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Abstract. A crucial question for an ICT organization wishing to improve its se-
curity is whether a security policy together with physical access controtegis
from socio-technical threats. We study this question formally. We moeeinth
formation flow defined by what the organization’s employees do (comye,
and destroy information) and propose an algorithm that enforces g molithe
model, before checking against an adversary if a security requitemodds.
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1 Introduction

The data-flow of an ICT organization is defined by what its eypeés do. They access,
copy, share, and move pieces of information and objectstray information, such as
hard disks. In this flow, an organization must avoid to haiteeat data stolen. To reduce
this risk, organizations protect the access to files, or nseyption. Paper documents
or electronics are closed in drawers and offices are locked.

They also adopt policies, such as a “clean desk” policy, @gnmpfor best prac-
tices, such as “always encrypt emails”. However, a critquadstion remains whether
a specific combination of policies and physical/digital wols is effective against cer-
tain threats. This question does not have an easy answavetadivocate that it can be
explored by the use of formal methods.

Formal methods have been successfully applied in the dsalfysecurity protocols
over the last decades.{, seel[1]). Recently they have also been proposed to model
Socio-Technical Physical Systems (STRB)—systems whose operation is defined by
the interactions between people, technology, and physieahents— of which ICT
organizations are examples. This new reseaect), (see [8=]) suggests that formal
methods can be used in the analysis of the security of STP®fahe processes that
define an STPS’s daily work flow.

The idea of reasoning about a system’s security in comlainatiith policies has
also been explored (se€ [8+12] and Sediion 3). Policies cesaes, on work flows, and
on security properties have been formalized and verified madels of STPS. One
work in particular, that of Hartett al. [12] considers policies and requirements at the
same time. Hartedt al. study four specific systems and model check, in SPIN, whether
the systems composed with the policies comply with a givemirement.
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Fig. 1: (a) A simplifiedSTP$ state; (b) its formal representation.

Here, we aim to provide a formal framework to reason abougffieacy of a policy
and of security control mechanisms against an adversargiricet.# be a model of an
STPS,mbe a model of a policyp be a desirable security property, drige an adversary
model. The high-level formalization of the proposition ler.# constrained by pol-
icy mtis effective in realizingo can be expressed symbolically as follow&; = p (1).
Appropriately instantiated?/,; represents the (executions ofj wherert is enforced,
while | p is the relation “satisfies requiremeptin the presence of adversaly; In
absence oft, proposition [(IL) collapses into” = p, the classical proposition about
whether. satisfiesp in the presence df. We develop a precise formal framework to
express the abstract question(ih (1) and we develop an #igotd compute? ..

Background. There are a few formal languages upon which we can build. ,heze
leverage on the one presented[in [6]. There, the authors Inaod8TPS’sstateas a
labelled multi-graph. Nodes model offices, objects, or eygés of the STPS. Edges
represent either doors between offices or a (direct) locaétation between nodes say-
ing that “nodex is contained/located in nog@.

Figure[1 exemplifies an STPS'’s state and the graph repregehtiHere (please,
ignore the labels betweeh]’ for now) b is the building and; — 14 are its four rooms.
Nodelg models the outside. Nodg, in roomly, and nodey, in rooml,, are employees.
a holdsoy, supposedly a letter. Nod®m, a printer, is in roomis. I, the intruder, waits
outside. Edgedya, di2, di3 andd,4 are the doors between the four rooms.

Nodes and edges of the graph can be labelled to supply aulitioformation.
A label on an edge “door” expresses whether the door is lockatlwhat key can
lock/unlock it. A label on a node “object” tells us whetheetbbject is movablen(),
destroyabled), or a containerd); in this case, another label tells us whether it is locked
and what key can lock/unlock it. A label on a node “agent’stal what is the “protocol”
that defines the agent’s behaviour. Agents can, for instanoge, pick up an object,
put an object down, or destroy an object and its contentsxaramge an object with
another agent. Figuié 2 (left side) shows some of the labelsa]l of them, though).
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Fig. 2: How theSTPSn Figure[1 changes because of ager's moving tol,.

The doordy, is unlocked;o, is a container and is movable; ageatis about to move
to roomly.

Formally, an STPS’s state is a tuplehy, Obj, Act E). Phyis composed of nodes
representing the physical spaces){b}), door identifiers ), and two door labelling
functions (ockedb, andkeys); Objis the nodes that model objectS)(and three object
labelling functions ttrg, locko, andkey,); Actis the nodes that model the employees
and the intruderAU {1 }), and a set of labelling functions that return the prototas/
haviour of each employe®yy). ItemE are the edges of the graph: the edges that model
the doors I x L), labelled with door identifiers, and the edges that modeldication
of employees(AU{l}) x L) and of objects®@ x (L U A U {I} U O)).

The authors of([6] also describe how an STPS's state changemube of what
the employees or the intruder do. The effect of an action finee by a (conditional)
graph-rewriting rule. A rule rewrites the formal graph regegnting the STPS'’s state by
changing it as one intuitively expects: an agent’s movimgnflone room to another, if
the rooms are connected by an open door, has the effect aficiggthe agent’s location
to the new “room”. For reasons of space we will not includergheriting rules in this
paper, but Figurgl2 gives a rough idea of how the effect of theve to” rule looks like.
Note the transitioni(e., arrow=>) is labelled with the action that caused the transition.

Other rules define what the intrudecan do. He can be maliciou.§, pick locks,
steal or slip objects from people’s pockets) but he canredlbthe laws of physics: he
cannot traverse walls, nor perform teleportatibrloes not follow a protocol. All his
actions are enabled, if they are possible.

Starting from a specific initial configuration, by applyirtetrules that are enabled
one can generaxecutions of th8 TPS. The semantical model of these executions for
a specific STPS is kbelled transition systen¥’ = (S,I", S, =) whereSis the set of
all possible STPS's stateE, is the set of action label& € S is the initial state, and
= C (SxTI x9S)is the labelled transition relation between states. It é&sdimallest
relation that satisfies the graph rewriting rules. It musstoessed tha?” includes also
the transitions due to the intruder.

In [6], .7 is aprobabilistic and weightedabelled transition system. The agent’s
behaviour is probabilistice., specified by a stochastic process algebra. Actions have a



weight,i.e.,, cost. Costs are important in defining the intruder’s stpatBor instance he
can pick a lock, which may cost more.§, in time) than opening the door with the key.
He can also decide to use the key, but then the key must bevedrg.g, stolen) first.
All the details are in[6] but the intuitive description weMegust given here is sufficient
for understanding what we are proposing next.

2 Modelling Data and Data Flow

We extend|[[5] to be able to model data and the flow of data. Ferghrpose, we
introducedigital objectsand digital object carriers A digital object models a piece
of data, such as a file. Data cannot exist by their own: thed nede stored/carried.
Digital object carriers are carrying data objects. HarkslidJSB pens, a book, (the
mind of) an agent are data carriers. Formalyj is extended with a new labelling
functiontypey: returnsp if the object is physicakd if the object is digital.

Digital objects can be cloned/copied, but they need a catfiet holds them af-
terwards. Formally, this means to exteAdt, the language of an employee’s or the
Intruder’s actions with two additional action€lon€go,0’) andClongo). The former
creates an identical copy ofinto carrierd’; the latter “clonesd in the mind of who ex-
ecutes the action. All the other actions onto objeetg,(exchange them, destroy them,
et cetera) remain applicable with the only constraint thgital objects need a carrier.
Due to space limitations, we will not describe the new rufethis paper. The resulting
formal semantics is a probabilistic and weighted labeltaddition systems extending
the one given in[6].

In the setting of this paper, we do not need probabilitiessts We see little utility
in policies that apply with certain probability/cost. leat, in relation td {1), question-
ing whether a policy is effective to reduce the risk of a sfieeaittack within a certain
probability/cost is a legitimate question. In this paper deenot develop this proba-
bilistic framework. We leave it for future work. Instead, imeerpret[[1) as the question
whether a certain policy, when enforced, is effective inogimg attacks (resp., ensur-
ing security) altogether. A non-probabilistic non-weigghtlabelled transition system
(which we still write.# in the remainder of the paper) can be obtained from the model
in [6] by substituting any probabilistic choice in &l with a non-deterministic choice
and by ignoring costs.

3 Security Policies and Security Requirements

According to the Cambridge Dictionary,s&curity policyis “a plan, or a document,
specifying what to do in particular situations, and oftemwhand when to do it". Poli-
cies, when enforced or followed, should have the effect digmg specific practices to
become compliant with its provisions.

Policies can be modelled in several waggy( as behavioural patterris [12], as first-
order logic assertion§s [10], as markov decision proce&sH3, [here we model a policy
focusing on the constraints it has on the executions of arSSWe consider aecurity
policy as a statement on what may never happen in the STPS exedivkoabstract
from the reasons why an STPS'’s executions appear to be amestr disregarding how



a policy is actually enforcede(g, access control systems, people having accepted the
policy for ethical reasons or for fear of punishment): wauass it is enforced somehow.
A security requiremerninstead is a desirable security property that we would likieet
valid despite specific threats coming from an adversary. \WWdaha security require-
ment as a classic security propeity [1].

We express policies and requirements using the languagecafity statementst
corresponds to Linear Temporal Logic (LTL) with ‘Next’ andntil’ operators.

Definition 1. A security statemerni$ any expression in the languagégl), so defined:

¢ z=true | psp| G A" [~d | O¢ | U ¢’

dspi= ¢spA dsp| —dsp| d € conn(l,1’) | 0 € keyy(d) |(x,a) € Histp(d) | (x,a) € Histo(0) |
z€ |typey(0) | y € attro(0) | loco(0) =1 | 0 € keyy(0') | 0 € conip(0') | loca(a) =1 | 0 € conta(a)

Operatorsh and — give the full power of propositional logic; operatafs and U are
sufficient to derive the other LTL operators,and (. Note that,L(¢sp) is the sub-
language of propositional logic expressions over the S3B@te. In the remainder, we
indicate with¢ any formula inL(¢), and withgsp any formula inL(¢sp).

The informal meaning of a state predicatepigp can be guessed from the name of
the statement. So, for instan@es key, (d) evaluates to true if and only @ is the key
that closes/opens dodr The formal semantics is defined in term[efs, the function
returning the truth value of a security statement in a gitateS € S:

lloco(0) =1]s iff (1,0) € (E)"

[loca(a) =1]s iff (1,2)€E
[lo € keyy(d)]s iff 0=key(d)
[o € keyy(0')]s iff 0=key(d
[o € conp(d)]s iff (d,0) € (E)*"

[o € conta(a)]s iff (a,0) € (E)*

Histp andHisto keep the history of who has locked/encrypted a door or arcbbje

The semantics o is the standard semantics of an LTL formuéad, see [13]).
Assuming thatWords(¢) = {p € (2957)“: p |= ¢} is the set of allw-words {.e,
possible infinite words) over the alphabds®that satisfyg, the satisfaction relation
E C (2%sP)? x L(¢) is the smallest relation satisfying the following propesti

[d € conn(l,1"]s iff (I1,d,I")eC
[(x,a) € Histp(0)]s iff (x,a) € Histp(0)
[(x,a) € Histo(0)]siff (x,a) € Histo(0)
[y € attro(0)]ls iff y € attro(o)
[z € types(0)]s iff z< typey(0)

— p =l true i
, ~pEO$ it p[L..] i ¢
- Pk ¢SP.|:ff [@sPlp[o) - p 1 91U 2 iff 3] >(I) pli-1 = ¢2
—pl—oiff p A ¢ andpli---] = ¢1, VO<i < |
- pEid1nd2iff pl= ¢randp = ¢
Here, forp = SSi... € (2¢5p)w, Pl -] = SjSj+1... is the suffix ofp starting in the

(j+1)% symbol§;. Given. = (S,I", S, =), we say that a security statemeftis
valid in.7, written.” |=| ¢, whenTraces(.) C Words(¢), whereTraces(.¥) is the
set of allprefix closed traceef . [13].

From the language of security statements we derive the &gegof security policies
and of security requirements. Since we decided to modelffbetef policies as con-
straints on the execution of an STPS, a security policy igetysproperty or a negation



of a liveness property. We may consider to extend this lagguma the future. Instead,
we do not impose any restrictions on the language of seaadfyirements.

Definition 2. A policy is a security statement of the fofth-¢spor —[(¢psp— OPsp).
Definition 3. Arequirements a security statement.

Example 1.The policy “o should be kept i’ is written as(C)—(Jaca. {0} C conta(a) A
loca(a) # 1); the requirement “no one bringsoutside” as=—($loco(0) = lp).

4 Policy Constrained Semantics

According to Definitior 2, when a policy is enforced, no ex@mu of the system is
expected to violate the policy. This should hold only whenogesider executions that
do notinclude actions of the intruder, because an intridégidefinition, someone who
is freed from playing by the rules. Such reflections lead &oftilowing definitions:

Definition 4 (Honest Trace).An honest tracés a trace whose underlying sequence of
states, &...-S§-S41-...issuch thaf{S,S;1) €=, for all i > 0 and where the label
of = is not the intruder’s ID.

We indicate the set of all honest traces#fasTracesy (). Here,Ais the set of
honest agents. Another relevant set of traces for the frameis the set of traces that
satisfies a given security statement.

Definition 5 (Trace satisfying ¢). A trace satisfyingp is a trace inTraces(.)N
Words(¢). An honest trace satisfyinfyis a trace inTracesy (.’) NWords(¢).

We denote the set of all traces satisfyipdoy traces(.,¢), and the set of all
honest traces satisfyingdaby tracesy (7, ¢).

We are now interested to distinguishing, in an executiomevit the intruder, the
requirements whose validity can be changed if the policyisreed from those whose
validity is unchanged by it.

Definition 6 (Requirements/Policies Affectedness).et ¢ be a requirementir a pol-
icy, and.¥ be a model of execution of an STPS. We say ¢hiataffected bytin .7,
and we write ity — @', whentracesy (7, ¢) C tracesy (7, —~m) # 0.

Property 1. Relation— is reflexive and commutative.

In a system where a policy is parsimoniously enforced, naireqment must change
their validity, except those that are affected by the erdorent ofrt.

Definition 7. Let.¥ = (S,S,=-) be an STPSf a policy. Thesystem. constrained
by m, written .1, is a new”’ = (S, S, =) that satisfies the following conditions:

1. f.7nm then ' =4,
2. Forall p such that p~ m, if & =4 p thens”’ =4 p.



Algorithm 1 Reduce (., 1) — ¥

Case 1.mr=U—¢sp Case 2:1= -U¢sp— Odsp

Forall S € S: 3p € Tracesy (), Forall §,Sj € S: 3p € Tracesy(.Y)
p:S)S and p[|] ':¢SPD0 p:S)SSJ and p[|] ’: 7'[} Do
S :=S\{Sh "= (= \S1S)HUS1 S}

=
(= \{(8.9HU{(S.8)};
= \{(S.9)D-

Forall (S,5) €= Do ="
Forall (§,S) €= Do ="'

Definition[@ makes it clear that in a system where the policgriforced the policy
holds, and that the validity of properties that are not affédoy the policy does not
change. The use of they notation in DefinitiorLV stresses that the policy is enforced
on the system’s execution without the interference of tiveider. The intruder can still
find its way into breaching security even in the constrainedesn. Actually, the con-
strained system will be secure only whBraces(.#|,;) C Words(p). This is eventually
the meaning we intended to give to the propositiofn (1).

From an operational point of view we are interested to obt&ipnfrom .. Algo-
rithm[d, inputs a¥ = (S, S, =), amsuch thatp 4 mand returns a labelled transition
system for.#|,;. The new transitions are labelled wighthe null action.

Proposition 1 (Soundness).¥’ = Reduce(.”, 1) is a system constrained by

Proof. (sketch).” satisfies the two conditions in Definiti@h 7. A valid, .if, require-
ment p that is not affected byt, will not change its validity due to the operations
(removing states, and adding loops) that Algorifim 1 im@atse onto .

Proposition 2. Reduce(., 1) can be implemented with worst-case time complexity
O(|S|?- check(m)). Here,check() is the complexity of checkirng

Proof. (sketch) Algorithni is inefficient: thEorall s browse far more states than nec-
essary. A more efficient way is to search for @sewith minimal index in a trace satis-
fying Foralls’ conditions. Eaclfforall’s has at mos©(|S|?) iterations.

5 Conclusion

To reduce the risk that sensitive data are leaked, an ICThirgdon should protect
its files and any item that may contain those files, such as diakd books, and USB
pens. This can be done by restricting the digital and the iphlyaccess to data but
also by implementing security policies meant to be enformedhe employees daily
job. The research we presented in this paper sets the faangldor reasoning about
an organization’s security when it enforces its policies. pkbpose a formal approach:
we represent the data flow as it is defined by the daily operatithe employees of an
organization in a formal language. Policies are simple fda® that we use to restrict
the possible evolution of the system and based on which wekctine validity of a
security property in the presence of an adversary.



Our theoretical approach focussed on clearly defining thevaat concepts while
postponing the design of efficient algorithms. We beliewa this possible to reduce
the complexity of our algorithm and to optimize the genemtof our STPSmod-
els. It is worth to mention that, even using our non-optirdizégorithm, we man-
aged to run proof-of-concept scenarios by using the PrébbiSymbolic Model
Checker (PRISM) model checker. For reasons of space we cumildeport on this
experience in the current paper. In the future, we will répor our practical experi-
ences in full detail. Another future research question eams our policy language. We
kept our policy language simple to be able to focus on the mantepts in our frame-
work. We will study the expressiveness of our language amtiyst:xtensions needed to
manage real policies. We will also consider the introductd probabilities and costs
in our framework.
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