
ADTool: Security Analysis with Attack–Defense
Trees?

Barbara Kordy, Piotr Kordy, Sjouke Mauw, Patrick Schweitzer
{barbara.kordy, piotr.kordy, sjouke.mauw,

patrick.schweitzer}@uni.lu

University of Luxembourg, SnT

Abstract. ADTool is free, open source software assisting graphical mod-
eling and quantitative analysis of security, using attack–defense trees.
The main features of ADTool are easy creation, efficient editing, and
automated bottom-up evaluation of security-relevant measures. The tool
also supports the usage of attack trees, protection trees and defense trees,
which are all particular instances of attack–defense trees.

1 Background and Motivation

Attack–defense trees (ADTrees) extend and improve the well-known formalism
of attack trees, by including not only the actions of an attacker, but also pos-
sible counteractions of a defender. Since interactions between an attacker and
a defender are modeled explicitly in ADTrees, the extended formalism allows
for a more thorough and accurate security analysis compared to regular attack
trees. This paper presents ADTool software [7] which supports quantitative and
qualitative security assessment using attack–defense trees.

Theoretical foundations of the ADTree methodology, including a graphical
and a term-based syntax as well as numerous formal semantics, have been intro-
duced in [6]. A mathematical framework for quantitative evaluation of ADTrees
is based on the notion of attributes, which allow us to formalize and specify
relevant security metrics. Standard quantitative analysis of ADTrees relies on a
step-wise computation procedure. Numerical values are assigned to all atomic ac-
tions, represented by the non-refined nodes. The values for the remaining nodes,
including the root of the tree, are deduced automatically in a bottom-up way.
This bottom-up algorithm makes use of attribute domains which specify opera-
tors to be used while calculating values for different node configurations.

The practical use of the ADTree methodology requires dedicated tool sup-
port. Lack of such support may result in numerous modeling difficulties and
computational errors. On the one hand, there exist a number of commercial

? The research leading to the results presented in this work received funding from the
Fonds National de la Recherche Luxembourg under the grants C08/IS/26 and PHD-
09-167 and the European Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 318003 (TREsPASS).



software applications for attack tree-like modeling, including SecurITree1 and
AttackTree+2. However, these are closed source tools and their use is not free
of charge. On the other hand, existing academic software, such as SeaMonster3,
does not support quantitative analysis and uniformly integrated defenses.

The above observations motivated the development of ADTool, which

– is a free and open source application supporting qualitative and quantitative
analysis of tree-based models integrating attack and defense components;

– is based on well-founded formal framework;
– guides the user in constructing well-formed and visually appealing models;
– facilitates sharing, management and updating of the models;
– automates computation of security related parameters.

This paper provides a brief overview of the main features and practical ca-
pabilities of ADTool. For a more detailed description we refer the reader to an
extended and illustrated version of this article [5] and to the ADTool manual
available at http://satoss.uni.lu/software/adtool/manual.pdf.

2 Main features of ADTool

ADTool is guiding the user in constructing models that comply with the graph-
ical ADTree language. All options that allow to modify or refine the models can
be accessed via a user-friendly GUI of the application.

ADTool uses an improved version of Walker’s algorithm [2] to produce trees
having an appealing layout. Furthermore, when an ADTree is built, the corre-
sponding attack–defense term (ADTerm), is immediately displayed. ADTerms
form a compact, algebraic representation of ADTrees. The shortest tree edit dis-
tance algorithm [3] implemented in ADTool ensures that when an ADTerm is
modified, the corresponding ADTree is adapted accordingly.

ADTool provides advanced features for model manipulation and manage-
ment. Folding, expanding and zooming options make the analysis of large models
possible. Temporarily hiding parts of a tree permits users to focus on the dis-
played components. This is highly appreciated during industrial meetings and
presentations. ADTrees created with ADTool can be saved as special .adt files,
which enables their reuse and modification. Models can also be exported to vec-
tor graphics files (pdf), raster graphics files (png, jpeg) and LATEX files (tex).
Resulting figures can be used as illustrations in presentations, research papers
and posters. A dedicated option makes it possible to print trees on a specified
number of pages, which enhances readability of large-scale models.

The bottom-up algorithm for evaluation of attributes on ADTrees has been
implemented in ADTool. Supported measures include: attributes based on real
values (e.g., time, cost, probability), attributes based on levels (e.g., required

1 http://www.amenaza.com/
2 http://www.isograph-software.com/2011/software/attacktree/
3 http://sourceforge.net/projects/seamonster/

2



skill level, reachability of the goal in less than k units of time), and Boolean
properties (e.g., satisfiability of a scenario). The implemented measures can be
computed from the point of view of an attacker (e.g., the cost of an attack), of
a defender (e.g., the cost of defending a system), or relate to both of them (e.g.,
overall maximum power consumption). Using different attribute domains allows
us to distinguish between actions executed sequentially or in parallel.

After a user selects an attribute, the tool decorates the ADTree with default
values representing the worst case scenario, e.g., infinite cost or maximal required
skill level. The user then customizes the inputs for the relevant non-refined nodes
and the linear bottom-up algorithm computes the values of the remaining nodes.
Input values can be modified directly on the tree or using an overview table which
is particularly helpful in case of large models. The tool ensures that the provided
values are consistent and belong to a specified value domain. This is especially
important when several specialists supply values for different parts of the tree.

The tool has been extensively tested and has proven to be able to easily
handle realistic models containing a few thousand nodes. The computations us-
ing ADTool are performed instantaneously. The limiting factor is the graphical
display of ADTrees. For trees of more than ten thousand nodes, a delay of about
five seconds occurs when a new node is added. This is due to the recalculation
of the positions of some nodes.

3 Implementation Characteristics

The application has been written in a modular way with a clear distinction
between the GUI and the Implementation Model. An overview of the ADTool
architecture is depicted in Figure 1. The Implementation Model consists of the

InfoNode Docking Windows

Tree/Domain Views Term View

GUI

User

interactpdf
tex
jpg
png

Printer

Tree Model

Quantitative Models

extend

Domain Classes

derrive

Implementation Model

edit

edit

Disk

load/save

load/save

bottom-up evaluation

Fig. 1. An overview of the ADTool architecture

Tree Model (which stores the basic tree structure), Domain Classes (defining
the implemented attribute domains), and Quantitative Models (which are de-
rived from Domain Classes and contain inserted and computed values). The
functionality of the tool can easily be extended by defining new attributes. For
this purpose, a new Domain Class needs to be created and compiled. Domain

3



Classes have been designed to be simple, in order to make it possible for a user
with minimal knowledge of Java to add a new domain. Due to the use of Java
reflection, no recompilation or other modifications of the program are required
after adding a new Domain Class.

ADTool runs on all common operating systems (Windows, Linux, Mac OS).
The program is written in Java and it depends on the following free libraries:
abego TreeLayout4, implementing an efficient and customizable tree layout al-
gorithm in Java, and InfoNode Docking Windows5, a pure Java Swing based
docking windows framework, allowing to set up windows in a flexible way and to
save and restore their layout. ADTool is available for download and as an online
application at http://satoss.uni.lu/software/adtool/.

4 Conclusion and future work

ADTool provides security consultants as well as academic researchers with a rig-
orous but user-friendly application that supports security analysis using ADTrees.
It integrates two crucial modeling aspects: the creation of security models and
their quantitative analysis. From a formal perspective, attack trees [8], protec-
tion trees [4], and defense trees [1] are instances of ADTrees. Thus, ADTool can
also be employed to automate and facilitate the usage of all these formalisms.

We are currently working on combining the ADTree methodology with Bayes-
ian Networks, to make probabilistic reasoning about scenarios involving depen-
dent actions possible. Related theoretical findings and newly identified features
will be implemented in the next versions of ADTool.

References

1. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense Trees for Economic Evaluation of
Security Investments. In: ARES’06. pp. 416–423. IEEE Computer Society (2006)

2. Buchheim, C., Jünger, M., Leipert, S.: Drawing rooted trees in linear time. Software:
Practice and Experience 36(6), 651–665 (2006)

3. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An Optimal Decomposition
Algorithm for Tree Edit Distance. ACM Trans. Algorithms 6(1), 2:1–2:19 (2009)

4. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protection
Trees to Analyze Threats and Defenses to Homeland Security. In: MILCOM. pp.
1–7. IEEE (2006)

5. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: Security Analysis with
Attack–Defense Trees (Extended Version). CoRR abs/1305.6829 (2013)

6. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–Defense Trees. Jour-
nal of Logic and Computation pp. 1–33 (2012), available online http://logcom.

oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
7. Kordy, P., Schweitzer, P.: ADTool (2012), http://satoss.uni.lu/software/

adtool
8. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D., Kim, S. (eds.)

ICISC’05. LNCS, vol. 3935, pp. 186–198. Springer (2006)

4 http://code.google.com/p/treelayout/
5 http://www.infonode.net/index.html?idw

4


