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Abstract

A majority of extant literature on recommender systems assume the input data as a given

to generate recommendations. Both implicit and/or explicit data are used as input in these

systems. The existence of various challenges in using such input data including those associated

with strategic source manipulations, sparse matrix, state data, among others, are sometimes

acknowledged. While such input data are also known to be rife with various forms of bias, to

our knowledge no explicit attempt is made to correct or compensate for them in recommender

systems. We consider a specific type of bias that is introduced in online product reviews due

to the sequence in which these reviews are written. We model several scenarios in this context

and study their properties.

Key words: sequential bias, online reviews

1 Introduction

Potential customers sometimes have the option of using recommender systems (e.g., amazon.com,

buzzillions.com, consumersearch.com, digg.com, Google AdSense, Netflix challenge, prorevs.com,

slash-dot.com) as convenient (although not completely reliable) automated sources of information

in situations where there is a lack of other alternatives. These systems are for the most part used

to supplement rather than to supplant the real thing which is recommendation from a known and

completely reliable expert source.

Source of input for recommender systems include (implicit) past behavior (e.g., consumer trans-

action data, bookmark, page view time, from and to link for a Web page, social network) and
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(explicit) customer reviews. Both implicit and explicit data complement each other in terms of

information content since the former records the behavior (i.e., customer A bought widget X) while

the latter records details of this customer’s (dis-)satisfaction with this purchase. Recommendations

are generated based on (dis-)similarity between the characteristics of the user being recommended

to and others in the database as well as (dis-)similarity between item of interest and related items.

Several methods are used in the process including collaborative filtering (e.g., amazon.com) and

content filtering (e.g., Music Genome Project used in pandora.com). Collaborative filtering uses

the (dis-)similarity information across users and items (e.g., [17]). Content filtering, on the other

hand, is based on the characteristics of users and items. Adomavicius and Tuzhilin ([1]) provide

an excellent overview of this general area.

Given the popularity of recommender systems, several facets of such systems have been exten-

sively studied including mining user-generated review data for implicit as well as explicit patterns,

attacks, interface design, among others (e.g., [6], [7], [9], [18]). Other than attacks, which explic-

itly manipulate input data to achieve an intended recommendation (e.g., manipulate reviews so an

item of interest enters or leaves the set of highly recommended items), other aspects of input data

(e.g., bias) have not received their fair share of attention from researchers in this area.

Bias in user-generated reviews can take several forms including personal (based on past expe-

rience, interest, attitude), extreme reviews (overly positive or negative), context (e.g., review of a

camera’s resolution characteristics can be positively or negatively biased based on its use - pictures

for high-resolution printing vs. posting low-resolution pictures online), temporal (early vs. late

adopters of a product may have different perspectives on the same product), awareness effect ([8]),

herd behavior ([4]), and confirmation bias ([3]).

Sequential bias is a variant of first-impression bias (e.g., primacy-recency effect) and is also

influenced by pre-existing (positive, negative) bias. Thus, the role played by first impression bias

cannot be overestimated ([5], [16]). Therefore, the review that is first seen by a prospective customer

of the product of interest plays a significant role in purchase decisions that follow. These reviews

are quite influential since prospective purchasers of reviewed products rely heavily on these reviews

in making their purchase decisions (e.g., [21]). The sequence in which reviews are written play an

appreciable role in how the reviews that follow later in the sequence are written. For example,

if a reviewer is favorable to the product reviewed, she might be biased to write stronger reviews

to somehow compensate for the effects of existing negative reviews and vice versa. The reviews

thus written are biased, in part, due to their position in the sequence of reviews. In turn, the

recommender systems that use these biased reviews to generate their recommendations will clearly

generate biased recommendations due, in part, to this sequential bias.

We purport to fill this gap in extant literature by specifically considering sequential bias present

in consumer reviews and the consequence of this bias on resulting recommendations generated. In

other words, while recommender systems use user-generated data as-is, we believe there is a need

to rid this data of sequential bias to provide better or less-biased recommendations. By explicitly

acknowledging the existence of sequential bias and actively employing means to remove it from

input data to recommender systems, one can alleviate its effect in the recommendations. We are,
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therefore, interested in the scenario where a customer purchases/experiences a product and then

proceeds to provide a written review of this product online. During this process, the customer also

has a chance to read existing reviews on this product before writing a review. It is precisely these

existing reviews that causes sequential bias in the next review that is written.

The remainder of the paper is organized as follows. We discuss related background information

and literature in the next section. We study the dynamic associated with sequential bias and its

effect on recommender systems in Section 3. Section 4 concludes this paper with a brief discussion.

2 Background and Related Literature

A generic framework of a recommender system is given in Figure ??. Both implicit and explicit

data are used as input to the system, which uses these to generate (i.e., learn and store explicit

knowledge in) the knowledge-base. The knowledge-base essentially comprises both explicit and

implicit patterns extracted from (implicit & explicit) input data. The recommender system then

waits for a user to enter the system. Upon arrival of a user, who could be a potential customer, the

system takes a snap-shot of this user’s characteristics and matches this with learned knowledge to

generate appropriate recommendations in a timely manner. In what follows, the recommendations

would be used to update system configuration either automatically or via human interference.

Consequently, these new updates would eventually alter online users’ behavior towards pricing and

recommendation. The closed loop assures that normal system performance can be maintained at

a stabilized level according to the theory of automation.
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Figure 1: A generic recommender system framework

labelframework

Although it is generally assumed that what consumers do (i.e., implicit or past behavior data)

provides better information for recommender systems than what they say (explicit or consumer

review data), both these data provide complementary information that are beneficially utilized in

recommender systems. While both explicitly and implicitly generated data are used in recommender

systems, we are interested in only explicit (i.e., user-generated reviews) input data in recommender

systems. The use of user-generated explicit recommendation data has its associated challenges. We

provide a brief overview of several such challenges and then some related literature in this area.
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2.1 Some Challenges

Recommender systems face several challenges when dealing with explicit input data. A list of a

selected few of these challenges include: (a) strategic source manipulations (e.g., profile injection

attacks such as sybil, shill, random, sampling, average, bandwagon), (b) those associated with

equally weighted input (e.g., user-generated reviews for a computer and a pack of chewing gum

are not treated differently), (c) the endemic sparse matrix and the difficulty in generating useful

patterns from such a matrix, cold start problem that arises when a user or product is new to the

system and the absence of historical data on these entities and their characteristics, (d) differences in

user risk tolerance levels, (e) staleness of data used in generating recommendations, (f) seasonality

and trends in consumer preferences and their effect on user-generated reviews, and (g) general input

data bias. We are interested in the bias which occurs due to the characteristics of the reviewed

item (e.g., price, familiarity, stake to the customer, whether this item was purchased as a gift to

someone else, the relationship of the purchaser to the giftee), the presence of extraneous stimulus

whereby the item would not have been explicitly purchased had it not been for promotions and

bundling, the highly self-selective nature of providing reviews and the sequential manner in which

reviews are written. We are specifically interested in the latter - i.e., the sequence in which reviews

are written and the (mostly unintended) bias that is introduced in these reviews resulting from its

position in the sequence.

When perusing existing reviews on the product of interest, the intensity/magnitude of the

reviewer’s sentiment as well as the positivity (or negativity) of reviews on various product fea-

tures/characteristics (as well as the overall review of this product) certainly affect the reader.

Several studies in the social sciences suggest that people often assign more weight to negative in-

formation than positive information of equal intensity (e.g., [2], [11]). Mizerski ([14]) found that

product attributes rated unfavorably exert greater influence than those rated favorably on con-

sumers attributions, beliefs and attitudes. This phenomenon has been termed the negativity effect

(bias). Ahluwalia ([2]) found that highly committed consumers showed positivity effect (bias) where

they weigh positive information more than negative information. I.e., there is evidence for both

positivity and negativity effect depending on consumer as well as product characteristics.

In addition to the introduction of unintentional bias in user-generated product reviews, there

also exists bias that are intentionally introduced due to professional relationships and friendships

([22]) and others with ulterior motives (e.g., [10], [20], [23]). Buzz marketing (e.g., [19]) is a variation

on the same theme with the explicit intention of promoting a product, service, or idea.

2.2 Related Literature

The literature on recommender systems is extensive and covers a wide spectrum of related issues.

We list a few from among these here. Since online product reviews are not strictly regulated, there

are opportunities for the introduction of ‘fake’ or intentionally biased reviews. A popular approach

to mediating this risk is through self-regulation in the form of ratings and comments. Examples of

this include x of y people found the following review helpful on amazon.com, x of y customers found
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this review helpful on buzzillions.com, diggs on digg.com, and Karma on slashdot.org. There are

also commercial service providers such as eModeration.com where content moderation issues are

evaluated in a neutral environment and KwikChex.com where negative reviews are contested.

Several studies have been reported in the literature on variations of both unintentional and

intentional bias introduced in reviews. Lauw, Lim, and Wang ([12]) investigate how deviation

in evaluation activities may reveal bias on the part of reviewers and controversy on the part of

evaluated objects. They claim that significant deviation may help reveal bias of reviewers or

controversy of objects. They define bias as the deviation in a user-assigned score from the mean

score for a ‘less controversial’ object. They measure controversy as the deviation of user-assigned

scores for that object.

Staddon and Chow ([22]) use association rule mining to identify bias introduced by book re-

viewers and authors of books they review. Specifically, they look for associations between these

reviewers and authors in Web documents. When these two are present in a significant number of

Web documents where either of them are present, there is a valid reason demanding closer scrutiny.

They consider 300 books on amazon.com that are categorized under ‘cryptography’ and observe

that this method results in high precision (few false positives)

Using data on book reviews from amazon.com, Li and Hitt ([13]) find that earlier reviews influ-

ence the item’s quality perception and have a positive bias on sales volume of the item considered.

Moreover, they find that prospective customers do not take this bias into consideration when mak-

ing their decisions. In practice, reviews along with other online consumer behavior are aggregated

to develop effective recommendations. A common practice is to use collaborative filtering that

incorporates multiple data sources to predict consumer preference and behavior, such as those that

are used at Amazon and Netflix.

3 Effect of Sequential Bias in Recommender Systems

We consider several variations of bias introduced in user-generated reviews. We assume reviewers

rate a product as well as its attributes. For example, a reviewer may assign an overall rating for a

car as positive while assigning negative rating to its fuel efficiency, very positive rating to its cup

holders, neutral rating to its maintenance cost, etc. I.e., although the overall rating is a function

of the ratings for each of its characteristics, this function is highly likely to vary among reviewers

based primarily on their individual and aggregate derived utility. For the remainder of this paper,

when we refer to a review as biased or unbiased we are referring only to sequential bias. The

absence of sequential bias does not in any way signify the presence or absence of other types of

biases. However, given that we concern ourselves only with sequential bias, other types of biases

are irrelevant to this work and are hence not considered.

We consider reviews written for a specific product of interest. We assume that this product is

unique and that it does not have any substitutes. Since we are not interested in content analysis of

written reviews, we only consider a single numerical score that is assigned by each reviewer. The

modeling exercise is kept distribution-free on purpose to facilitate general applicability. Reviews
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written after the first review do not assume knowledge of the existence of sequential bias. I.e., the

occurrence of sequential bias is implicit and unintentional on the part of the reviewer and any given

reviewer is unaware of the presence of sequential bias in earlier as well as the current review. The

following notations are used in this paper:

Ri - (true) online review written by reviewer i (without sequential bias)

R′i - online review written by reviewer i (with sequential bias)

We assume R1 = R′1
β - (bias) discount factor (0 < β < 1)

Bij - bias of review R′i on review Rj (Bij = 1 for i = j)

sij - direction (sign) of bias =



0 if R′i & Rj are both positive/negative/neutral

−1 if R′i is positive & Rj is not positive

−1 if R′i is negative & Rj is not negative

0 if R′i is neutral

where sij = 0 for Ri = 0

U() - utility function

a, b - minimum and maximum review scores

k - risk tolerance model parameter (k > 1)

ui - review R′i’s usefulness score (0 ≤ ui ≤ 1)

The sij term directly represents sequential bias where i represents an earlier review and j

represents the current review. I.e., sij determines the sign of the effect of j on i. When both

reviewers i and j are positive, negative, or neutral, there is no friction between their reviews and

sij equals zero. However, when reviewer i is positive or neutral and reviewer j is not positive

or negative respectively reviewer i’s review exerts negative friction on reviewer j’s review due to

sequential bias and this is represented by a negative sij . Similarly when reviewer i is negative or

neutral and reviewer j is not negative or positive respectively, reviewer i’s review exerts positive

friction on reviewer j’s review due to sequential bias and this is represented by a positive sij .

The first scenario we consider includes two entities of interest: the reviewer and the online

review written by this reviewer on a given product of interest. We consider the case where the

potential reviewer purchases a product, experiences this product first-hand, and then decides to

write an online review of this product. Without loss of generality, we consider the reviewer to

have assigned a single numerical value (for Ri) from a pre-defined range representing very negative,

negative, neutral, positive, and very positive reviews on the product of interest. Clearly, any given

product may have anywhere from zero through several reviews written by (presumably) different

reviewers over time. We assume that each of these online reviews are independent of one another.
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I.e., a reviewer is unaffected/uninfluenced by existing online reviews on the same product to abstain

from intentionally/unintentionally modifying his/her (absolute) review. This is the base case where

independence of each review is assumed.

The second scenario we consider is given in Figure 2. Here, we introduce sequential bias on

reviews (R2 · · ·Rn) that is a direct (unintentional) result of perusing reviews (previously) written

by other reviewers. Of course, when there is only one existing online review for a product, the

previous scenario would apply because of the sheer lack of opportunity for this review to be biased

based on other (nonexistent) reviews.

In this scenario (Figure 2), the reviews written by reviewers i = 1, 2, and 3 are:

R1,

R2 +R1(B12 × s12), and

R3 +R′2(B23 × s23) +R1(B13 × s13)

respectively. The first reviewer is unbiased by previous reviews of this product by other reviewers.

Therefore, the review provided by the first reviewer is an absolute (unbiased) review by this reader

(i.e., reviewer 1 provides unbiased review R1). The second reviewer, however, is biased by the

first reviewer’s review. The second reviewers review is a composite of this reviewer’s unbiased

review (i.e., R2) and the bias due to the first reviewer’s review (i.e., R1 times the bias represented

by B12 times the direction of the bias). The magnitude of the bias (i.e., B12) only provides the

absolute value of the bias. When both the reviews are overall positive or both the reviews are

overall negative, we assume the absence of any sequential bias since bias in this sense occurs as a

compensation for friction between or negation of existing review(s) and the new review. Similarly,

when the first review is neutral, we assume this review to exert no friction (and, therefore, no

compensatory pressure) on the following reviews. However, when the first review is overall positive

while the second review is overall negative, the second reviewer (unintentionally) compensates for

existing positive review by being more negative resulting in negatively biased second review and

vice versa. We assume additive relationship between each pair of new review and every existing

review since the influence from each of the existing reviews on the new review are independent of

one another. A squashing function could be used to keep the review value within a pre-specified

range if necessary. We do not attempt this since it does not affect the results or resulting insights.

Previous Review(s) New Review- -New Reviewer

Figure 2: Previous reviews + addition of a new review on a product

The review by the third reviewer is similarly biased by all preceding reviews (here, reviews 1

& 2). The third reviewer’s review is therefore a composite of this reviewer’s unbiased review (i.e.,

R3) and the bias due to the first reviewer’s review (i.e., R1(B13 × s13)) and the second reviewer’s
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review (i.e., R′2(B23 × s23)). The general expression for the review written by the nth reviewer is:

Rn +
n−1∑
i=1

R′i ×Bin × sin

Assuming the bias is some form of discounting comprising a discount factor of the linear distance

between the two reviews, we can represent Bij as βj−i and the general expression can be written

as:

Rn +
n−1∑
i=1

R′i × βn−i × sin

This can be justified by the generally accepted observation that (1) most perusers of existing reviews

do not deal with the entire set of existing reviews but rather a manageable subset, and (2) the most

recent review read is, ceteris paribus, likely to be more influential than the one that was read a few

reviews earlier. Some form of discounting factor discounts away the reviews that are assumed to be

unread and the same discounting factor assigns more weight to recent rather than earlier reviews

among those that were perused.

Previous Review(s) New Review- -

6

Risk Tolerance Factor

New Reviewer

Figure 3: Previous reviews + risk tolerance + addition of a new review

The next scenario (Figure 3) incorporates the risk tolerance level or the risk attitude of the

reviewer into the picture. By risk tolerance we signify or represent the extent to which this reviewer

is risk-seeking, risk-neutral, or risk-averse. We model the risk tolerance level of the new reviewer

using a standard power utility function:

U(x) =
(x− a)k

(b− a)k
where 0 ≤ U(x) ≤ 1

Here, a and b are the minimum and maximum review scores respectively and k is a model parameter.

Risk aversion is characterized by a concave utility function and risk seeking behavior is characterized

by a convex function. The parameter k can be varied to obtain different levels of concavity and

correspondingly different levels of risk aversion. To model risk seeking behavior using a convex

utility function, we set k > 1. The general expression can now be written as follows:
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Rn +

n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k

The above expression is modeled with the risk tolerance level as a multiplicative factor and not

as the overall utility loss or gain in response to uncertainty. We decided on this form to enable

discounting of the remaining expression by this fraction since, for example, β does not directly

affect risk tolerance of any given review.

Several online stores (e.g., amazon.com) provide means to rate individual online reviews based

on its usefulness to perusers of such reviews. These reviews are given a score, which is a ratio of the

number of users who found a review useful vs. the number of users who perused that review. This

is a crude measure of the belief (or, disbelief) placed by the new reviewer on any given (existing)

review. In other words, previous perusers’ evaluation of any given review’s usefulness provides a

proxy for the trust that one can place on that review. We include this usefulness score (i.e., ui for

review Ri) as a multiplicative factor in the new review where 0 ≤ ui ≤ 1. We assign ui = 0 for

the extreme case where none of the previous perusers of review Ri found this review to be useful

and ui = 1 for the other extreme case where all of the previous perusers of review Ri found it to

be useful. The range in-between (i.e., 0 < ui < 1) represents the case where some (i.e., ≥ 1) of the

previous perusers of review Ri found this review to be useful.

Previous Review(s) New Review- -

66

?

Previous Review Score

New Reviewer

Figure 4: Previous reviews with score + addition of a new review

The next scenario considered incorporates this information (Figure 4). The new reviewer’s

review is now

Rn +

n−1∑
i=1

R′i × βn−i × sin × ui

The last model (Figure 5) incorporates sequential bias based on previous reviews, previous

reviews’ usefulness measure scores, and the new reviewer’s risk tolerance level in determining the

characteristics of the new review. Here, the newest reviewer’s review is given by:
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Previous Review(s) New Review- -

66

?

Previous Review Score

6

Risk Tolerance Factor

New Reviewer

Figure 5: Previous reviews with score + risk tolerance + addition of a new review

Rn +
n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui

Lemma 3.1 Overall, in the presence of sequential bias, risk-averse reviewers are biased to write

more positive reviews than risk-seeking reviewers.

Proof Only (sequentially) biased reviews are of interest here. We have:

n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui ≥

n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

′

(b− a)k
′ × ui

Here, risk-averse reviewers are represented on the left hand side and are associated with 0 < k < 1

and risk-seeking reviewers (represented on the right hand side) are associated with k
′
> 1. Clearly,

the expression on the left hand side is at least as much as that on the right hand side. �

Lemma 3.1 refers to the cases represented in Figures 3 and 5 where the risk tolerance of the

new reviewer are modeled.

Lemma 3.2 When the reviewers are all positive (or all neutral, or all negative), the reviews written

are free of sequential bias.

Proof This is a direct consequence of the sign of the bias term being equal to zero (i.e., sij = 0)

when the reviewers are all oriented in the same direction. I.e., when reviewer#1 is positive and

reviewer#2 is also positive, reviewer#2 does not have a need to compensate for reviewer#1’s review.

The same applies when every review is neutral or every review is negative. In the expression we

have, when sij = 0 the entire expression becomes zero. �

Theorem 3.3 The magnitude of new review provided by reviewer n (i.e., Rn) when sequential bias

is present is always at least as much as that provided in the case when sequential bias is absent.
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I.e., in the last model (Figure 5) considered,

|unbiased-Rn| ≤ |Rn +

n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui|

Proof We represent the un(sequential)biased review by reviewer n (I.e., Rn) by ‘unbiased-Rn.’

The right hand side of this expression includes (sequential) biased Ri values.

|unbiased-Rn| ≤ |Rn +
n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui|

We show this proof by separately considering the three different possible cases depending on whether

the new review with sequential bias (Rn) is positive, negative, or neutral.

Case 1: Rn is positive

Now, for any R′i (1 ≤ i ≤ n − 1), when R′i is positive, sin = 0 (since sij = 0 when Ri and Rj are

both positive) and the entire expression (i.e., R′i × βn−i × sin ×
(Rn−a)k
(b−a)k × ui) equals zero. When

R′i is negative, sin is negative (i.e., -1) and the entire expression is positive. When R′i is neutral

(i.e., R′i = 0), sin is zero and the entire expression equals zero.

∴
n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui ≥ 0

Case 2: Rn is negative

For any R′i (1 ≤ i ≤ n − 1), when R′i is negative, sin = 0 (since sij = 0 when Ri and Rj are

both negative) and the entire expression equals zero. When R′i is positive, sin is negative (i.e., -1)

and the entire expression is negative. When R′i is neutral, sin is negative (i.e., -1) and the entire

expression equals zero.

∴
n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui ≤ 0

Case 3: Rn is neutral (i.e., Rn = 0)

For any R′i (1 ≤ i ≤ n − 1), when R′i is neutral, sin = 0 (since sij = 0 when Ri and Rj are both

neutral) and the entire expression equals zero. When R′i is positive, sin is negative (i.e., -1) and

the entire expression is negative. When R′i is negative, sin is positive (i.e., +1) and the entire

expression is negative.

∴
n−1∑
i=1

R′i × βn−i × sin ×
(Rn − a)k

(b− a)k
× ui ≤ 0 �

Although we specifically considered only the last model (Figure 5) in Theorem 3.3, this theorem

applies to all the models considered in this paper. It should be noted that this theorem applies

regardless of the degree of risk tolerance (i.e., risk-averse, risk-neutral, or risk-seeking perspective)

11



of the reviewers. Theorem 3.3 is significant from a recommender system’s perspective since the

written reviews (here, assigned scores in new reviews) must be appropriately augmented to remove

sequential bias. On the other hand, the reviews can be considered to be a lower-bound for generating

recommendations.

Lemma 3.4 In the presence of sequential bias, a negative fake review has more positive effect when

included earlier in the sequence.

Proof We assume that the recommender system averages the review scores to obtain the recom-

mendation.

Ignoring the effects of risk tolerance and scores on previous reviews to simplify notation, the

reviews can be written as:

R1, R1βs1n +R2, R1β
2s1n +R′2βs2n +R3, · · · , R1β

n−1s1n +R′2β
n−2s2n + · · ·+Rn

The difference in the average when the fake review (say, R) is placed at position p vs. q, where

p < q, is

1

n
×

n−p−1∑
j=n−q

R× βj × spn ×
(R− a)k

(b− a)k
× up

i.e.,
1

n
×R× βn−q − βn−p

1− β
× spn ×

(R− a)k

(b− a)k
× up ≥ 0

Here, R, spn (= sqn), and up (= uq) are the same for this review regardless of its position in

the sequence (of n reviews). The sign term (i.e., spn) is negative for negative Ri. Therefore, the

earlier in the sequence of reviews the fake review is introduced, the more positive effect it has on

the overall average. �

Lemma 3.5 In the presence of sequential bias, a positive fake review has more negative effect when

included earlier in the sequence.

Proof The proof is similar to Lemma 3.4. The difference in the average when the fake review (say,

R) is placed at position p vs. q, where p < q, is the same as that in Lemma 3.4

1

n
×R× βn−q − βn−p

1− β
× spn ×

(R− a)k

(b− a)k
× up ≤ 0

Here, R, spn, and up are the same for this review regardless of its position in the sequence. The

sign term (i.e., spn) is negative for positive R. Therefore, the earlier in the sequence of reviews the

fake review is introduced, the more negative effect it has on the overall average. �

Lemmas 3.4&3.5 signify that regardless of its type (i.e., positive or negative), a fake review

has a stronger effect when placed earlier in the sequence. I.e., to enhance the recommendation of
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an item, the fake review is better off earlier or later in the sequence and vice versa depending on

whether it is negative or positive respectively. When using such data as input to a recommender

system, the earlier (or later) reviews in the sequence must be scrutinized for such effects depending

on the overall recommendation generated.

Theorem 3.6 In the presence of sequential bias, assuming the magnitude of all previous reviews

(i.e., R) are the same, the case where all positive reviews are stacked together and listed first results

in a better (i.e., more positive and less negative) new review than otherwise when βn−k−1(2−βk) <

1.

Proof Ignoring the effects of risk tolerance and scores on previous reviews to simplify notation,

the reviews can be written as:

R1, R1βs1n +R2, R1β
2s1n +R′2βs2n +R3, · · · , R1β

n−1s1n +R′2β
n−2s2n + · · ·+Rn

Consider a scenario where there are k positive reviews followed by (n− 1− k) negative reviews.

The nth review can either be positive or negative.

Case 1: The nth review is positive. The first k reviews are irrelevant (from a sequential bias

perspective) since sin = 0 (for 1 ≤ i ≤ k) in this scenario. The nth review is

R′k+1β
n−k−1s(k+1)n + R′k+2β

n−k−2s(k+2)n + · · ·+ R′n−1βs(n−1)n + Rn

The bias part is given by the above expression minus Rn. For the simplified case where all R values

are the same, the resulting bias is:

Rβ
1− βn−k−1

1− β
s ≥ 0

Case 2: The nth review is negative. The last (n− 1− k) reviews are irrelevant (from a sequential

bias perspective) since sin = 0 (for k + 1 ≤ i ≤ n) in this scenario. The nth review is

R′1β
n−1s1n + R′2β

n−2s2n + · · ·+ R′kβ
n−kskn + Rn

Similarly, for the simplified case where all R and s values are the same, the bias is:

R βn−k
1− βk

1− β
s ≤ 0

We are interested in the scenario where the positive bias is more than the negative bias. I.e., the

absolute value of the bias in Case 1 is more than the absolute value of the bias in Case 2. The

former case is better than the latter when the expression in Case 1 is greater than that in Case 2.

I.e.,

β
1− βn−k−1

1− β
> βn−k

1− βk

1− β
which, upon simplification, results in the given expression. �
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The policy implication of Theorem 3.6 is that for an online retailer, with the facility for reviewers

to write their reviews, to improve the overall recommendation of the product or service, it helps to

list all the positive reviews first followed by all other reviews.

Corollary 3.7 When sequential bias is present, the average bias in the new review when stacking

all existing reviews of the same type together (all positives together or all negatives together) and

listing them first (or last) is independent of the number of existing reviews of each type.

Proof This is a direct consequence of Theorem 3.6. Consider the case where there are k positive

reviews and (n− 1− k) negative reviews where k > (n− 1− k). When the k positive reviews are

placed first followed by the n− 1− k negative reviews, the effect of this arrangement on the next

review written from a sequential bias perspective depends on the type (i.e., positive or negative) of

the new (i.e., nth) review.

Case 1: The nth review is positive. Here, the effect due to sequential bias is given (from Theo-

rem 3.6) by

Rβ
1− βn−k−1

1− β
s

Case 2: The nth review is negative. Again, the effect due to sequential bias is given (from Theo-

rem 3.6) by

R βn−k
1− βk

1− β
s

On average, the effect of sequential bias on the next review is

Rs

2(1− β)
(β − βn−k + βn−k − βn) =

Rs

2(1− β)
(β − βn)

which is independent of k. �

4 Discussion & Conclusion

We considered the effect of sequential bias in online product reviews from the perspective of rec-

ommender systems. To our knowledge, none of the existing recommender systems consider the

existence of sequential bias. We modeled the bias by taking into account existing reviews, the

usefulness of existing reviews as determined by the number of perusers of those reviews who found

them to be useful, and the risk tolerance of reviewers who write such reviews. We then studied its

dynamic and formulated a model using theoretical means. Our analysis shows that influence due to

sequential bias on subsequent reviews can be appreciable depending on the values of the modeled

parameters. Developers or recommender systems therefore cannot ignore the existence of sequential

bias in their input data. Given the popularity of recommender systems, there is an urgent need to

develop means to remove influences due to sequential bias. This will alleviate its deleterious effects

on the quality and accuracy of recommendations generated by recommender systems.
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In our analysis, we only consider the overall review in the form of a numerical value. Considering

evaluations of individual characteristics in addition to the overall review could provide additional

insights and, therefore, better recommendations by a recommender system.

We assumed that a reader goes through the reviews one at a time from top to bottom of the list

of existing reviews. We also assumed that the new review is written after the perusal of the entire

set of existing reviews. However, when the number of reviews for an item of interest is large it is

not reasonable to expect anyone to peruse the entire set (e.g., [15]). Modeling this would involve

knowing (1) the exact set of reviews perused by the new reviewer, and (2) the order in which this

selected set of reviews are read by this new reviewer. Some online stores (e.g., amazon.com) allow

the user to sort existing reviews in several different ways (e.g., most recent review first, most useful

reviews first, most negative reviews first) and this complicates the analysis even further.

While we considered the effect of sequential bias on recommender systems from a theoretical

perspective, a few critical questions still remain and these can be addressed only through rigorous

and strictly controlled field experiments with human subjects. Does sequential bias significantly

influence recommendations made by recommender system by modifying the average and/or corre-

lation values? If yes, does it matter? I.e., does it lead to significantly different recommendations?

Under what conditions does this happen? And, what can the developer of a recommender system

do about it? Given that sequential bias does exist in online product reviews, can we remove ex-

isting bias in reviews in such real-world databases so recommendations generated by recommender

systems are more reliable and trust-worthy? We also did not explicitly model the scenario where

the reviewers are mixed - i.e., some reviewers are influenced by sequential bias whereas some others

are not simply because they do/did not read reviews by other reviewers. What influence do such

mixed set of reviews have on the performance of recommender systems? This can be easily modeled

by modifying Ri to Rc
i where c = 1 when review i is perused by the current reviewer and c = 0

otherwise. We leave these as exercises for future studies.
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