
Man-in-the-middle attacks evolved. . .
but our security models didn’t

Hugo Jonker1, Sjouke Mauw2, and Rolando Trujillo-Rasua2

1 Open University of the Netherlands, hugo.jonker@ou.nl
2 University of Luxembourg, {rolando.trujillo,sjouke.mauw}@uni.lu

Abstract. The security community seems to be thoroughly familiar
with man-in-the-middle attacks. However, the common perception of this
type of attack is outdated. It originates from when network connections
were fixed, not mobile, before 24/7 connectivity became ubiquitous. The
common perception of this attack stems from an era before the vulner-
ability of the protocol’s context was realised. Thanks to revelations by
Snowden and by currently available man-in-the-middle tools focused on
protocol meta-data (such as so-called “Stingrays” for cellphones), this
view is no longer tenable. Security protocols that only protect the con-
tents of their messages are insufficient. Contemporary security protocols
must also take steps to protect their context: who is talking to whom,
where is the sender located, etc.
In short: the attacker has evolved. It’s high time for our security models
and requirements to catch up.

1 Introduction

Man-in-the-Middle (MitM) attacks are well-known to the security protocols com-
munity. Indeed, a security protocol will typically be proved secure against a
Dolev-Yao [7] attacker, a powerful definition of man-in-the-middle from 1983.
However, the use of systems has evolved since 1983 – as have threats against
systems. The current use of MitM models by the security protocols community
does not account for this evolution and, as such, is outdated. Two key ways in
which systems and their use have evolved are:

– Ubiquitous usage coupled with a dependence on connectivity,
– Personalisation of the connection.

This has led to numerous MitM attacks on deployed protocols such as SSL/TLS
and GSM (cf. Section 2). Such attacks are generally treated as individual occur-
rences. In this paper, we advocate that such attacks are part of a larger pattern:
the current notion of man-in-the-middle as used in security research no longer
matches real world MitM-attacks. We propose to address this by evolving the no-
tion of man-in-the-middle to account for a protocol’s context, that is, those data
that influence the protocol or are inherently used or disclosed by the protocol
(cf. Section 2). We distinguish two classes of solutions, based on whether or not



the communication partner is trusted. We call these classes context agreement
and context verification, which are discussed in Sections 3.2 and 3.1, respectively.
We illustrate how context may be leveraged to strengthen protocols by showing
a simplified extension for GSM/UMTS in Section 4.

2 How man-in-the-middle attacks outgrew security
models

As mentioned, networks and the use of networks has evolved. The dependence
on connectivity ensures that most protocols have fallbacks to ensure backwards
compatibility. The mobility of the endpoints means that the context is no longer
fully known a priori. Moreover, as connected devices have become small and
capable, the connection has become far more personal.

2.1 Backwards compatibility

Computers have become ubiquitous, and are used in many if not most jobs in
the western world. Moreover, computers have become vastly interconnected: a
button pressed here affects a display there, a file saved here is updated there,
a withdrawal here changes a balance sheet there, etc. Nowadays, many systems
even depend on such interconnectivity. This interconnectivity is only possible if
the computers on either end understand each other - computers must be using
the same communication protocol.

As our understanding of security increased, flaws in communication proto-
cols were found and repaired. Since systems depend on interconnectivity, there
inevitably has to be a fallback mechanism to communicate with computers that
are not yet updated. Typically, this leads to an initialisation phase, during which
the computers agree on version, cipher suite, and other parameters of the pro-
tocol. However, in general, this phase is not considered part of the protocol and
omitted from security proofs. This has already caused multiple vulnerabilities,
e.g. the DROWN [2], LOGJAM [1], FREAK [4], and POODLE [10] attacks on
TLS.

The solutions for such attacks are typically rather ad hoc, in that the solution
addresses the attack and little beyond that. However, we should learn more from
these attacks than just how to prevent one instance.

2.2 Personalisation of the connection

With the rise of the smart phone and wireless connectivity, users no longer need
to be stationary to communicate. Connections have become mobile. As such,
the user’s context is no longer fixed. Moreover, the small form factor, ubiquitous
connectivity and the mature capabilities of current devices allow users to take
their personal computing platform with them at all times, and communicate at
any time using wireless communication. Thereby, these devices have become far
more intwined with personal life than any computing platform that came before.



Of course, the wireless communication signals can be picked up by any nearby
antenna, and so security protocols can ensure that the contents of their communi-
cation remains confidential from an eavesdropper. However, an eavesdropper can
still learn information, such as the approximate location of the communicating
party. Since the communication endpoint has become far more personal, deter-
mining the location of the communicating device has become synonymous with
determining a person’s location. Nowadays, there exist commercially-available
MitM devices for intercepting and tracking GSM devices3 and WiFi/Bluetooth
devices4. These devices perform typical man-in-the-middle attacks, yet such at-
tacks are not considered when proving security of the protocol.

Existing solutions against such tracking are based on detecting the trackers,
for instance by analysing protocol properties of the communication signal. Cur-
rently, research into detecting cell site simulators has just begun (e.g. [6]), and
a few smart phone apps claim to detect such shenanigans. These all rely on par-
ticular details of the used protocol (e.g., base station parameter fingerprinting,
network operator fingerprinting, etc), and the simulator’s imperfection in repli-
cating such details. However, we hold the view that this will only lead to an arms
race, while not addressing the crucial underlying point: that there is, indeed, a
man-in-the-middle. A more thorough, generic solution must be developed.

3 How to determine context

Remark that all these attacks arise from the outdated perception of man-in-the-
middle as currently held by the security community. While the aforementioned
attacks are all classified as MitM attacks once discovered, our current design pro-
cesses and evaluation tools are insufficient to prevent these attacks. We argue
that the security community must start researching contextual physical proper-
ties in a formal way as to make it part of the protocol. An example of such a
property is signal strength.

We distinguish two categories of possible solutions:

– context verification: without a trusted communication partner,

– context agreement: with a trusted communication partner.

If there exists a trusted communication partner for the user (e.g., a trusted
base station), the user and her partner can exchange their observations on the
perceived context, and determine whether their combined observations indicate
an anomaly. Thus, user and partner agree on some properties of the context,
which is reminiscent of the security requirement “data agreement”. Hence we
label this context agreement.

If the user does not trust any communication partner, she is determining the
validity of the context by herself. We label this context verification.

3 For an overview, see EFF’s cell site simulator FAQ.
4 E.g. the Navizon indoor triangulation system.

https://www.eff.org/sls/tech/cell-site-simulators/faq#faq-How-much-do-cell-site-simulators-cost?-


3.1 Context verification

Security claims are proven based on assumptions on the adversary capabilities.
An important assumption is whether the adversary is able to decrypt an en-
crypted message without knowing the encryption key, also known as perfect
cryptography, without which it is impossible to prove security in current secu-
rity protocols. Such assumption is based on computationally hard problems and
our inability to solve them. It is thus apparent that physical claims can also be
proven based on physical laws that constrain the capabilities of the adversary.

So, what do a secret key and the speed of light have in common? The theory
of relativity states that a message or a signal cannot travel at a speed faster than
the speed of light. Thus, an adversary cannot manipulate a message traveling
at the speed of light without inevitably causing a delay, just as he cannot forge
a signature without knowing the secret key. This provides a means for context
verification, in particular for proximity verification, which has been studied since
1993 when Brands and Chaum introduced distance bounding protocols [5].

Distance bounding protocols are cryptographic protocols that exchange mes-
sages at (nearly) the speed of light. By measuring the round-trip-time (RTT) of
a message exchange, a verifier can securely compute a tight upper bound on its
distance to a prover. Therefore, the verifier can ensure that the prover is within
a given radius.

While there exists a rich literature in distance bounding protocols [3], the
secure verification of other physical properties (e.g. location and signal strength)
is still an open challenge. There exist heuristics approaches, such as [6], which
measures the deviation of the attacker’s signal from the expected signal. The
challenge is thus how to bring this heuristic approaches into a formal framework
that allows for security proofs.

Definition 1 (Context verification). A party A achieves context verification
of her observation obsA(CB) of the context CB of party B if, whenever A com-
pletes a run of the protocol (apparently with B) then obsA(CB) is correct with
respect to CB.

In contrast to standard security properties, context verification relies on prop-
erties that may change with time, e.g., location and meteorological conditions.
Remark that context verification does not require B to execute the protocol
with A. As such, it captures contextual information about the context of the
communication partner that can be verified without his involvement.

3.2 Context agreement

We introduce context agreement as a notion weaker than context verification.
To formalise it, we build on the notion of data agreement in security protocols,
whereby two parties securely agree on the values of a set of variables [8]. This is
used, for example, to secretly agree on a session key for subsequent communica-
tions.



Definition 2 (Context agreement). A party A achieves context agreement
with another party B on B’s context CB if, whenever A completes a run of the
protocol (apparently with B) then B has been previously running the protocol
(apparently with A) and the observation of A on B’s context is the same as B’s
observation of his context in that run, that is: obsA(CB) = obsB(CB).

Note that in context agreement the trusted parties agree on the observed
context, not on the actual context. A sufficiently powerful attacker or a lying
party can ensure that a fake context is agreed to. For example, a device B
may determine its location based on a fake GPS signal. Upon agreement on B’s
location, neither A nor B are aware that a false location has been agreed upon.

We observe that context agreement has already been used to prevent down-
grade attacks. Downgrade attacks are a type of MitM attack that exploit back-
ward compatibility. For example, a renegotiation vulnerability5 was uncovered
in some implementations of SSL/TLS.

Note that context verification requires that the context observed by A is in-
deed B’s actual context, while context agreement may be an agreement on a
context that is different from B’s actual context. Therefore these properties are
incomparable.

4 An illustration: Detecting a GSM/UMTS MitM

A recent hot topic is the availability of simulators [9] (also known as IMSI catch-
ers or Stingrays). These devices act as plug-and-play man-in-the-middle devices
for GSM/UMTS traffic. As phones favor towers with strong signal strength,
reducing security is simple for this device: just ensure that the lowest-security
base station has the best signal, or impersonate a base station and switch to
low-security mode. In some cases, the cell-site simulator itself can easily turn
off encryption completely. A cell-site simulator can thus collect identifying infor-
mation such as the International Mobile Subscriber Identity (IMSI), metadata
about calls like the telephone number dialed, the date, time, and duration of the
call, or even learn the content of the calls if none or weak encryption is used.

There exist several underlying security protocols in the UMTS/GSM stan-
dard. Figure 1 shows a simplification (omitting most details) of the standard
handshake in UMTS. Every phone shares its own long term secret key6 k with
a dedicated home network. To further simplify the depiction, we let this key be
known to the base station. Once connected to a base station, the phone sends
its identity. The base station then uses the secret key to authenticate the phone.

Note that the protocol in Figure 1 does not perform context authentication.
Therefore, this protocol is unable to prevent MitM attacks as the one in [9].

5 CVE-2009-3555.
6 In the GSM standard, the tower may choose unilaterally to stop encryption, and

the client has to follow. An attacker can therefore simply shut down encryption (e.g.
by using a downgrading attack to fall back to the old standard, and then to stop
encryption). Thus, this shared key alone cannot ensure secure communication.



k

phone

(k, ID)

tower
phone ID

nonce n

n, MAC k(n)

MAC k(n, ID)

Fig. 1. Simplified UMTS protocol.

k

phone

(k, ID)

tower
phone ID

nonce n

sigstr , n,MAC k(n, sigstr )

sigstr realistic?

MAC k(n, ID)

Fig. 2. Inclusion of context.

We propose to leverage this shared key in order to achieve context agreement
as follows: The phone and the tower communicate securely on the tower’s signal
strength (sigstr in Figure 2). Using the authenticated value of signal strength,
the phone can determine whether the perceived signal strength is “realistic”,
and not far higher or lower than the rest of the communication warrants. This is
depicted in Figure 2. Obviously, this approach can be strengthened by including
further details of the context. An obvious extension is inclusion of the tower’s
GPS coordinates, as this will allow the phone to determine a much narrower
range of acceptable values of the signal strength.

The point of the sketched solution is to illustrate how context can be lever-
aged to detect a man-in-the-middle. A MitM attacker can either relay encrypted
messages from the client, or drop them. If messages are dropped, after the tower
has announced its capability to engage in this exchange (which will be noth-
ing more than announcing supported protocols), then clearly there is a MitM
attacker. If the messages do come encrypted, but the tower finds the client’s
perceived signal strength unrealistic, then likely there is a MitM attacker.

5 Conclusions

In this paper, we highlighted that more and more man-in-the-middle attacks
are of a type that are not addressed by current security models. The overall
principle is that security models do not take sufficient context into account.
Context includes details such as the setup/initialisation phase, in which protocol
parameters are decided, but also physical parameters, such as location.

We presented examples of either case where the lack of consideration of con-
text led to attacks. To address this, we advocated research of contextual phys-
ical properties in a formal way. Finally, we sketched two solution directions for
considering contextual properties. In future research, we will look deeper into
context:

– Context can be both subjective and objective. The possession of a secret
key can be regarded as an objective contextual information, either you have



it or not. Location however can be both objective and subjective. A fixed
communication tower has an objective view on its location, but a mobile
phone does not. This distinction between subjective or objective contextual
data requires further clarification and formalization.

– Context may change. Therefore, distinguishing between older context and
current context can provide a way to satisfy security properties. For example,
if a phone is communicating with a fixed base station, it is sufficient to verify
whether the (observation of the) current context of the base station matches
the previously determined context, as this context should not change.

References

1. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Z.
Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails
in practice. In Proc. 22nd Conference on Computer and Communications Security
(CCS’15), pages 5–17. ACM, 2015.

2. N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Va-
lenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Ksper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt. DROWN: Breaking TLS using SSLv2. 2016.

3. G. Avoine, S. Mauw, and R. Trujillo-Rasua. Comparing distance bounding proto-
cols: A critical mission supported by decision theory. Computer Communications,
67:92–102, 2015.

4. B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In Proc. 36th Symposium on Security
and Privacy (S&P’15), pages 535–552. IEEE Computer Society, 2015.

5. S. Brands and D. Chaum. Distance-Bounding Protocols. In Advances in Cryptology
– EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 344–
359. Springer, 1993.

6. A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and E. R. Weippl. IMSI-catch
me if you can: IMSI-catcher-catchers. In Proc. 30th Annual Computer Security
Applications Conference (ACSAC’14), pages 246–255. ACM, 2014.

7. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(12):198–208, 1983.

8. G. Lowe. A hierarchy of authentication specifications. In Proc. 10th Workshop on
Computer Security Foundations (CSFW’97), pages 31–43. IEEE Computer Society,
1997.

9. U. Meyer and S. Wetzel. A man-in-the-middle attack on UMTS. In Proc. 3rd
Workshop on Wireless Security (WiSE’04), pages 90–97, New York, NY, USA,
2004. ACM.

10. B. Möller, T. Duong, and K. Kotowicz. This POODLE bites: exploiting the SSL
3.0 fallback, 2014.


