
A formal semantics of synchronous interworkings

S. Mauwa , M. van Wijkb and T. Winterc

aDept. of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

bProgramming Research Group, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

cPhilips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands

Interworkings can be considered as a synchronous variant of Message Sequence Charts.
In this paper we present the formal semantics of interworkings in an algebraic framework.
We concentrate on the main operators for combining interworkings: the interworking
sequencing and the interworking merge.

1. INTRODUCTION

Interworkings are used in the analysis phase of the development process at PKI (Philips
Kommunikations Industrie) Nürnberg for describing the message interactions between
blocks. The specification of one functional block contains the most common sequences of
message interactions with all the neighbour blocks it communicates with. Interworkings
are a synchronous variant of message sequence charts mentioned below. They are used,
for example, for the specification of radio communication systems. In close cooperation
with PKI Nürnberg a project is being performed in which an Interworking Tool Set (ITS)
is specified and prototyped that can process, analyse, and combine interworkings.
Message sequence charts have been used for a long time by CCITT Study Groups

in their recommendations and within industry, according to different conventions and
under various names. Interworkings also play an important role in other areas than
the telecommunication industry. Several object-oriented methods have absorbed Message
Sequence Charts (ObjectOry [5], Rumbaugh [9]).
Compared to other trace languages interworkings have the advantage of a clear graph-

ical layout and structuring. However, interworkings are only suitable for the description
of relatively small parts of the system behaviour. Therefore, in order to describe the
behaviour of a system more completely, composition operations on interworkings simi-
lar to the composition operations in for example LOTOS are required. In the literature
several solutions have already been proposed in this area. In [8] the syntax of message
sequence charts is enhanced with the concept of “conditions” providing the means to
combine message sequence charts sequentially. The sequential composition operation is
only described implicitly in this document. No other composition operations on message
sequence charts are defined. In [3] a system is described as a hierarchy of services in-
creasing in detail. The lowest level of services in the hierarchy is described in terms of



message sequence charts. For the services several composition operations are defined (e.g.
sequential-, parallel-composition, choice-operator). Although services can be combined
the document does not discuss the related composition of the message sequence charts.
In [10], a formalisation of message sequence charts is given in terms of set theory. This for-
malisation has the advantage that it only uses basic constructs but has the disadvantage
that the parallel composition operator can not be easily expressed in the formalism.
A collection of interworkings describes the behaviour of a system on a high level of

abstraction. Each interworking is a projection of a part of the communication behaviour
of a system onto a set of entities. In a telecommunication context where for example SDL
is used as description language, an entity may be a process or a set of processes combined
into one functional block. Interworkings are event oriented instead of entity oriented and
only synchronous communication actions can be modeled. This means that messages
can not be delayed as in message sequence charts where communication is asynchronous.
Because in practice, this does not seem to be a restriction, we concentrate ourselves in this
document on the simpler model of synchronous communication and keep the asynchronous
variant for further study.
For the formal definition of interworkings and the composition operators we explore

techniques from process algebra [1]. Process algebra is a commonly accepted technique for
the description of communicating systems. Algebraic reasoning is very suitable for formal
verification activities which concern in our case the consistency checking of interworkings.
Additionally, via process algebra, it is easy to generate prototypes implementing the
various operators, and a link to other algebraic description methods such as LOTOS can
easily be made.
In this paper we first give an introduction to interworking diagrams and operators.

After that we present the formal semantics and some useful properties. We will not
explain the whole interworking language but we restrict ourselves to the main operators.
In [6] syntax and semantics of the complete language is given.
Acknowledgements Thanks are due to many people for giving fruitful comments on

the documents. Special thanks go to Jan Bergstra for his constructive advice concerning
both the documents and the project, and to Jos Baeten for his comments on process alge-
bra. We also want to mention Lex Augusteijn for his help with regard the Elegant compiler
generator tool set which we used for the development of prototype tools and finally Michel
Reniers and David Riemens for their support with proving and programming.

2. INTERWORKINGS

2.1. Interworking diagrams
The basic graphical language of interworking diagrams is very simple and resembles the

syntax for basic sequence charts [7]. Vertical lines are used to represent entities within a
system and horizontal arrows are used to represent communications between two entities.
No global time axis is assumed for one interworking. Along each vertical entity-line the
time runs from top to bottom, however, no proper time scale is assumed. Events of
different entities are ordered only via messages. Within interworkings, no delay between
a message output and the corresponding message input is explicitly modelled. Therefore,
an interworking imposes only a partial ordering on the events being contained. In figure 1,



A B C

v

w

y
x

D

z

u

Figure 1. Example interworking diagram

the messages u and v are not related and no ordering exists between them. This also holds
for the messages y and z.
A collection of interworkings describes the behaviour of a system on a high level of

abstraction. Each interworking describes a common sequence of communication actions
performed by the contained entities. Note that the interworking does not specify com-
munication actions with entities that are not contained. The behaviour of a single entity
is thus only partially described by the events being contained in the interworking. The
actual behaviour will be an interleaving with communication events concerning other en-
tities. Between the output of v and the input of y, entity A in figure 1 for example can
have interactions with an entity E which is not in the diagram. However, it can not have
a communication action with either one of the entities B, C, or D between the output of v
and the input of y.

2.2. Interworking sequencing
An interworking diagram can be constructed from atomic communication actions and

applications of the interworking sequencing operator (denoted by ◦iw ). The interwork-
ing sequencing, or simply the sequencing of two interworking diagrams is the vertical
concatenation of the two diagrams (See figure 2). In this case, where the interworking

A B A B

x y

A B
x

yoiw

Figure 2. Sequencing

diagrams have all entities in common, the sequencing corresponds to a real sequentialisa-
tion in time. The operands need not necessarily have all entities in common. In the next
example (figure 3) the two interworkings only have entity B in common. If interworkings
contain disjoint entities, the behaviour described by means of their sequencing will in
most cases not be equal to simple sequential composition of the behaviours. Events that
do not involve the same entity or are not related via messages will be unordered in the
sequential composition. An example of the sequencing of two interworkings that contain



A B B C

x y

A B C
x

yoiw

Figure 3. Sequencing interworkings with one entity in common

unrelated messages is given in figure 4. Note that the right-hand side describes a single
interworking in which the vertical position of the arrows does not indicate any ordering.

A B C D

x y

oiw

A B C D
x

y

Figure 4. Sequencing interworkings with disjoint entities

2.3. Interworking merge
The interworking merge, or simply called the merge (denoted by ‖iw ), of two interwork-

ings is their interleaved composition with the restriction that the interworkings are forced
to synchronise on a set of communication actions. This set consists of the communication
actions concerning every pair of entities which the interworkings have in common. In

A B C B C D

v

w

w

x

A B C D

x

w

v

iw

Figure 5. Merge

figure 5 two interworkings are merged, which have entities B and C in common. In those
cases where the interworking diagrams describe disjoint entities, the merge is equal to real
parallel composition. An example of the merge of two interworking diagrams in which
disjoint entities are described is given in figure 6. Note also that the merge of these two
interworking diagrams is equal to the sequencing of these diagrams (See figure 4). An
interworking does not specify communication actions with entities that are not contained.
The behaviour of a single entity is only partially described by the events contained in an
interworking. The merge of two interworkings may return an interworking in which the
sequence of events for a single entity is the result of interleaving the sequences of events in



A B C D

x y

A B C D
x

y
iw

Figure 6. Merging interworkings with disjoint entities

the original interworkings. As an example, figure 7 shows the merge of two interworking
diagrams that have only one entity (B) in common. For the interworking resulting from

A B B C

x y

A B C
x

y

A B C

x
y

+iw

Figure 7. Merge with interleaving of events

the merge in figure 7, nothing can be said about the order of the events for entity B. The
input of x can equally well occur before or after the output of y. Note that there is no
single interworking diagram that describes this merge. In this case we need a collection
of two different interworking diagrams.

2.4. Consistency
If two interworkings are merged, the interworkings have to synchronise on all communi-

cation actions between entities which they have in common. In case this synchronisation
succeeds, we will call the two interworkings merge-consistent. However, if two interwork-
ings have multiple entities in common but do not synchronise on all the communication
actions between these entities then the interworkings are not merge-consistent and the
merge of the interworkings will contain so called deadlock or inaction. The two interwork-
ing diagrams in figure 8 for example are not merge-consistent.

A B C B C D

v

w

w

x

A B C D

x

w

v

y z

iw

Figure 8. Inconsistent interworkings

The textual and graphical syntax for interworking diagrams does not contain a construct
to represent deadlock. In figure 8, the deadlock is depicted by means of a double horizontal



line. It should be noted that deadlock is not related to any contained entity in particular.
Deadlock is a property of the interworking as a whole.

3. FORMAL SEMANTICS

In this section we will first give an introduction to BPA, which is a basic theory for
process description. Then we define the two interworking operators and the class of
interworkings. Finally we give some useful properties of interworkings.

3.1. Basic Process Algebra
BPA (Basic Process Algebra) is an algebraic theory for the description of process

behaviour [1, 2]. We consider two basic notions: atomic actions and processes. An atomic
action is an indivisible unit of behaviour, such as the insertion of a coin in a coffee dispenser
or the communication of some piece of information between two agents. A process is the
description of the (possible) behaviour of a system. Atomic actions will be denoted by
a, b, . . . and processes by x, y, . . ..
Every atomic action will be considered as a process. Processes can be constructed from

simpler processes with the use of two operators. The sequential composition of processes
x and y (notation x · y or xy for short) is the process that first executes x, and upon
completion of x starts y. The alternative composition of x and y (notation x + y) is the
process that either executes x, or executes y (but not both). We will not specify how this
choice is made. These operators are defined by the equations from table 1.

Table 1
Basic Process Algebra

x + y = y + x
(x + y) + z = x + (y + z)
x + x = x
(x + y)z = xz + yz
(xy)z = x(yz)

The equations state that the alternative composition is commutative, associative and
idempotent, and that the sequential composition is associative only. Note that the · only
distributes over a +-operator on the left-hand side.
In order to describe processes which may not terminate successfully, we extend BPA

with features for unsuccessful termination. We use the term deadlock for unsuccessful
termination. The special atomic action δ denotes a deadlocked process. Furthermore we
introduce the encapsulation function, which renames atomic actions from a given set into
δ. It is denoted by ∂H , where H is a set of atomic actions. The equations in table 2
define deadlock and encapsulation. The first equation says that no deadlock will ever
occur as long as there is an alternative that can proceed. The second equation states that
after a deadlock has occurred, no other actions can possibly follow. The predicate isdelta
determines whether a process equals δ, and the predicate df determines whether a process
is deadlock-free or not. The equations from tables 1 and 2 define the theory BPA

δ,∂H,df
.



Table 2
Deadlock

x+ δ = x

δx = δ

∂H(a) = a if a 6∈ H

∂H(a) = δ if a ∈ H

¬isdelta(a) if a 6≡ δ

isdelta(δ)
∂H(x+ y) = ∂H(x) + ∂H(y) isdelta(ax) = isdelta(a)
∂H(xy) = ∂H(x) · ∂H(y) isdelta(x+ y) = isdelta(x) ∧ isdelta(y)

¬df(δ)
df(a) if a 6≡ δ

df(ax) = df(x) if a 6≡ δ

df(x+ y) = df(x) ∧ df(y) if ¬isdelta(x) and ¬isdelta(y)

3.2. Interworking operators
3.2.1. Basics
The collection of atomic actions can be considered as a parameter of BPA. In the

setting of interworkings, we will only consider communication actions of a fixed format
and some primitive actions, so we specialise the set of atomic actions.
Let EID and MID be finite sets, containing entity identifiers and message identifiers.

Define the following collection of communication actions.

A = {c(p, q,m)|p, q ∈ EID,m ∈ MID}

Action c(p, q,m) means that entity p sends message m to entity q. If we extend this
collection of atomic actions with δ we get Aδ. Unless stated differently, all variables
a, b, . . . range over Aδ.
Furthermore, we need an auxiliary function E, which determines the entities involved

in an action. This function is defined in table 3.

Table 3
The Entity function

E(δ) = ∅
E(c(p, q,m)) = {p, q}
E(ax) = E(a) ∪ E(x) if a 6≡ δ

E(x+ y) = E(x) ∪ E(y)

3.2.2. Interworking Sequencing
The interworking sequencing of two processes (notation ◦iw ) is their interleaved com-

position with the restriction that actions involving common entities are performed first



by the left-hand process and then by the right-hand process. First we define the set of
actions generated by the entities of a given process.

αE(x) = {a ∈ A|E(a) ∩ E(x) 6= ∅}

The definition of the interworking sequencing in table 4 resembles the definition of the
communication free merge from [1]. We use the auxiliary operators left sequencing (L◦iw )
and right sequencing (R◦iw ) which have the following intuitive meaning. The left sequenc-
ing of two processes means that the left operand is forced to do the first step. The right
sequencing of two processes means that the right operand has to do the first step, but it
may only execute this step if it is not blocked by some action from the left operand which
involves the same entity. The encapsulation operator (∂H) is used for blocking unwanted
actions.

Table 4
Interworking Sequencing

x ◦iw y = xL◦iw y + xR◦iw y

aL◦iw x = ax xR◦iw a = ∂αE(x)(a) · x

axL◦iw y = a(x ◦iw y) xR◦iw ay = ∂αE(x)(a) · (x ◦iw y)

(x+ y)L◦iw z = xL◦iw z + yL◦iw z xR◦iw (y + z) = xR◦iw y + xR◦iw z

Example 1 Assuming that p, q, r, s and t are all different entities, we have the following
derivation.

c(p, q,m) ◦iw (c(p, r, n) ◦iw c(s, t, l)) =
c(p, q,m) ◦iw (c(p, r, n) · c(s, t, l) + c(s, t, l) · c(p, r, n)) =
c(p, q,m) · (c(p, r, n) · c(s, t, l) + c(s, t, l) · c(p, r, n)) + c(s, t, l) · c(p, q,m) · c(p, r, n)

3.2.3. Interworking Merge
The interworking merge of two processes (notation ‖iw ) is their interleaved composition,

except that the processes are forced to synchronise on a set of atomic actions (see table 5).
This set consists of the actions concerning every pair of entities which the processes have
in common. We define the function αCE, which determines the actions performed by
common entities as follows.

αCE(x, y) = {c(p, q,m) ∈ A|p, q ∈ E(x) ∩ E(y)}

First we define the S-interworking merge (notation ‖Siw ) for a subset S of A. As in the
definition of the parallel composition in ACP (the algebra of communicating processes,
[1]) we need two auxiliary operators: the left interworking merge (‖S

iw
) and the synchro-

nisation interworking merge (|Siw). The left interworking merge forces that the first step
is taken from the left argument, provided that this action is not an element of the set
S. The synchronisation interworking merge can only execute an action if both operands
can perform this same action and this action is an element of the set S. The function γS
determines whether two actions have to synchronise.



Table 5
Interworking Merge

x ‖iw y = x ‖αCE(x,y)
iw y

x ‖Siw y = x‖S

iw
y + y‖S

iw
x + x|Siwy a|Siwb = γS(a, b)

a‖S

iw
x = ∂S(ax) ax|Siwb = γS(a, b) · ∂S(x)

ax‖S

iw
y = ∂S(a) · (x ‖

S
iw y) a|Siwbx = γS(a, b) · ∂S(x)

(x+ y)‖S

iw
z = x‖S

iw
z + y‖S

iw
z ax|Siwby = γS(a, b) · (x ‖

S
iw y)

γS(a, b) =





a if a = b ∧ a ∈ S

δ otherwise

(x+ y)|Siwz = x|Siwz + y|Siwz

x|Siw(y + z) = x|Siwy + x|Siwz

Example 2 Both processes in the following merge have to synchronise on c(q, r, l).

c(p, q, k) · c(q, r, l) ‖iw c(q, r, l) · c(r, s,m) = c(p, q, k) · c(q, r, l) · c(r, s,m)

3.3. Interworkings
The theory BPA

δ,∂H,df
with the two operators for interworking merge and interworking

sequencing will be called BPAiw. An interworking is a process which can be constructed
only from atomic actions and applications of the interworking sequencing and the inter-
working merge operator. The set of interworkings is denoted by IW . The set of deadlock
free interworkings is denoted by IWdf . A process which is only constructed of atomic
actions and the interworking sequencing operator is called a locally deterministic inter-
working. The set of locally deterministic interworkings is called IW ld. Likewise, IW ld

df is
used for deadlock free locally deterministic interworkings.
It is not always the case that the merge of two deadlock free interworkings is again

deadlock free as was shown in figure 8. We say that two interworkings are consistent if
their interworking merge is deadlock free. This notion of consistency plays an important
role when developing a specification via stepwise refinement. The tool set can be used to
automatically check consistency of interworkings.

Example 3 The following example shows two interworkings which don’t agree on the
communications with respect to entities q and r.

c(p, q, k) · c(q, r, l) ‖iw c(s, t,m) · c(r, q, n) =
c(p, q, k) · c(s, t,m) · δ + c(s, t,m) · c(p, q, k) · δ

3.4. Properties
In this section we present some useful properties about BPAiw. In general x, y and

z are finite process expressions in BPAiw and S is a set of actions, The use of the first
proposition is that most theoretical results for BPA can be transferred to BPAiw.

Proposition 1 (Elimination)
(1) Every process in BPAiw is equal to a process which has one of the following forms:

δ, a, a · x, x+ y



(2) BPAiw is a conservative extension of BPA.

Proof Term rewrite analysis as in [1]. ✷

The operators ‖Siw and ‖iw are commutative, while the arguments of the ◦iw operator
may only be interchanged if they have no entities in common. The first rule, for example,
can be used to derive that in figure 6 x and y are not ordered.

Proposition 2

E(x) ∩ E(y) = ∅ ⇒ x ◦iw y = y ◦iw x (1)

x ‖Siw y = y ‖Siw x (2)

x ‖iw y = y ‖iw x (3)

Proof For (1) use E(x) ∩ E(y) = ∅ ⇒ xL◦iw y = yR◦iw x

(2) and (3) are clear by symmetry of the definitions. ✷

The operators ‖Siw and ◦iw are associative, while associativity for the ‖iw operator only
holds for pairwise consistent interworkings. The proof of proposition 5 consists of a
complex simultaneous induction.

Proposition 3 (x ◦iw y) ◦iw z = x ◦iw (y ◦iw z)

Proof Simultaneous induction on the total number of symbols in x, y and z of the
following four propositions.

(xL◦iw y)L◦iw z = xL◦iw (y ◦iw z)
(xR◦iw y)L◦iw z = xR◦iw (yL◦iw z)
(x ◦iw y)R◦iw z = xR◦iw (yR◦iw z)
(x ◦iw y) ◦iw z = x ◦iw (y ◦iw z) ✷

Proposition 4 (x ‖Siw y) ‖Siw z = x ‖Siw (y ‖Siw z)

Proof Simultaneous induction on the total number of symbols in x, y and z of the
following four propositions.

(x‖S

iw
y)‖S

iw
z = x‖S

iw
(y ‖Siw z)

(x|Siwy)|
S
iwz = x|Siw(y|

S
iwz)

(x|Siwy)‖
S

iw
z = x|Siw(y‖

S

iw
z)

(x ‖Siw y) ‖Siw z = x ‖Siw (y ‖Siw z) ✷

Proposition 5 Let x, y and z be interworkings, let x be of the form x′, x′ · δ or δ, y be
of the form y′, y′ · δ or δ and z be of the form z′, z′ · δ or δ, such that x′, y′ and z′ are
pairwise consistent interworkings, then we have

(x ‖iw y) ‖iw z = x ‖iw (y ‖iw z)



Example 4 The fact that this proposition requires that the interworkings have to be con-
sistent is shown by the following calculations.

c(p, q,m) ‖iw (c(p, q, n) ‖iw c(p, q, n)) = c(p, q,m) ‖iw c(p, q, n) = δ

(c(p, q,m) ‖iw c(p, q, n)) ‖iw c(p, q, n) = δ ‖iw c(p, q, n) = c(p, q, n) · δ

Proposition 6

x ◦iw δ = x · δ (1)

δ ◦iw x = x · δ (2)

x ‖iw δ = x · δ (3)

Proof (1) Simultaneous induction with xL◦iw δ = x · δ
(2) follows from (1) and proposition 2.

(3) Simultaneous induction of x‖ ∅

iw
δ = x · δ and x ‖∅iw δ = x · δ. ✷

The following proposition implies that a deadlock in an interworking is global and will
be reached only if all admissible actions are executed. It can be proven with simultaneous
induction.

Proposition 7 Every interworking is deadlock free, equal to δ or of the form p · δ where
p is a deadlock free interworking.

For the following properties we need the notion of a trace of a process. A trace is an
element of A+ ∪ A* δ ∪ {δ}. So a trace is a non-empty sequence of atomic actions, with
the restriction that only the last action may be a δ. Concatenation of traces is denoted by
placing the traces next to each other. We define the set of traces of a process as follows.

tr(a) = {a}
tr(ax) = {at|t ∈ tr(x)} if a 6= δ

tr(x+ y) = tr(x) ∪ tr(y) if x 6= δ ∧ y 6= δ

A process x is deterministic if it is of the following form.

∑

i∈I

ai · xi +
∑

j∈J

aj

where we require that all ak are different for k ∈ I ∪ J and all xi are deterministic. It
follows directly from the definitions of the interworking operators that every interworking
is deterministic. This implies that every interworking is completely determined by its
trace set. See [4] for a proof that this proposition holds for all deterministic processes.

Proposition 8 For interworkings x and y

tr(x) = tr(y) ⇒ x = y



By x̃ we denote the process x where all sequential operators are replaced by interworking
sequencing operators.

ã = a

ã · x = a ◦iw x̃
˜x+ y = x̃+ ỹ

The class IW is closed under this operation. Moreover we have x = x̃ for every inter-
working x.
This operation can also be defined on traces.

ã = a

ãx = a ◦iw x̃ if a 6= δ

We conclude with a proposition which states that every interworking is completely deter-
mined by a set of locally deterministic interworkings. The application of this proposition
is in the fact that every interworking, in particular interworkings as in figure 7 can be
represented by a set of interworking diagrams. So the user of the tool set does not have to
know about the · and the +-operator. Input and output consist of expressions containing
only sequencing and merge operators.

Proposition 9 For every interworking x

tr(x) =
⋃

t∈tr(x)

tr(t̃)

4. CONCLUSIONS

The problem of the so called horizontal and vertical composition of interaction diagrams
as used for Interworkings or Message Sequence Charts has been tackled successfully by
introducing the sequencing and the merge operator. Apart from the clear semantics, the
algebraic approach shows some more advantages. The main point is that it enables the
formal algebraic verification of useful properties such as consistency and refinement (which
is the implementation relation between two interworking specifications as described in [6]).
The second point is that, when interpreted as a term rewriting system, the equations
provide a straightforward prototyping strategy for tool builders. This easy prototyping
has helped in evaluating the use of interworkings in the aforementioned Interworking
project.
In [6] we give a semantics of the full Interworking language, which also includes macros,

timers and refinement. Research is going on to provide other features from the field
of MSCs with algebraic semantics. These are asynchronous communication, message
overtaking and conditions. Furthermore, the possibility is being studied to relax the
requirement that in a merge the components have to synchronise on all common actions.

REFERENCES

1. J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, ISBN 0 521 40043 0, 1990.



2. J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. &
Control 60, pp. 109-137, 1984.

3. V. Encontre, e.a., Combining Services, Message Sequence Charts and SDL: Formalism,
Method and Tools, SDL ’91, Evolving Methods, Elsevier Science Publishers, ISBN 0
444 88976 0, 1991.

4. J. Engelfriet, Determinacy → (observation equivalence = trace equivalence), TCS
36(1), pp.21-25, 1985.

5. I. Jacobson, a.o., Object-Oriented Software Engineering, A Use Case Driven Ap-
proach, Addison Wesley, ISBN 0 201 54435 0, 1992.

6. S. Mauw, M. van Wijk & T. Winter, Syntax and semantics of synchronous interwork-
ings, Philips IST technical report RWB-508-RE-92436, 1992.

7. E. Rudolph, Syntax and Semantics of Basic Sequence Charts, Contribution to the
Study Group X, WP X/3, Q8, CCITT meeting, Geneva 1992.

8. E. Rudolph, P. Graubmann, J. Grabowski, Towards an SDL-Design-Methodology
Using Sequence Charts Segments, SDL ’91, Evolving Methods, page 237-252, Elsevier
Science Publishers, ISBN 0 444 88976 0, 1991.

9. J. Rumbaugh, a.o., Object-Oriented Modeling and Design, Prentice Hall International,
ISBN 13 630054 5, 1991.

10. P.A.J. Tilanus, A formalisation of Message Sequence Charts, SDL ’91, Evolving Meth-
ods, page 273-288, Elsevier Science Publishers, ISBN 0 444 88976 0, 1991.


