al
ulations, we letthe
hoi
e depend on the head of the �rst argument bs,whi
h is a suÆx of the pro
ess's pid. The re
ursive
allshave the tail of the bit string bs as �rst argument, so thatthe pro
esses start their a
tions at di�erent points in thearray. Private variable i is introdu
ed to allow modi�
a-tion of the shared variables node.nl and node.nr by otherpro
esses.It is worthwhile to noti
e that in the
ase that N = Pthe above algorithm is equal to algorithm X (see [3℄).

Sin
e in this
ase we have x = 2 and the tree be
omesa binary tree, whi
h is traversed in exa
tly the sameway as in algorithm X. The work
al
ulations from Se
-tion 3.3 will show that in this
ase the upper bounds ofthe Generalized Collision algorithm and algorithm X arealso identi
al.3 Analysis of the algorithm3.1 Corre
tnessThe proof of
orre
tness of the distributed algorithm
onsists of two steps. First, we prove partial
orre
tness(i.e. if one of the pro
esses su

essfully �nishes, the wholetree has been pro
essed) and, next, we prove termination(at least one pro
ess �nishes su

essfully). If all leaves ofa (sub)tree have been set to 1, we say that the (sub)treehas been pro
essed.Lemma 1. The Generalized Collision algorithm is par-tially
orre
t.Proof. Assuming that at least one of the pro
esses �n-ishes su

essfully, we have to prove that the whole treehas been pro
essed. This follows immediately from thefollowing two properties.1. For every internal node n of the shared tree, it in-variably holds that n.nl subtrees of node n from leftto right have been pro
essed. Likewise n.nr subtreeshave been pro
essed from right to left.2. If a
all traverse(�,n) (for some bit string � and somenode n) �nishes su

essfully, the subtree rooted innode n has been pro
essed.These two properties are proven with simultaneous in-du
tion on the depth of node n. The base
ase, wherenode n is a leaf is trivial. For the indu
tive
ase, we sup-pose that node n is an internal node.1. The value of shared variable n.nl is only in
rementedfrom i to i + 1 if pro
edure traverse has �nished onthe ith subtree of node n. By indu
tion we then havethat this subtree has been pro
essed, whi
h
erti�esthis invariant. The variable n.nr is treated similarly.2. If a
all traverse(�,n) �nishes, one of the guards i+n:nr < n:fan and n:nl + i < n:fan must be false.Noti
e that in the �rst
ase we have i � n:nl andin the se
ond
ase i � n:nr. This is due to the fa
tthat the values of n:nr and n:nl are non-de
reasing.Therefore, if the
all traverse(�,n) �nishes we haven:nl + n:nr � n:fan. Using the indu
tion hypothe-sis, we
an
on
lude that all subtrees of node n arepro
essed, so the tree rooted in n is pro
essed. utNext, we will prove termination of the algorithm.Lemma 2. The Generalized Collision algorithm termi-nates, i.e. at least one of the pro
esses �nishes su

ess-fully.

Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollision 5Proof. For this we formulate the following terminationfun
tion:
∑n2internalnodes n:nl+ n:nrThe fa
t that this is a proper termination fun
tionfollows from the following observations.First, the fun
tion is bounded. Sin
e for every in-ternal node n the values of n.nl and n.nr are boundedby the
onstant n:fan, the fun
tion is bounded by 2N2(whi
h is not a tight bound, see Se
tion 3.3). Se
ond, re-
all that the fault model implies that all but one pro
essmay fail. Sin
e there are no blo
king statements, the sur-viving pro
ess will
ontinually invoke
alls to pro
eduretraverse, as long as it is not �nished. After every
all ofthis pro
edure (to, say, node n), the value of n:nl+n:nris stri
tly larger than before this
all. Namely, it is in
re-mented with 1 by the
alling pro
ess, or it is in
rementedwith at least 1 by one or more other pro
esses. utIn
on
lusion, we have that at least one
all of tra-verse(pid,root) �nishes su

essfully (termination) and thatthis implies that the
omplete tree rooted in root hasbeen pro
essed.Corollary 1. The Generalized Collision algorithm solvesthe asyn
hronous Write-All problem.3.2 Spa
e usageWe will show that the pro
esses have only moderatespa
e requirements.Lemma 3. The spa
e
omplexity of the Generalized Col-lision algorithm is O(N logN + P log2N).Proof. The shared data stru
ture
onsists of the givenarray of N bits, together with the data at the internalnodes of the tree (see e.g. [9℄ for a des
ription of howto represent a tree in a heap without overhead). Thereare less than N internal nodes. Every internal node nholds two shared variables of size logn:fan. So the sharedmemory has size of O(N logN).Every pro
ess needs a private data stru
ture withspa
e for k sta
k frames, sin
e the re
ursion depth is k.Ea
h sta
k frame holds a lo
al variable of size logn:fanand two parameters of sizes k and logN . Sin
e k is oforder logN , ea
h pro
ess needs memory of order log2N .ut3.3 Work
omplexityAs was mentioned before, the work
omplexity of a paral-lel algorithm is the worst
ase total amount of work per-formed by the pro
esses involved. With `total amount ofwork' one generally means the number of instru
tions ex-e
uted by all pro
esses. We measure the work by
ount-ing the total number of
alls of pro
edure traverse in aworst
ase s
enario. The program text
learly shows thatthe number of instru
tions exe
uted per
all of traverse

is bounded by a
onstant. Therefore, the total numberof pro
edure
alls is an appropriate estimate here.In the
al
ulations below we will assume that thenumber of pro
esses is 2k and that the length of thearray is xk for some k � 1 and x � 2. This allows forthe
onstru
tion of a tree with a uniform fan-out. Wewill brie
y
onsider the
ase of a tree with non-uniformfan-out in Se
tion 4.Be
ause of the re
ursive stru
ture of the input of thealgorithm, the shared tree with fan-out x, we de�ne thework indu
tively, i.e. express the work asso
iated witha tree of height i in terms of the work asso
iated withits subtrees of height i � 1. Note, that the number ofpro
esses, whi
h of
ourse plays an important role in de-termining the work, is 2i (given a tree of height i). Inour �rst indu
tive de�nition of work, however, we willde
ouple the number of pro
esses and the height of theinput tree, be
ause, as we will see, subtrees of the in-put tree
an be overloaded with pro
esses (and will beoverloaded in a worst
ase s
enario).We introdu
e Wi;j as an upper bound on the workon a tree of height i � j for a subsystem of 2j pro
esseswith pids uniformly distributed for i. Here, we use thede�nition that a subsystem of 2j pro
esses has pids uni-formly distributed for i if every bit sequen
e of length iis a suÆx of the pids of pre
isely 2j�i pro
esses of thesubsystem.Lemma 4. The work estimates Wi;j satisfy the follow-ing re
ursive equations.W0;j = 2j (1)Wi+1;j = 2j + (x� 1)Wi;j�1 +Wi;j (2)Proof. Equation (1) is justi�ed by the observation that,when 2j pro
esses start to work on a tree of height 0, asingle leaf, they will all
all pro
edure traverse on
e toset the array item asso
iated with the leaf to 1, resultingin a work of 2j .Equation (2) is proved in the following way (see alsoFigure 4). When 2j pro
esses with pids uniformly dis-tributed for i + 1 treat a tree of height i + 1, all ofthem �rst have to
all pro
edure traverse at the rootof the subtree. This a

ounts for the summand 2j in theright-hand side of (2). Next, the pro
esses split up in twogroups of pro
esses, a

ording to the bit at position i+1from the end of their pids. Sin
e the pids are uniformlydistributed over i + 1, both groups have size 2j�1 andhave pids uniformly distributed over i. One group treatsthe subtrees from left to right and the other group vi
eversa. The
ollision prin
iple implies that the two groupsinterfere in at most one of the x subtrees, the one wherethey
ollide (the shaded sub-tree in Figure 4). The workasso
iated with the subtrees
an therefore be split in x�1times the work of 2j�1 pro
esses on a tree of height i (thesummand (x � 1)Wi;j�1), and the work of 2j pro
esseson a single tree of height i (the summand Wi;j). utIn order to be able to simplify the re
urren
e relationfrom Lemma 4, we need the following property whi
hstates that doubling the number of pro
esses doublesthe work:

6 Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollision
2
 j

height i

height i + 1

x subtrees

2

2
 j

2
 j-1

2
 j-1

2
 j-1

 j-1
2
 j-1

.

proc.

proc.

proc.

Fig. 4. Worst
ase distribution of pro
esses over subtrees.Lemma 5. For j > i, we have2 �Wi;j�1 = Wi;j (3)Proof. We prove this by indu
tion on i. For i = 0 wehave 2 �W0;j�1 = 2 � 2j�1 = 2j = W0;j . Assuming thatthe property holds for i, we derive for i+1: 2�Wi+1;j�1 =2 � (2j�1 + (x � 1) �Wi;j�2 +Wi;j�1) = 2j + (x � 1) � 2 �Wi;j�2+2 �Wi;j�1 = 2j+(x�1)Wi;j�1+Wi;j = Wi+1;j .utThe above property
an also be explained in termsof pids. When the number of pro
esses is doubled, theywill have to share pids (be
ause j > i). Ea
h pro
ess willhave a doppelg�anger that follows the exa
t same routethrough the tree. This imitative behaviour explains thedoubling of the work.This leads to the introdu
tion of wi, whi
h, for i � 0,denotes the work of 2i pro
esses on a tree of height i, sowk = Wk;k .Lemma 6. The work estimates wk satisfy the followingre
ursive equations.w0 = 1 (4)wi+1 = 2i+1 + (x+ 1)wi (5)Proof. Be
ause of Lemma 5 we
an rewrite the se
ondequation of the de�nition of W as follows:Wi+1;j = 2j + (x � 1)Wi;j�1 + 2 �Wi;j�1= 2j + (x + 1)Wi;j�1The equations now follow easily by setting j = i+ 1. utFinally, we
al
ulate an appropriate upper bound forwk.Theorem 1. The Generalized Collision algorithm solvesthe asyn
hronous Write-All problem with work
omplex-ity O(N � P log(x+1x)), where x = N1= log(P).Proof. Starting from the equations of Lemma 6, we ar-rive at the desired result with straightforward
al
ula-

tions. wk= f solve the re
urren
e relation gk
∑i=0 2k�i(x+ 1)i= f simple math g(x + 1)k+1 � 2k+1x� 1= f even more simple math gx+ 1x� 1(x+ 1)k � 2k+1x� 1� f x � 2, hen
e x+ 1x� 1 � 3 and 2k+1x� 1 > 0 g3 � (x+ 1)kHen
e, we have wk = O((x + 1)k). We would like toexpress the work in terms of N and P , so we do somemore
al
ulations on (x+1)k , using the equalitiesN = xkand P = 2k: (x+ 1)k = xk (x+ 1)kxk= xk(x+ 1x)k= N �(x+ 1x)log(P)= N � P log(x+1x) ut4 Non-uniform fan-outAlthough we were able to prove
orre
tness of the algo-rithm for trees with non-uniform fan-out, we did assumeuniform fan-out for our
omplexity
al
ulations. This as-sumption proved very useful for obtaining a result whi
h
an easily be
ompared with work
al
ulations for otheralgorithms.Nonetheless, we
laim that this assumption is not
riti
al for the performan
e of our algorithm. Cal
ula-tions and experimentation support this
laim. Examplesshow that, stri
tly speaking, an optimal work
omplex-ity is almost never a
hieved with a uniform fan-out. Inalmost all
ases the work
omplexity
an be slightly im-proved by rebalan
ing the tree, while still keeping itquasi-uniform. By quasi-uniform we mean that the nodesat the same level of a tree have equal fan-out.In the
ase of quasi-uniform fan-out the work load
an be given as a
losed expression that
ontains sum andprodu
t quanti�ers. This goes as follows. Let us assumethat every node at level i has fan-out xi. The nodes atlevel 0 are leaves. So we have x0 = 0. The analysis ofSe
tion 3.3
an be repeated and then yields instead of

Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollision 7formula (5) the re
ursive equationwi+1 = 2i+1 + (xi+1 + 1)wiThis implies that the total work load satis�eswk = k
∑i=0 2i k

∏j=i+1(xj + 1)We now have to minimize the value of wk under the
on-straint∏kj=1 xj � N for given value of k. It is not hard tomake a fun
tional program, e.g., in the language Haskell,to solve this optimization problem for given values of Nand k.It is even possible to �nd an approximate solutionby analyti
 means. For that purpose, we de�ne the realfun
tions f(x) and g(x) with x = (x1; : : : ; xk) 2 IRk byf(x) = k
∑i=0 2i k

∏j=i+1(xj + 1) ; g(x) = k
∏j=1 xj �NWe are only interested in ve
tors x with all
oordinatesxi > 0 (and preferably natural). So, now we have to min-imize f(x) under the
onstraint g(x) = 0 and all xi > 0.A

ording to the method of Lagrange multipliers (seee.g. [2℄ p. 315), we have that, if fun
tion f has an ex-tremum at x under the
onstraint g(x) = 0, the gradientof f at x is a real multiple of the gradient of g. In thisway, one �nds that there is one optimal ve
tor x andthat it satis�es the re
urren
e relationxr = x1=(1 + 2 r�1

∑i=1 i
∏j=2 2(xj + 1)�1)Note that this formula is independent of k. It implies thatthe numbers xr form a de
reasing sequen
e of positivereals. In parti
ular, we have x2 = 13x1. Of
ourse, thisonly yields the optimum if the numbers xi are allowedto be real.The Haskell program mentioned above shows thatfor N = 12000 and k = 5, the optimal work load isobtained for the sequen
e x with x1 = 16, x2 = 6, andx3 = x4 = x5 = 5 In the general
ase we see that anoptimal work
omplexity is obtained if the fan-out forall levels are approximately the same, ex
ept for the fan-out at the level above the leaves, whi
h should be threetimes larger.We expe
t that in pra
ti
e rebalan
ing the tree willyield at most a
onstant speed up in performan
e.5 Observations and
on
lusionsWe have presented an algorithm for the asyn
hronousWrite-All problem. This algorithm is suitable for a mul-tipro
ess environment. It has good performan
e due tothe la
k of expli
it syn
hronization. In parti
ular this isthe
ase when the task of setting a variable to one is re-pla
ed by a more time
onsuming operation. Moreover,

the algorithm is fault tolerant in the sense that it works
orre
tly even if individual pro
esses
an fail or
an stopand resume arbitrarily, assuming that not all pro
essesdie. Finally, our algorithm performs a kind of dynami
load balan
ing. Every pro
ess
he
ks in a spe
i�
 orderall the tasks that must be exe
uted and if it �nds onethat has not been performed, it
arries it out. Due tothe data stru
tures involved, this
an be done with min-imal dupli
ation of work. This guarantees a distributionof tasks over pro
esses, where no pro
ess will idle whenwork
an be done.A potential drawba
k of our algorithm is that it uti-lizes on
ompare and swap registers. An interesting ques-tion is whether these
an be repla
ed by atomi
 readsand writes. We believe that
orre
tness of the algorithmis maintained by repla
ing the
ompare and swap regis-ter in a straightforward way by atomi
 reads and writes,but that the work in
reases. We believe that this is eventhe
ase when the
ompare and swap register is repla
edby a test and set register.Our algorithm improves upon existing asyn
hronousalgorithms in several ways. In
omparison with mostpublished algorithms it has a better order of perfor-man
e. This does not hold for algorithms AW and AW T ,whi
h are based on a rather di�erent algorithmi

on-
ept than our algorithm. Algorithm AW `only' improvesupon our algorithm with high probability, although weexpe
t that in pra
ti
e this algorithm has a good perfor-man
e. From a theoreti
al perspe
tive AW T performsbetter than our algorithm, but due to a high initial
on-stant amount of work AW T is not suitable for any pra
-ti
al purposes.To as
ertain these �ndings, we have implemented ouralgorithm and have run it for di�erent numbers of pro-
esses, where we
ompared the number of pro
ess stepswith the worst
ase estimate of the amount of work thatneeds to be done. Without going into detail, as we believethat it is very hard to draw universal
on
lusions fromexperiments, we found that the work always remainedfar below our worst
ase estimate.Finally, we make some observations
on
erning therestri
tions on the values for N and P. In the
ase thatwe use a tree with uniform fan-out as the shared datastru
ture, an array of size N = xk
an be a

ommo-dated. However, su
h uniform fan-out is not needed forobtaining an optimal work
omplexity. By adjusting thefan-out of the nodes in the tree, it is possible to a

om-modate an array with arbitrary size N . Furthermore,sin
e pro
esses need not exe
ute, we
an take P � 2k,provided all pro
ess identi�ers di�er and have a lengthat least equal to the depth of the tree. The work remainsessentially the same.A
knowledgements. We thank Dragan Bo�sna�
ki, Andr�e En-gels, Peter Hilbers, Jan Jongejan, Izak van Langevelde, JohanLukkien, Alex Shvartsman, and the anonymous referees for
omments, ideas and referen
es.

8 Jan Friso Groote et al.: An algorithm for the asyn
hronous Write-All problem based on pro
ess
ollisionReferen
es1. R.J. Anderson and H. Woll. Algorithms for the
er-ti�ed write-all problem. Siam Journal of Computing,26(5):1277-1283, 1997.2. T.M. Apostol. Cal
ulus, Vol. II. Wiley 1969.3. J.F. Buss, P.C. Kanellakis, P.L. Ragde and A.A. Shvarts-man. Parallel Algorithms with Pro
essor Failures and De-lays. Journal of Algorithms, 20:45-86, 1996.4. J.F. Groote and W.H. Hesselink. Syn
hronization-freeparallel a

essible hash-tables. In preparation, 2000.5. M.P. Herlihy. Wait{free syn
hronization. ACM Trans. onProgram. Languages and Systems 13 (1991) 124{149.6. W.H. Hesselink and J.F. Groote. Waitfree DistributedMemory Management by Create, and Read Until Deletion(CRUD). Te
hni
al report SEN-R9811, CWI, Amsterdam,1998.7. P.C. Kanellakis and A.A. Shvartsman. EÆ
ient parallelalgorithms
an be made robust. Distributed Computing,5(4):201{217, 1992. A preliminary version appeared inPro
eedings of the 8th ACM PODC, pages 211{222, 1989.8. P.C. Kanellakis and A.A. Shvartsman. Fault-toleran
e andeÆ
ien
y in massively parallel algorithms. In G.M. Kooband C.G. Lau, editors, Foundations of Dependable Com-puting { Paradigms for Dependable Appli
ations, pages125{154, Kluwer A
ademi
, 1994.9. P.C. Kanellakis and A.A. Shvartsman. Fault-tolerant par-allel
omputation. Kluwer A
ademi
 Publishers, 1997.10. Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spi-rakis. Combining tentative and de�nite exe
utions for de-pendable parallel
omputing in Pro
eedings of the 23rdACM Symposium on Theory of Computing, 1991.

