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We study High-level Message Sequence Charts—aconcept incorporatedinto MSC96 for com-
posing MSCsexplicitly. A formal semanticsisgiven which extends the accepted process algebra
semantics of MSC92. We assess the language by studying a simple example, which leads usto
consider the extension of HMSC with gates.

1. INTRODUCTION

The standardization of Message Sequence Charts (MSCs) [8] in 1992 by the CCITT hasin-
creased the interest in and use of MSCs considerably. Due to the variety of applications, many
extensions have been proposed since 1992 for increasing the use of MSC in specific application
domainsor in general. Several of these proposed new language constructs were selected when
extending the MSC language to MSC96 [7].

The composition of MSCs has been a main issue for the upgrade of the recommendation. In
MSC92 composition of MSCs was hardly covered, while in MSC96 there are severa new lan-
guage featuresfor constructing MSCs from simpler MSCs. In this paper we will focus on one of
these composition techniques, namely High-level Message Sequence Charts (HMSCs).

An HMSC is agraphical overview of the relation between the MSCs contained. It helpsin
keeping track of the control-flow. In an HMSC alternative, sequential and parallel composition
aswell asrecursion are capturedin an attractive graphical layout: referencesto MSCsarerelated
by means of arrows connecting them. One can look at HMSC as the synthesis of the roadmap
approach [16,18] and the operator approach [6].

One of the current aimsisto also extend the semantical definitions for MSC92 [11,9] to the
MSC96 language. Because MSC96 has become quite alarge language, we propose to study the
new constructsfirst in isolation and get afull understanding of these features before combining
them into one semantics definition.

Inthis paper, wewill give adefinition of the semantics of the sub-language HMSC of MSC96,
based upon the recommended process a gebra semantics of MSC92. Further, we discuss the use
of HMSC by studying thewell-known Alternating Bit Protocol (ABP) fromdifferent views. This
case study motivates to extend MSC96 with gates on HMSC nodes.

This paper is structured as follows. First, we give an introduction to High-level Message Se-
guence Charts (HMSCs). Asabasis we take Basic Message Sequence Charts (BMSCs). Then,
in Section 3, we present a denotational and indirectly an operational semantics for HMSC. In
Section 4, we focus on alayered description of the well-known ABP. In Section 5 we argue in



favour of an extension of HMSCs based on gates. We conclude with some remarks and topics
for further research.
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2. HIGH-LEVEL MESSAGE SEQUENCE CHARTS

2.1. Basic Message Sequence Charts

A Basic Message Sequence Chart (BMSC) containsadescription of the asynchronouscommu-
nication between instances. Additionally local actions can be specified oninstances. Aninstance
isan abstract entity of which one can observe (part of) theinteraction with other instances or with
the environment. The BMSC P in Figure 1 defines the communication behaviour between in-
stancesi, j, k, | and the environment. An instance is denoted by a vertical axis. The timeaong
each axis isrunning from top to bottom.
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Figure 1. Example Basic Message Sequence Charts.

A communication between two instances is represented by an arrow which starts at the send-
ing instance and ends at the receiving instance. In BMSC P from Figure 1 we consider the mes-
sagesm, n, 0, p. Message p issent to the environment. The behaviour of the environment isnot
specified. For instancel alocal action a is defined.

Although the activities along one single instance axis are completely ordered, we will not as-
sume anotion of global time. The only dependencies between the timing of the instances come
from the restriction that a message must have been sent beforeit is received. For BMSC P this
impliesfor example that message o isreceived by k only after it has been sent, and consequently,
after the reception of m by j. For the sending and receiving of m and n no order is specified.
Since we have asynchronous communication it is even possible to first send m, then send and
receive n, and finally receive m.

2.2. High-level M essage Sequence Charts: HMSC

Themost smpleHMSC isaBMSC, asin Figure 1. The purpose of the compound HMSCsisto
describe the rel ations between the MSCs contained in agraphically attractiveway. A compound
HMSC consists of acollection of components, enclosed by aframe. The componentsare thought
of ascomplex MSCsthat operatein parallel. Every component consistsof anumber of nodesand



anumber of arrowsthat imply an order on the nodes. We make a distinction between three kinds
of nodes. Every component has exactly one start node, indicated by an upside-downtriangle(V).
Further, it may contain a number of end nodes, indicated by atriangle (A), and several HMSC
references. An HMSC reference consists of aframe with rounded corners enclosing the name of
thereferenced HMSC. We requirethat within acomponent every node (including the end nodes)
isreachable from the start node. In Figure 2 an HMSC is shown. For simplicity we do not draw
the abundant frame from MSC96 to denote parallelism.

Figure 2. Example HMSC.

An arrow between two HMSC referencesimpliesthat they are composed vertically. Splitting
of an arrow denotes that the successors are alternatives. A cycle connecting anumber of HMSC
references expresses a repetition. In thisway infinitary behaviour can be described.

Diagramswith many nodes and arrows can easily become unreadable for the human eye. By
introducing connectorswe can improve alot on this problem. A connector isindicated by acir-
cle (o). Every combination of an incoming and an outgoing edge of a connector represents an
arrow between the source of the incoming arrow and the destination of the outgoing arrow. A
transformation of HMSCs with connectorsto HMSCs without connectors can, in the presence of
aformal definition of HMSC diagrams, easily be given. An example of an HMSC with connec-
torsisgivenin Figure 7 (see Section 4).

3. SEMANTICS

This section is devoted to the semantics of HMSC. With respect to MSC92 formal semantics
were defined based on Petri nets [5], Biichi automata [10], process algebra [11] and, more re-
cently, partial order methods[1]. Since the process algebra approach was selected for standard-
ization [9], we will use this approach as a starting point. First, we recapitulate the semantics
of BMSC. Next, we define the operators needed for relating the MSCs contained in an HMSC.
Finally, we define the semantics of HMSC based on an abstract syntax.

3.1. Basic Message Sequence Charts

In [11] a semantics for BMSC is presented. We will give a short explanation of this seman-
tics. To each BMSC a closed process expression is associated. With every event specified in
a BMSC an atomic action is associated as follows: The sending of a message m by instance i



to instance j (or the environment) is represented by out (i, j, m) (or out (i, env, m)), the recep-
tion of a message m by instance j from instance i (or the environment) is denoted in(, j, m)
(orin(enuv, j, m)), and alocal action a oninstancei isdenoted action(i, a). Together with the
constants ¢ and § which denote successful termination and inaction (or deadlock) respectively,
the atomic actions mentioned above constitute the constants of the term algebra used for the se-
mantics. Furthermore, thetermalgebraconsistsof binary operators+ and - for non-deterministic
choice and strong sequential composition, respectively. The process expression that can be asso-
ciated to aBMSC defines the order in which events may be executed by means of an operational
semantics.

Next, we present a structured operational semantics for closed terms in the style of Plotkin
[14] (see Table 1). Such an operational semantics consists of a number of inference rules of the
following form:

pl’ Tty pn

—

This inference rule means that for every instantiation of variables in the premises py, - - - , pn
and the conclusion ¢ we can concludec from py, - - -, pn. If nopremisesarepresent,i.e, n = 0,

then cisatautology (often called an axiom). Premisesand conclusions are constructed fromthe
predicates | and 3. Theintuition of the unary predicate | isasfollows. pJ indicatesthat p has
an option to terminate successfully. The intitive idea of the predicate > (for every a € A) is
asfollows. p 3 g denotes that process p can execute action a and after the execution thereof
the resulting processisg.

With this operational semantics, we define the behaviour of a BMSC. By defining the usual
notion of strong bisimilarity [13], we can aso reason about the equality of BMSCs.

Table 1
Structured operational semantics for the constants and operators (a € A).
x} yd X}, Y
el X+ Yyl X+ Yyl x-yl
a / a 4 a / a 4
X — X y—y X — X Xy, y—=y

a— ¢ x—|—y—a>x/ x—|—y—a>y/ X-y—>X-y x-y—a>y/

Based on this structured operational semantics, to every closed process expression (and thus
to every BMSC) alabeled transition system can be associated as follows: the initial node of the
labeled transition system is given by the term under consideration. A state s has an outgoing
edge labeled with a to astate s iff s > s’ is derivable from the inference rules and tautol ogies.
Also, sislabeled by atermination arrow iff s, is derivable.

Example 3.1 Consider the BMSC Q from Figure 1. For our convenience we denote thisBMSC



with its name Q. The semantics of thisBMSC isgiven by

S?:M&(Q) = OUt(i’ j’ m) : (OUt(k’ j’ n) : in(i’ j’ m) : in(k’ j’ n)
+in(, j,m) -out(k, j,n) -inck, j,n)
)
+ out(k, j,n)-out(i, j,m)-in(, j,m) -inck, j, n).

The labeled transition system that is associated to this BMSC isgiven in Figure 3.
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Figure 3. Labeled transition system.

3.2. The composition operators

The relations between the composing MSCs of an HMSC are graphically defined by arrows
and semantically by using three operators.

The delayed choice operator () was introduced by Baeten and Mauw [2]. It acts as a deter-
ministic choice in the context of strong bismulation. The delayed choice between processes x
and y, isthe process obtained by joining the common initia partsof x and y and continuing with
anon-deterministic choice (+) between the remaining parts.

The weak sequencing operator (o) is based on the interworking sequencing operator [12]. A
generalization of thisoperator was studied in[15]. The weak sequencing of the processes x and
y denotestheir parallel execution with the restriction that an action from y can only be executed
if that ispermitted by x. In Figure4 we give atypical example of vertical composition by means
of the weak sequencing operator.

The free merge operator (||) denotes the interleaved execution of its arguments without syn-
chronization. It iswell-known in concurrency theory.

A structured operational semantics for the operators T, o, and || is provided in Table 2. Aux-
iliary predicates RN (for a € A) areintroduced. The predicate x -5 x’ meansthat x allows
y to execute event a in a context xoy. Thus, this predicate is used to restrict the collection of
possible eventsthat can be executed by y. The process X’ that results from permitting a to be ex-
ecuted in the permission relation x %5 X is obtained by omitting from x all alternatives that
do not alow the execution of a by y. The basisfor this so-called permission relationis provided
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Figure 4. Vertical composition.

by therelation | € A x A, called the independence relation. Two atomic actions are called in-
dependent, al b, if they are defined on different instances. Formally, the independence relation
| isdefined asfollows: al biff inst(a) # inst(b). The functioninst, which associatesto an event
the instance on which it is specified, is defined by inst(out (i, j, m)) = inst(out (i, env, m)) =

inst(action(i, a)) =i andinst(in(, j, m)) = inst(in(env, j, m)) = j.

The inference rules al'so contain negative premises X & and X -/-—. The expression X 2
means that process x cannot execute an action a. Similarly, x -/-a—> indicatesthat process x does
not permit the execution of atomic action a. The operational semantics of delayed choiceistaken
from [2], the operational semantics of the weak sequencing isbased on [15], and the structured

operational semantics of the free merge is taken from [3].

Table 2
Structured operational semanticsfor 7, o, and || (a, b € A).
alb X...a_> X/’y...a_> y/
ba_>b 8...a_>8 3a_>3 X.y...a_> X' -y

a , a a a , a , a ,
X---—)X,y-/-—> X//_>’y_>y X=X,y >y

X_|_y...a_>x/ X_|_y...a_>y/ X_|_y...a_>x/_|_y/

XJ vyl x—a>x/,y—a>y/ x—a>x/,y72> x72>,y—a>y/

XFyl XFyl XFy=>xFy xFy=>x  XFy>y

a , a a a , a , a ,
X---—)X,y-/-—> X//_>’y_>y X=X,y >y

a / a 4 a / 4
XFY - -—>X XFYy - =Y XFY - -—>XTFY
a a a a a
X, Yl X=X,y =Yy X — X’ X=X, y=>VY
Xoy|, Xoy AR X'oy’ Xoy — X0y Xoy —> X'oy’
a a a a
X, Yl X=X,y sy X —> X y—>Y

a , , a , a ’
x|y Xy--=x1y XIy=>x1y Xxly—=>xly




Since the operators || and + are symmetric and associative and ¢ isaunit for || and § for
([3,2]), we can generalize these as follows for afinite set | :

5 if | = o
Th= PH« _R)ﬁjm

iel\{j}
and

€ ifl =g

llr=1p ||< | P.) ifjel
iel\{j}

The language HMSC can be used to describe infinitary behaviour. Therefore, we will extend
our semantic domain with recursive specifications. Let X be an arbitrary signature, and let V be
aset of recursion variables. A recursive specification E(V) isaset of equations

{X=sx(V) | X eV}

where each s (V) is aterm over the signature X and the set of variables V. The set of terms
constructed like thisis denoted by Rec(X).

Next, we will present an operational semantics for recursion (see Table 3) which generates
exactly onesolution for every recursive specification. Let E bearecursive specificationinwhich
X occurs as arecursion variable. Then (X | E) denotes the solution for X with respect to the
recursive specification E. The process (X | E) can terminate or execute an action if its defining
equation (in the context of E) can do so. For t aterm possibly containing recursion variables,
the process (t | E) denotes the processt with all occurrences of recursion variablesr replaced
by their solution (r | E). The function egs is defined by eqs({r |E)) = E.

Table 3

Structured operational semanticsfor recursion (X =sx € E,a € A).
(sx|E),  (Sx|E) >y
(XIE)L  (XIE) >y

Moredifficult isthe definition of the permission relation for recursive specifications. Therea-
son for thisis that the recursive specification itself must be adapted.

Suppose that the recursive specification E is given by {X‘ =t o <:|:XJ>' jel,JcCl }

jed

wheret' isaclosedtermand | and J areindex sets. All recursive specificationsthat are required
for describing the semantics of High-level Message Sequence Charts are of thisform.

The set of equations that result from transforming E due to the permission of action a is de-
noted by E, and consists of a fresh recursion variable X!, for each variable X' from E. For the

equation X' =t' o <:FXJ'> € E we introduce the equation:
jed



o Xi=tlo <_:|:Xg> ifti ... ti andi € J,or

a
jed

o Xi=to < JX,L) ift "> ti i ¢ J andthereisat least one equation for the variables

je

XJ that is not of the form X! = §, or
e X! =3, otherwise.

Then (X | E) RN (Xa| Ea) provided that the equation for X, isnot of theform X, = §. We
give asimple example to illustrate this. Suppose that we have the recursive specification E =
{(X=ao(YFZ), Y=DboX, Z=coX},wherea, b, and c are pairwise independent actions.
Suppose that we are interested in the process (X | E) o b” where b’ and b are dependent. The
action b’ can only be executed if the process (X | E) permitsthe execution of b'. Then we must
construct the recursive specification Ep: Ey = { Xy = ao Yy F Zy), Yy =68, Zpy = Co Xp}.
Hence (X | E) RN (Xp | Ep). Thustheprocess (X | E) o b’ iscapable of performing the action
b" and thereby evolvesinto the process ( Xy | Ey). Thisexample showsthat by permitting action
b’ the choice for executing the b actions is resolved.

Thefollowing theorems express the soundness of the definitionsso far. They are proven using
standard techniques.

Theorem 3.2.1 Thetermdeduction systemthat consists of the deduction rulesintroduced so far
uniquely defines a transition relation.

Theorem 3.2.2 Strong bisimulation is a congruence with respect to the operators , o, and ||.

3.3. Abstract syntax of HMSC

A hierarchical graphisamathematical structurethat representstheinformation contentsof an
HMSC. The set HGid representsthe set of all HMSC names. Obvioudly, thisincludesthe names
of BMSCs. Sincewe did not provide aformal graphical syntax for HMSC we cannot provide a
formal mapping from HMSC to hierarchical graphs. However, the intuitionis clear. A nodein
an HMSC contains a reference to another HMSC viaits name.

Definition 3.3.1 (Hierarchical graphs) A hierarchical graph is either aBMSC or atuple (id,
Nodes, Sarts, Ends, Edges, | ), where

e id € HGid isthe name of the hierarchical graph;

e Nodes, Sarts, and Ends are pairwise digoint sets of HMSC reference nodes, start nodes
and end nodes respectively with Starts # &;

e Edges C (NodesU Sarts) x (NodesU Ends) isa set of edges. An edge (n, n’) isdenoted
byn— n’;

e | : Nodes — HGid is alabeling function which associates to a node a reference to an
HMSC by means of an HMSC name;



such that every node and end node is reachabl e from exactly one start node, and an HMSC is not
referenced from one of itsown nodes (recursively). The set of all hierarchical graphsis denoted
by HG.

AnHMSC-document containsanumber of HMSCs. Itisrequiredthat all HMSCsinan HMSC-
document have different names. Then, an HMSC-document can, in the abstract syntax, be rep-
resented by a (partial) mapping H : HGid — HG. For technical reasons we require that the
nodes (including start and end nodes) of any two hierarchical graphs are digoint.

3.4. Denotational semanticsfor HMSC

We will associate arecursive specification to every hierarchical graph by means of amapping
S. Since the nodes of a hierarchical graph may contain references to other hierarchical graphs,
the semantic mapping Sis labeled with the mapping H : HGid — HG which represents an
HMSC-document.

A recursive specification for ahierarchical graph (say with nameid) isobtained by introducing
arecursion variableid and arecursion variablen for every node n inthe hierarchical graph (this
includes start and end nodes). The relation between these nodes is formalized by defining one
recursive equation for every recursion variable introduced as follows.

e Theoverall behaviour of the hierarchical graph isobtained by the parallel execution of the

behaviours associated tothe start nodess [d = || s
seSarts

e For every start node s of the hierarchical graph arecursiveequationS=n; F --- F Ny IS
introduced, whereng, - - - ny, are the successor nodes of start node s.

o For every HMSC reference node n which refersto an HMSC with namei (i.e, I(n) = i)
arecursive equation = i o (A F --- F Ny) isintroduced, whereny, - -- , n, are the
successor nodes of node n.

e For every end node e the equation € = ¢ isintroduced.

Furthermore, we a so have to add equations describing the behaviour of the referenced HMSCs.
The formal definition is given below.

Definition 3.4.1 Let H : HGid — HG be afunction that representsaset of hierarchical graphs.
The function Sy : HG — Rec(X) is defined as follows. If X isa BMSC with nameid, then
Su(X) = (id |{id = Sswsc(X)}) and if X = (id, Nodes, Sarts, Ends, Edges, |) then S(X) =
(id| E) where

id= || s s= m,
seSarts s—neEdges S € Sarts,
E=)n=Tmo.( F 7). neNodes tU [ J eqs(Si(H(IM)))).
n— ' eEdges e € Ends neNodes
e=¢

From now on, if no confusion can arise, we will denote arecursion variable by n instead of n.
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Example 3.4.2 Consider the HMSC shown in Figure 2. In Figure 5 the same HMSC is shown
with the names of the nodes in the abstract syntax as annotation. Suppose that the semantics
of the HMSCs A, B, C, D, E aregiven by (ra | Ea),--- , (re | Eg) respectively. Then the se-
mantics of HMSC X isgiven by (X | E) where E consists of the equationsof Ea, --- , Eg, and
additionally the equations shown in Figure 5.

X=s|
SS=Mm

S =Ny

Ny =rao (N2 Fn3)
N, =rgo€;

N3 =rcod

Ny =rpons

Ns =Tgo (g F &)
e =&

e =2t

Figure 5. HMSC annotated with the recursion variables and the equations for those variables.

4. EXAMPLE: THE ALTERNATING BIT PROTOCOL

In this section, we will give a description of the behaviour of the Alternating Bit Protocol
(ABP) in HMSC. The ABP is developed for the transmission of datafrom one entity (the sender
S) to another entity (thereceiver R) by means of an unreliable communication medium; channel
K from Sto R for messages and channel L from R to S for acknowledgements (see Figure 6).

do/d1 @ do/dL/ce

4,@‘\@/

0/1/ce

Figure 6. The architecture of the ABP.

It isassumed that mediaerrorscan be detected, e.g., by meansof achecksum error (ce). Other
faults, such as message loss will not occur. In Figure 6 we have added which messages may be
transferred between the entities. In communication with the environment, only plain dataitems
d play arole. From Sto R frames are transmitted which consist of a dataitem and a bit value
(e.g. dO). Furthermore channel K may send checksum errors (ce) to the receiver. Channel L is
used to transmit acknowledgment bits 0 and 1 and it may produce a checksum error.

The specification will be presented in a top-down fashion. From the overall description in
Figure7 (msc ABP), welearn that it operatesin two alternating phases: a0-phaseand a 1-phase.
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The two phases are similar, except that the bits 0 and 1 are swapped. In Figure 7 we will
givethe 0-phase only. It showsthat thereis one main scenario, namely successful transmission.
This trace starts with an input of a datum from the environment (S-in), followed by successful
transmission of this datum in phase O (tr-ok-0). Next, the datum is sent to the environment (R-
out) and the transmission of the acknowledgement in phase 0 succeeds (ack-ok-0).

There are two places where a deviation of the main scenario may occur (viz. the two loops
in the msc O-phase). The first problem that is anticipated at, is an erroneous transmission (the
upper loopinmsc O-phase). If thishappens, aphase 1 acknowledgement isissued and, regardless
whether this acknowledgement arrives correctly, the transmission is repeated. In the same way
an error in the acknowledgement channel is solved (the lower [oop).

msc O0-phase msc S—iSn msc R-F({JUI
d d=
I I
msc tr-ok-0 msc ack-ok-0
S K R S L R
[ ] ] J [ ] ] J
do 0
do 0
I N . I N .
msc ack-error-0 msc tr-error-0
[ - ] L ] R J [ s ] . ] R J
A [ tr-ok-0 j [tr-error-oj 0 do
ce | ce
I I . I N .

Figure 7. Specification of the ABP.

Finally, we give the lowest level definitions of the MSCs that occur in the phase descriptions
(see Figure 7). For instance, msc tr-ok-0 contains the description of correct transmission of a
datumd in phase 0 from Sto R. Noticethat thedatum is attributed with the phase bit. The MSCs
tr-ok-1, tr-error-1, ack-ok-1 and ack-error-1 are not displayed. They can be easily derived from
their O-phase counterparts.

We can draw several conclusionsfrom thisexample. First, the decomposition elaborated here
isjust one of many possible descriptions of the same protocol (see e.g. [4]). It has the virtue
that it helpsin understanding the overall operation of the protocol. If oneisinterested in under-
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standing the behaviour of the entitiesin separation, a horizontal decomposition technigque can be
used. Thisway, we obtain the parallel composition of the four instancesinvolved. Sincethereis
communication between these components, we need a notion of gates for defining the interface
between the components (see [6]). We elaborate on thisissue in Section 5.

Next, observe that we have defined several MSCs that differ only in the phase bit. A shorter
specification can be easily obtained by introducing parameterized specifications. Thisisclosely
related with extending the MSC language with data types. In the current description, it is not
stated that the sender can receive any datum d from the environment. It rather saysthat the same
input message d isrepeated every time an input occurs. This can only be viewed as an abstrac-
tion.

5. GATESIN HMSC

5.1. Why gates?

Asshown in the ABP example from Section 4, HMSC provesto be very useful for most forms
of (de)composition. Vertical composition is denoted by linking nodes with arrows (weak se-
guential composition), alternatives are denoted by allowing more than one successor node (de-
layed choice) and horizontal composition is denoted by juxtaposition of simpler constructs (free
merge).

However, we consider the free mergeastoo weak. It can only be used for horizontal decompo-
sition if the components have no communication interaction. The free mergeworksonly for free
components. Severa alternative merge operators have been suggested, such as the Interworking
merge [12] and the environmental merge[17,18].

We propose to extend HMSC as defined in MSC96 with gates and to adapt the merge operator
in order to handle the proper linkage of gates (see also [6] for a discussion on gates).

Gates are already part of MSC96, but not at the level of HMSC. A gateisapoint at the frame
of asmple MSC construction at which amessage starts or ends. A gate may be identified by the
name of the message, or by an explicit gate name. When combining simple MSCs that contain
gatesinto more complex MSCs, agateis either bound to some other gate or it isinherited by the
compound. In the same way we can construct gatesin HMSC, which is not alowed in MSC96.

When alowing gates in HMSC, two obvious ways for binding come up. The first option is
to require explicit binding of gates by means of a message symbol. Although thisis very much
in the spirit of MSC, examples show that an HMSC becomes crowded with crossing lines and
looses its purpose for overview specification.

The second possibility isto bind gates by name identification. That is, an input and an output
gate are connected if they have the same gate name. Thismakesit harder to find out which gates
are connected, but yields a much more quiet picture. In order to have this binding by gate name
identification, apossibility must exist for renaming gates. Unfortunately, in MSC96 substitution
of gatesisnot allowed. Since we cannot find any semantical or logical reasonsto exclude gates
from substitutions, we propose to extend MSC96 in this respect.

5.2. TheAlternating Bit Protocol revisited

The purpose of this section is to give an MSC specification of the ABP from an instance ori-
ented point of view. Inthe previous ABP specification the emphasiswas on the overall behaviour
of the complete system. Thisisa nice way to get an overview of the protocol itself, but it does
not describe as clearly the behaviour of each component in isolation.
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Here, we have a more implementation directed view, closer to the SDL way of specification.
The components of the system are represented by separate HMSCs that operatein parallel. They
communicate via gates. The behaviours of the components are clearly separated. This style of
specification isvery suitable asan intermediate stage between the classical useof MSC and SDL.

Beforegiving an explanation of the ABP in Figure 8, wewill first point out some additional dif-
ferences between our diagrams and MSC96. First, we alow complete Basic Message Sequence
Chartsto occur in HMSC nodes, rather than referencesto BMSCs. Experience showed that this
makes the drawings much easier to understand. Second, we omitted the instance start and in-
stance end symbol for making the drawing less crowded. The third difference is that we omit
the abundant frame surrounding a parallel construct.

The ABP specification in Figure 8 can be understood as follows. It consists of four concur-
rently operating entities. The sender Sand thereceiver R and two channels. Channel K connects
the sender to the receiver and channel L connectsthereceiver to the sender (see Figure 6 and see
the names of the gatesin Figure 8). Looking at the behaviour of the channels first, we see that
channel K repeatedly receives some data frame via gate g and sends either the same frame to
gate h, or some specific value called ce (for checksum error). Channel L exposes the same be-
haviour, be it that input is received from gate i and sent to gate j. This channel is only capable
of transmitting bits.

Notice that we have sketched the behaviour of the channel using four scenarios. Two basic
scenarios in which transmission succeeds and two faulty scenarios leading to a checksum error.
The alternative composition of these scenarios does not imply that the choice between correct
operation and faulty operationisresolved before the reception of theinput. Dueto the use of the
delayed choice operator, the choice is rather made after reception of the frame.

The behaviour of the sender Sis arepetition of the following. The sender starts in the so-
called zero-phase. First some datad to transmit is received from the environment. Thisdatais
extended with the bit 0 and yieldstheframedOwhichissent along gateg. Then the sender awaits
anincoming message from gate j . In case thisisanegative acknowledgement (1) or achecksum
error (ce) generated by channel L, the transmission of framedO isrepeated. In case of apositive
acknowledgement (0), the zero-phase is concluded and the process starts the one-phase, which
isthe converse of the zero-phase.

The behaviour of thereceiver R can beexplained likewise. Thereceiver also startsin the zero-
phase and awaits the correct transmission of azero-frameviagate h. Thefirst timethisframeis
received the datacontained is copied to the environment. Then the receiver entersthe one-phase.

6. CONCLUDING REMARKS

The expressive power of the MSC language hasincreased considerably since the recent intro-
duction of new constructs. We have studied the sub-language of HMSCs in isolation, in order to
assess thisfeature’s use and semantics.

Itisperfectly feasibleto define asemantics of HMSC intheline of the already existing process
algebra semantics of MSC92. It isbased upon the known process algebra operatorsfor weak se-
guencing, delayed choice and free merge. These operatorsare aready incorporated into MSC96
on thelevel of MSC expressions. In order to capture the infinite behaviour of a system descrip-
tion in HMSC, we have used recursive equations. Thisyields a sound operational semantics.

By explaining the use of HMSC by means of the well-known toy example of the ABP, we
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have argued that HMSC is very suited for overview descriptions. HMSC ismainly used herefor
vertical decomposition and displaying alternative scenarios. However, a more process oriented
view, in which the system is decomposed into communicating subsystems, is hard to achieve
with HMSC. Therefore, we propose to add gates to the language. By using gates, we were able
to give a specification of the components of the ABP in amore SDL-like style.

We have presented two views of the ABP: an overall description expressing the control-flow
and an instance oriented description. In principle an instance oriented description can be ob-
tained from the overall description as follows. For every instance we first make a copy of the
HMSC and then delete all other instancesfrom the MSCs. If in this processwe break a complete
communication into an output and an input event, we need to introduce agate whichislater used
to connect the two parts of the communication. In general thiswill result in an instance oriented
description which may not be optimal with respect to readability. We can transform thisinitial
instance oriented description into amore tractable form. The result of thistransformation on the
ABP example is shown in Figure 8. Of course we need to show that these transformation are
semantically correct. For this purpose aformal definition as as presented is necessary.

We think that the possibility to switch between different views within the same language fits
very well with the variety of uses of the MSC language. A thorough study on the (formal) rela-
tion between these different viewsis apparently an important step towardsthe (semi-) automatic
derivation of SDL code from MSC scenarios. It may be expected that the extension of HMSC
with gates does not introduce semantical difficulties.

Our simple case study also revealed two more shortcomings of MSC96. First, since data is
not incorporated in the language, we were not able to give a full specification of the ABP. We
abstracted fromthe actual set of datato be transmitted by giving them the same named. Second,
our specification would benefit from being able to reuse MSCs that only differ in the value of the
alternating bit. A parameterization mechanism will show helpful.

Finally, we mention two minor issues. The HMSC specification of the ABP benefits from the
possibility to consider complete MSCs as a node in an HMSC specification, rather than arefer-
ence. Additionally, there are reasons for removing the restriction that a gate can not be substi-
tuted.
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