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We study High-level Message Sequence Charts – a concept incorporated into MSC96 for com-
posing MSCs explicitly. A formal semantics is given which extends the accepted process algebra
semantics of MSC92. We assess the language by studying a simple example, which leads us to
consider the extension of HMSC with gates.

1. INTRODUCTION

The standardization of Message Sequence Charts (MSCs) [8] in 1992 by the CCITT has in-
creased the interest in and use of MSCs considerably. Due to the variety of applications, many
extensions have been proposed since 1992 for increasing the use of MSC in specific application
domains or in general. Several of these proposed new language constructs were selected when
extending the MSC language to MSC96 [7].

The composition of MSCs has been a main issue for the upgrade of the recommendation. In
MSC92 composition of MSCs was hardly covered, while in MSC96 there are several new lan-
guage features for constructing MSCs from simpler MSCs. In this paper we will focus on one of
these composition techniques, namely High-level Message Sequence Charts (HMSCs).

An HMSC is a graphical overview of the relation between the MSCs contained. It helps in
keeping track of the control-flow. In an HMSC alternative, sequential and parallel composition
as well as recursion are captured in an attractive graphical layout: references to MSCs are related
by means of arrows connecting them. One can look at HMSC as the synthesis of the roadmap
approach [16,18] and the operator approach [6].

One of the current aims is to also extend the semantical definitions for MSC92 [11,9] to the
MSC96 language. Because MSC96 has become quite a large language, we propose to study the
new constructs first in isolation and get a full understanding of these features before combining
them into one semantics definition.

In this paper, we will give a definition of the semantics of the sub-language HMSC of MSC96,
based upon the recommended process algebra semantics of MSC92. Further, we discuss the use
of HMSC by studying the well-known Alternating Bit Protocol (ABP) from different views. This
case study motivates to extend MSC96 with gates on HMSC nodes.

This paper is structured as follows. First, we give an introduction to High-level Message Se-
quence Charts (HMSCs). As a basis we take Basic Message Sequence Charts (BMSCs). Then,
in Section 3, we present a denotational and indirectly an operational semantics for HMSC. In
Section 4, we focus on a layered description of the well-known ABP. In Section 5 we argue in
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favour of an extension of HMSCs based on gates. We conclude with some remarks and topics
for further research.
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2. HIGH-LEVEL MESSAGE SEQUENCE CHARTS

2.1. Basic Message Sequence Charts
A Basic Message Sequence Chart (BMSC) contains a description of the asynchronous commu-

nication between instances. Additionally local actions can be specified on instances. An instance
is an abstract entity of which one can observe (part of) the interaction with other instances or with
the environment. The BMSC P in Figure 1 defines the communication behaviour between in-
stances i, j, k, l and the environment. An instance is denoted by a vertical axis. The time along
each axis is running from top to bottom.

m

i j k

n

o
a

p

l

n

msc P

m

i j k
msc Q

Figure 1. Example Basic Message Sequence Charts.

A communication between two instances is represented by an arrow which starts at the send-
ing instance and ends at the receiving instance. In BMSC P from Figure 1 we consider the mes-
sages m, n, o, p. Message p is sent to the environment. The behaviour of the environment is not
specified. For instance l a local action a is defined.

Although the activities along one single instance axis are completely ordered, we will not as-
sume a notion of global time. The only dependencies between the timing of the instances come
from the restriction that a message must have been sent before it is received. For BMSC P this
implies for example that message o is received by k only after it has been sent, and consequently,
after the reception of m by j . For the sending and receiving of m and n no order is specified.
Since we have asynchronous communication it is even possible to first send m, then send and
receive n, and finally receive m.

2.2. High-level Message Sequence Charts: HMSC
The most simple HMSC is a BMSC, as in Figure 1. The purpose of the compound HMSCs is to

describe the relations between the MSCs contained in a graphically attractive way. A compound
HMSC consists of a collection of components, enclosed by a frame. The components are thought
of as complex MSCs that operate in parallel. Every component consists of a number of nodes and
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a number of arrows that imply an order on the nodes. We make a distinction between three kinds
of nodes. Every component has exactly one start node, indicated by an upside-down triangle (∇).
Further, it may contain a number of end nodes, indicated by a triangle (4), and several HMSC
references. An HMSC reference consists of a frame with rounded corners enclosing the name of
the referenced HMSC. We require that within a component every node (including the end nodes)
is reachable from the start node. In Figure 2 an HMSC is shown. For simplicity we do not draw
the abundant frame from MSC96 to denote parallelism.
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Figure 2. Example HMSC.

An arrow between two HMSC references implies that they are composed vertically. Splitting
of an arrow denotes that the successors are alternatives. A cycle connecting a number of HMSC
references expresses a repetition. In this way infinitary behaviour can be described.

Diagrams with many nodes and arrows can easily become unreadable for the human eye. By
introducing connectors we can improve a lot on this problem. A connector is indicated by a cir-
cle (◦). Every combination of an incoming and an outgoing edge of a connector represents an
arrow between the source of the incoming arrow and the destination of the outgoing arrow. A
transformation of HMSCs with connectors to HMSCs without connectors can, in the presence of
a formal definition of HMSC diagrams, easily be given. An example of an HMSC with connec-
tors is given in Figure 7 (see Section 4).

3. SEMANTICS

This section is devoted to the semantics of HMSC. With respect to MSC92 formal semantics
were defined based on Petri nets [5], Büchi automata [10], process algebra [11] and, more re-
cently, partial order methods [1]. Since the process algebra approach was selected for standard-
ization [9], we will use this approach as a starting point. First, we recapitulate the semantics
of BMSC. Next, we define the operators needed for relating the MSCs contained in an HMSC.
Finally, we define the semantics of HMSC based on an abstract syntax.

3.1. Basic Message Sequence Charts
In [11] a semantics for BMSC is presented. We will give a short explanation of this seman-

tics. To each BMSC a closed process expression is associated. With every event specified in
a BMSC an atomic action is associated as follows: The sending of a message m by instance i
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to instance j (or the environment) is represented by out (i, j, m) (or out (i, env, m)), the recep-
tion of a message m by instance j from instance i (or the environment) is denoted in(i, j, m)

(or in(env, j, m)), and a local action a on instance i is denoted action(i, a). Together with the
constants ε and δ which denote successful termination and inaction (or deadlock) respectively,
the atomic actions mentioned above constitute the constants of the term algebra used for the se-
mantics. Furthermore, the term algebra consists of binary operators + and · for non-deterministic
choice and strong sequential composition, respectively. The process expression that can be asso-
ciated to a BMSC defines the order in which events may be executed by means of an operational
semantics.

Next, we present a structured operational semantics for closed terms in the style of Plotkin
[14] (see Table 1). Such an operational semantics consists of a number of inference rules of the
following form:

p1, · · · , pn

c
.

This inference rule means that for every instantiation of variables in the premises p1, · · · , pn

and the conclusion c we can conclude c from p1, · · · , pn . If no premises are present, i.e., n = 0,
then c is a tautology (often called an axiom). Premises and conclusions are constructed from the
predicates ↓ and

a
→. The intuition of the unary predicate ↓ is as follows: p↓ indicates that p has

an option to terminate successfully. The intuitive idea of the predicate
a

→ (for every a ∈ A) is
as follows: p

a
→ q denotes that process p can execute action a and after the execution thereof

the resulting process is q.
With this operational semantics, we define the behaviour of a BMSC. By defining the usual

notion of strong bisimilarity [13], we can also reason about the equality of BMSCs.

Table 1
Structured operational semantics for the constants and operators (a ∈ A).

ε↓

x↓

x + y↓

y↓

x + y↓

x↓, y↓

x · y↓

a
a

→ ε

x
a

→ x ′

x + y
a

→ x ′

y
a

→ y ′

x + y
a

→ y ′

x
a

→ x ′

x · y
a

→ x ′ · y

x↓, y
a

→ y ′

x · y
a

→ y ′

Based on this structured operational semantics, to every closed process expression (and thus
to every BMSC) a labeled transition system can be associated as follows: the initial node of the
labeled transition system is given by the term under consideration. A state s has an outgoing
edge labeled with a to a state s′ iff s

a
→ s′ is derivable from the inference rules and tautologies.

Also, s is labeled by a termination arrow iff s↓ is derivable.

Example 3.1 Consider the BMSC Q from Figure 1. For our convenience we denote this BMSC
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with its name Q. The semantics of this BMSC is given by

SBMSC(Q) = out (i, j, m) · (out (k, j, n) · in(i, j, m) · in(k, j, n)

+ in(i, j, m) · out (k, j, n) · in(k, j, n)

)

+ out (k, j, n) · out (i, j, m) · in(i, j, m) · in(k, j, n).

The labeled transition system that is associated to this BMSC is given in Figure 3.

out(i,j,m) out(k,j,n)

out(k,j,n) in(i,j,m)
out(i,j,m)

in(i,j,m)

in(k,j,n)

out(k,j,n)in(i,j,m)

in(k,j,n)

Figure 3. Labeled transition system.

3.2. The composition operators
The relations between the composing MSCs of an HMSC are graphically defined by arrows

and semantically by using three operators.
The delayed choice operator (∓) was introduced by Baeten and Mauw [2]. It acts as a deter-

ministic choice in the context of strong bisimulation. The delayed choice between processes x
and y, is the process obtained by joining the common initial parts of x and y and continuing with
a non-deterministic choice (+) between the remaining parts.

The weak sequencing operator (◦) is based on the interworking sequencing operator [12]. A
generalization of this operator was studied in [15]. The weak sequencing of the processes x and
y denotes their parallel execution with the restriction that an action from y can only be executed
if that is permitted by x . In Figure 4 we give a typical example of vertical composition by means
of the weak sequencing operator.

The free merge operator (‖) denotes the interleaved execution of its arguments without syn-
chronization. It is well-known in concurrency theory.

A structured operational semantics for the operators ∓, ◦, and ‖ is provided in Table 2. Aux-
iliary predicates

a
···→ (for a ∈ A) are introduced. The predicate x

a
···→ x ′ means that x allows

y to execute event a in a context x◦y. Thus, this predicate is used to restrict the collection of
possible events that can be executed by y. The process x ′ that results from permitting a to be ex-
ecuted in the permission relation x

a
···→ x ′ is obtained by omitting from x all alternatives that

do not allow the execution of a by y. The basis for this so-called permission relation is provided
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Figure 4. Vertical composition.

by the relation I ⊆ A × A, called the independence relation. Two atomic actions are called in-
dependent, aI b, if they are defined on different instances. Formally, the independence relation
I is defined as follows: aI b iff inst(a) 6= inst(b). The function inst, which associates to an event
the instance on which it is specified, is defined by inst(out (i, j, m)) = inst(out (i, env, m)) =

inst(action(i, a)) = i and inst(in(i, j, m)) = inst(in(env, j, m)) = j .
The inference rules also contain negative premises x 6

a
→ and x 6

a
···→. The expression x 6

a
→

means that process x cannot execute an action a. Similarly, x 6
a

···→ indicates that process x does
not permit the execution of atomic action a. The operational semantics of delayed choice is taken
from [2], the operational semantics of the weak sequencing is based on [15], and the structured
operational semantics of the free merge is taken from [3].

Table 2
Structured operational semantics for ∓, ◦, and ‖ (a, b ∈ A).

aI b

b
a

···→ b ε
a

···→ ε δ
a

···→ δ

x
a

···→ x ′, y
a

···→ y ′

x · y
a

···→ x ′ · y ′

x
a

···→ x ′, y 6
a

···→

x + y
a

···→ x ′

x 6
a

···→, y
a

···→ y ′

x + y
a

···→ y ′

x
a

···→ x ′, y
a

···→ y ′

x + y
a

···→ x ′ + y ′

x↓

x ∓ y↓

y↓

x ∓ y↓

x
a

→ x ′, y
a

→ y ′

x ∓ y
a

→ x ′ ∓ y ′

x
a

→ x ′, y 6
a

→

x ∓ y
a

→ x ′

x 6
a

→, y
a

→ y ′

x ∓ y
a

→ y ′

x
a

···→ x ′, y 6
a

···→

x ∓ y
a

···→ x ′

x 6
a

···→, y
a

···→ y ′

x ∓ y
a

···→ y ′

x
a

···→ x ′, y
a

···→ y ′

x ∓ y
a

···→ x ′ ∓ y ′

x↓, y↓

x◦y↓

x
a

···→ x ′, y
a

···→ y ′

x◦y
a

···→ x ′◦y ′

x
a

→ x ′

x◦y
a

→ x ′◦y

x
a

···→ x ′, y
a

→ y ′

x◦y
a

→ x ′◦y ′

x↓, y↓

x ‖ y↓

x
a

···→ x ′, y
a

···→ y ′

x ‖ y
a

···→ x ′ ‖ y ′

x
a

→ x ′

x ‖ y
a

→ x ′ ‖ y

y
a

→ y ′

x ‖ y
a

→ x ‖ y ′
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Since the operators ‖ and ∓ are symmetric and associative and ε is a unit for ‖ and δ for ∓

([3,2]), we can generalize these as follows for a finite set I :

∓
i∈I

Pi =







δ if I =
�

Pj ∓

(

∓
i∈I\{ j }

Pi

)

if j ∈ I

and

‖
i∈I

Pi =











ε if I =
�

Pj ‖

(

‖
i∈I\{ j }

Pi

)

if j ∈ I

The language HMSC can be used to describe infinitary behaviour. Therefore, we will extend
our semantic domain with recursive specifications. Let 6 be an arbitrary signature, and let V be
a set of recursion variables. A recursive specification E(V ) is a set of equations

{X = sX (V ) | X ∈ V }

where each sX (V ) is a term over the signature 6 and the set of variables V . The set of terms
constructed like this is denoted by Rec(6).

Next, we will present an operational semantics for recursion (see Table 3) which generates
exactly one solution for every recursive specification. Let E be a recursive specification in which
X occurs as a recursion variable. Then 〈X | E〉 denotes the solution for X with respect to the
recursive specification E . The process 〈X | E〉 can terminate or execute an action if its defining
equation (in the context of E) can do so. For t a term possibly containing recursion variables,
the process 〈t | E〉 denotes the process t with all occurrences of recursion variables r replaced
by their solution 〈r | E〉. The function eqs is defined by eqs(〈r | E〉) = E .

Table 3
Structured operational semantics for recursion (X = sX ∈ E , a ∈ A).

〈sX | E〉↓

〈X | E〉↓

〈sX | E〉
a

→ y

〈X | E〉
a

→ y

More difficult is the definition of the permission relation for recursive specifications. The rea-
son for this is that the recursive specification itself must be adapted.

Suppose that the recursive specification E is given by

{

X i = t i ◦

(

∓
j∈J

X j

)∣

∣

∣

∣

j ∈ I, J ⊆ I

}

,

where t i is a closed term and I and J are index sets. All recursive specifications that are required
for describing the semantics of High-level Message Sequence Charts are of this form.

The set of equations that result from transforming E due to the permission of action a is de-
noted by Ea and consists of a fresh recursion variable X i

a for each variable X i from E . For the

equation X i = t i ◦

(

∓
j∈J

X j

)

∈ E we introduce the equation:
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• X i
a = t i

a ◦

(

∓
j∈J

X j
a

)

if t i a
···→ t i

a and i ∈ J , or

• X i
a = t i

a ◦

(

∓
j∈J

X j
a

)

if t i a
···→ t i

a, i 6∈ J and there is at least one equation for the variables

X j
a that is not of the form X j

a = δ, or

• X i
a = δ, otherwise.

Then 〈X | E〉
a

···→ 〈Xa | Ea〉 provided that the equation for Xa is not of the form Xa = δ. We
give a simple example to illustrate this. Suppose that we have the recursive specification E =

{X = a ◦ (Y ∓ Z), Y = b ◦ X, Z = c ◦ X}, where a, b, and c are pairwise independent actions.
Suppose that we are interested in the process 〈X | E〉 ◦ b′ where b′ and b are dependent. The
action b′ can only be executed if the process 〈X | E〉 permits the execution of b′. Then we must
construct the recursive specification Eb′: Eb′ = {Xb′ = a ◦ (Yb′ ∓ Zb′), Yb′ = δ, Zb′ = c ◦ Xb′}.

Hence 〈X | E〉
b′

···→ 〈Xb′ | Eb′〉. Thus the process 〈X | E〉 ◦b′ is capable of performing the action
b′ and thereby evolves into the process 〈Xb′ | Eb′〉. This example shows that by permitting action
b′ the choice for executing the b actions is resolved.

The following theorems express the soundness of the definitions so far. They are proven using
standard techniques.

Theorem 3.2.1 The term deduction system that consists of the deduction rules introduced so far
uniquely defines a transition relation.

Theorem 3.2.2 Strong bisimulation is a congruence with respect to the operators ∓, ◦, and ‖.

3.3. Abstract syntax of HMSC
A hierarchical graph is a mathematical structure that represents the information contents of an

HMSC. The set HGid represents the set of all HMSC names. Obviously, this includes the names
of BMSCs. Since we did not provide a formal graphical syntax for HMSC we cannot provide a
formal mapping from HMSC to hierarchical graphs. However, the intuition is clear. A node in
an HMSC contains a reference to another HMSC via its name.

Definition 3.3.1 (Hierarchical graphs) A hierarchical graph is either a BMSC or a tuple 〈id,

Nodes, Starts, Ends, Edges, l〉, where

• id ∈ HGid is the name of the hierarchical graph;

• Nodes, Starts, and Ends are pairwise disjoint sets of HMSC reference nodes, start nodes
and end nodes respectively with Starts 6=

�
;

• Edges ⊆ (Nodes ∪ Starts) × (Nodes ∪ Ends) is a set of edges. An edge (n, n′) is denoted
by n → n′;

• l : Nodes → HGid is a labeling function which associates to a node a reference to an
HMSC by means of an HMSC name;
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such that every node and end node is reachable from exactly one start node, and an HMSC is not
referenced from one of its own nodes (recursively). The set of all hierarchical graphs is denoted
by HG.

An HMSC-document contains a number of HMSCs. It is required that all HMSCs in an HMSC-
document have different names. Then, an HMSC-document can, in the abstract syntax, be rep-
resented by a (partial) mapping H : HGid → HG. For technical reasons we require that the
nodes (including start and end nodes) of any two hierarchical graphs are disjoint.

3.4. Denotational semantics for HMSC
We will associate a recursive specification to every hierarchical graph by means of a mapping

S. Since the nodes of a hierarchical graph may contain references to other hierarchical graphs,
the semantic mapping S is labeled with the mapping H : HGid → HG which represents an
HMSC-document.

A recursive specification for a hierarchical graph (say with name id) is obtained by introducing
a recursion variable id and a recursion variable n for every node n in the hierarchical graph (this
includes start and end nodes). The relation between these nodes is formalized by defining one
recursive equation for every recursion variable introduced as follows.

• The overall behaviour of the hierarchical graph is obtained by the parallel execution of the

behaviours associated to the start nodes: id = ‖
s∈Starts

s.

• For every start node s of the hierarchical graph a recursive equation s = n1 ∓ · · · ∓ nm is
introduced, where n1, · · · nm are the successor nodes of start node s.

• For every HMSC reference node n which refers to an HMSC with name i (i.e., l(n) = i)
a recursive equation n = i ◦ (n1 ∓ · · · ∓ nm) is introduced, where n1, · · · , nm are the
successor nodes of node n.

• For every end node e the equation e = ε is introduced.

Furthermore, we also have to add equations describing the behaviour of the referenced HMSCs.
The formal definition is given below.

Definition 3.4.1 Let H : HGid → HG be a function that represents a set of hierarchical graphs.
The function SH : HG → Rec(6) is defined as follows. If X is a BMSC with name id , then
SH(X) = 〈id | {id = SBMSC(X)}〉 and if X = 〈id, Nodes, Starts, Ends, Edges, l〉 then SH(X) =

〈id | E〉 where

E =























id = ‖
s∈Starts

s, s = ∓
s→n∈Edges

n,

n = l(n) ◦

(

∓
n→n′∈Edges

n′

)

,

e = ε

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s ∈ Starts,
n ∈ Nodes,
e ∈ Ends























∪
⋃

n∈Nodes

eqs(SH(H (l(n)))).

From now on, if no confusion can arise, we will denote a recursion variable by n instead of n.



10

Example 3.4.2 Consider the HMSC shown in Figure 2. In Figure 5 the same HMSC is shown
with the names of the nodes in the abstract syntax as annotation. Suppose that the semantics
of the HMSCs A, B, C, D, E are given by 〈rA | E A〉, · · · , 〈rE | EE〉 respectively. Then the se-
mantics of HMSC X is given by 〈X | E〉 where E consists of the equations of E A, · · · , EE , and
additionally the equations shown in Figure 5.

A

B C

D

E

s1 s2

n1

n2 n3

n4

n5

e2e1

X = s1 ‖ s2

s1 = n1

s2 = n4

n1 = rA ◦ (n2 ∓ n3)

n2 = rB ◦ e1

n3 = rC ◦ δ

n4 = rD ◦ n5

n5 = rE ◦ (n4 ∓ e2)

e1 = ε

e2 = ε

msc X

Figure 5. HMSC annotated with the recursion variables and the equations for those variables.

4. EXAMPLE: THE ALTERNATING BIT PROTOCOL

In this section, we will give a description of the behaviour of the Alternating Bit Protocol
(ABP) in HMSC. The ABP is developed for the transmission of data from one entity (the sender
S) to another entity (the receiver R) by means of an unreliable communication medium; channel
K from S to R for messages and channel L from R to S for acknowledgements (see Figure 6).

S

K

L

R

d0/d1/ced0/d1

0/1/ce 0/1

d d

Figure 6. The architecture of the ABP.

It is assumed that media errors can be detected, e.g., by means of a checksum error (ce). Other
faults, such as message loss will not occur. In Figure 6 we have added which messages may be
transferred between the entities. In communication with the environment, only plain data items
d play a role. From S to R frames are transmitted which consist of a data item and a bit value
(e.g. d0). Furthermore channel K may send checksum errors (ce) to the receiver. Channel L is
used to transmit acknowledgment bits 0 and 1 and it may produce a checksum error.

The specification will be presented in a top-down fashion. From the overall description in
Figure 7 (msc ABP), we learn that it operates in two alternating phases: a 0-phase and a 1-phase.
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The two phases are similar, except that the bits 0 and 1 are swapped. In Figure 7 we will
give the 0-phase only. It shows that there is one main scenario, namely successful transmission.
This trace starts with an input of a datum from the environment (S-in), followed by successful
transmission of this datum in phase 0 (tr-ok-0). Next, the datum is sent to the environment (R-
out) and the transmission of the acknowledgement in phase 0 succeeds (ack-ok-0).

There are two places where a deviation of the main scenario may occur (viz. the two loops
in the msc 0-phase). The first problem that is anticipated at, is an erroneous transmission (the
upper loop in msc 0-phase). If this happens, a phase 1 acknowledgement is issued and, regardless
whether this acknowledgement arrives correctly, the transmission is repeated. In the same way
an error in the acknowledgement channel is solved (the lower loop).

0-phase

1-phase

msc ABP msc R-out
R

d

msc S-in

d

S

msc ack-error-0
S L R

0
ce

msc tr-error-0
S K R

d0
ce

msc tr-ok-0
S K R

d0
d0

msc ack-ok-0
S L R

0
0

S-in

tr-ok-0 tr-error-0

ack-error-1

R-out

ack-ok-0 ack-error-0

tr-error-0

ack-ok-1

tr-ok-0

msc 0-phase

Figure 7. Specification of the ABP.

Finally, we give the lowest level definitions of the MSCs that occur in the phase descriptions
(see Figure 7). For instance, msc tr-ok-0 contains the description of correct transmission of a
datum d in phase 0 from S to R. Notice that the datum is attributed with the phase bit. The MSCs
tr-ok-1, tr-error-1, ack-ok-1 and ack-error-1 are not displayed. They can be easily derived from
their 0-phase counterparts.

We can draw several conclusions from this example. First, the decomposition elaborated here
is just one of many possible descriptions of the same protocol (see e.g. [4]). It has the virtue
that it helps in understanding the overall operation of the protocol. If one is interested in under-
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standing the behaviour of the entities in separation, a horizontal decomposition technique can be
used. This way, we obtain the parallel composition of the four instances involved. Since there is
communication between these components, we need a notion of gates for defining the interface
between the components (see [6]). We elaborate on this issue in Section 5.

Next, observe that we have defined several MSCs that differ only in the phase bit. A shorter
specification can be easily obtained by introducing parameterized specifications. This is closely
related with extending the MSC language with data types. In the current description, it is not
stated that the sender can receive any datum d from the environment. It rather says that the same
input message d is repeated every time an input occurs. This can only be viewed as an abstrac-
tion.

5. GATES IN HMSC

5.1. Why gates?
As shown in the ABP example from Section 4, HMSC proves to be very useful for most forms

of (de)composition. Vertical composition is denoted by linking nodes with arrows (weak se-
quential composition), alternatives are denoted by allowing more than one successor node (de-
layed choice) and horizontal composition is denoted by juxtaposition of simpler constructs (free
merge).

However, we consider the free merge as too weak. It can only be used for horizontal decompo-
sition if the components have no communication interaction. The free merge works only for free
components. Several alternative merge operators have been suggested, such as the Interworking
merge [12] and the environmental merge [17,18].

We propose to extend HMSC as defined in MSC96 with gates and to adapt the merge operator
in order to handle the proper linkage of gates (see also [6] for a discussion on gates).

Gates are already part of MSC96, but not at the level of HMSC. A gate is a point at the frame
of a simple MSC construction at which a message starts or ends. A gate may be identified by the
name of the message, or by an explicit gate name. When combining simple MSCs that contain
gates into more complex MSCs, a gate is either bound to some other gate or it is inherited by the
compound. In the same way we can construct gates in HMSC, which is not allowed in MSC96.

When allowing gates in HMSC, two obvious ways for binding come up. The first option is
to require explicit binding of gates by means of a message symbol. Although this is very much
in the spirit of MSC, examples show that an HMSC becomes crowded with crossing lines and
looses its purpose for overview specification.

The second possibility is to bind gates by name identification. That is, an input and an output
gate are connected if they have the same gate name. This makes it harder to find out which gates
are connected, but yields a much more quiet picture. In order to have this binding by gate name
identification, a possibility must exist for renaming gates. Unfortunately, in MSC96 substitution
of gates is not allowed. Since we cannot find any semantical or logical reasons to exclude gates
from substitutions, we propose to extend MSC96 in this respect.

5.2. The Alternating Bit Protocol revisited
The purpose of this section is to give an MSC specification of the ABP from an instance ori-

ented point of view. In the previous ABP specification the emphasis was on the overall behaviour
of the complete system. This is a nice way to get an overview of the protocol itself, but it does
not describe as clearly the behaviour of each component in isolation.
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Here, we have a more implementation directed view, closer to the SDL way of specification.
The components of the system are represented by separate HMSCs that operate in parallel. They
communicate via gates. The behaviours of the components are clearly separated. This style of
specification is very suitable as an intermediate stage between the classical use of MSC and SDL.

Before giving an explanation of the ABP in Figure 8, we will first point out some additional dif-
ferences between our diagrams and MSC96. First, we allow complete Basic Message Sequence
Charts to occur in HMSC nodes, rather than references to BMSCs. Experience showed that this
makes the drawings much easier to understand. Second, we omitted the instance start and in-
stance end symbol for making the drawing less crowded. The third difference is that we omit
the abundant frame surrounding a parallel construct.

The ABP specification in Figure 8 can be understood as follows. It consists of four concur-
rently operating entities. The sender S and the receiver R and two channels. Channel K connects
the sender to the receiver and channel L connects the receiver to the sender (see Figure 6 and see
the names of the gates in Figure 8). Looking at the behaviour of the channels first, we see that
channel K repeatedly receives some data frame via gate g and sends either the same frame to
gate h, or some specific value called ce (for checksum error). Channel L exposes the same be-
haviour, be it that input is received from gate i and sent to gate j . This channel is only capable
of transmitting bits.

Notice that we have sketched the behaviour of the channel using four scenarios. Two basic
scenarios in which transmission succeeds and two faulty scenarios leading to a checksum error.
The alternative composition of these scenarios does not imply that the choice between correct
operation and faulty operation is resolved before the reception of the input. Due to the use of the
delayed choice operator, the choice is rather made after reception of the frame.

The behaviour of the sender S is a repetition of the following. The sender starts in the so-
called zero-phase. First some data d to transmit is received from the environment. This data is
extended with the bit 0 and yields the frame d0 which is sent along gate g. Then the sender awaits
an incoming message from gate j . In case this is a negative acknowledgement (1) or a checksum
error (ce) generated by channel L, the transmission of frame d0 is repeated. In case of a positive
acknowledgement (0), the zero-phase is concluded and the process starts the one-phase, which
is the converse of the zero-phase.

The behaviour of the receiver R can be explained likewise. The receiver also starts in the zero-
phase and awaits the correct transmission of a zero-frame via gate h. The first time this frame is
received the data contained is copied to the environment. Then the receiver enters the one-phase.

6. CONCLUDING REMARKS

The expressive power of the MSC language has increased considerably since the recent intro-
duction of new constructs. We have studied the sub-language of HMSCs in isolation, in order to
assess this feature’s use and semantics.

It is perfectly feasible to define a semantics of HMSC in the line of the already existing process
algebra semantics of MSC92. It is based upon the known process algebra operators for weak se-
quencing, delayed choice and free merge. These operators are already incorporated into MSC96
on the level of MSC expressions. In order to capture the infinite behaviour of a system descrip-
tion in HMSC, we have used recursive equations. This yields a sound operational semantics.

By explaining the use of HMSC by means of the well-known toy example of the ABP, we



14

S
d0

0

L L L L

g
K

g
K

ce

g

h h

K

ce

g

h h

K
d0

d0

d1

d1

d0 d1

h

0

0j

i

j

i 0

j

i

j

i1

1 ce

1

ce

R

h

i 0

R

h

i

ce
R

h

i
d

d1

1

d0

R

h

i 0
d

d0

0

R

h

i

R

h

i

ced1

1 1

S
d

S
d

S S

ce

S
d1

1

d1 d1

0

g

g g g

j

j j j

S
d0

1

g
S

d0

ce

g

j j

msc ABP

F
igure

8.
T

he
A

B
P

:process
oriented

specifi
cation.



15

have argued that HMSC is very suited for overview descriptions. HMSC is mainly used here for
vertical decomposition and displaying alternative scenarios. However, a more process oriented
view, in which the system is decomposed into communicating subsystems, is hard to achieve
with HMSC. Therefore, we propose to add gates to the language. By using gates, we were able
to give a specification of the components of the ABP in a more SDL-like style.

We have presented two views of the ABP: an overall description expressing the control-flow
and an instance oriented description. In principle an instance oriented description can be ob-
tained from the overall description as follows. For every instance we first make a copy of the
HMSC and then delete all other instances from the MSCs. If in this process we break a complete
communication into an output and an input event, we need to introduce a gate which is later used
to connect the two parts of the communication. In general this will result in an instance oriented
description which may not be optimal with respect to readability. We can transform this initial
instance oriented description into a more tractable form. The result of this transformation on the
ABP example is shown in Figure 8. Of course we need to show that these transformation are
semantically correct. For this purpose a formal definition as as presented is necessary.

We think that the possibility to switch between different views within the same language fits
very well with the variety of uses of the MSC language. A thorough study on the (formal) rela-
tion between these different views is apparently an important step towards the (semi-) automatic
derivation of SDL code from MSC scenarios. It may be expected that the extension of HMSC
with gates does not introduce semantical difficulties.

Our simple case study also revealed two more shortcomings of MSC96. First, since data is
not incorporated in the language, we were not able to give a full specification of the ABP. We
abstracted from the actual set of data to be transmitted by giving them the same name d . Second,
our specification would benefit from being able to reuse MSCs that only differ in the value of the
alternating bit. A parameterization mechanism will show helpful.

Finally, we mention two minor issues. The HMSC specification of the ABP benefits from the
possibility to consider complete MSCs as a node in an HMSC specification, rather than a refer-
ence. Additionally, there are reasons for removing the restriction that a gate can not be substi-
tuted.
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