
Automating Cyber Defence Responses using Attack-
Defence Trees and Game Theory

Ravi Jhawar1, Sjouke Mauw1, Irfan Zakiuddin2

Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg1

Noumena Research Ventures Ltd., Croydon, UK2

ravi.jhawar@uni.lu
sjouke.mauw@uni.lu
noumena.research.ventures@gmail.com

Abstract: Cyber systems that serve government and military organizations must cope with unique threats and
powerful adversaries. In this context, one must assume that attackers are continuously engaged in offence and
an attack can potentially escalate in a compromised system. This paper proposes an approach to generate
defensive responses against on-going attacks. We use Attack-Defence Trees (ADTrees) to represent situational
information including the state of the system, potential attacks and defences, and the interdependencies
between them. Currently, ADTrees do not support automated response generation. To this end, we develop a
game-theoretic approach to calculate defensive responses and implement our approach using the Game
Theory Explorer (GTE). In our games, Attackers and Defenders are the players, the pay-offs model the benefit to
each player for a given course of action, and the game’s equilibria is the optimal course of action for each
player. Finally, given the dynamic nature of cyber systems, we keep our ADTrees and the corresponding game
trees up-to-date following the well-known OODA (observe, orient, decide, act) loop methodology.

Keywords: Cyber Defences, Attack Modelling, Game Theory, Security, Incident Response

1. Introduction

Cyber systems are becoming highly complex with ever-increasing dependencies both internally as well as with
strategic partners and commercial service providers. Military organizations and critical businesses are also
relying heavily on such cyber systems to meet their operational demands and to support mission execution. At
the same time, cyber attacks are becoming stealthy and sophisticated, posing potentially very high damaging
impact. In this context, a holistic framework for responding to cyber attacks becomes essential and it must
encompass several functions including:

i) efficient collection of cyber situational information,
ii) analysis of possible attacks,
iii) determining the courses of actions in response, and
iv) taking the appropriate actions.

This paper focuses mainly on the ‘determining the courses of actions in response’ component of a deployed
cyber system. We assume that situational information including the system state and parameters, and attack
and defence related information is available. In this work, we systematically represent the situational
information using Attack-Defence Trees (ADTrees) (Kordy, Mauw, & Radomirovic, Attack-defence trees, 2014).
ADTrees improve the widely used attack trees formalism, by including not only the actions of an attacker, but
also possible counteractions of a defender. The root node in an ADTree represents the attacker’s (or defender’s)
goal and the children of a given node represents its refinement into sub-goals. Each node can have one child of
the opposite type, representing the node’s counteraction, which can be refined and countered again. The
leaves of an ADTree represent the basic actions of an agent, which need not be refined any further.

Formally, ADTrees extend the formalism of defence trees (Bistarelli, Fioravanti, & Peretti, 2006), where
defensive measures are not refined and can only be attached to leaf nodes. ADTrees can also be seen as
merging attack trees and protection trees (Edge, Dalton, Raines, & Mills, 2006) into one formalism. Protection
trees are AND-OR trees depicting how defensive measures can be refined into simple actions. Given the high
expressivity and intuitiveness of ADTrees, complemented with strong mathematical foundations, they seem as
an appropriate choice to describe and analyze cyber situational information.

Currently, ADTrees are used to analyse and quantitatively assess security scenarios. They do not compute the
course of actions as responses against on-going attacks. We propose to address this limitation by applying
game theory to ADTrees. Game theory provides a rich resource of mathematical and algorithmic tools to study
the problems of competition or conflict. We view a cyber response problem as a game between an attacker
who is competing to inflict some form of attack and a defender who is attempting to prevent the attack. A
game-solver then computes the best responses to defend the cyber system from various attacks launched by
an attacker.

Kordy et al. in (Kordy, Mauw, Melissen, & Schweitzer, 2010) have already established a two-way mapping and
equivalence between games and ADTrees. However, they consider games of a highly restricted form that are
not suitable in our context because of the following limitations:

 They use only binary pay-offs; this implies that there are only two possible outcomes: the attacker
wins and the defender loses, and vice versa.

 They assume existence of perfect information implying that both players have full knowledge of all
opponent's actions.

 Strict alternation of player's moves is required. Assuming an alteration between the attacker’s and the
defender’s moves may be unrealistic in our case.

 Finally, the mappings in (Kordy, Mauw, Melissen, & Schweitzer, 2010) result in an increased abstraction
from reality. Each mapping consists in generating a suitable syntactic object called an ADTerm that
maps the binary pay-offs of the game tree. The way in which such syntactic objects represent the real
world is unclear.

In this paper, we address the limitations in (Kordy, Mauw, Melissen, & Schweitzer, 2010) and define a game
model that has the capability to represent the cyber response problem. Section 2 presents a motivating
scenario that places our work in context. Section 3 provides the fundamental definitions of our game model
and Section 4 defines the mapping between ADTrees and the basic form of our game model. Section 5 then
extends our basic game to allow modelling of complex cyber response problems. Section 6 defines our
approach for updating game trees following the OODA loop and Section 7 outlines our conclusions.

2. Motivating Scenario

Consider a military organization that has deployed a small, dedicated cyber system to support one of its
missions. The mission might be for a Remotely Piloted Aircraft System (RPAS) to track an object in a
geographical region. The cyber system performs functions like storing and processing the image and location
data sent by the RPAS in order to generate the navigation plans (NP). This cyber system can also be a subnet
separated by a firewall within a large distributed network operated by the military organization.

Assume that the dedicated cyber system consists of a file server (FS) which stores the image and location data,
a navigation plan generator (NPG) that computes the future navigation routes for the RPAS, and three client
workstations (WS) that control the RPAS. FS offers file transfer (ftp), remote shell (rsh) and secure shell (ssh)
services to WS so that they can access the image and location data. NPG on the other hand allows WS and FS
to execute commands on it using the ssh service. A firewall, which is intended to protect FS and NPG, only
allows ftp, rsh and ssh traffic from WS to FS and NPG and blocks all other traffic. Let us further assume that
there are vulnerabilities in ftp and ssh daemons, in the task scheduler of NPG, and in the address space
resolution of FS’s operating system. The access control list defines that a user has read and execute privileges
while a root can read, write and execute. Finally, the goal of the attacker is to breach the integrity of the system
so that the mission fails.

In ADTrees, attacks are represented as circles and defences as rectangles. Refinements are indicated by solid
edges between nodes and counteractions are indicated by dotted edges. Attacks and defences can be refined
conjunctively and disjunctively. A conjunctive refinement of a node has an arc connecting the edges going from
this node to its children. A disjunctive refinement has simple edges.

The ADTree in Figure 1 shows how an attacker can modify critical mission data in two different ways and
provides possible defence choices. In the first attack (see node “NPG root”), the attacker can obtain root
privileges on NPG: first by gaining root privileges on WS via a key logging technique or by performing a buffer
overflow attack on the ssh daemon. Then the attacker can use the interactive “cmd.exe” command. The

defender can disable the task scheduler to prevent the execution of the cmd.exe command; use a two-factor
authentication scheme against the key logging attack; and stop the ssh service to prevent buffer overflow.

Figure 1 Example ADTree representing the attack-defence scenario for a military organization

In the second case, the attacker must obtain root privileges on FS (see node “FS root”). To achieve this, she
must first gain user privileges on FS and then perform a local buffer overflow attack. The defender can prevent
the latter attack by using adaptive memory management techniques. To obtain user privileges on FS, the
attacker can, starting as a user on WS:

i) exploit the ftp vulnerability and use the rsh service to establish trust between WS and FS, or
ii) perform a buffer overflow using the vulnerability in the ssh daemon.

The defender can prevent this attack by:
i) modifying the access control list, or
ii) configuring the firewall to drop ftp packets from WS and blocking the rsh service, and
iii) stopping the ssh service.

3. Game Model

We use ADTrees to express situational information and to analyze attacks in the system. However, we note that
ADTrees are only a language to describe and formalize attacks and defences; they do not compute responses
against attacks by themselves. We propose to solve the cyber response problem by applying game theory on
ADTrees. We define a game between an Attacker who is competing to inflict some form of attack and a
Defender who is attempting to prevent the attack. A game-solver then provides the cyber responses to defend
the system from the attacker.

In this section, we define the following basic components of our games: the game’s players, knowledge states
of the players, game’s moves, and the pay-off function. The next section discusses an approach to generate our
games from ADTrees.

3.1 Game’s Players

Our model considers interaction between two players: a Defender and an Attacker. In general, considering a
single Defender-player implicitly assumes that the Defender has nearly full knowledge of the state of the
system and that she can implement any determined course of actions effectively. However, in comparison to
centralized control, a model with localized decision-making seems sensible. To this end, one approach consists

in defining multi-player games with a number of Defender-players. Another approach consists in coordinating
several two-player games of a Defender against the Attacker, where each game makes a localized decision, and
the overall solution is the composition of local results. We adopt the latter approach by defining two-player
local games focusing on specific locations or critical resources in the system (e.g., a local game where the
Attacker attempts to gain root privileges on FS and the Defender aims to protect FS). We choose the latter
approach because it allows us to define game models for each resource in the system and to take into account
the distinct trust levels associated with each resource. For example, a cross-boundary located server has lower
trust than an on-site server. Our game model addresses this aspect by adjusting the pay-off values based on the
`risk appetite’ parameter.

The Attacker attempts to breach the defences of the system in order to disrupt missions. In our example, the
goal of the Attacker is to breach the integrity of a mission either by compromising FS or NPG. Assuming a single
attacker implies that she has full knowledge of possible attack strategies and has centralized control for
inflicting her actions on the system. Therefore, having a single Attacker-player provides a model with a very
strong attacker and it may be desirable to retain this model, irrespective of the aforementioned models for the
defender.

3.2 Game’s Moves and Knowledge States of the Players

When considering the game moves, we highlight a conceptual distinction between games and ADTrees,
specifically regarding the notion of strategy. In a game, a strategy is a complete algorithm that tells a player
what to do for every possible situation throughout the game. In ADTrees, concrete actions are only at the
leaves and all other nodes define a refinement relationship using conjunction and disjunctive operators.
Therefore, in an ADTree, the strategy is the connection between a concrete action and the goal that drives it.

For example, for the ADTree in Figure 1, an attacker can reach her goal following four attack strategies:
 a1={WS user, ftp-rhosts & rsh, local-bof FS}
 a2={WS user, sshd-bof, local-bof FS}
 a3={WS key logger, interactive cmd.exe}
 a4={ sshd-bof, interactive cmd.exe}

All actions within an attack strategy must be implemented to breach integrity, but implementing one of the
four attack strategies is sufficient. While a1 and a2 allows the attacker to gain root privileges at FS, a3 and a4

compromises NPG. There are three defence strategies to protect FS:
 d1={drop ftp or stop rsh, stop ssh}
 d2={memory management}
 d3={modify ACL}.

and two defence strategies to protect NPG:
 d4={task scheduler} and
 d5={2nd auth factor, stop ssh}.

Our goal here is to have the game’s moves model the attack-defence strategies of each player.

The knowledge state of a player defines what the player knows of its moves and the moves of other players.
The simplest case considers perfect Information where both players have full knowledge of all the moves of the
game. In this work, we consider more complex models for knowledge states where the moves and pay-offs of
both players are not fully known to either the Attacker or Defender. In particular, our game model allows moves
where:

1. The Defender cannot distinguish the choices made by an Attacker and vice versa.
2. Game’s moves are committed temporally independently and/or simultaneously.
3. A player may choose not to take any action that changes the state of the system (e.g., a defender can

simply monitor the network for possible intrusions).
4. There is uncertainty in observations and expected pay-offs.

We believe that such complex game models can sufficiently represent the cyber security scenarios like the one
described in Section 2.

3.3 Pay-off Function

Pay-offs model the benefit to each player for a given course of actions/game’s moves. In zero-sum games, the
gains of one player are equivalent to the losses of the other. We note that pay-offs are also critical in capturing
essential notions like the `risk appetite’. Assigning realistic pay-offs is a hard problem and is out of the scope of
the work presented here. Instead, we start from a basic game model with arbitrary pay-offs where the pay-off
to the Attacker is simply a measure of the amount of work the Defender has to do. Therefore, when the
Defender has to take one action the Attacker receives a pay-off of 1. Intuitively, the goal of each player is to
commit their game moves such that they maximize their own pay-offs.

4. Mapping Attack-Defence Trees and Games

In this section, we define a basic game and provide its solution. We then describe the notion of equilibrium and
its relationship with the cyber response problem.

4.1 The Basic Game Model and the Game Trees

To generate our basic game, we start from the ADTree that models the overall security of the system and
compute all attack and defence strategies, as described in Section 3.2. In this section, we aim to model a two-
player local game, focusing on a specific resource in the system (FS), as discussed in Section 3.1.

The players are clearly the Attacker and Defender; the game’s moves that model the choices of each player are
denoted as labels on the edges and take the form:

Player.InformationState.ActionType.

Player can take one of the two values A or D representing the Attacker and the Defender, respectively.
InformationState is a number associated with each action representing the depth of the knowledge state of the
player while making the game’s move (see Section 3.2). In the simple example below, the decision for both
players comes from their first information state. Finally, the ActionType refers to the concrete steps taken by
each player – in our game, action types correspond to attack and defence strategies.

Figure 2 Basic game tree focussing on FS

For the local game focusing on FS, two attack strategies allow the Attacker to gain root privileges on FS:
 a1={WS user, ftp-rhosts & rsh, local-bof FS}
 a2={WS user, sshd-bof, local-bof FS}.

On the other hand, the Defender can protect FS – or respond to Attacker’s moves – using one of the three
defence strategies:

 d1={drop ftp or stop rsh, stop ssh},
 d2={memory management}, and
 d3={modify ACL}.

For the sake of readability, action types in Figure 2 are denoted using the above attack and defence strategy
identifiers. The Attacker must choose from a1 and a2 in order to implement its attack and, in response, the
Defender must choose from d1, d2 or d3.

A player's game strategy can be extracted by following a path from the apex to a leaf. The path presents the
moves of both players. In Figure 2, the Defender circumscribes the two nodes that model the result of the
Attacker's moves. We use this notation, following (Egesdal, et al., 2015) (Savani & Stengel, 2014), to denote the
fact that the Defender cannot distinguish these nodes because it does not know the choice made by the
Attacker. In other words, nodes circumscribed using a rounded rectangle are treated as a single information
state for the Defender (see Section 5.2). Although the moves of the Defender are structurally presented as
following the Attacker’s moves, semantically there is no temporal dependency. This means that in our game
model the moves are not assumed to be committed in any particular order and can even occur simultaneously.

The leaves of the game tree are the pay-offs and they measure the benefits to each player for their course of
actions. For example, if the Defender chooses to strengthen the network by using memory management
(strategy d2) as a defence, although she can prevent the Attacker from gaining root privileges at FS, the number
of tasks that the Defender performs is significant, thus the pay-off of 7 to the Attacker. We note that, although
we have assigned the pay-offs here in a simple manner, we tried to take into account the risk appetite and the
sensitivity of the impact of attack and defence choices.

4.2 Solving the Games

We use a web-based game solver called the Game Theory Explorer (GTE) (Egesdal, et al., 2015) to obtain
solutions for our games. The solution consists in computing the equilibria, which in our case describes the best
game strategies for both players. Attacker and Defender are in equilibrium if the Attacker is choosing the best
strategy she can, taking into account the Defender’s strategy, while the Defender’s decision remains
unchanged. Similarly, the Defender is choosing the best strategy she can, taking into account the Attacker’s
decision, while the Attacker’s decision remains unchanged.

Figure 3 illustrates a part of the solution of our basic game (Figure 2) as provided by the GTE. The 2x3 matrices
characterize the pay-offs of both players (player 1 being the Attacker and player 2 the Defender). Each of the
three rows EE1, EE2 and EE3 denote an equilibrium, with corresponding expected pay-offs.

Strategic form:

2 x 3 Payoff player 1 2 x 3 Payoff player 2

 D.1.d1 D.1.d2 D.1.d3 D.1.d1 D.1.d2 D.1.d3
A.1.a1 4 6 5 A.1.a1 5 4 3
A.1.a2 3 7 6 A.1.a2 3 5 4

EE = Extreme Equilibrium, EP = Expected Payoffs

Rational:
EE 1 P1: (1) 2/3 1/3 EP= 5 P2: (1) 1/2 1/2 0 EP= 13/3
EE 2 P1: (2) 1 0 EP= 4 P2: (2) 1 0 0 EP= 5
EE 3 P1: (3) 0 1 EP= 7 P2: (3) 0 1 0 EP= 5

Figure 3 Solution of the basic game

Let us look at the equilibria in detail.
 (Row 1) EE1 consists of player 1 (the Attacker A) playing a game strategy labelled (1) and this strategy

is for her to make the first game move A.1.a1 with probability 2/3 and the second game move A.1.a2

with probability 1/3. As a response, player 2 (Defender D) can make game moves D.1.d1 and D.1.d2

with equal probabilities of 1/2 each, but does not play D.1.d3. By following this game strategy, the
Attacker can expect a pay-off of 5 and the Defender’s expected gains are 13/3.

 (Row 2) The equilibrium EE2 consists of a game strategy labelled (2) where the Attacker only makes its
first game move A.1.a1 with probability 1. As a response, the Defender also makes only the game
move D.1.d1 with probability 1. The expected pay-offs through this game strategy is 4 for the Attacker
and 5 for the Defender.

 (Row 3) The final equilibrium consists of game strategy (3) where the Attacker only makes its second
game move A.1.a2 with probability 1 and the Defender responds to it through the game move D.1.d2

with probability 1. The expected pay-offs for the Attacker is 7 and for the Defender is 5.

We can use the equilibria to identify the best defence responses against on-going attacks. For example, in game
strategy (2), when the Defender identifies that there is an on-going attack on FS following attack strategy a1,
the best response for the Defender is to drop ftp packets between WS and FS and to stop ssh service on FS (i.e.,
apply d1). This allows the Defender not only to stop the on-going attack but also to strengthen her system
without paying heavily in terms of the amount of Defender tasks required.

Our basic game model satisfies the 2nd and partially the 1st requirement listed in Section 3.2. However, to
accommodate complex models – satisfying all four requirements – we need to extend our basic game so that
our cyber response problem can be modelled holistically.

5. Extended Game Models

Our basic game model assumes a static scenario where the players consider all options upfront and make a
strategy choice, which fixes a definite course of action for each player. The limitations of the basic model are:

 A player may choose not to take an action that changes the state of the system. For example, a
Defender may only monitor the network to observe the situation and an Attacker may perform
reconnaissance. Such wait conditions may be necessary, but were not included in the basic game
model. To address this, we add a wait game move to the strategy sets of the players (see Figure 6).

 In networked systems, several unexpected system events and on-going attacks may go unnoticed.
Since such observations are critical for successful execution of missions, we need to enhance our
game trees and introduce probabilistic branching that takes into account the uncertainties about what
has happened (see Section 5.1).

 In our basic game both players know the pay-offs to each other. This is an unrealistic assumption since
it implies that each player knows the impact of a course of action on both itself and, critically, on its
opponent. To address this limitation, we introduce randomization to capture variable pay-offs (see
Section 5.2).

5.1 Randomization to Capture Uncertain Observation

Figure 4 Game tree with uncertain observations

Figure 4 illustrates an example of how randomization in the game tree can model uncertainty of observation.
The Attacker can choose either attack a1 or a2 (notation has been simplified here for readability). However,
there is a probabilistic branch after her action, which leads to the choices for the Defender. Therefore, the
Defender knows that there are 3/4 chances that the Attacker has committed a 1 and 1/4 chances of a2 being
played. In contrast, the Defender in our basic game did not know if Attacker plays a1 or a2.

5.2 Randomization to Capture Variable Pay-offs

We consider four cases to introduce randomization of pay-offs. In the first game (Figure 5, row 1), there is an
initial randomized branch with two sub-trees and corresponding pay-offs at the leaves. There are two
possibilities of pay-offs and these are known to both players. As discussed in Section 4.1, observe that there is
no rounded rectangle for the Attacker and two separate ones for the Defender, one for each case. In the second
game (Figure 5, row 2), the Attacker does not know the pay-off possibility, but the Defender does, since we
have an Attacker who is unable to distinguish the initial probabilistic branch. In the third game (Figure 5, row 3),
neither the Attacker nor the Defender knows which pay-offs will be the case and in the final game, the Attacker
knows which pay-off possibility will be the case, but the Defender does not.

We note that, although the same initial pay-offs are assigned to all the game trees, the solutions are very
different (see col. 2 in Figure 5). The number and the kind of game strategies in each equilibria and expected
final pay-offs for both the players vary significantly since their knowledge states change drastically in each
game. Following our extended game models, we can generate a rich set of game trees that precisely represent
the complex requirements of our scenario.

EE 1
P1: (1) 0 1 0 EP= 7/2
P2: (1) 0 0 1 0 0 0 0 0 0 EP=
15/2

EE 1
P1: (1) 0 1 EP= 3
P2: (1) 0 0 1 0 0 0 0 0 0 EP= 9/2

EE 1
P1: (1) 4/5 1/5 EP= 5/2
P2: (1) 0 7/9 2/9 EP= 9/5

EE 2
P1: (2) 0 1 EP= 6
P2: (2) 0 0 1 EP= 3

EE 3
P1: (3) 1 0 EP= 5/2
P2: (3) 0 1 0 EP= 2

EE 1
P1: (1) 0 0 0 1 EP= 6
P2: (1) 0 0 1 EP= 3

Figure 5 Game trees with randomization to capture variable pay-offs and corresponding game solution

6. Deploying Game Models with the OODA Loop

ADTrees capture cyber situational information in a static manner and support analysis of risks off-line. Cyber
systems on the other hand are dynamic, with many system changes (e.g., migration of virtual machines, failure
of storage disks) over time. Game trees are also a static formulation of interacting choices – a single tree
cannot express the evolution of state over time. To address this issue, we propose to update our ADTrees and
game trees in the events of system changes. We adopt the OODA loop methodology (Hightower, n.d.) as
follows:

 Observe – collate information about cyber incidents and system changes.
 Orient – arrange collated information on suitable ADTrees.
 Decide – formulate games in concurrence with the updated ADTrees and solve them.
 Act – raise alerts to the system administrator with possible cyber response solutions to implement an

appropriate action.
The loop reverts to the Observe step after Act and continues similarly thereafter. As an example, consider that
at time instance t, it is observed that the Defender patches the ssh daemon and the Attacker is scanning for a
new set of IP addresses in the network (wait game move). During orientation, attack a1 is disabled and the
corresponding defence d1 need not “stop the ssh service” anymore (let d1’={drop ftp or stop rsh}). Therefore,
we update the game tree in Figure 2 and obtain the following game tree, which is then used to Decide about
cyber responses.

Figure 6 Updated game tree at time instance t

7. Conclusions

We proposed an approach to generate cyber defence responses by mapping situational information from
ADTrees on to game trees. A variety of game models were demonstrated to support complex cyber response
analysis, implemented by the GTE tool. Finally, we also account for dynamic system behavior by adapting our
models following the OODA loop.

This work is an initial study that intends to understand the applicability of ADTrees and game theory in solving
the problem of cyber responses generation. Our future work will first focus on defining a cost function that
takes various functional and security parameters as input and provides the pay-off values as output. We will
then focus on improving the scalability of our approach and perform experiments on realistic cyber testbeds.

Acknowledgements
The work of Sjouke Mauw and Ravi Jhawar was supported by the European Commission through the FP7
project TREsPASS (grant agreement n. 318003) and by the Fonds National de la Recherche Luxembourg through
the ADT2P project (grant n. C13/IS/5809105).

Irfan Zakiuddin's contribution to this work was funded by the Defence Science and Technology Laboratory
(DSTL), which is a part of the UK's Ministry of Defence. In DSTL, Irfan would like to thank Kevin Wise, the DSTL
Technical Partner (TP), for another enjoyable project, much support and the usual string of great project
meetings. Irfan would also like to thank Ed Moxon, the DSTL customer, for guidance and support. Irfan's work
depended critically on huge amounts of free help from game theorists Rahul Savani and Theodore Turocy, both
of whom repeatedly found time, amidst many more important commitments, to answer a barrage of
questions.

8. References

Albanese, M., Jajodia, S., & Noel, S. (2012). Time-efficient and cost-effective network hardening using attack
graphs. DSN (pp. 1--12). Boston, USA: IEEE.

Bistarelli, S., Fioravanti, F., & Peretti, P. (2006). Defence Trees for Economic Evaluation of Security Investments.
ARES (pp. 416--423). Vienna, Austria: IEEE.

Edge, K., Dalton, G., Raines, R., & Mills, R. (2006). Using Attack and Protection Trees to Analyze Threats and
Defences to Homeland Security. MILCOM (pp. 1--7). Washington, DC, USA: IEEE.

Egesdal, M., Gomez-Jordana, A., Pelissier, C., Prause, M., Savani, R., & Stengel, B. (2015). Game Theory Explorer.
Retrieved from http://gte.csc.liv.ac.uk/gte/builder/

Hightower, T. (n.d.). Boyd's OODA loop and how we use it. Retrieved from Tactical Response:
https://tacticalresponse.com/blogs/library/18649427-boyd-s-o-o-d-a-loop-and-how-we-use-it

Kordy, B., Mauw, S., & Radomirovic, S. (2014). Attack-defence trees. Journal of Logic and Computation, 24(1),
pp. 55—87.

Kordy, B., Mauw, S., Melissen, M., & Schweitzer, P. (2010). Attack--Defence Trees and Two-Player Binary Zero-
Sum Extensive Form Games Are Equivalent. GameSec (pp. 245--256). Springer.

Paul, S. (2014). Towards automating the construction & maintenance of attack trees: a feasibility study.
GraMSec (pp. 31--46). Grenoble, France: EPTCS.

Savani, R., & Stengel, B. (2015). Game Theory Explorer: Software for the Applied Game Theorist.
Computational Management Science, 12(1), pp.5—33.

	Automating Cyber Defence Responses using Attack-Defence Trees and Game Theory
	1. Introduction
	2. Motivating Scenario
	3. Game Model
	3.1 Game’s Players
	3.2 Game’s Moves and Knowledge States of the Players
	3.3 Pay-off Function

	4. Mapping Attack-Defence Trees and Games
	4.1 The Basic Game Model and the Game Trees
	4.2 Solving the Games

	5. Extended Game Models
	5.1 Randomization to Capture Uncertain Observation
	5.2 Randomization to Capture Variable Pay-offs

	6. Deploying Game Models with the OODA Loop
	7. Conclusions
	8. References

