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Interworkings are used in the analysis phase of the development process at PKI
Nürnberg for describing the message interactions between functional blocks.
The specification of one functional block contains the most common sequences
of message interactions with all the neighbour blocks it communicates with.
Interworkings are a synchronous variant of message sequence charts mentioned
below. In close cooperation with PKI Nürnberg a project is performed in which
an Interworking Tool Set (ITS) is specified and prototyped that can process,
analyse, and combine interworkings. The first ideas about this tool set were
raised in discussions with B. Lurz from PKI Nürnberg in 1991.

Message sequence charts have been used for a long time by CCITT Study
Groups in their recommendations and within industry, according to different
conventions and under various names. Initiated by Dr. E. Rudolph, the language
for message sequence charts is being standardised by the CCITT. The reason
to standardise message sequence charts is to make it possible to provide tool
support for them, to exchange message sequence charts between different tools,
to ease the mapping to and from SDL specifications, and to harmonise the use
within the CCITT. Interworkings are also playing an important role in other
areas than the telecommunication industry. Several object-oriented methods
have absorbed Message Sequence Charts (ObjectOry [6], Rumbaugh [14]).

Compared to other trace languages interworkings have the advantage of a
clear graphical layout and structuring. However, interworkings are only suitable
for the description of relatively small parts of the system behaviour. Therefore,
in order to describe the behaviour of a system more completely, composition
operations on interworkings similar to the composition operations in for ex-
ample LOTOS are required. In the literature already several solutions have
been proposed in this area. In [13] the syntax of message sequence charts is
enhanced with the concept of “conditions” providing the means to combine
message sequence charts sequentially. The sequential composition operation is
only described implicitly in this document. No other composition operations on
message sequence charts are defined. In [3] a system is described as a hierarchy
of services increasing in detail. The lowest level of services in the hierarchy is de-
scribed in terms of message sequence charts. For the services several composition
operations are defined (e.g. sequential-, parallel-composition, choice-operator).
Although services can be combined the document does not discuss the related
composition of the message sequence charts.
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A collection of interworkings describes the behaviour of a system on a high
level of abstraction. Each interworking is a projection of a part of the commu-
nication behaviour of a system onto a set of entities. In a telecommunication
context where for example SDL is used as description language, an entity may
be a process or a set of processes combined into one functional block. Inter-
workings are event oriented instead of entity oriented and only synchronous
communication actions can be modelled. This means that messages can not be
delayed as in message sequence charts where communication is asynchronous.
Because in practice, this does not seem to be a restriction, we concentrate our-
selves in this document on the simpler model of synchronous communication
and keep the asynchronous variant for further study.

In order to reason about the meaning of interworkings and in particular
about the composition operators on interworkings and consistency of interwork-
ings, we needed a formal definition of the semantics. For this formal definition of
interworkings and the composition operators we explore techniques from process
algebra [1]. Process algebra is a commonly accepted technique for the descrip-
tion of communicating systems. Algebraic reasoning is very suitable for formal
verification activities which concern in our case the consistency checking of in-
terworkings. Additionally, via process algebra, it is easy to generate prototypes
implementing the various operators, and a link to other algebraic description
methods like for example LOTOS can easely be made. Although we restrict
ourselves in this document to synchronous interworkings, we think that an ex-
tension to asynchronous communication actions (c.f. Message Sequence Charts)
is possible. In [15], a formalisation of message sequence charts is given in terms
of set theory. This formalisation has the advantage that it only uses basic con-
structs but has the disadvantage that the parallel composition operator can not
be easily expressed in the formalism.

In chapter II of this document, we will define the concrete textual syntax
IW for interworkings. In chapter III, we will give an informal description of
the semantics of interworkings and a description of the composition operators.
The informal semantics is based upon the formal description in chapter V. In
order to be independent of the concrete syntax IW and in order to abstract
from less relevant details we have introduced an intermediate language T for
the description of the semantics of IW. In chapter IV this intermediate language
T is described together with the translation rules from IW to T. In chapter V,
a formal semantics for interworkings is defined with the use of the algebraic
concurrency theory BPA.

For people who are only interested in the usage of interworkings the first two
chapters should contain sufficient information to work with. The translation of
IW to T and the formal semantics description is meant for those who want to get
a thorough understanding of the semantics. Tool development for interworkings
for example has to be based upon this formal description rather than on the
informal description.
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Syntax and semantics of synchronous

interworkings

II
The concrete syntax IW

S. Mauw1 M. van Wijk2 T. Winter3

II.1 Introduction

In this document, a concrete syntax for interworkings, denoted by IW, is defined.
The syntax is based upon the syntax as currently being used at PKI Nürnberg.
In order to support the required functionality of the Interworking Tool Set
we had to extend this syntax slightly. The extended syntax presented here
only contains small modifications with respect to the interworking syntax as
currently being used.

II.2 Syntax

II.2.1 Introduction

A description of the concrete syntax for interworkings is given below. The
various sorts of comments are not included in the BNF notation in order to
concentrate on the description of the behaviour of the processes. The various
comment constructs will be discussed separately in section II.2.4.

We present the syntax by means of BNF rules of the following form:

expr1 expr2 expr1 followed by expr2
expr1 | expr2 choice between expr1 and expr2

[ expr ] optional occurrence of expr
{ expr } zero or more occurrences of expr
{ expr }+ one or more occurrences of expr
’string’ terminal symbol
expr1 // expr2 sequence of one or more expr1’s separated by expr2’s

II.2.2 BNF

iwdset ::= { iwd } .
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iwd ::= ’INTERWORKING’ iwname [ paramlist ]

’PROCESSES’ processes ’ENDPROCESSES’

expressionlist

’ENDINTERWORKING’ .

iwname ::= Ident .

processes ::= processname // ’,’ .

processname ::= Ident .

expressionlist ::= { expression } .

expression ::= transmission

| lost-transmission

| macro

| xmacro

| process-action

| timer-statement .

transmission ::= processname ’SENDS’ message

’TO’ processname [ action ] .

lost-transmission ::= processname ’SENDS’ message

’TO’ processname ’LOST’ .

message ::= msgname [ paramlist ] .

msgname ::= Ident .

paramlist ::= ’(’ [ parameters ] ’)’

| ’{’ [ parameters ] ’}’ .

parameters ::= parameter // ’,’ .

parameter ::= Ident [ paramlist ] .

action ::= ’ACTION’ actionname .

actionname ::= Ident .

macro ::= ’MACRO’ macroname [ paramlist ]

[ on-processes ] .

on-processes ::= ’ON’ processes .

xmacro ::= ’XMACRO’ macroname [ paramlist ] .

macroname ::= Ident .

process-action ::= processname action .

timer-statement ::= timer-set

| timeout .

timer-set ::= processname ’SET’ timername
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’(’ duration ’)’ .

timername ::= Ident .

duration ::= Ident

| nat .

timeout ::= processname ’TIMEOUT’ timername

[ action ] .

Ident ::= letter { letter | digit | symbol } .

letter ::= ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’

| ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’ | ’n’

| ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’

| ’v’ | ’w’ | ’x’ | ’y’ | ’z’ | ’A’ | ’B’

| ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’

| ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’

| ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’

| ’X’ | ’Y’ | ’Z’ .

symbol ::= ’~’ | ’’’ | ’‘’ | ’@’ | ’#’ | ’$’ | ’^’

| ’&’ | ’_’ | ’+’ | ’=’ | ’|’ | ’\’ | ’[’

| ’]’ | ’<’ | ’>’ | ’?’ | ’/’ | ’.’ | ’:’

| ’;’ | ’"’ .

digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’

| ’7’ | ’8’ | ’9 ’.

nat ::= digit { digit } .

II.2.3 Example

Hereafter, a small example of an interworking in the concrete syntax will be
given. The graphical representation of this interworking can be found in fig-
ure ?? below.

INTERWORKING example

PROCESSES A, B, C, D

ENDPROCESSES

D SENDS u TO C

A SENDS v TO B

B SENDS w TO C

C SENDS x TO B

B SENDS y TO A

C SENDS z TO D

ENDINTERWORKING
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II.2.4 Comments

Three different forms of comment may be included in interworkings. All three
forms of comment run to the end of line. Below follows a short description of
these three forms of comment. The description is extracted from the documen-
tation on the current Interworking Processor.

• (! comment) Lines starting with a ! are passed directly to the output.
Trailing comments starting with a ! are appended to the right side of the
output line.

• (* comment) Lines starting with a * produce an “empty” output line con-
taining instance bars to which the comment is appended at the right. This
type of comment may not occur as trailing comment.

• (% comment) Comment starting with a % does not produce any text in the
output file.

II.2.5 Hyphenation

The hyphen character (“-”) is used as line continuation symbol. A line feed
after this continuation symbol will be discarded and the statement continues on
the next line. The following example will be regarded as a syntactically correct
statement.

P1 SENDS msg -

TO P3 ACTION act

The interworking syntax as it was used by PKI up till now was line oriented
and thus a line continuation symbol was required in order to write a statement
over multiple lines. The syntax as described above is not line oriented and the
line continuation symbol is therefore not necessary any more. However, in order
to comply with existing interworkings we have maintained the functionality of
this symbol in the syntax.

II.2.6 Parameters of interworkings

Parameters of an interworking are textual placeholders for message names, pro-
cess names, or message parameter names. A formal parameter of an interwork-
ing is implicitly typed by its occurrence in the expression list of the interworking.
Only identifiers may be used as formal parameter, and a formal parameter may
not occur both as process and as message or message parameter in that inter-
working, or as message and as message parameter.

An example of a parameterised interworking is given below. Note that the
interworking is equal to the interworking in the example above, except that two
parameters are added. Note that the first actual parameter in the corresponding
macro call must be a process, and the second parameter must be a message
name.

INTERWORKING macro_example (X, x)

PROCESSES X, B, C, D

ENDPROCESSES
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D SENDS u TO C

X SENDS v TO B

B SENDS w TO C

C SENDS x TO B

B SENDS y TO X

C SENDS z TO D

ENDINTERWORKING
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Syntax and semantics of synchronous

interworkings

III
Informal Semantics

S. Mauw1 M. van Wijk2 T. Winter3

III.1 Introduction

In this document we will describe the concepts of interworkings and the com-
position operators informally. In section III.2 we will describe the semantics of
interworking diagrams. After that, we will describe the two composition opera-
tors, interworking sequencing and interworking merge. Finally in section III.5,
we will define the interworkings that can be constructed by means of the syntac-
tical constructs and the two composition operators as well as some properties.

III.2 Interworking diagrams

III.2.1 Syntax

The basic graphical language of interworking diagrams is very simple and re-
sembles the syntax for basic sequence charts [12]. Vertical lines are used to
represent entities within a system and horizontal arrows are used to represent
communications between two entities. These communication actions are inter-
leaved with other constructs denoting behaviour of individual entities such as
actions, timer statements, and lost messages. For these constructs the concrete
graphical syntax is not yet defined and semantically they are of less interest
than the communication actions. In this document we will therefore concen-
trate on the communication actions only. A detailed discussion on the syntax
of interworkings lies beyond the scope of this document and for a definition of
the concrete syntax we refer to [7].

III.2.1.1 Macros

As a means for structuring, it is possible to define macros for interworking dia-
grams that are used at various places within other interworkings. These macros
are used as textual placeholders only and they have no additional semantical
meaning. In order to reason about the semantics of interworkings it is there-
fore necessary that all macros are expanded. Nothing can be said about the
communication behaviour of an interworking diagram containing unexpanded
macros.
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III.2.2 Semantics

A message interaction between two entities can be split into two different events;
the message output and the message input. Interworkings are event oriented
and only synchronous communication actions can be modelled. No global time
axis is assumed for one interworking. Along each vertical entity-line the time is
running from top to bottom, however, no proper time scale is assumed. Events of
different entities are ordered only via messages. Within interworkings, no delay
between a message output and the corresponding message input is explicitly
modelled. Therefore, an interworking imposes only a partial ordering on the
events being contained. In figure ??, the messages u and v are not related and
no ordering exists between them. This also holds for the messages y and z.

A collection of interworkings describes the behaviour of a system on a high
level of abstraction. Each interworking describes a common sequence of commu-
nication actions performed by the contained entities. Note that the interwork-
ing does not specify communication actions with entities that are not contained.
The behaviour of a single entity is thus only partially described by the events
being contained in the interworking. The actual behaviour will be an interleav-
ing with communication events concerning other entities. Between the output
of v and the input of y, entity A in figure ?? for example can have interactions
with an entity E which is not in the diagram. However, it can not have a com-
munication action with either one of the entities B, C, or D between the output
of v and the input of y. This high level of abstraction results from the fact that
communication actions are considered to be synchronous.

III.3 Interworking sequencing

An interworking diagram can be constructed from atomic communication ac-
tions and applications of the interworking sequencing operator (denoted by
◦iw ). The interworking sequencing, or simply the sequencing of two interwork-
ing diagrams is the vertical concatenation of the two diagrams (See figure ??).

In the above case where the interworking diagrams have all entities in com-
mon, the sequencing corresponds to a real sequentialisation in time which re-
sembles the sequential composition or product of ACP. The operands need not
necessarily have all entities in common. In the next example (Figure ??) the
two interworkings only have entity B in common.

When interworkings contain disjoint entities, the behaviour described by
means of their sequencing will in most cases not be equal to simple sequential
composition of the behaviours. Events that do not involve the same entity or are
not related via messages will be unordered in the sequential composition. An
example of the sequencing of two interworkings that contain unrelated messages
is given in figure ??. Note that the right hand side describes a single interworking
in which the vertical position of the arrows does not indicate any ordering.

III.4 Interworking merge

The interworking merge, or simply called the merge (denoted by ‖iw ), of two
interworkings is their interleaved composition with the restriction that the in-
terworkings are forced to synchronise on a set of communication actions. This
set consists of the communication actions concerning every pair of entities which
the interworkings have in common.
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The merge synchronises on communication actions that the two interwork-
ing diagrams have in common. This means that in those cases where the inter-
working diagrams describe disjoint entities, the merge is equal to real parallel
composition. An example of the merge of two interworking diagrams in which
disjoint entities are described is given in figure ??. Note also that the merge of
these two interworking diagrams is equal to the sequencing of these diagrams
(See figure ??).

An interworking does not specify communication actions with entities that
are not contained. The behaviour of a single entity is only partially described
by the events contained in an interworking. The merge of two interworkings
may return an interworking in which the sequence of events for a single entity is
the result of interleaving the sequences of events in the original interworkings.
As an example, figure ?? shows the merge of two interworking diagrams that
have only one entity (B) in common.

For the interworking resulting from the merge in figure ??, nothing can be
said about the order of the events for entity B. The input of x can equally well
occur before or after the output of y. However, choices or decision points can
not be expressed within the interworking diagrams themselves. But, because an
interworking containing choices is semantically equivalent to a choice between
various interworking diagrams, the result of the above merge can be described
as the choice between two interworking diagrams, denoted by the + operator.
Note that this + operator is not contained in the syntax for interworkings.

III.4.1 Consistency

When two interworkings are merged, the interworkings have to synchronise on
all communication actions between entities which they have in common. In
case this synchronisation succeeds, we will call the two interworkings merge-
consistent. However, if two interworkings do have multiple entities in common
but do not synchronise on all the communication actions between these entities
then the interworkings are not merge-consistent and the merge of the interwork-
ings will contain so called deadlock or inaction. The two interworking diagrams
in figure ?? for example are not merge-consistent.

The textual and graphical syntax for interworking diagrams does not contain
a construct to represent deadlock. In figure ??, the deadlock is depicted by
means of a double horizontal line. It should be noted that deadlock is not
related to any contained entity in particular. Deadlock is a property of the
interworking as a whole.

III.5 Interworkings

If we call all objects that can be expressed in terms of the concrete syntax IW

interworking diagrams, then interworkings are defined as all objects that can be
constructed from these interworking diagrams and application of the sequenc-
ing and merge operator. With this definition, interworkings are closed under
application of the sequencing and the merge operator, and repeated application
of the operators is well defined in the underlying theory.

Since an interworking containing choices is semantically equivalent with a
choice between interworking diagrams, it is always possible to represent an in-
terworking in terms of the syntax IW as a collection of interworking diagrams.
Note that interworking diagrams form a subset of interworkings. Both the inter-
working sequencing and the interworking merge apply to interworking diagrams
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as well as to interworkings in general. Hereafter, we will discuss some interesting
properties that hold for interworkings. For a formal proof of these properties in
terms of ACP we refer to chapter V.

III.5.1 Properties

Proposition 1 Merging is commutative; if x and y are two interworkings then
the merge of x and y is equal to the merge of y and x;

x ‖iw y = y ‖iw x

Interworking sequencing in general is not commutative. Only in case two
interworkings have no entities in common then the sequencing of these inter-
workings is commutative. Note that the entities of an interworking are defined
as the entities that are involved in the communication actions contained in that
interworking.

Proposition 2 If interworking x and interworking y have no entities in com-
mon, then the sequencing of x and y is equal to the sequencing of y and x;

x ◦iw y = y ◦iw x

An example of this commutativity can be seen in figure ??. Note that in
this case that two interworkings have no entities in common the sequencing of
the interworkings is equal to the merge of the interworkings: (E(x) ∩ E(y) =
∅ ⇒ x ◦iw y = x ‖iw y). A special case of the above proposition occurs when
x is equal to deadlock; x = δ. Because deadlock is not related to any entity
it holds that δ ◦iw y = y ◦iw δ (i.e. deadlock propagates until the “end” of the
interworking).

Two other important properties of interworkings and the sequencing and
merge operators concern the associativity.

Proposition 3 Sequencing is associative; For interworkings x, y, and z the
sequencing of x and y sequenced with z is equal to the x sequenced with the
sequencing of y and z;

(x ◦iw y) ◦iw z = x ◦iw (y ◦iw z)

The associativity of the merge operator depends on the operands. Only
if the interworkings are mutually merge-consistent it holds that the merge is
associative.

Proposition 4 Let x, y and z be interworkings, let x be of the form x′, x′ ◦iw δ
or δ, y be of the form y′, y′ ◦iw δ or δ and z be of the form z′, z′ ◦iw δ or δ,
such that x′, y′ and z′ are pairwise consistent interworkings, then the merge of
x and y merged with z is equal to x merged with the merge of y and z;

(x ‖iw y) ‖iw z = x ‖iw (y ‖iw z)

The fact whether the merge of a collection of interworkings contains deadlock
or not does not depend on the order of application of the merge operator.
As a result of the above properties we can conclude that the final result of
merging a collection of interworkings is not influenced by the order in which
the merge operator is applied to the various elements of the collection. This
means that we may generalise the definition of merge-consistency to collections
of interworkings.
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IV
The syntax of T and denotational semantics of

IW

S. Mauw1 M. van Wijk2 T. Winter3

IV.1 Introduction

In this document we present the syntax of T, a new language to describe in-
terworkings, and the denotational semantics of IW. Those two subjects are
presented in one document because they are strongly related. The semantics of
IW will be given in terms of T. The language T is created in parallel with the
theoretical part [10]. T maps directly onto the theory described in that part.

IV.2 The language T

IV.2.1 Another language to describe interworkings

IW is a language which is used for describing interworking diagrams. All aspects
of interworking diagrams can be expressed within IW and IW expressions can
be interpreted as interworking diagrams. In order to make tools for interworking
processing we studied the syntax of IW and the tools requirements. In doing so
so we encountered a number of reasons to create another language to describe
interworkings.

One of the first things we encountered was that in order to describe the
result of the merge of two interworkings a choice operator was needed as shown
in [8]. It is possible to enhance IW with this operator but this should not be
done because IW is an intensively used language. There are that much systems
described in IW that changes are not accepted by users. Also the users are
not interested in interworkings containing that kind of choices. To be able to
describe the merge of two interworkings a language with a choice operator is
needed.

The language IW has elements which can be replaced by syntactically dif-
ferent but semantically identical elements. These elements are the compound
statements timeout-action and send-action and the (x)macros. They are useful
during the creation and description of interworking sets as is done at PKI but
they impose problems on the application of the interworking operators on IW.
Macros and compound statements are not defined in BPAiw.
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Compound statements as used in IW have to be split before merging. They
can be replaced by other statements as shown in the following example.

p TIMEOUT timer ACTION action
the statement above means the same as

p TIMEOUT timer
p ACTION action

Macros should be expanded before interworkings containing macros are merged.
Another problem regarding macros is that they do not have to be defined. The
formal semantics of an undefined macro is not determined although the mean-
ing of such a macro can be clear to a user of an interworking containing that
macro. Tools used to process interworkings can hardly recognize and interpret
such macros in the way users can do.

The parameters of message identifiers are a way of enlarging the meaning of
messages to the user. The meaning of a message and parameters combination
is just that of one identifier. A message name parameters combination in IW
will be translated into one message identifier of T. This is expressed in the
denotational semantics of IW.

It is possible to create, use other or change interworking describing lan-
guages, which have semantics definable in T. It is then possible to use the
existing syntax, tools and semantics of T, perhaps with some changes and en-
hancements, to process and analyse such languages. Also by using compilers to
and from T it is possible to translate those languages to each other. The use of
an extra language makes the tools syntax independent.

IW is not able to express all needed expressions over interworkings. IW
also contains semantically not relevant and difficult to merge items. In order to
describe all possible interactions of interworkings in a clear way the language T
and its theoretical foundations were created.

IV.2.2 Design of T

A design goal for T was to create a language that was as close to the theoretical
foundations in chapter [10] as possible. We choose the elements of the language
T to be expressions over the basic process algebra operators + and · , and the
two interworking operators, sequencing and merge.

Macros need to be unfolded before interworkings can be merged. Since
interworkings are finite processes, recursive definitions as by using macros are
not needed to describe interworkings. A language to describe the semantics
and combination of interworkings in IW should not use macros. The language
T should also not have compound statements as is explained in the previous
section.

The interworking sequencing and merge are elements of the language T. So
any process that can be expressed using these operators can be expressed in T.
In particular the merge of inconsistent interworkings which contains deadlock.
Therefore deadlock needs to be an element of T. The availability of deadlock
allows the study of failure behaviour of merged, inconsistent interworkings.

T should consist of the following items: the operators of BPA, + and ·,
the interworking operators, ◦iw and ‖iw , the atom δ and the other atoms for
BPAiw and a way of linking interworking names and the semantics of their
expression lists. All these items are represented in the language T as given in
the next section.
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This grammar is chosen to have such a form that the shape of the derivation
tree of expressions in T reflects which operators operate on which operands.
The grammar reflects also the priorities of the operators which is + < ◦iw <
‖iw < ·.

IV.2.3 BNF

In this section, the concrete syntax of T is given by means of the following BNF.
All undefined non terminals, which are Eid, Tid, Did, Aid, Mid, are identifiers as
defined in [7]. Mid’s are a bit different because they may also contain ’(’, ’)’ and
’,’ symbols as used for messages and their parameters in IW. The rules which
describe the grammar of T have the same meaning as those which describe the
grammar of IW.

T ::= { process }

process ::= processname ’=’ expression

expression ::= iwmerge { ’+’ iwmerge }

iwmerge ::= iwseq { ’||’ iwseq }

iwseq ::= seq { ’o’ seq }

seq ::= atom or expression { ’.’ atom or expression }

atom or expression ::= atom
| ’(’ expression ’)’

atom ::= ’C(’ Eid ’,’ Eid ’,’ Mid ’)’
| ’Lost(’ Eid ’,’ Eid ’,’ Mid ’)’
| ’Timerset(’ Eid ’,’ Tid ’,’ Did’)’
| ’Timeout(’ Eid ’,’ Tid ’)’
| ’Action(’ Eid ’,’ Aid ’)’
| ’Delta’

IV.2.4 An example in T

Here follows an example of interworkings defined in T. Note that p is not a single
interworking but a more complex combination of interworkings containing just
one expression.

p = ( C(x,y,m) || C(x,z,m) ) o Action(x,b)
q = Timerset(x,timer,5) o Timeout(x,timer) o Action(y,h)

Process p is the merge of two communications sequenced with an action, q
is the sequencing of a timerset, a timeout and an action.

IV.2.5 The semantics of T

The semantics of T is given by a direct mapping of the expressions of T to an
extension of BPA. This extension of BPA is defined in [10]. The mapping is
given by a simple replacement. This is the replacement of || by ‖iw and o by
◦iw .
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We do not look at the semantics of a set of processes, because the semantics
of a set of processes is determined by the relations between those processes.
These are relations like being a correct refinement of another process or being
the sequencing or merge of different processes. These relations are only visible
to users of these processes and are not described or visible within the language.
So the semantics of T is sufficiently defined by a mapping of the expressions of
T towards BPAiw.

IV.3 Abstract syntax of IW

IV.3.1 Introduction

The abstract syntax of IW is derived from the concrete syntax of IW by removing
all semantically non-relevant items. Occurring optional actions can be replaced
by a normal action expression as shown in the example on page 14. There is no
difference in semantics between an expandable macro and an xmacro, both their
semantics are the semantics of the corresponding expression list after parameter
substitution, so both are named macro.

The ON PROCESSES part is not needed for the definition of the semantics
of a macro call nor is the PROCESSES part of an interworking needed for the
definition of the semantics of that interworking.

Not defined macros are not allowed, since they have an undefined semantics.
The difference between message- and interworking/macro-parameters is made
explicit in the abstract syntax because their semantics are different. The seman-
tics of interworking parameters is a list of textual place holders for substitution
purposes, so each interworking parameter is a single identifier. The semantics
of a message parameter is also an identifier but it is composed of a combination
of identifiers.

IV.3.2 Abstract syntax

The abstract syntax of IW is given by the same king of grammar rules as used
for the description of the other grammars. An object between <, > denotes the
abstract representation of that object. Names of objects (e.g. interworkings,
processes, messages) do not have any semantical meaning.

< iwdset > ::= empty()
| nonempty(< iwd >,< iwdset >)

< iwd > ::= iwd(< iwname >,< iwparameters >,< expressionlist >)

< iwparameters > ::= empty()
| nonempty(< iwparameter >,< iwparameters >)

< expressionlist > ::= empty()
| nonempty(< expression >,< expressionlist >)

< expression > ::= < transmission >

| < losttransmission >

| < macro >

| < processaction >

| < timerset >

| < timeout >

< transmission > ::= transmission(< processname >,< message >,< processname >)
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< losttransmission > ::= losttransmission(< processname >,< message >,< processname >)

< message > ::= message(< msgname >,< parameters >)

< parameters > ::= empty()
| nonempty(< parameter >,< parameters >)

< parameter > ::= parameter(< paramname >,< parameters >)

< macro > ::= macro(< macroname >,< iwparameters >)

< processaction > ::= processaction(< processname >,< actionname >)

< timerset > ::= timerset(< processname >,< timername >,< duration >)

< timeout > ::= timeout(< processname >,< timername >)

IV.4 Semantics of IW

IV.4.1 Introduction

The semantics of IW will be given for syntactically and semantically correct
interworking sets. We give the semantics of IW in terms of the abstract syntax of
IW and the concrete syntax of T. To determine the semantics of a macrocall the
semantics of the defining interworking after parameter substitution should be
available at the moment the semantics of that call is determined. To accomplish
that availability the definition of the semantics is split into two phases. First an
environment which allows parameter substitution on expression lists is created.
Thereafter that environment is used to determine the final semantics.

IV.4.2 Sets and constants

In this section the sets, constants and basic operators required to define the
semantics of IW in terms of T are presented. Emphasized The language of a
non-terminal from the grammars of T or IW is denoted by the italicized ver-
sion of that non-terminal. For example iwdset denotes the set of all derivable
interworkings, using the grammar of IW, starting at < iwdset > in the ab-
stract grammar of IW, expressions denotes the set of all objects derivable from
expression in the grammar of T.
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⊥: denotes anything undefined.
ε : empty string or identifier.
Ident : the set of all identifiers.

macros
macros = λx ∈ Ident∗ · expressionlist
This is a set of functions which denote the parameter substitution on an

expression list. x is a tupel of idents. An example of such a function is:

λ(x, y, z) ∈ Ident∗·
x SET y (z)
x SENDS mesg TO d

Its application is as follows:
(
λ(x, y, z) ∈ Ident∗·

x SET y (z)
x SENDS mesg TO d

)
(a,b,c) =

a SET b (c)
a SENDS mesg TO d

.

environment
Env = Ident → macros ∪ {⊥}
This environment is used to establish links between interworking names and

parametrized expression lists. The bottom element is added to make sure the
environment is defined for all identifiers. The parameters used for the macros
will be the interworking parameters. An example of such an environment is the
environment function r. r is a defined environment function for the following
interworking.

INTERWORKING iw (a,b,c,d)
PROCESSES a,b
ENDPROCESSES

a SENDS c TO b
b ACTION d

ENDINTERWORKING

Now r(iw)(p,q,s,t) is
p SENDS s TO q
q ACTION t

.

The creation of such an environment is defined in section IV.4.4.

environment creation function
/ : Ident×macros → Env
b/a = λy ∈ Ident · y = b → a,⊥ environment creation function.
This is a function over Ident, with b/a(b) = a, and for c 6= b, b/a(c) =⊥.
This function will be used to establish links between interworking names and

parametrized expression lists.

environment composition
[ ] : Env × Env → Env
f [g] = λy ∈ Ident · g(y) =⊥→ f(y), g(y) environment composition,
f [g] is a function which returns the application of f if the application of g

on the actual Ident yields ⊥.
This function will be used to combine environment functions defined over

interworkings to environment functions defined over interworking sets.
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identifier concatenation
++ : Ident× Ident → Ident identifier concatenation,
”abc” ++ ”xyz”= ”abcxyz”

expression sequencing
++ : expression× expression → expression expression sequencing,
o is the interworking sequence operator in T. The function ++ is needed

because the interworking sequencing is not defined for empty processes. Inter-
workings can have an empty expression list, so the semantics of a macro call
can be ε, which can only be sequenced by using the forementioned auxiliary
operator.

a++b =





a 6= ε ∧ b 6= ε → a o b

a 6= ε ∧ b = ε → a

a = ε ∧ b 6= ε → b

a = ε ∧ b = ε → ε

IV.4.3 Semantics

The semantics function has an interworking set as input and returns its seman-
tics in terms of T. The semantics of IW is given by the function

[[ ]] : iwdset → T.

This function is defined in two stages. First an environment is defined which
allows parameter substitution on named expression lists. Then that environment
is used to determine the semantics of the interworking set in terms of T.

[[ < iwdset > ]] is defined as [[ < iwdset > ]]r, where r = env(< iwdset >).
The function env is defined in section IV.4.4. [[ < iwdset > ]]r is the appli-
cation of the function [[ ]] : iwdset × Env → T which is defined in section
IV.4.5. It is possible to write this function down in one term as [[ < iwdset >
]]env(< iwdset >). In this case it should be guaranteed that each parametrized

expression list of env(< iwdset >) is evaluated before it is needed in the deter-
mination of the semantics of a macro call.

IV.4.4 Environment creation

The environment created by the function env denotes for each interworking of
the interworking set the parameter substitution on its expression list. The ap-
plication of this function on an interworking name gives a substitution function
on that interworkings expression list.

iwdset
The environment of an interworking set is the composition of the environ-

ments of its interworkings.

env : iwdset → Env

env(empty()) = λy ∈ Ident· ⊥

env(nonempty(< iwd >,< iwdset >)) =

env(< iwd >) [ env(< iwdset >) ]
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iwd
By taking the iwparameters as the parameters for the macro, the substitution

function of < iwname > equals to the macrocall MACRO iwname iwparameters

env : iwd → Env

env(iwd(< iwname >,< iwparameters >,< expressionlist >)) =

< iwname > /λ(p1, p2, · · · , pn)· < expressionlist >

where (p1, p2, · · · , pn) = [[ < iwparameters > ]]

iwparameters
[[ ]] : iwparameters → Ident∗

[[empty()]] = ()

[[nonempty(< iwparameter >,< iwparameters >)]] =

(< iwparameter >, p1, p2, · · · , pn) where (p1, p2, · · · , pn) = [[ < iwparameters > ]]

IV.4.5 Translation and macro expansion

In this section the semantics of an interworking set in terms of T is given. The
application of the environment function env on the current interworking set is
needed to determine the semantics of macro calls, we call that application r,
r = env(< iwdset >).

iwdset
The concatenation in the last line of this paragraph denotes some placing

together of processes within a set of processes described in T.

[[ ]] : iwdset× Env → T

[[empty()]]r = ε

[[nonempty(< iwd >,< iwdset >)]]r =

[[ < iwd > ]]r[[ < iwdset > ]]r

iwd
All interworkings, also macros, are translated. The parameters of interwork-

ings are not needed to determine the semantics of an interworking.

[[ ]] : iwd× Env → process

[[iwd(< iwname >,< iwparameters >,< expressionlist >)]]r =

< iwname >= [[ < expressionlist > ]]r

expression list
The semantics of an expression list is the interworking sequencing of the

semantics of all expressions in the expression list. The interworking sequencing
is not defined for empty expressions. Since interworkings and by that macros
can be empty the auxiliary operator ++ on expressions is used to remove empty
expressions before using the interworking sequencing operator. This operator
also avoids the problem of checking whether the remaining expression list is
empty. The semantics of an expression is a direct translation to T except for
macros, which have to be expanded first.

[[ ]] : expressionlist× Env → expression
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[[empty()]]r = ε

[[nonempty(< expression >,< expressionlist >)]]r =

[[ < expression > ]]r ++ [[ < expressionlist > ]]r

transmission
[[ ]] : transmission× Env → expression

[[transmission(< processname1 >,< message >,< processname2 >)]]r =

C(< processname1 >,< processname2 >, [[ < message > ]])

lost transmission
[[ ]] : losttransmission× Env → expression

[[losttransmission(< processname1 >,< message >,< processname2 >)]]r =

Lost(< processname1 >,< processname2 >, [[ < message > ]])

message
[[ ]] : message → Ident

[[message(< msgname >,< parameters >)]] =

< msgname > ++

{
< parameters > 6= empty() → ”(” ++[[ < parameters > ]] ++”)”

< parameters >= empty() → ε

parameter
[[ ]] : parameter → Ident

[[parameter(< paramname >,< parameters >)]] =

< paramname > ++

{
< parameters > 6= empty() → ”(” ++[[ < parameters > ]] ++”)”

< parameters >= empty() → ε

parameters
[[ ]] : parameters → Ident

[[empty()]] = ε

[[nonempty(< parameter >,< parameters >)]] =

[[ < parameter > ]] ++

{
< parameters > 6= empty() → ”, ” ++[[ < parameters > ]]

< parameters >= empty() → ε

macro
The semantics of a macro is the semantics of its defining interworkings ex-

pression list after parameter substitution. The substitution function on the
mentioned expression list is r(< macroname >), this function will be applied
on the actual macro parameters.

[[ ]] : macro× Env → expression

[[macro(< macroname >,< iwparameters >)]]r =

[[r(< macroname >)[[ < iwparameters > ]]]]r

processaction
[[ ]] : processaction× Env → expression

[[processaction(< processname >,< actionname >)]]r =

Action(< processname >,< actionname >)
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timerset
[[ ]] : timerset× Env → expression

[[timerset(< processname >,< timername >,< duration >)]]r =

Timerset(< processname >,< timername >,< duration >)

timeout
[[ ]] : timeout× Env → expression

[[timeout(< processname >,< timername >)]]r =

Timeout(< processname >,< timername >)

IV.4.6 An example on application of the semantics func-

tion

The interworkings in this example are given in the concrete syntax of IW. They
are syntactically and semantically correct so it is possible to determine the
semantics of this interworking set.

Take the following interworking set, in IW lay out.

INTERWORKING iw1
PROCESSES p,q,r
ENDPROCESSES

MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r

ENDINTERWORKING

INTERWORKING macro(x,y,z)
PROCESSES x,q ENDPROCESSES

q SENDS m TO x
x SET y (z)
x TIMEOUT y

ENDINTERWORKING

To determine the semantics of this interworking set we first determine the
environment function r, where after we apply the translation part using this r.

r =

env




INTERWORKING iw1
PROCESSES p,q,r
ENDPROCESSES

MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r

ENDINTERWORKING

INTERWORKING macro(x,y,z)
PROCESSES x,q
ENDPROCESSES

q SENDS m TO x
x SET y (z)
x TIMEOUT y

ENDINTERWORKING
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=

env




INTERWORKING iw1
PROCESSES p,q,r
ENDPROCESSES

MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r

ENDINTERWORKING







env




INTERWORKING macro(x,y,z)
PROCESSES x,q
ENDPROCESSES

q SENDS m TO x
x SET y (z)
x TIMEOUT y

ENDINTERWORKING







=

iw1/λ()·
MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r


 macro/λ(x, y, z)·

q SENDS m TO x
x SET y (z)
x TIMEOUT y




Now we can determine the semantics of that interworking set using the
function r.







INTERWORKING iw1
PROCESSES p,q,r
ENDPROCESSES

MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r

ENDINTERWORKING

INTERWORKING macro(x,y,z)
PROCESSES x,q
ENDPROCESSES

q SENDS m TO x
x SET y (z)
x TIMEOUT y

ENDINTERWORKING







r

=






INTERWORKING iw1
PROCESSES p,q,r
ENDPROCESSES

MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r

ENDINTERWORKING






r







INTERWORKING macro(x,y,z)
PROCESSES x,q
ENDPROCESSES

q SENDS m TO x
x SET y (z)
x TIMEOUT y

ENDINTERWORKING






r

=

iw1 =






MACRO macro(p,a,123)
p ACTION x
p SENDS m TO r





r

macro =






q SENDS m TO x
x SET y (z)
x TIMEOUT y





r

=

iw1 =
[[MACRO macro(p,a,123) ]]r

++ [[p ACTION x ]]r
++ [[p SENDS m TO r ]]r

macro =
[[q SENDS m TO x ]]r

++ [[x SET y (z) ]]r
++ [[x TIMEOUT y ]]r

=
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iw1 =
[[r(macro)(p,a,123) ]]r

++ Action(p,x)
o C(p,r,m)

macro =
C(q,x,m)

o Timerset(x,y,z)
o Timeout(x,y)

=

iw1 =






q SENDS m TO p
p SET a (123)
p TIMEOUT a





r

++ Action(p,x)
o C(p,r,m)

macro =
C(q,x,m)

o Timerset(x,y,z)
o Timeout(x,y)

=

iw1 =

C(q,p,m)
o Timerset(p,a,123)
o Timeout(p,a)
o Action(p,x)
o C(p,r,m)

macro =

C(q,x,m)
o Timerset(x,y,z)
o Timeout(x,y)

So the semantics of this interworking set is as follows:

iw1 = C(q,p,m) o Timerset(p,a,123) o Timeout(p,a) o Action(p,x) o C(p,r,m)
macro = C(q,x,m) o Timerset(x,y,z) o Timeout(x,y)

24



Syntax and semantics of synchronous

interworkings

V
A formal semantics fo interworkings

S. Mauw1 M. van Wijk2 T. Winter3

V.1 Introduction

In [7] we defined the specification language IW, which can be used to describe
synchronous interworking diagrams. The semantics of this language is given by
a translation to the language T (see [9]). The expressions of this intermediate
language directly map onto the process theory BPAiw, which will be introduced
in this paper. BPAiw is an extension of BPA, which stands for Basic Process
Algebra [1]. In this paper we will first give an introduction to BPA, then we
define the two interworking operators and the class of interworkings. Finally
we give some useful properties of interworkings. The main result for the inter-
working toolset is that every interworking can be represented by a collection of
locally deterministic interworkings.

V.2 Basic Process Algebra

BPA (Basic Process Algebra) is an algebraic theory for the description of pro-
cess behavior. The theory BPA has been extended with several operators in
order to express special features more easily. One of the extensions is the the-
ory ACP (Algebra of Communicating Processes) [1, 2], which has facilities for
parallelism. ACP can be compared to CCS [11] and CSP [5].

V.2.1 Actions and Processes

We consider two basic notions: atomic actions and processes. An atomic action
is an indivisible unit of behavior, such as the insertion of a coin in a coffee dis-
penser or the communication of some piece of information between two agents.
A process is the description of the (possible) behavior of a system. Atomic
actions will be denoted by a, b, . . . and processes by x, y, . . ..

Every atomic action will be considered as a process. Processes can be con-
structed from simpler processes with the use of two operators. The sequential
composition of processes x and y (notation x · y or xy for short) is the process

1Department of Mathematics and Computing Science, University of Technology Eindhoven,

email:sjouke@win.tue.nl
2Department of Mathematics and Computing Science, University of Technology Eindhoven,

Part of the work has been carried out to get a masters degree in computing science
3Philips Research Laboratories, Eindhoven, email:winter@prl.philips.nl
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that first executes x, and upon completion of x starts y. The alternative com-
position of x and y (notation x + y) is the process that either executes x, or
executes y (but not both). We will not specify how this choice is made.

These operators are defined by the equations from table V.1.

x + y = y + x
(x + y) + z = x + (y + z)
x + x = x
(x + y)z = xz + yz
(xy)z = x(yz)

Table V.1: Basic Process Algebra

The equations state that the alternative composition is commutative, asso-
ciative and idempotent, and that the sequential composition is associative only.
Note that the · only distributes over a +-operator at the left-hand side.

V.2.2 Deadlock

In order to describe processes which may not terminate successfully, we extend
BPA with features for unsuccessful termination. We use the term deadlock for
unsuccessful termination. The special atomic action δ denotes a deadlocked
process. Furthermore we introduce the encapsulation function, which renames
atomic actions from a given set into δ. It is denoted by ∂H , where H is a set of
atomic actions. The equations in table V.2 define deadlock and encapsulation.
The first equation says that no deadlock will ever occur as long as there is an
alternative that can proceed. The second equation states that after a deadlock
has occurred, no other actions can possibly follow. The predicate isdelta deter-
mines whether a process equals δ, and the predicate df determines whether a
process is deadlock-free or not.

The equations from tables V.1 and V.2 define the theory BPA
δ,∂H,df

. We
consider the term model as the semantics for the collection of process expres-
sions.

V.3 Basics

The collection of atomic actions can be considered as a parameter of BPA. In
the setting of interworkings, we will only consider communication actions of
a fixed format and some primitive actions, so we specialize the set of atomic
actions.

Let EID and MID be finite sets, containing entity identifiers and message
identifiers. Define the following collection of communication actions.

Ac = {c(p, q,m)|p, q ∈ EID,m ∈ MID}

Action c(p, q,m) means that entity p sends message m to entity q. Furthermore
we define a set of primitive actions. let AN , TID and DID be finite sets of
primitive action names, timer identifiers and duration identifiers, respectively.
Then we define the set of primitive actions as follows.
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x+ δ = x
δx = δ

∂H(a) = a if a 6∈ H
∂H(a) = δ if a ∈ H
∂H(x+ y) = ∂H(x) + ∂H(y)
∂H(xy) = ∂H(x) · ∂H(y)

¬isdelta(a) if a 6≡ δ
isdelta(δ)
isdelta(ax) = isdelta(a)
isdelta(x+ y) = isdelta(x) ∧ isdelta(y)

¬df(δ)
df(a) if a 6≡ δ
df(ax) = df(x) if a 6≡ δ
df(x+ y) = df(x) ∧ df(y) if ¬isdelta(x) and ¬isdelta(y)

Table V.2: Deadlock

Ap = {act(p, an)|p ∈ EID, an ∈ AN}∪
{lost(p, q,m)|p, q ∈ EID,m ∈ MID}∪
{timerset(p, t, d)|p ∈ EID, t ∈ TID, d ∈ DID}∪
{timeout(p, t)|p ∈ EID, t ∈ TID}

The primitive action act(p, an) is interpreted as the fact that entity p exe-
cutes the non-communication action an. The action lost(p, q,m) means that a
communication from entity p to q has failed. If entity p sets timer t with du-
ration d it is denoted by timerset(p, t, d) And action timeout(p, t) means that
timer t of entity p signals a timeout.

If we extend this collection of atomic actions with δ we get Aδ.

A = Ac ∪Ap

Aδ = A ∪ {δ}

Unless stated differently, all variables a, b, . . . range over Aδ.
Furthermore, we need an auxiliary function E, which determines the entities

involved in an action. This function is defined in table V.3. Note that there is
only one entity involved in a failed communication.

V.4 Interworking Operations

Although all process expressions define some behavior, we will consider only cer-
tain processes as interworkings. For the construction of interworkings we define
two operators, which are defined on all processes: the interworking sequencing
and the interworking merge.
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E(δ) = ∅
E(c(p, q,m)) = {p, q}
E(act(p, an)) = {p}
E(lost(p, q,m)) = {p}
E(timerset(p, t, d)) = {p}
E(timeout(p, t)) = {p}
E(ax) = E(a) ∪ E(x) if a 6≡ δ
E(x+ y) = E(x) ∪ E(y)

Table V.3: The Entity function

V.4.1 Interworking Sequencing

The interworking sequencing of two processes (notation ◦iw ) is their interleaved
composition with the restriction that actions involving common entities are
performed first by the left-hand process and then by the right-hand process.
First we define the set of actions generated by the entities of a given process.

αE(x) = {a ∈ A|E(a) ∩ E(x) 6= ∅}

The definition of the interworking sequencing resembles the definition of the
communication free merge from ACP . We use the auxiliary operators left se-
quencing (L◦iw ) and right sequencing (R◦iw ) which have the following intuitive
meaning. The left sequencing of two processes means that the left operand is
forced to do the first step. The right sequencing of two processes means that
the right operand has to do the first step, but it may only execute this step if
it is not blocked by some action from the left operand which involves the same
entity. The encapsulation operator (∂H) is used for blocking unwanted actions.

x ◦iw y = xL◦iw y + xR◦iw y

aL◦iw x = ax

axL◦iw y = a(x ◦iw y)

(x+ y)L◦iw z = xL◦iw z + yL◦iw z

xR◦iw a = ∂αE(x)(a) · x

xR◦iw ay = ∂αE(x)(a) · (x ◦iw y)

xR◦iw (y + z) = xR◦iw y + xR◦iw z

Table V.4: Interworking Sequencing

Example 1 Assuming that p, q, r, s and t are all different entities, we have
the following derivation.

c(p, q,m) ◦iw (c(p, r, n) ◦iw c(s, t, l)) =
c(p, q,m) ◦iw (c(p, r, n) · c(s, t, l) + c(s, t, l) · c(p, r, n)) =
c(p, q,m) · (c(p, r, n) · c(s, t, l) + c(s, t, l) · c(p, r, n)) +
c(s, t, l) · c(p, q,m) · c(p, r, n)
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V.4.2 Interworking Merge

The interworking merge of two processes (notation ‖iw ) is their interleaved
composition, except that the processes are forced to synchronize on a set of
atomic actions. This set consists of the actions concerning every pair of entities
which the processes have in common. First we define the S-interworking merge
(notation ‖Siw ) for a subset S of A. As in the definition of the parallel com-
position in ACP we need two auxiliary operators: the left interworking merge
(‖ S

iw
) and the synchronization interworking merge (|Siw). The left interworking

merge forces that the first step is taken from the left argument, provided that
this action is not an element of the set S. The synchronization interworking
merge can only execute an action if both operands can perform this same action
and this action is an element of the set S. The function γS determines whether
two actions have to synchronize.

x ‖Siw y = x‖ S

iw
y + y‖ S

iw
x + x|Siwy

a‖ S

iw
x = ∂S(ax)

ax‖ S

iw
y = ∂S(a) · (x ‖

S
iw y)

(x+ y)‖ S

iw
z = x‖ S

iw
z + y‖ S

iw
z

a|Siwb = γS(a, b)

ax|Siwb = γS(a, b) · ∂S(x)

a|Siwbx = γS(a, b) · ∂S(x)

ax|Siwby = γS(a, b) · (x ‖
S
iw y)

(x+ y)|Siwz = x|Siwz + y|Siwz

x|Siw(y + z) = x|Siwy + x|Siwz

γS(a, b) =

{
a if a = b ∧ a ∈ S

δ otherwise

Table V.5: Interworking Merge

Define the function αCE , which determines the actions performed by com-
mon entities as follows.

αCE(x, y) = {c(p, q,m) ∈ A|p, q ∈ E(x) ∩ E(y)}

Then we define the interworking merge of two processes as in the second part
of table V.5.

x ‖iw y = x ‖
αCE(x,y)
iw y

Table V.5: Interworking Merge (continued)

Note that we do not force synchronization of primitive actions. Only com-
munication actions have to synchronize. However, we require that the ordering
of actions with respect to every single entity is preserved.
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Example 2

c(p, q, k) · act(q, a) · c(q, r, l) ‖iw c(q, r, l) · c(r, s,m) =
c(p, q, k) · act(q, a) · c(q, r, l) · c(r, s,m)

V.5 Interworkings

The theory BPA
δ,∂H,df

with the two operators for interworking merge and in-
terworking sequencing will be called BPAiw. An interworking is a process which
can be constructed only from atomic actions and applications of the interwork-
ing sequencing and the interworking merge operator. The set of interworkings
is denoted by IW . The set of deadlock free interworkings is denoted by IWdf .
A process which is only constructed of atomic actions and the interworking se-
quencing operator is called a locally deterministic interworking. The set of local
deterministic interworkings is called IW ld. Likewise, IW ld

df is used for deadlock
free locally deterministic interworkings.

It is not always the case that the merge of two deadlock free interworkings
is again deadlock free. We say that two interworkings are consistent if their
interworking merge is deadlock free.

Example 3 The following example shows two interworkings which don’t agree
on the communications with respect to entities q and r.

c(p, q, k) · c(q, r, l) ‖iw c(s, t,m) · c(r, q, n) =
c(p, q, k) · c(s, t,m) · δ + c(s, t,m) · c(p, q, k) · δ

V.6 Properties

In this section we present some useful properties about BPAiw. In general x, y
and z are finite process expressions in BPAiw and S is a set of actions,

Proposition 1 (Elimination) (1) Every process in BPAiw is equal to a pro-
cess which has one of the following forms:

δ, a, a · x, x+ y

(2) BPAiw is a conservative extension of BPA.

Proof Term rewrite analysis as in [1].
The operators ‖Siw and ‖iw are commutative, while the arguments of the

◦iw operator may only be interchanged if they have no entities in common.

Proposition 2

E(x) ∩ E(y) = ∅ ⇒ x ◦iw y = y ◦iw x (V.1)

x ‖Siw y = y ‖Siw x (V.2)

x ‖iw y = y ‖iw x (V.3)

Proof For (1) use

E(x) ∩ E(y) = ∅ ⇒ xL◦iw y = yR◦iw x

(2) and (3) are clear by symmetry of the definitions.

The operators ‖Siw and ◦iw are associative, while associativity for the ‖iw operator
only holds for pairwise consistent interworkings.
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Proposition 3

(x ◦iw y) ◦iw z = x ◦iw (y ◦iw z)

Proof Simultaneous induction on the total number of symbols in x, y and z of
the following four propositions.

(xL◦iw y)L◦iw z = xL◦iw (y ◦iw z)
(xR◦iw y)L◦iw z = xR◦iw (yL◦iw z)
(x ◦iw y)R◦iw z = xR◦iw (yR◦iw z)
(x ◦iw y) ◦iw z = x ◦iw (y ◦iw z)

Proposition 4

(x ‖Siw y) ‖Siw z = x ‖Siw (y ‖Siw z)

Proof Simultaneous induction on the total number of symbols in x, y and z of
the following three propositions.

(x‖ S

iw
y)‖ S

iw
z = x‖ S

iw
(y ‖Siw z)

(x|Siwy)|
S
iwz = x|Siw(y|

S
iwz)

(x|Siwy)‖
S

iw
z = x|Siw(y‖

S

iw
z)

(x ‖Siw y) ‖Siw z = x ‖Siw (y ‖Siw z)

Proposition 5 Let x, y and z be interworkings, let x be of the form x′, x′ · δ
or δ, y be of the form y′, y′ · δ or δ and z be of the form z′, z′ · δ or δ, such that
x′, y′ and z′ are pairwise consistent interworkings, then we have

(x ‖iw y) ‖iw z = x ‖iw (y ‖iw z)

Proof (Omitted)

Example 4 The fact that this proposition requires that the interworkings have
to be consistent is shown by the following calculations.

c(p, q,m) ‖iw (c(p, q, n) ‖iw c(p, q, n)) = c(p, q,m) ‖iw c(p, q, n) = δ
(c(p, q,m) ‖iw c(p, q, n)) ‖iw c(p, q, n) = δ ‖iw c(p, q, n) = c(p, q, n) · δ

Proposition 6

x ◦iw δ = x · δ (V.1)

δ ◦iw x = x · δ (V.2)

x ‖iw δ = x · δ (V.3)

Proof (1) Simultaneous induction with

xL◦iw δ = x · δ

(2) follows from (1) and proposition 2.
(3) Simultaneous induction of

x‖ ∅

iw
δ = x · δ

x ‖∅iw δ = x · δ
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using

δ‖ S

iw
x = δ

δ|Siwx = δ

The following proposition implies that a deadlock in an interworking is global
and will be reached only if all admissible actions are executed.

Proposition 7 Every interworking is deadlock free, equal to δ or of the form
p · δ where p is a deadlock free interworking.

Proof (Omitted)

For the following properties we need the notion of a trace of a process. A
trace is an element of A+ ∪ A* δ ∪ {δ}. So a trace is a non-empty sequence
of atomic actions, with the restriction that only the last action may be a δ.
Concatenation of traces is denoted by placing the traces next to each other. We
define the set of traces of a process as follows.

tr(a) = {a}
tr(ax) = {at|t ∈ tr(x)} if a 6= δ
tr(x+ y) = tr(x) ∪ tr(y) if x 6= δ ∧ y 6= δ

A process x is deterministic if it is of the following form.

∑

i∈I

ai · xi +
∑

j∈J

aj

where we require that all ak are different for k ∈ I∪J and all xi are deterministic.

Proposition 8 Every interworking is deterministic.

Proof This follows directly from the definitions of the interworking operators.

Every interworking is completely determined by its trace set.

Proposition 9 For interworkings x and y

tr(x) = tr(y) ⇒ x = y

Proof See [4] for a proof that this proposition holds for all deterministic pro-
cesses.

By x̃ we denote the process x where all sequential operators are replaced by
interworking sequencing operators.

ã = a
ã · x = a ◦iw x̃

x̃+ y = x̃+ ỹ

The class IW is closed under this operation. Moreover we have the following
proposition.

Conjecture 1 For every interworking x

x = x̃

32



This operation can also be defined on traces.

ã = a
ãx = a ◦iw x̃ if a 6= δ

We conclude with the fact that every interworking is completely determined by
a set of locally deterministic interworkings.

Conjecture 2 For every interworking x

tr(x) =
⋃

t∈tr(x)

tr(t̃)
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