
1
Generating tools for Message Sequene ChartsS. Mauwa and E.A. van der Meulenba Dept. of Mathematis and Computing Siene, Eindhoven University of Tehnology,P.O. Box 513, 5600 MB Eindhoven, The Netherlandsb Dept. of Mathematis and Computing Siene, University of Amsterdam, Kruislaan403, 1098 SJ Amsterdam, The NetherlandsThe reent formalization of the semantis of Message Sequene Charts enables thederivation of tools for MSCs diretly from this formal de�nition. We use the Asf+SdfMeta-environment to make a straightforward implementation of tools for transformation,simulation and requirements testing.1. INTRODUCTIONMessage Sequene Charts (MSCs) are a graphial method for the desription of theinteration between system omponents [11℄. Due to the reent formalization [7, 8, 12℄ ofthe semantis of Message Sequene Charts, we an onsider MSC as a formal desriptiontehnique.Currently, this formalization has already inuened the development of the language(in partiular with respet to omposition of MSCs) and it is expeted to also inuenethe use of MSCs.Formalization will also have impat on the work of tool builders. The behavior of toolsan be validated against the formal semantis, but even more valuable is the possibilityto generate tools, or prototypes, diretly from the formal de�nitions. This paper an beonsidered as a ase study in the formal development of omputer tools for programminglanguages.In pratie, tools for an informally de�ned language are developed mainly based onthe intuition of the program designer. Unless all people have a ommon understandingof the language, this leeds to inonsistent tools. If a formal de�nition of the language isavailable, tools an also be based on the understanding of these formal semantis. Thismay lead to more onsistent tools, but in pratie this only works if the semantis is wellaessible. A better approah would be to automatially implement the formal semantisof the language. This leeds to orret and onsistent tools. A possible problem with thisapproah is that neessarily a formal semantis has a high level of abstration and is notdireted towards possible tools. Thus, automati implementation of the formal semantisis not always feasible. An operational semantis and deisions on implementation detailsmay be needed.Our aim is to demonstrate how the abstrat de�nitions of the formal semantis ofBasi Message Sequene Charts (BMSCs) an be implemented. BMSCs are MessageSequene Charts with only the main features: ommuniation and loal ations. The

2tehniques desribed in this paper transfer straightforward to the omplete MSC language.As desribed in [7℄ the semantis of BMSCs is de�ned by a translation into proess algebra.Beause this translation is de�ned by means of equations and beause the axioms de�ningproess algebra are also equations, the obvious way of implementing the semantis of MSCsis by using algebrai spei�ations [1℄.We used the Asf+Sdf Meta-environment [3℄ for the implementation. With this sys-tem algebrai spei�ations an be implemented by means of term rewriting systems.Furthermore, a omplete programming environment for BMSCs an be generated, inlud-ing a syntax direted editor, a parser and a pretty printer.In this paper we will only desribe the struture of the tool set and highlight parts of theformal spei�ation. The omplete spei�ation an be found in [9℄. The implementationonsists of three parts. The �rst part is the translation of BMSCs into proess algebraexpressions. This is based on the de�nition of the semanti funtions in [7℄. The seondpart is the de�nition of a simulator for BMSCs. Although a simulator is not part of theformal semantis, it an easily be derived from the operational semantis given in [7℄. Infat the desription of the simulator in [9℄ an be regarded as a formal spei�ation of asimulation tool. The third part onsists of an implementation of the stati requirementsfor BMSCs expressed informally in [11℄ and formalized in [10℄.This paper is strutured in the following way. Setion 2 ontains a desription ofthe Asf+Sdf Meta-environment. In Setion 3 we give a short overview of the BMSClanguage. Setion 4 ontains a desription of the tool set and highlights parts of thespei�ation.Although this paper overs the omplete semantis of BMSCs, it is not intended as aself-ontained explanation of these semantis. Refer to [7℄ for a omprehensive treatment.AknowledgementsThanks are due to Arie van Deursen, Wilo Koorn, Mihel Reniers and Eelo Visserfor their assistane during several phases of this projet.2. THE ASF+SDF META-ENVIRONMENTThe Asf+Sdf Meta-environment [3℄ is a programming environment generator basedon algebrai spei�ations. From a spei�ation of the syntax and semantis of a languagean environment is generated, in its simplest form onsisting of a syntax direted editorand a term rewrite system. The generated environment an be ustomized further bymeans of the language SEAL [5, 6℄.An algebrai spei�ation [1℄ in Asf (Algebrai Spei�ation Formalism) onsists oftwo parts. A signature for desribing sorts and funtions, and a set of equations, whihgive an algebrai de�nition of the funtions.When speifying programming languages in an algebrai manner, the syntax for fun-tion de�nitions is found to be too restritive. The formalismAsf+Sdf therefore ombinesthe algebrai spei�ation formalismAsf with a formalism for de�ning syntax: Sdf. Sdfallows for the ombined spei�ation of onrete syntax (like in BNF) and abstrat syn-tax. Hene, Asf+Sdf is a formalism for writing algebrai spei�ations with user de�nedsyntax. A modularization onept is part of Asf+Sdf to support design in the large.The most ommon strategy for implementing algebrai spei�ations is via term rewrite

3systems (TRSs, see [4℄). An algebrai spei�ation an be transformed into a TRS byinterpreting the equations as rewrite rules from left to right. This TRS an be used toompute the value of a funtion appliation.3. MESSAGE SEQUENCE CHARTSMessage Sequene Charts provide a graphial method for the desription of the om-muniation behaviour of system omponents. The ITU-TS (the Teleommuniation Stan-dardization Setion of the International Teleommuniation Union, the former CCITT)maintains reommendation Z.120 [11℄ whih ontains the syntax and an informal explana-tion of the semantis of Message Sequene Charts. A formal semantis based on proessalgebra has been proposed in [8℄. This proposal is urrently subjet to standardizationby the ITU ([12℄).In this paper we restrit ourselves to the ore language of Message Sequene Charts,whih we all Basi Message Sequene Charts (BMSCs). A Basi Message SequeneChart onentrates on ommuniations and loal ations only. These are the featuresenountered in most languages omparable to Message Sequene Charts. Their semantisis desribed in [7℄.A Basi Message Sequene Chart ontains a (partial) desription of the ommuniationbehavior of a number of instanes. An instane is an abstrat entity of whih one an ob-serve (part of) the interation with other instanes or with the environment. An instaneis denoted by a vertial axis. The time along eah axis runs from top to bottom.A ommuniation between two instanes is represented by an arrow whih starts at thesending instane and ends at the reeiving instane. Although the ativities along one
i j

msc runningexample

k l

Figure 1. Example Basi Message Sequene Chartsingle instane axis are ompletely ordered, we will not assume a notion of global time.The only dependenies between the timing of the instanes ome from the restrition thata message must have been sent before it is reeived.Figure 1 shows a simple BMSC in whih only ommuniations with the environmentare spei�ed. This will be the running example in the remainder of this paper. Note thatthere is no ordering imposed on the events k and l.The Basi Message Sequene Chart of Figure 1 has the following textual representation.

4 ms example1;instane i;out k to env;endinstane;instane j;out l to env;endinstane;endms;4. DESCRIPTION OF THE TOOLSFor eah of the tools generated by the Asf+Sdf Meta-environment we give a shortdesription and highlight small parts of the algebrai spei�ation. The omplete spei�-ation an be found in [9℄. First we give an overview of the relation between the tools.4.1. OverviewFigure 2 desribes the struture of the generated tool set. Boxes denote expressionsin the given language and arrows represent transformations from one language to theother. Apart from the INPUT language whih is plain ASCII, we onsider the follow-ing languages. MESSAGES is the language of output messages generated by the re-quirements heker and the simulator, BMSC is the language of (parsed) Basi MessageSequene Charts, PABMSC is the proess algebra theory used for desribing the seman-tis of BMSCs (see [7℄) and BPA is the sub-language of PABMSC that only ontains thenormalized PABMSC expressions. The generated tools are onsidered as transformation
PA

BMSC

Calculator
Semantics

INPUT

BPA

Parser

Normalizer

Editor
Directed
Syntax

BMSC

Checker

Simulator

MESSAGES

MESSAGES

Figure 2. Struture of the toolstools, desribed by algebrai spei�ations. The implementation of these spei�ations isinternal to the Asf+Sdf Meta-environment. We spei�ed the following tools.Syntax direted editor and parser The parser onverts plain ASCII text into BMSC.Cheker The additional syntax requirements (stati semantis) for BMSCs an be hekedwith this tool.

5Semantis Calulator The semantis of a BMSC is desribed by a translation into theproess algebra PABMSC . The Semantis Calulator omputes the semantis of aBMSC.Normalizer The normalizer redues the expression resulting from the previous step tonormal form. This tool makes it possible to inspet the omplete behavior of thegiven BMSC.Simulator Test runs of the BMSC an be generated interatively with the simulator. Ito�ers the user a hoie between all possible ontinuations. After seleting one event,it alulates the PABMSC expression that results after exeution of the event.4.2. Syntax direted editorA syntax direted editor for BMSC is automatially derived from the desription of thesyntax of BMSC in Asf+Sdf. Part of the module BMSC-Syntax in whih the syntaxis spei�ed is presented below. The module uses the module Identi�ers whih introduesMSCID (MSC names), IID (Instane names), MID (Message names) and AID (Ationnames).The sorts MSC, MSC-BODY, INST-DEF, INST-BODY and EVENT are the non-terminals of the grammar. The prodution rules of the grammar are expressed in theontext-free syntax setion of the spei�ation. For example, an MSC-BODY is eitherempty or onsists of an INST-DEF followed by an MSC-BODY. Using this grammar,funtions on BMSCs an be de�ned by means of indution on the struture of a BMSC.BMSC-Syntaxsorts MSC MSC-BODY INST-DEF INST-BODY EVENTontext-free syntax\ms" MSCID \;" MSC-BODY \endms" \;" ! MSC! MSC-BODYINST-DEF MSC-BODY ! MSC-BODY\instane" IID \;" INST-BODY \endinstane" \;"! INST-DEF! INST-BODYEVENT INST-BODY ! INST-BODY\in" MID \from" IID \;" ! EVENT\in" MID \from" \env" \;" ! EVENT\out" MID \to" IID \;" ! EVENT\out" MID \to" \env" \;" ! EVENT\ation" AID \;" ! EVENTA syntax direted editor for BMSC is generated by the Asf+Sdf Meta-environment.From the de�nition of the (ontext-free) syntax of BMSC, a sanner and a parser forBMSC is reated. If the text in the editor is onform the BMSC syntax the parsergenerates the orresponding BMSC term. Figure 3 shows a snapshot of the syntax diretededitor, ontaining the running example. Note, that buttons are onneted to the editorfor the four other tools. These buttons are reated by means of the user interfae languageSEAL [5, 6℄. When a button is seleted the orresponding tool is applied to the BMSCin the editor.

6

Figure 3. Syntax direted editor4.3. ChekTwo stati requirements for Basi Message Sequene Charts are formulated in [7℄. The�rst is that an instane may be delared only one. The seond is that every messageidenti�er ours exatly one in an output ation and one in a mathing input ation, orin ase of a ommuniation with the environment a message identi�er ours only one.The unique-instanes requirement has been spei�ed in Asf+Sdf in module Require-ments by means of a funtion uin whih applied to BMSCs yields a message ontainingboth a Boolean value and a possibly empty list of error messages. The equations [1℄ to [6℄below speify the semantis of this funtion applied to an MSC-BODY and its auxiliaryfuntions.ontext-free syntaxuin \(" MSC-BODY \)" ! CHECKINFOallinstnames \(" MSC-BODY \)"! IIDLISTIID \notin" IIDLIST ! CHECKINFOequations[1℄ uin() = Chek: true Errors: [℄[2℄ uin(instane <iid>; <inst-body> endinstane; <ms-body>) =<iid> notin allinstnames(<ms-body>) and uin(<ms-body>)[3℄ allinstnames() = [℄[4℄ allinstnames(instane <iid>; <inst-body> endinstane; <ms-body>) =[<iid>℄ [allinstnames(<ms-body>)[5℄ <iid> notin [<iid>�1; <iid>; <iid>�2℄ =Chek: false Errors: [<<dupliate instane name "<iid> " >>℄[6℄ <iid> notin [<iid>�℄ = Chek: true Errors: [℄ otherwiseThe terms <x> indiate a variable of the sort X, <x>� and <x>�i indiate a sequeneof variables of the sort X. Equation [1℄ shows that the hek sueeds if the MSC-BODY

7is empty. If the MSC-BODY is not empty, i.e. onsists of an instane de�nition followedby an MSC-BODY, equation [2℄ an be applied. In this ase, we hek that the name ofthe �rst instane does not our in the set of instane names of the MSC-BODY, and bya reursive all of the funtion uin the rest of the BMSC is heked. Equations [3℄ and [4℄indutively de�ne the auxiliary funtion allinstnames, that omputes the set of instanenames in an MSC-BODY. The error messages are generated by the auxiliary funtionnotin. Equation [5℄ states that if the given instane name ours at any position in thegiven set of instane names, the information from the heker onsists of the Booleanvalue false and an error message. Otherwise, the heker returns the Boolean value trueand an empty list of error messages (equation [6℄).Similar funtions for speifying the other requirement are given in the same module.When the Chek button in Figure 3 is seleted the relevant funtions are applied to theterm in the editor and the generated term rewrite system is used to ompute the result.A window will pop up ontaining this result. Figure 4 shows the result of heking theBMSC in our running example. Sine this term is orret the list of error messages isempty. Next, suppose that we hange the identi�er j in the editor of Figure 3 into i.Seleting the hek button then results in the window of Figure 5.

Figure 4. Result of heking a orret BMSC
Figure 5. Result of heking a BMSC with a double ourrene of instane i
4.4. Semantis CalulatorIn [7℄ Mauw and Reniers desribe the translation from Basi Message Sequene Chartsinto the proess algebra PABMSC . The de�nition of this translation funtion an beonsidered as an algebrai spei�ation in a straightforward manner. We will not showthe resulting spei�ation.

8 The result of applying this translation to the BMSC in the editor of Figure 3 is the pro-ess algebra term �;(out(i; env; k) k out(j; env; l)). The appliation of the merge operator(k) shows that the semantis of the given BMSC is the interleaved exeution of the eventsout(i; env; k) and out(j; env; l). The state operator (�;) in front of the expression enforesthat input of message only ours after the orresponding output. Sine the example onlyonsiders ommuniations with the environment, in this ase the state operator imposesno restritions.Figure 6 shows the window that appears after having seleted the Semantis button.
Figure 6. Result of omputing the semantis of a BMSC4.5. NormalizerThe two operators in the expression of Figure 6 an be eliminated. This is allednormalization. The resulting term ontains the operators for sequential omposition (�)and alternative omposition (+) only. It expresses all possible behaviors of the BMSC.Figure 7 shows the e�et of pressing the normalize button in the editor of Figure 3. Thereare two alternative behaviors: the two events may be exeuted in either order.The implementation of the normalizer is simple. The axioms de�ning the proessalgebra PABMSC an easily be interpreted as rewrite rules. Only are has to be taken notto inlude the axioms for ommutativity, sine this would give a non-terminating termrewrite system. Consequently, some extra rewrite rules had to be added, as explained in[9℄.

Figure 7. Result of normalizing the semantis of a BMSC

94.6. SimulatorFor large BMSCs, the expressions desribing the normalized semantis as in Figure 7beome quite large and omplex. Therefore, the tools o�er the possibility to walk throughthe events of a BMSC in any of the admitted orders. Thus, the user an interativelysimulate the behavior of a BMSC. For this purpose we used the operational semantis forBMSCs from [7℄. This operational semantis de�nes for a given BMSC a labeled transitionsystem. The transitions orrespond with the events of the BMSC.For the running example, represented by the term �;(out(i; env; k) k out(j; env; l)), theset of transitions is fout(i;env;k)! �;(out(j; env; l)); out(j;env;l)! �;(out(i; env; k))g. This meansthat exeuting event out(i; env; k) results in the BMSC represented by �;(out(j; env; l))and that exeution of the alternative ation out(j; env; l) results in �;(out(i; env; k)).Likewise, the transition set of �;(out(j; env; l)) is fout(j;env;l)! "g and of �;(out(i; env; k)) isfout(i;env;k)! "g. The symbol " means that the BMSC has terminated.In the spei�ation below, parts of the spei�ation of the funtion transitions areshown. This funtion alulates the set of transitions for a given PABMSC expression.Equation [TR1℄ states that a terminated BMSC, represented by " has no transitions.Equation [TR2℄ de�nes the transitions for a single event a. In this ase there is one singletransition, namely exeute a and terminate. Equation [TR5℄ de�nes the transitions ofthe parallel omposition of two expressions. It makes use of two auxiliary funtions, theunion ([) as de�ned in equation [T1℄ and the merge of a transition set and a proessexpression (also denoted by the operator k) as de�ned in the equations [T4℄ through[T7℄. The de�nition in equation [TR5℄ states that in order to alulate the transitions ofx k y, we �rst take the transitions of x and the transitions of y. The result is not simplythe union of these two transition sets, sine, if x exeutes an ation, y still has to be plaedin parallel with the resulting proess. This is expressed in equation [T5℄. The symmetriase is expressed in [T7℄. Finally [TR7℄ states that for the transition set of an expressionstarting with the state operator �M , we need to alulate the transition list of its argumentand �lter out the sequenes in whih an input ours before the orresponding output.The de�nition of this �lter funtion is not inluded in this doument.ontext-free syntax\|" ATOM \!" PROCESS ! TRANSITION\transitions" \(" PROCESS \)" ! TRANSITIONLISTTRANSITIONLIST \[" TRANSITIONLIST! TRANSITIONLISTTRANSITIONLIST \k" PROCESS ! TRANSITIONLISTPROCESS \k" TRANSITIONLIST ! TRANSITIONLISTequations[TR1℄ transitions(") = [℄[TR2℄ transitions(a) = [| a ! "℄[TR3℄ transitions(x + y) = transitions(x) [transitions(y)[TR5℄ transitions(x k y) = transitions(x) k y [x k transitions(y)[TR7℄ transitions(�M (x)) = �lterM (transitions(x))

10[T1℄ [tl1℄ [[tl2℄ = [tl1; tl2℄[T4℄ [℄ k y = [℄[T5℄ [| a ! x; tl℄ k y = [| a ! x k y℄ [[tl℄ k y[T6℄ y k [℄ = [℄[T7℄ y k [| a ! x; tl℄ = [| a ! y k x℄ [y k [tl℄If we selet the simulate button in Figure 3, we obtain three windows from Figure 8. Theupper window is the seletion window, in whih all possible ontinuations of the BMSCare displayed. Either event may our. The middle window displays the list of all eventsexeuted until now. This list is empty. The lower window shows the proess algebrarepresentation of the BMSC under onsideration.

Figure 8. Starting the simulatorIf the user selets the seond event, all windows will be updated (see Figure 9). Theseletion window now ontains the one remaining event. The trae window ontains thehosen event and the urrent window ontains the proess algebra representation of theBMSC resulting after having exeuted the seond event.If we selet the remaining event, we obtain the situation from Figure 10. It shows thatexeution of the BMSC is �nished.5. CONCLUSIONSThe main objetive of this ase study was to provide evidene that the formal semantisde�nition of Basi Message Sequene Charts an be used to derive tools in a straightfor-ward way. The translation of the proess algebra and the de�nitions of the semantisfuntions into algebrai spei�ations is easy, but are has to be taken when implement-ing them as rewrite rules. In order to obtain a nie term rewriting system, some ruleshave to be deleted, added or modi�ed.

11

Figure 9. Result after seleting event number (2)

Figure 10. Result after seleting the �nal eventWe also spei�ed a simulator tool based on the operational semantis for MessageSequene Charts. The de�nition of this simulator ould serve as a formal spei�ation ofsuh a tool. Finally, we formalized the stati requirements.By using the Asf+SdfMeta-environment we derived (prototypes of) tools for BMSCs.It proved to be a exible programming environment whose apabilities of inrementaldevelopment helped in easy prototyping. The possibilities of de�ning a user interfae ontop of the term rewrite engine enables the generation of demonstrable and usable tools.The possibility of prototyping makes it easy to explore new versions of MSC in stan-dardization work and to make dialets of MSC for internal use. Changes to the syntaxonly require minor modi�ations to the spei�ation. Changes with respet to the se-mantis and new language features require modi�ation of the formal semantis and aorresponding modi�ation of the spei�ation.A disadvantage of the term rewriting paradigm in Asf+Sdf is that, sometimes, easyto understand algebrai rules have to be transformed into a more implementation diretedform.

12The transformation into a TRS sometimes implies that deisions on implementationdetails are made, whih were not expressed in the algebrai spei�ation. For example, ifwe aim at omplete TRSs (i.e. TRSs whih are onuent and terminating, see [4℄), we needto deide on the implementation of ommutative operators and the implementation of setsby ordered lists. Therefore, a ompletely automati implementation of an algebraiallyspei�ed semantis by means of a TRS is not always feasible.The tehniques desribed in this paper an be easily extended to the general settingof Message Sequene Charts. Due to the modular desription, the framework for BasiMessage Sequene Charts an be reused almost ompletely.Starting from the algebrai spei�ations, there are two ways to proeed with the devel-opment of real tools. The obvious way is to manually translate the funtionality expressedin the equations into eÆient ode. The spei�ation an then be used for validation pur-poses. The seond way is to (semi-) automatially generate eÆient programs. This istopi of ongoing researh ([2℄).REFERENCES1. H. Ehrig and B. Mahr. Fundamentals of Algebrai Spei�ations, vol. I, Equationsand Initial Semantis. Springer-Verlag, 1985.2. J. F. Th. Kamperman and H.R. Walters. ARM, abstrat rewriting mahine. TehnialReport CS-9330, Centrum voor Wiskunde en Informatia, 1993.3. P. Klint. A meta-environment for generating programming environments. ACMTransations on Software Engineering Methodology, 2(2):176{201, 1993.4. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,editors, Handbook of Logi in Computer Siene, volume II, pages 1{116. OxfordUniversity Press, 1992.5. J.W.C. Koorn. Conneting semanti tools to a syntax-direted user-interfae. ReportP9222, Programming Researh Group, University of Amsterdam, 1992.6. J.W.C. Koorn. Generating uniform user-interfaes for interative programming en-vironments. PhD thesis, University of Amsterdam, 1994. ILLC Dissertation series1994-2.7. S. Mauw and M.A. Reniers. An algebrai semantis of Basi Message Sequene Charts.The omputer journal, 37(4):269{277, 1994.8. S. Mauw and M.A. Reniers. An algebrai semantis of Message Sequene Charts.Experts Meeting SG10, Turin, TD9009, ITU-TS, 1994. Report CSN94/23, EindhovenUniversity of Tehnology, 1994.9. S. Mauw and E.A. van der Meulen. Generating tools for Message Sequene Charts.Study Group Meeting SG10, Geneva, TD60, ITU-TS, 1994.10. M.A. Reniers. Syntax requirements of Message Sequene Charts. Study Group Meet-ing SG10, Geneva, TD59, ITU-TS, 1994.11. Z.120 (1993). Message sequene hart (MSC). ITU-T, 1994.12. Z.120 B (1995). Message sequene hart algebrai semantis. ITU-T, Publ. shed.1995.

