
Analysing the Efficacy of Security Policies
in Cyber-Physical Socio-Technical Systems

Gabriele Lenzini, Sjouke Mauw, Samir Ouchani

CSC/Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Luxembourg

{gabriele.lenzini,sjouke.mauw,samir.ouchani}@uni.lu

Abstract. A crucial question for an ICT organization wishing to improve its se-
curity is whether a security policy together with physical access controls protects
from socio-technical threats. We study this question formally. We model the in-
formation flow defined by what the organization’s employees do (copy,move,
and destroy information) and propose an algorithm that enforces a policy on the
model, before checking against an adversary if a security requirement holds.

Keywords: Socio-Technical-Physical Systems, Modelling Security and Policies.

1 Introduction

The data-flow of an ICT organization is defined by what its employees do. They access,
copy, share, and move pieces of information and objects thatcarry information, such as
hard disks. In this flow, an organization must avoid to have critical data stolen. To reduce
this risk, organizations protect the access to files, or use encryption. Paper documents
or electronics are closed in drawers and offices are locked.

They also adopt policies, such as a “clean desk” policy, campaign for best prac-
tices, such as “always encrypt emails”. However, a criticalquestion remains whether
a specific combination of policies and physical/digital controls is effective against cer-
tain threats. This question does not have an easy answer, butwe advocate that it can be
explored by the use of formal methods.

Formal methods have been successfully applied in the analysis of security protocols
over the last decades (e.g., see [1]). Recently they have also been proposed to model
Socio-Technical Physical Systems (STPS)[2] —systems whose operation is defined by
the interactions between people, technology, and physicalelements— of which ICT
organizations are examples. This new research (e.g., see [3–7]) suggests that formal
methods can be used in the analysis of the security of STPS andof the processes that
define an STPS’s daily work flow.

The idea of reasoning about a system’s security in combination with policies has
also been explored (see [8–12] and Section 3). Policies on accesses, on work flows, and
on security properties have been formalized and verified over models of STPS. One
work in particular, that of Hartelet al. [12] considers policies and requirements at the
same time. Hartelet al.study four specific systems and model check, in SPIN, whether
the systems composed with the policies comply with a given requirement.

b

l0 l1 l2 l3 l4

a1 o1

a2[bvA = MoveTo(d24, l2, l4).B]

o2[attrO = {m,c}]

I

d12

d13

d24[lockedD = false]

d04

(a) (b)

Fig. 1: (a) A simplifiedSTPS’s state; (b) its formal representation.

Here, we aim to provide a formal framework to reason about theefficacy of a policy
and of security control mechanisms against an adversary model. LetS be a model of an
STPS,π be a model of a policy,p be a desirable security property, andI be an adversary
model. The high-level formalization of the proposition whetherS constrained by pol-
icy π is effective in realizingp can be expressed symbolically as follows:S|π |=I p (1).
Appropriately instantiated,S|π represents the (executions of)S whereπ is enforced,
while |=I p is the relation “satisfies requirementp in the presence of adversaryI ”. In
absence ofπ, proposition (1) collapses intoS |=I p, the classical proposition about
whetherS satisfiesp in the presence ofI . We develop a precise formal framework to
express the abstract question in (1) and we develop an algorithm to computeS|π .

Background. There are a few formal languages upon which we can build. Here, we
leverage on the one presented in [6]. There, the authors model an STPS’sstateas a
labelled multi-graph. Nodes model offices, objects, or employees of the STPS. Edges
represent either doors between offices or a (direct) location relation between nodes say-
ing that “nodex is contained/located in nodey”.

Figure 1 exemplifies an STPS’s state and the graph representing it. Here (please,
ignore the labels between ‘[]’ for now) b is the building andl1− l4 are its four rooms.
Nodel0 models the outside. Nodea1, in rooml1, and nodea2, in rooml2, are employees.
a2 holdso2, supposedly a letter. Nodeo1, a printer, is in rooml3. I , the intruder, waits
outside. Edgesd04, d12, d13 andd24 are the doors between the four rooms.

Nodes and edges of the graph can be labelled to supply additional information.
A label on an edge “door” expresses whether the door is lockedand what key can
lock/unlock it. A label on a node “object” tells us whether the object is movable (m),
destroyable (d), or a container (c); in this case, another label tells us whether it is locked
and what key can lock/unlock it. A label on a node “agent” tells us what is the “protocol”
that defines the agent’s behaviour. Agents can, for instance, move, pick up an object,
put an object down, or destroy an object and its contents, or exchange an object with
another agent. Figure 2 (left side) shows some of the labels (not all of them, though).

b

l0 l1 l2 l3 l4

a1 o1

a2[bvA = MoveTo(d24, l2, l4).B]

o2[attrO = {m,c}]

I

d12

d13

d24[lockedD = false]

d04

b

l0 l1 l2 l3 l4

a1 o1

a2[bvA = B]

o2[attrO = {m,c}]

I

movinga2
(d24,l2,l4)

==========⇒ d12

d13

d24[lockedD = false]

d04

Fig. 2: How theSTPSin Figure 1 changes because of agenta2’s moving tol4.

The doord24 is unlocked;o2 is a container and is movable; agenta2 is about to move
to rooml4.

Formally, an STPS’s state is a tuple〈Phy,Obj,Act,E〉. Phy is composed of nodes
representing the physical spaces (L∪{b}), door identifiers (D), and two door labelling
functions (lockedD, andkeyD); Obj is the nodes that model objects (O) and three object
labelling functions (attrO, lockO, andkeyO); Act is the nodes that model the employees
and the intruder (A∪{I}), and a set of labelling functions that return the protocols/be-
haviour of each employee (bvA). ItemE are the edges of the graph: the edges that model
the doors (L×L), labelled with door identifiers, and the edges that model the location
of employees ((A∪{I})×L) and of objects (O× (L ∪ A ∪ {I} ∪ O)).

The authors of [6] also describe how an STPS’s state changes because of what
the employees or the intruder do. The effect of an action is defined by a (conditional)
graph-rewriting rule. A rule rewrites the formal graph representing the STPS’s state by
changing it as one intuitively expects: an agent’s moving from one room to another, if
the rooms are connected by an open door, has the effect of changing the agent’s location
to the new “room”. For reasons of space we will not include therewriting rules in this
paper, but Figure 2 gives a rough idea of how the effect of the “move to” rule looks like.
Note the transition (i.e., arrow⇒) is labelled with the action that caused the transition.

Other rules define what the intruderI can do. He can be malicious, (e.g., pick locks,
steal or slip objects from people’s pockets) but he cannot break the laws of physics: he
cannot traverse walls, nor perform teleportation.I does not follow a protocol. All his
actions are enabled, if they are possible.

Starting from a specific initial configuration, by applying the rules that are enabled
one can generateexecutions of theSTPS. The semantical model of these executions for
a specific STPS is alabelled transition systemS = 〈S,Γ ,S0,⇒〉 whereS is the set of
all possible STPS’s states,Γ is the set of action labels,S0 ∈ S is the initial state, and
⇒ ⊆ (S×Γ ×S) is the labelled transition relation between states. It is the smallest
relation that satisfies the graph rewriting rules. It must bestressed thatS includes also
the transitions due to the intruder.

In [6], S is a probabilistic and weightedlabelled transition system. The agent’s
behaviour is probabilistici.e., specified by a stochastic process algebra. Actions have a

weight,i.e., cost. Costs are important in defining the intruder’s strategy. For instance he
can pick a lock, which may cost more (e.g., in time) than opening the door with the key.
He can also decide to use the key, but then the key must be retrieved (e.g., stolen) first.
All the details are in [6] but the intuitive description we have just given here is sufficient
for understanding what we are proposing next.

2 Modelling Data and Data Flow

We extend [6] to be able to model data and the flow of data. For this purpose, we
introducedigital objectsand digital object carriers. A digital object models a piece
of data, such as a file. Data cannot exist by their own: they need to be stored/carried.
Digital object carriers are carrying data objects. Hard disks, USB pens, a book, (the
mind of) an agent are data carriers. Formally,Obj is extended with a new labelling
functiontypeO: returnsp if the object is physical,d if the object is digital.

Digital objects can be cloned/copied, but they need a carrier that holds them af-
terwards. Formally, this means to extendAct, the language of an employee’s or the
Intruder’s actions with two additional actions:Clone(o,o′) andClone(o). The former
creates an identical copy ofo into carriero′; the latter “clones”o in the mind of who ex-
ecutes the action. All the other actions onto objects (e.g., exchange them, destroy them,
et cetera) remain applicable with the only constraint that digital objects need a carrier.
Due to space limitations, we will not describe the new rules in this paper. The resulting
formal semantics is a probabilistic and weighted labelled transition systems extending
the one given in [6].

In the setting of this paper, we do not need probabilities or costs. We see little utility
in policies that apply with certain probability/cost. Instead, in relation to (1), question-
ing whether a policy is effective to reduce the risk of a specific attack within a certain
probability/cost is a legitimate question. In this paper wedo not develop this proba-
bilistic framework. We leave it for future work. Instead, weinterpret (1) as the question
whether a certain policy, when enforced, is effective in removing attacks (resp., ensur-
ing security) altogether. A non-probabilistic non-weighted labelled transition system
(which we still writeS in the remainder of the paper) can be obtained from the model
in [6] by substituting any probabilistic choice in allbvA with a non-deterministic choice
and by ignoring costs.

3 Security Policies and Security Requirements

According to the Cambridge Dictionary, asecurity policyis “a plan, or a document,
specifying what to do in particular situations, and often how and when to do it”. Poli-
cies, when enforced or followed, should have the effect of nudging specific practices to
become compliant with its provisions.

Policies can be modelled in several ways (e.g., as behavioural patterns [12], as first-
order logic assertions [10], as markov decision processes [11]); here we model a policy
focusing on the constraints it has on the executions of an STPS. We consider asecurity
policy as a statement on what may never happen in the STPS execution.We abstract
from the reasons why an STPS’s executions appear to be constrained, disregarding how

a policy is actually enforced (e.g., access control systems, people having accepted the
policy for ethical reasons or for fear of punishment): we assume it is enforced somehow.
A security requirementinstead is a desirable security property that we would like to be
valid despite specific threats coming from an adversary. We model a security require-
ment as a classic security property [1].

We express policies and requirements using the language ofsecurity statements. It
corresponds to Linear Temporal Logic (LTL) with ‘Next’ and ‘Until’ operators.

Definition 1. A security statementis any expression in the language L(ϕ), so defined:

ϕ ::= true | ϕSP | ϕ ∧ϕ ′ | ¬ϕ | ©ϕ | ϕ U ϕ ′

ϕSP ::= ϕSP∧ϕ ′
SP | ¬ϕSP | d ∈ conn(l , l ′) | o∈ keyD(d) |(x,a) ∈ HistD(d) | (x,a) ∈ HistO(o) |

z∈ |typeO(o) | y∈attrO(o) | locO(o)= l | o∈ keyO(o
′) | o∈ contO(o

′) | locA(a)= l | o∈ contA(a)

Operators∧ and¬ give the full power of propositional logic; operators© and U are
sufficient to derive the other LTL operators,♦ and�. Note that,L(ϕSP) is the sub-
language of propositional logic expressions over the STPS’s state. In the remainder, we
indicate withϕ any formula inL(ϕ), and withϕSP any formula inL(ϕSP).

The informal meaning of a state predicate inϕSP can be guessed from the name of
the statement. So, for instance,o∈ keyD(d) evaluates to true if and only ifo is the key
that closes/opens doord. The formal semantics is defined in term of[[·]]S, the function
returning the truth value of a security statement in a given stateS∈ S:

[[d ∈ conn(l , l ′)]]S iff (l ,d, l ′) ∈C

[[(x,a) ∈ HistD(o)]]S iff (x,a) ∈ HistD(o)

[[(x,a) ∈ HistO(o)]]S iff (x,a) ∈ HistO(o)

[[y∈ attrO(o)]]S iff y∈ attrO(o)

[[z∈ typeO(o)]]S iff z∈ typeO(o)

[[locO(o) = l]]S iff (l ,o) ∈ (E)+

[[locA(a) = l]]S iff (l ,a) ∈ E

[[o∈ keyD(d)]]S iff o= keyD(d)

[[o∈ keyO(o
′)]]S iff o= keyO(o

′)

[[o∈ contO(o
′)]]S iff (o′,o) ∈ (E)+

[[o∈ contA(a)]]S iff (a,o) ∈ (E)+

HistD andHistO keep the history of who has locked/encrypted a door or an object.
The semantics ofϕ is the standard semantics of an LTL formula (e.g., see [13]).

Assuming thatWords(ϕ) = {ρ ∈ (2ϕSP)ω : ρ |=I ϕ} is the set of allω-words (i.e.,
possible infinite words) over the alphabet 2ϕSP that satisfyϕ, the satisfaction relation
|=I ⊆ (2ϕSP)ω × L(ϕ) is the smallest relation satisfying the following properties:

– ρ |=I true

– ρ |=I ϕSP iff [[ϕSP]]ρ [0]
– ρ |=I ¬ϕ iff ρ 6|=I ϕ
– ρ |=I ϕ1∧ϕ2 iff ρ |=I ϕ1 and ρ |=I ϕ2

– ρ |=©ϕ iff ρ [1. . .] |=I ϕ
– ρ |=I ϕ1U ϕ2 iff ∃ j ≥ 0 : ρ [j · · ·] |=I ϕ2

andρ [i · · ·] |=I ϕ1, ∀0≤ i < j

Here, forρ = S0S1 . . . ∈ (2ϕSP)ω , ρ [j · · ·] = SjSj+1 . . . is the suffix ofρ starting in the
(j + 1)st symbolSj . Given S = 〈S,Γ ,S0,⇒〉, we say that a security statementϕ is
valid in S , writtenS |=I ϕ, whenTraces(S)⊆ Words(ϕ), whereTraces(S) is the
set of allprefix closed tracesof S [13].

From the language of security statements we derive the language of security policies
and of security requirements. Since we decided to model the effect of policies as con-
straints on the execution of an STPS, a security policy is a safety property or a negation

of a liveness property. We may consider to extend this language in the future. Instead,
we do not impose any restrictions on the language of securityrequirements.

Definition 2. A policy is a security statement of the form�¬ϕSPor ¬�(ϕSP→ ♦ϕSP).

Definition 3. A requirementis a security statement.

Example 1.The policy “o should be kept inl ” is written as(�¬(∃a∈A.{o}⊆ contA(a)∧
locA(a) 6= l); the requirement “no one bringso outside” as:¬(♦locO(o) = l0).

4 Policy Constrained Semantics

According to Definition 2, when a policy is enforced, no execution of the system is
expected to violate the policy. This should hold only when weconsider executions that
do not include actions of the intruder, because an intruder is, by definition, someone who
is freed from playing by the rules. Such reflections lead to the following definitions:

Definition 4 (Honest Trace).Anhonest traceis a trace whose underlying sequence of
states, S0 · . . . ·Si ·Si+1 · . . . is such that(Si ,Si+1) ∈⇒, for all i ≥ 0 and where the label
of ⇒ is not the intruder’s ID.

We indicate the set of all honest traces ofS asTracesH(S). Here,A is the set of
honest agents. Another relevant set of traces for the framework is the set of traces that
satisfies a given security statement.

Definition 5 (Trace satisfying ϕ). A trace satisfyingϕ is a trace inTraces(S)∩
Words(ϕ). An honest trace satisfyingϕ is a trace inTracesH(S)∩Words(ϕ).

We denote the set of all traces satisfyingϕ by traces(S ,ϕ), and the set of all
honest traces satisfying aϕ by tracesH(S ,ϕ).

We are now interested to distinguishing, in an execution without the intruder, the
requirements whose validity can be changed if the policy is enforced from those whose
validity is unchanged by it.

Definition 6 (Requirements/Policies Affectedness).Let ϕ be a requirement,π a pol-
icy, andS be a model of execution of an STPS. We say thatϕ is affected byπ in S ,
and we write itϕ ↼ ϕ ′, whentracesH(S ,ϕ)⊆ tracesH(S ,¬π) 6= /0.

Property 1. Relation↼ is reflexive and commutative.

In a system where a policy is parsimoniously enforced, no requirement must change
their validity, except those that are affected by the enforcement ofπ.

Definition 7. Let S = 〈S,S0,⇒〉 be an STPS,π a policy. ThesystemS constrained
by π, writtenS|π , is a newS ′ = 〈S′,S0,⇒

′〉 that satisfies the following conditions:

1. If S 6|=H π then S ′ |=H π;
2. For all p such that p6↼ π, if S |=H p thenS ′ |=H p.

Algorithm 1 Reduce (S ,π) → S|π

Case 1:π =�¬ϕSP:
Forall Si ∈ S : ∃ρ ∈ TracesH(S),
ρ = S0 · · ·Si · · · and ρ [i · · ·] |= ϕSP Do
S′ := S\{S};

Forall (S′,Si) ∈⇒ Do ⇒′:= (⇒\{(S′,S)})∪{(S′,S′)};
Forall (Si ,S′) ∈⇒ Do ⇒′:= (⇒\{(S′,Si)}).

Case 2:π = ¬�ϕSP→ ♦ϕSP:
Forall Si ,Sj ∈ S : ∃ρ ∈ TracesH(S)
ρ = S0 · · ·Si · · ·Sj · · · and ρ [i · · ·] |= π} Do
⇒′:= (⇒\{(Sj−1,Sj)})∪{(Sj−1,Sj−1)}.

Definition 7 makes it clear that in a system where the policy isenforced the policy
holds, and that the validity of properties that are not affected by the policy does not
change. The use of the|=H notation in Definition 7 stresses that the policy is enforced
on the system’s execution without the interference of the intruder. The intruder can still
find its way into breaching security even in the constrained system. Actually, the con-
strained system will be secure only whenTraces(S|π)⊆ Words(p). This is eventually
the meaning we intended to give to the proposition in (1).

From an operational point of view we are interested to obtainS|π from S . Algo-
rithm 1, inputs aS = 〈S,S0,⇒〉, aπ such thatp 6↼ π and returns a labelled transition
system forS|π . The new transitions are labelled withε, the null action.

Proposition 1 (Soundness).S ′ = Reduce(S ,π) is a system constrained byπ.

Proof. (sketch)S satisfies the two conditions in Definition 7. A valid, inS , require-
ment p that is not affected byπ, will not change its validity due to the operations
(removing states, and adding loops) that Algorithm 1 implements ontoS .

Proposition 2. Reduce(S ,π) can be implemented with worst-case time complexity
O(|S|2 · check(π)). Here,check(π) is the complexity of checkingπ.

Proof. (sketch) Algorithm 1 is inefficient: theForalls browse far more states than nec-
essary. A more efficient way is to search for theSs with minimal index in a trace satis-
fying Foralls’ conditions. EachForall ’s has at mostO(|S|2) iterations.

5 Conclusion

To reduce the risk that sensitive data are leaked, an ICT organization should protect
its files and any item that may contain those files, such as harddisk, books, and USB
pens. This can be done by restricting the digital and the physical access to data but
also by implementing security policies meant to be enforcedon the employees daily
job. The research we presented in this paper sets the foundations for reasoning about
an organization’s security when it enforces its policies. We propose a formal approach:
we represent the data flow as it is defined by the daily operation of the employees of an
organization in a formal language. Policies are simple formulas that we use to restrict
the possible evolution of the system and based on which we check the validity of a
security property in the presence of an adversary.

Our theoretical approach focussed on clearly defining the relevant concepts while
postponing the design of efficient algorithms. We believe that it is possible to reduce
the complexity of our algorithm and to optimize the generation of our STPSmod-
els. It is worth to mention that, even using our non-optimized algorithm, we man-
aged to run proof-of-concept scenarios by using the Probabilistic Symbolic Model
Checker (PRISM) model checker. For reasons of space we couldnot report on this
experience in the current paper. In the future, we will report on our practical experi-
ences in full detail. Another future research question concerns our policy language. We
kept our policy language simple to be able to focus on the mainconcepts in our frame-
work. We will study the expressiveness of our language and study extensions needed to
manage real policies. We will also consider the introduction of probabilities and costs
in our framework.

References

1. C. Cremers and S. Mauw.Operational Semantics and Verification of Security Protocols.
Information Security and Cryptography. Springer, 2012.

2. G. Baxter and I. Sommerville. Socio-technical Systems: From DesignMethods to Systems
Engineering.Interacting with Computers, 23(1):4–17, 2011.

3. R. De Nicola, G.L. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Inter-
action and Mobility.IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

4. C. Meadows and D. Pavlovic. Formalizing Physical Security Procedures. InSecurity and
Trust Management, volume 7783 ofLNCS, pages 193–208. Springer, 2013.

5. T. Sommestad, M. Ekstedt, and H. Holm. The Cyber Security Modeling Language: A Tool
for Assessing the Vulnerability of Enterprise System Architectures.IEEE Systems Journal,
7(3):363–373, 2013.

6. G. Lenzini, S. Mauw, and S. Ouchani. Security Analysis of Socio-Technical Physical Sys-
tems.Computers and Electrical Engineering, 47(C):258–274, 2015.

7. T. Dimkov, W. Pieters, and P. Hartel. Portunes: Representing Attack Scenarios Spanning
through the Physical, Digital and Social Domain. InAutomated Reasoning for Security
Protocol Analysis and Issues in the Theory of Security, volume 6186 ofLNCS, pages 112–
129. Springer, 2010.

8. Philip W.L. Fong. Relationship-based Access Control: Protection Model and Policy Lan-
guage. InThe First ACM Conference on Data and Application Security and Privacy, CO-
DASPY ’11, pages 191–202, 2011.

9. M. Jaume. Semantic Comparison of Security Policies: From Access Control Policies to Flow
Properties. In2012 IEEE Symposium on Security and Privacy, pages 60–67, 2012.

10. S. Ranise and R. Traverso. ALPS: An Action Language for Policy Specification and Auto-
mated Safety Analysis. InSecurity and Trust Management, volume 8743 ofLNCS, pages
146–161. Springer, 2014.

11. M.C. Tschantz, A. Datta, and J.M. Wing. Formalizing and EnforcingPurpose Restrictions in
Privacy Policies. In2012 IEEE Symposium on Security and Privacy, pages 176–190, 2012.

12. P. Hartel, P. V. Eck, S. Etalle, and R. Wieringa.Modelling mobility aspects of security
policies, volume 3362 ofLNCS, pages 172–191. Springer, 2004.

13. Ch. Baier and J-P. Katoen.Principles of Model Checking. The MIT Press, 2008.

	Analysing the Efficacy of Security Policies in Cyber-Physical Socio-Technical Systems

