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Abstract. The meaning assigned to the word ‘trust’ is diverse. We
present a formalism that allows various interpretations of trust.
To this end, we introduce terms that specify the observations of agents,
called connections. Then we apply epistemic semantics to reason about
the knowledge of agents. We allow specifications of interpretations of
trust in terms of facts, and analyze whether agents know the relevant
facts. If agents know that a target is trustworthy under an interpretation,
that agent trusts the target.
We illustrate the formalism on three specific existing interpretations.

1 Introduction

When one asks an ethicist for a definition of trust, one might expect a response
such as: “Trust (. . . ) is letting other persons (natural or artificial, such as firms,
nations, etc.) take care of something the trustor cares about, (. . . )” [1]. An
economist might say: “Trust is the willingness to permit the decisions of others
to influence your welfare” [2]. An interesting sociological definition is: “(Trust is
the) undertaking of a risky course of action on the confident expectation that all
persons involved in the action will act competently and dutifully.” [3]. A game
theoretical view on the issue is formulated as: “(Trust) is the mutual confidence
that one’s vulnerability will not be exploited in an exchange.” [4]. 1

In this paper, we argue that trust is something more abstract, and we refer to
more specific notions, such as the aforementioned, as specific meanings of trust.
First we define the general notions regarding trust:

Definition 1. An observation is any contingent fact, that is witnessed to be
true. A trust assessment is a boolean expectation based on own observations and
possibly observations of others. Trust is a positive trust assessment, and distrust
a negative. An interpretation of trust defines under which condition to trust or
distrust an agent. Interpretations are formulated as predicates on agents. Given
an interpretation, if an agent with perfect information trusts another agent, then
the latter is trustworthy.

The meaning of trust assessments differs according to the context. The mean-
ing depends on what an expectation denotes, as illustrated by the aforementioned
examples. An interpretation of trust determines which condition yields a positive
expectation. A trust system contains zero or more interpretations and meanings
of trust at the same time. To illustrate this with an example:

1 Thanks to Harvey S. James, Jr. for collecting trust related quotes on his webpage.



Example 1. A user visits the Microsoft website, to get a software update. The
software has a certificate, showing that the update is from Microsoft. After seeing
the certificate, the user trusts the software and installs it.

One meaning of trust here, is that the user has the expectation that the
software is not malware. An interpretation of trust is whether the software is
certified. As the software is certified, the user has a positive trust assessment,
hence the user trusts that the software. The usage of the word “trust” in the
previous sentence implicitly uses the aforementioned interpretation and meaning.
As common practice dictates, the meaning and interpretation of trust are implicit
in situations where they are obvious.

In the example, a secondhand observation is the reason that the user gives
a positive assessment. Namely, the user observed that a particular certifying
authority has issued a certificate to Microsoft. Apparently there is some type of
trust in the issuer of the certificate. Let’s look at the situation with a finer grain.
We introduce a new meaning of trust in the system, which is used alongside
the aforementioned meaning of trust. The end-user trusts that the certifying
authority is honest, and he trusts the ability of the certifying authority to assess
the intentions of particular software developers. The new interpretation of trust
is being a particular certifying authority.

In this example, different types of trust are dependant. The first interpreta-
tion could be formulated as: “A truthful certifying authority signed a software
certificate”. Which depends on a meaning of trust, such as: “We expect certifying
authorities are truthful”.

We observe that trust systems generally solve two particular problems, possi-
bly at the same time: How to collect observations, and which interpretation(s) of
trust to use. An example of a system designed to optimize the collection of data
is [5], where agents not only delegate jobs to other agents that they need done,
but also send out challenges to other agents. An agent will know the solution of
a challenge, and if the challenged agent fails to return the right result, he will
be trusted less. This only works in specialized settings, as the relevance of this
solution depends on the indistinguishability between regular jobs and challenges.
Whereas a paper such as [6] investigates ways to interpret trust. It focusses on
different properties of interpretations, and formal denotations of these proper-
ties. How these interpretations relate to actual models is not defined.

One of the goals of this paper is to enable us to easily recombine the good
aspects of existing, specialized solutions. A solution for both problems is needed
for recommender systems. Recommender systems have several aspects that are
studied, as shown in [7]. Those aspects represent different subproblems. Filtering,
for example, is the process of turning a real item into a subject in the recom-
mender system. Filtering is purely about data collection. Matching is the way a
recommender system calculates which opinions agents should follow. What type
of matching to use is an interpretation of trust. There are aspects, such as how
feedback is given and how sensitive it is to changes over time, that depend on
both data collection and interpretation.
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Interpretations of trust are usually defined in terms of facts. When the soft-
ware has a certificate from a particular certifying authority, the software is trust-
worthy on that basis. If an agent knows the right facts, the agent knows that
another agent is trustworthy, and hence trust the agent. Given an interpreta-
tion, the problem of trusting can be reduced to a problem of having the right
knowledge.

In most concrete contexts, the relation between observations and knowledge
is obvious. As a consequence, the transformation of observations into knowledge
is an underexposed issue. We, however, are interested in a more general context.
Hence, we need to be explicit in our dealings with observations. To represent
observations in this generalized setting, we introduce a formalism. The formal-
ism is, although fundamentally different, derived from subjective logic [8], in the
sense that it uses dilution and fusion. The fundamental differences lie in the
fact that terms in subjective logic represent opinions in the form of probabili-
ties and estimates, while terms in our formalism represent observations in the
form of facts and statements. There is an axiomatization presented in [9], which
abstracts from subjective logic. Due to this abstraction, some properties that
are axiomatized will still hold in our context. Having set a formalism to express
observations, we need to be able to transform these observations into knowledge
in a general way. We should not, generally, treat secondhand observations as
knowledge, nor should we disregard them totally. Hence, we should evaluate the
trust in the source that claimed to have made the observation. “Are sources of
information capable and honest” is a possible meaning of trust. This type of
trust will be used to evaluate third-party observations, and is therefore assigned
a special status, namely reliability. In other words, reliability is an instance of
trustworthiness, where trust has the meaning “being capable and honest”.

2 Connections and Networks

There are two well-studied aspects of trust systems. We recall data collection
and interpretation, mentioned in the introduction. One of our goals is to glue
these together in a generic way. As mentioned before, we need to transform
observations into knowledge in an abstract way. To achieve this, we need a
formal way to state the observations of agents. The formal representation of the
observations of an agent is called the connection of that agent.

Every user in a trust system has a (possibly empty) set of observations re-
garding other users. If a has an observation about b, then b does not necessarily
have an observation about a. If a has a secondhand observation regarding b, it
means that another user, say c, claims to have a particular observation regarding
b. This is considered as a’s observation regarding b, albeit secondhand. However,
to determine the value of c’s claim, a can use its observations about c to assess
the reliability of c. Recall that reliability is an instance of trustworthiness, for
a meaning of trust such as “c speaks the truth”. Since we want to keep our
formalism general, we do not assume any interpretation of trust. As we need
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an interpretation to assess trust, it is generally not possible to assess whether c
speaks the truth. In Section 3, we address this problem.

In the preceding paragraph we hinted at the shape of connections. A connec-
tion that represents lack of observations is denoted as ε. We are able to denote
a connection representing precisely one observation, by just giving the predicate
representing the observation. Since an agent can have more than one observation,
we should be able to combine connections, we call this a fusion of connections,
denoted + . Furthermore, we should be able to express that another agent, say
a, makes a claim. This is called dilution, and is written a. . The syntax is defined
over agents, who may state claims, and observations regarding agents, which we
will denote as a predicate on said agents. The syntax of connections is defined
over finite sets of agents A and possible observations P regarding agents:

ϕ ::= ε | P (a) | a.ϕ | ϕ+ ϕ

for agent a ∈ A and observation P ∈ P regarding an agent. We treat observations
as logical predicates, in other words P ∈ P : A → {>,⊥}. Logical relationships
may exist between predicates.

For example, let O(d) denote that door d is open, and C(d) denote that d
is closed. Obviously, in situations where a door d is open, d cannot be closed,
denoted O(d) �S ¬C(d). A set of those semantic rules S is called a signature.
A signature defines the logical relationships between predicates. For this paper,
it suffices to realize that, given a signature, not all combinations of predicates
can be satisfied. The door cannot be both open and closed. We will refer to this
property as consistency :

Definition 2. A set of predicates Γ is consistent when there is no predicate
ϕ ∈ Γ such that Γ �S ¬ϕ.

Using the example, Γ = {O(d), C(d)} is, as we expect, not consistent, since
{O(d), C(d)} �S ¬C(d).

In [9], it was shown that fusion of opinions is associative and commutative,
and that total uncertainty is the identity element. On that basis, we expect
the fusion of connections also to be associative and commutative. Section 3
trivially shows the expectation is correct. And since an empty connection yields
no information, we expect the empty connection to be the identity element. This
allows us to treat every connection as a summation. If one of the summands is a
particular observation, we can say that the connection contains that observation.

Let C be the set of all connections allowed by our syntax. We note that, as
a consequence of the definition, C is countable. Using the notion of connections,
we define a network. A network defines which agent has what connection. A
network is represented as a function on agents N : A → C. Rather than using
the function type notation, we define a countable set of networks as N . Note
that the range of a network is a subset of C. If a connection is in the range of a
network, we simply say that the connection exists in the network.

Example 2. Figure 1 depicts an example of a network. To formally describe
this network, we need to define a set of agents. We pick A = {a, b, c}. We
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a

b

c
“danced together”

“stole money”

“arrested”

“a claimed b is a criminal”

Fig. 1. An example of a network N of three agents

furthermore take a set of predicates: Let Dα(β) denote “β danced with α”. Let
C(α) denote “α is a criminal”. Then N(a) = C(b) +C(b) +Da(c), N(b) = ε and
N(c) = Dc(a) + a.C(b).

Let P (a) and Q(b) be inconsistent predicates. Agents only have observations
that correspond to the real world. If an agent has observation P (a), no other
agent can have observation Q(b). Since P (a) has been observed, it must hold,
and since it contradicts Q(b), Q(b) cannot hold, and hence not be observed. E.g.
if a car is red, no agent can make the observation that the car is blue. Mind that
it is, of course, possible that an agent claims that he observed that the red car
is blue.

3 Generic Semantics

In order to successfully transform observations into knowledge, we have intro-
duced a formalism to unambiguously represent observations in Section 2. We will
now present a method that takes a connection and assigns a semantics to it, in
the form of knowledge. The association of knowledge of agents with a particular
model is a well-studied subject in logics, called epistemic logic. There is an in-
troduction to semantics of logics and modal logic in [10]. An in-depth discussion
of modal logics and their semantics can be found in [11]. Since this section will
deal with epistemic modal logic and knowledge in general, we present [12] as a
source of information about epistemic logic in particular.

Given a network, there should be a unique method to evaluate specific inter-
pretations of trust. Formulated negatively; if, given a network, two methods of
evaluating trust yield different trust assessments, then the two methods do not
use the same interpretations. A network is seen as a model that has epistemic
semantics. Paragraph 3.1 shows how this is done. In Paragraph 3.2, we formulate
interpretations in epistemic logic. Together, this automatically yields a general
method to evaluate interpretations in a model.

3.1 Epistemic Semantics

We assert that there is a real world, and in this world all facts are true or false.
No agent, in general, will be able to distinguish the real world from other possible
worlds, as he has not observed all facts. Within our model we distinguish three
types of facts:
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Whether a property holds.
Whether a claim has been made.
Whether a particular agent would lie about something.

The real world can now be defined using valuations, assignments of truth
values, over these facts. In the real world, a property either holds or it does not,
a claim has been made or it has not, and an agent is willing to lie or he is not.

We call the mapping from predicates P × A, to truth values, a predicate
valuation θP . We call a mapping from pairs of agents and connections A×A×C,
to whether a claim has been made, a statement valuation θS . We call a mapping
from pairs of agents and connections A × A × C, to truthfulness of claims, a
reliability valuation θR. This mapping reasons about hypothetical situations.
Namely, how reliable an agent would be, when he would state a particular claim
to another agent. For example, for a perfectly honest agent a, θR(a, b, x) will be
true for all b and x. Whereas, for a compulsive liar it will be always be false. For a
rational agent a, it will be true in those situations when it serves a’s best interest
to speak the truth. The particular reliability valuation defines the reliability of
agents.

Let WP be the set of all valuations θP .
Let WS be the set of all valuations θS .
Let WN be the set of possible networks.
Let WR be the set of all valuations θR.

We can see that x ∈ WP ×WS denotes all objective facts in a world. The
set of possible worlds W is a subset of WP × WS × WN × WR. Note, again,
that if it is observed that P (a) holds, then P (a) must hold. Hence some combi-
nations of valuations and networks cannot exist. The possibility relation defines
which worlds can exist, and which are contradictory. The possibility relation, Π,
enforces three conditions:

The consistency of the valuation over predicates, as defined in definition 2.
The connections of all agents in the network must adhere to reality; which
is defined by the conformance function.
Furthermore, when a claims is reliable and has been made, then it must also
conform to reality.

The conformance function, π, enforces that the observations x of an agent a are
in line with reality:

If an agent has no observations, they cannot contradict reality.
If an agent observed a fact, then it must be true.
If an agent received a claim, then the claim must have been made.
If an agent has several connections, all must be in line with reality.

Let the set of possible worlds W be defined as {(wP , wS , wN , wR) | wP ∈WP ∧
wS ∈WS ∧wN ∈WN ∧wR ∈WR ∧Π(wP , wS , wN , wR)}, where Π(p, c, n, r) is
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the possibility relation on valuations, defining whether a world w = (p, c, n, r) is
possible:

Π(wP , wS , wN , wR) = consistent({wP(P, a)|P ∈ P, a ∈ A})∧
∀a∈A(π(wP , wS , a, wN (a)))∧
∀a,b∈A,x∈C(wR(a, b, x)⇒ wS(a, b, x)⇒ π(wP , wS , b, x))

and π(p, c, a, x) is the conformance function defining if a specific connection x
of an agent a is possible when the objective facts are defined by (p, c).

π(wP , wS , a, x) =


x = ε∨
x = P (b) ∧ wP(P, b)∨
x = c.x ∧ wS(a, c, x)∨
x = x+ y ∧ π(wP , wS , a, x) ∧ π(wP , wS , a, y)

In Kripke semantics, worlds may be related to each other.In epistemic seman-
tics, two worlds are related to each other, if there is a particular agent cannot
tell the difference between the two worlds. Such a relation is called an access-
ability relation. In our context, two worlds are related if an agent has the same
connection in both worlds. For each agent a ∈ A, let Ra be the relation over
worlds, such that (wP , wS , wN , wR)Ra(w′P , w

′
S , w

′
N , w

′
R) iff wN (a) = w′N (a).

Furthermore, we have functions ΘP : W → P × A → {>,⊥} defined as
ΘP(wP , wS , wN , wR) = wP , ΘS : W → A × A × C → {>,⊥} defined as
ΘS(wP , wS , wN , wR) = wS and ΘR : W → A × A × C → {>,⊥} defined as
ΘR(wP , wS , wN , wR) = wR. These are functions are projections of worlds onto
their respective valuations. In particular, ΘP determines if in a particular world,
a particular observable predicate holds, i.e. a predicate from P. Whereas ΘS
determines if in a particular world, a particular claim x has been made by an
agent a towards another agent b. We introduce the following notation for such
a predicate: C a

b (x). Finally, ΘR determines if in a particular world, a particu-
lar agent a is reliable when claiming x towards b. We introduce the following
notation for such a predicate: Ra

b (x).
We find the following relation between observational models and epistemic

logic in a straightforward manner:

Definition 3. The observational model is a Kripke model, defined by K =
〈W,Ra,Rb, . . . , ΘP , ΘS , ΘR〉.

K, w |=>
K, w |=ϕ ∧ ψ iff K, w |= ϕ and K, w |= ψ

K, w |=¬ϕ iff K, w 6|= ϕ

K, w |=P (b) iff ΘP(w)(P, b)

K, w |=Ca
b (x) iff ΘS(w)(a, b, x)

K, w |=Ra
b (x) iff ΘR(w)(a, b, x)

K, w |=Ka(ϕ) iff for all w′ such that wRaw′: K, w′ |= ϕ
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P (c) ∧Ra
b (P (c)) ∧Ca

b (P (c))

P (c) ∧Ra
b (P (c)) ∧ ¬Ca

b (P (c))

P (c) ∧ ¬Ra
b (P (c)) ∧Ca

b (P (c))

P (c) ∧ ¬Ra
b (P (c)) ∧ ¬Ca

b (P (c))

¬P (c) ∧Ra
b (P (c)) ∧Ca

b (P (c))

¬P (c) ∧Ra
b (P (c)) ∧ ¬Ca

b (P (c))

¬P (c) ∧ ¬Ra
b (P (c)) ∧Ca

b (P (c))

¬P (c) ∧ ¬Ra
b (P (c)) ∧ ¬Ca

b (P (c))

Fig. 2. A set of 7 possible worlds.

Example 3. Figure 2 depicts some possible worlds as dots annotated with the
truth values of some predicates. The world depicted as a cross is not a possible
world using the possibility relation. If Ra

b (P (c)) and C a
b (P (c)) then

π(wP , wR, b, P (c)). However, wP(¬P (c)), thus ¬π(wP , wR, b, P (c)).
The points in the area marked by the dashed line represent states where the

following statement holds: “If b is reliable to a when claiming that P (c), then
P (c) holds.” This type of collection of worlds will turn out to be relevant when
dealing with claims.

3.2 Interpretations of Trustworthiness

Suppose we introduce an interpretation of trust into the model. An interpretation
of trust tells us what predicate needs to be true in order for an agent to be
trustworthy. Hence, we may view an interpretation as a predicate on agents. Let
I be such an interpretation. Let the set of predicates in the system be {P}, and
I(a) = P (a). We interpret trust, such that an agent a is trustworthy when P (a)
holds. We formally define interpretations of trustworthiness:

Definition 4. Let I be an interpretation and a an agent. We introduce a generic
symbol for trustworthiness, T I(a). The semantics associated with this type of
trust is:

K, w |= T I(a) iff K, w |= I(a)

We define trust using the following notion; knowing an agent is trustworthy
means being able to trust that agent. We can apply the definition of knowledge in
Definition 3. We see that, only defining when an agent is trustworthy, is sufficient
to define when it is trusted.

Proposition 1.

K, w |= Ka(T I(b)) iff K, w |= Ka(I(b))

Before we proceed, notice that it might be possible that in some world, an
agent might be trustworthy to one agent, but not to another. A solution to the
aforementioned problem, would be to index interpretations, in order to represent
to whom trustworthiness applies. If there are N agents, then there are N different
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interpretations of trust, one for each agent. We write that agent b is trustworthy
to agent a under interpretation I as T Ia(b). An agent a trusts b under I, is
then written Ka(T Ia(b)). In social systems, it is common to have a situation
where a knows that c is trustworthy towards b. In general, however, this has
no consequence for agent a. Our formalism is flexible enough to allow a model
where it does affect a.

Earlier, we discussed that some interpretations of trust are, in a sense, self-
referential. Namely, when we trust that certain statements from agents to agents
are reliable. We define a finite set ζ of claims that are asserted to be reliable.
When an agent is trying to figure out whether another agent is trustworthy,
it will assume that the claims they have heard are true, when the are in ζ.
In other words, reliability of all the claims in ζ is a condition under which to
determine interpretations of trustworthiness. Trustworthiness under ζ is more
formally defined in Definition 5.

A world where a claim from ζ is falsely stated, is considered to be a possible
world. However, agents assess their trust in a model under the assumption that
such a world is not relevant. For example, a friend tells you that his car broke
down. This does, generally, not imply that you know his car broke down. He
might be lying, exaggerating or mistaken. It does, however, mean that you will
assess trust in his car dealer using the assumption that your friends car broke
down.

As a sidetrack, it is interesting to think about the approach that does in-
terpret trust in truthfulness as a source of knowledge. In other words, a world
where a claim from ζ is falsely stated is not considered possible. This approach is
worked out into fine detail in [13]. What we call claims are called announcements
there. An announcement updates the knowledge. However, such an approach is
inherently dynamic. Hence, in [13] the emphasis must be on mixing epistemic
logic with dynamic logics. This is a difficult task, since determining a false an-
nouncement to be reliable will lead to logical contradiction. For this reason, we
prefer a static model. Our approach allows us to have a static model in a natural
way.

Using the notion of reliable claims, we extend the definition of trustworthiness
to:

Definition 5. Let T Iζ (a) denote that, given that the claims in ζ are reliable, a
is trustworthy under interpretation I.

K, w |= T Iζ (a) iff K, w |=
∧

(b,c,x)∈ζ

(Rb
c(x))⇒ T I(a)

Only defining when an agent is trustworthy is sufficient to define when it is
trusted.

Proposition 2.

K, w |= Ka(T Iζ (b)) iff K, w |= Ka((
∧

(c,d,x)∈ζ

Rc
d(x))⇒ I(b))
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We remark that T I(b) is, by definition, equivalent to T I∅ (b).
We will see that the set builder for the set ζ can depend on conditional

trust itself. When chaining trust, for example, it is possible that a delegates
trust to b who further delegates that trust to c. Hence, we trust c, if the claim
of delegation D of b is reliable, in other words, if D ∈ ζ. However, D is in ζ,
only when we somehow trust b, which is the case only when a was reliable. The
next section will provide examples of interpretations of trust, and in particular
chained interpretations of trust.

4 Existing Interpretations

The main idea of the generalized semantics that we present, is that they are
easy to translate to. We will naively fill in the relevant observations and the
interpretation of trust. If our approach works, then we are able to prove the
given naive translations correct. Correctness of a translate means that, if we can
derive trust in the original model, then we can derive trust in the translation,
and vice versa.

4.1 Flat Public Key Infrastructure

A flat public key infrastructure is the most basic type of public key infrastruc-
ture. There are users and certifying authorities. A certifying authority signs
certificates of users. A user u trusts another user u′ when the certificate of u′

has been signed by some trusted certifying authority. There is a special type
of certifying authority, called a root certifier. Every user trusts precisely those
certifying authorities that are root certifiers. Note that in Paragraph 4.2, root
certifiers can delegate their trust to other certifying authorities.

In order to do an analysis, we present a more formal way to describe what a
flat public key infrastructure is: Let U be a set of users. Let C be a disjoint set
of certifying authorities, and Croot be the subset representing root certifiers. Let
S(c, u) denote that certifying authority c has signed a certificate of user u. We
define that observesu(ϕ) means that u observes ϕ. Then user u trusts correctness
of the public key of u′ iff ∃c∈C(observesu(cisarootcertifier)∧observesu(S(c, u′))).

The set of agents A is equivalent to the union of the users and the certifiers.
The set of predicates P is {P} ∪ {Sa | a ∈ C}. The predicate P (a) is true when
a is a root certifier, a ∈ Croot. The predicate Sa(b) is true when S(a, b), thus
when a signed certificate of b.

Then we need to define the network. The connection of a user a contains
precisely the observations of a. In other words, a has a connection∑
b∈A,observesa(P (b)) P (b) +

∑
b,c∈A,observesa(S(b,c)) b.Sb(c).

Lastly, we formally interpret trust. An agent a trusts an agent b, if there is
a root certifying authority that claims to have signed b’s certificate. We call this
the basic interpretation of trust. We define such a basic interpretation of trust
as follows:

T I
b

ζ (a)
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where
Ib(a) =

∨
b∈A

(P (b) ∧ Sb(a))

and
ζ = {(a, b, Sb(c)) | a, b, c ∈ A ∧ P (b)}

Note that ζ represents the claims regarding signed certificates made by the
root certifiers. In other words, for the basic trust interpretation, we assert that
root certifiers are reliable in claims about certificates.

We prove correctness of the interpretation:

Lemma 1. User u trusts correctness of the public key of u′, iff K, w |= KuT
Ib

ζ (u′).

Proof. We prove the implication in both ways.

⇒ Agent u observes there is a root certifier c ∈ Croot, such that u observes
that c claims S(c, u′). As a consequence, the connection of u contains a
summand P (c) and a summand c.Sc(u

′). Since u has a connection P (c) +
y, wN (u) = P (c) + y, Π(wP , wS , wN , wR) ⇒ π(wP , wS , u, P (c) + y) ⇒
wP(P, c). Similarly, for c.Sc(u

′) we see that C u
c (Sc(u

′)). In all accessible
worlds for u, wN (u). Hence, wP(P, c) holds in every world w′, such that
wRuw′, and thus KuP (c) and KuC

u
c (Sc(u

′)).
As a consequence of P (c), (u, c, Sc(u

′)) ∈ ζ. We see, using the possibility rela-
tion and C u

c (Sc(u
′)), that in all worlds where Ru

c (Sc(u
′)), π(w′P , w

′
S , c, Scu

′)
also holds, and thus w′P(Sc, u

′). Since w′P(Sc, u
′) holds in every possible

world for u, K, w′ |= Ka(Sc(u)). Hence, we can apply Proposition 2, to see

that K, w |= KuT
Ib

ζ (u′).

⇐ By definition, if K, w |= KuT
Ib

ζ (u′) then K, w |= Ku((
∧

(c,d,x)∈ζ R
c
d(x)) ⇒

Ib(u′)). We get K, w |= Ku((
∧
c,d∈A∧x∈C∧P (d) R

c
d(x))⇒ ∃b∈A(P (b)∧Sb(u′)))

by applying the definition of ζ and Ib. Hence, for all w′ such that wRuw′,
K, w′ |= (

∧
c,d∈A∧x∈C∧P (d) R

c
d(x)) ⇒ ∃b∈A(P (b) ∧ Sb(u′)). We need to push

the knowledge into the model. Let w′ = (w′P , w
′
S , w

′
N , w

′
R)Ruw, we push the

knowledge into the model by analyzing the shape of w′N (u). We recall that
every connection can be seen as a summation. We need only analyze what
summands must exist in w′N (u).
If there is no agent a such that there is a summand P (a), then there is a
world w′, such that for no agent a, P (a). In such a world ζ = ∅, and clearly

T I
b

∅ (u′) does not hold, since there is no a with P (a).
Hence, we can assume that there is an agent a, such that there is a summand
P (a). By applying the possibility relation, we see that for all worlds w′,
w′P(P, a). Therefore ζ = {(b, a, Sa(c)) | a, b, c ∈ A ∧ P (a)}.
We furthermore know that agent a exist where P (a) and a.Sa(u′) are sum-
mands of u’s connection. Assume that all agents a for which there is a sum-
mand P (a), there is no summand a.Sa(u′) in u’s connection, then there
is a world w′, such that for no agent a, P (a) ∧ Sa(u′). In such a world

ζ = {b, a, Sa(c)) | a, b, c ∈ A∧ c 6= u′∧P (a)}. Therefore, K, w′ 6|= KuT
Ib

ζ (u′).

11



Therefore, there is an agent a, such that there is a summand P (a) and a
summand a.Sa(u′). Hence, observesu(P (a)) and observesu(C u

a(Sa(u′)), and
u trusts correctness of the public key of u′.

4.2 Hierarchical Public Key Infrastructure

An N hierarchical public key key infrastructure is a generalization of the flat
public key infrastructure. There are users and certifying authorities. A certifying
authority can sign certificates of users and extend trusts. A user u trusts another
user u′ when the certificate of u′ has been signed by some trusted certifying
authority. There is a special type of certifying authority, called a root certifier.
All root certifiers are trusted by all agents. If there is a chain, with length at most
N , of trust extensions from a root certifier to another certifying authority c, then
every user trusts c. We note that a 0 hierarchical public key infrastructure is, in
fact, equivalent to the flat public key infrastructure. When we want to describe
a hierarchical public key infrastructure, where we do not care about the length
of a chain, we simply pick N greater than the number of certifying authorities.

Let U be a set of users. Let C be a disjunct set of certifying authorities,
and Croot be the subset representing root certifiers. Root certifiers are trusted
by every user in the system in their role as certifying authority. Let H(c, c′)
denote that certifying authority c transfers part of its authority to certifier c′.
For notational simplicity, we assume that H(c, c). Let S(c, u) denote that certi-
fying authority c has signed a certificate of user u. Again, observesu(ϕ) means
that u observes ϕ. We define that for n > 0, Dn(u, c) holds for user u and cer-
tifying authority c, if there is a certifying authority c′, such that Dn−1(u, c′)
and observesu(H(c, c′)). And for n = 0, we define that D0(u, c) holds when
observesu(c ∈ Croot). As a consequence of reflexivity of H, if Dn−1(u, c) then
Dn(u, c). Again, u trusts correctness of the public key of u′ iff ∃c∈C(DN (c, u′)).

The set of agents A is equivalent to the union of the users and the certi-
fiers. The set of predicates P is {P} ∪ {Sa | a ∈ C} ∪ {Ha | a ∈ C}. The
predicate P (a) is true when a is a root certifier, a ∈ Croot. The predicate
Ha(b) is true when H(a, b), thus when a extends his trust to b. The predi-
cate Sa(b) is true when S(a, b), thus when a signed certificate of b. Then we
need to define the network. The connection of a user a contains precisely the
observations of a. In other words, a has a connection

∑
b∈A,observesa(P (b)) P (b)+∑

b,c∈A,observesa(S(b,c)) b.Sb(c) +
∑
b,c∈A,observesa(H(b,c)) b.Hb(c).

An agent a trusts an agent b, if there is a trusted certifying authority that
claims to have signed b’s certificate. The first instance of “trust”, namely trusting
a certifying authority, differs from the second, namely trusting a user. We refer, in
this context, to the first instance as intermediate trust, and the second instance
as final trust. There are multiple types of intermediate trust, depending on their
chain length. We define intermediate trust with a chain length only pertaining
direct connections.

T
Ii0
∅ (a)

where:
Ii0(a) = P (a)

12



and:
ζ0 = ∅

We define intermediate trust with longer chain lengths 1 ≤ n ≤ N :

T
Iin
ζn

(a)

where:

Iin(a) =
∨
b∈A

(Hb(a) ∧ T I
i
n−1

ζn−1
(b))

and:

ζn = {(a, b,Hb(c)) | a, b, c ∈ A ∧ T
Iin−1

ζn−1
(b)}

Using intermediate trust, final trust can easily be defined.

T I
f

ζ′ (a)

where:
If (a) =

∨
b∈A

(Sb(a) ∧ T I
i
N

ζN
(b))

and:
ζ ′ = {(a, b, Sb(c)) | a, b, c ∈ A ∧ T I

i
N

ζN
(b)}

Lemma 2. User u trusts correctness of the public key of u′, iff K, w |= KuT
If

ζ′ (u′).

Proof. This proof is highly similar to that of Lemma 1. The forward side, sound-
ness, is a simple extension of the flat case. Hence we only mention the complete-
ness case, where we apply modus tollens as in Lemma 1.

If there is no agent a such that there is a summand P (a), then there is a world

w′, such that for no agent a, P (a). In such a world ζ0 = ∅, and clearly T
Ii0
∅ (u′)

does not hold, since there is no a with P (a). As a consequence T
IiN
ζN

(u′) also does

not hold, and neither does T I
f

ζ′ (u′). Hence, we can assume that there is an agent
a, such that there is a summand P (a). By applying the possibility relation, we see
that for all worlds w′, w′P(P, a). Therefore ζ1 = {(b, a, Sa(c)) | a, b, c ∈ A∧P (a)}.

For all 1 ≤ i ≤ N . We know that agents a exist such that T
Iii−1

ζi−1
(a). If there

is no agent a such that T
Iii−1

ζi−1
(a) and there is no summand a.Ha(b), then there is

a world w′, such that for no agent a, Ha(b) ∧ T I
i
i−1

ζi−1
(a). Such a world, however,

cannot exist. Therefore, there must be an agent a with T
Iii−1

ζi−1
(a), such that there

is a summand a.Ha(b).

Lastly, we know that agents a exist such that T
IiN
ζN

(a). If there is no agent a

such that T
IiN
ζN

(a) and there is no summand a.Sa(b), then there is a world w′, such

that for no agent a, Sa(b) ∧ T I
i
N

ζN
(a). Again, such a world must exist. Therefore,

there must be an agent a with T
IiN
ζN

(a), such that there is a summand a.Sa(b).

13



We have derived in the last three paragraphs that there must exist a set of
agents L, such that (per paragraph): There is an element L0 ∈ L, where wN (u)
has a summand P (L0). There are intermediate agents Li in L, such that wN (u)
has Li.HLi(Li+1). There is an element LN ∈ L, where wN (u) has a summand
SLN

(u′).
We can apply the definition of D to see that u trusts correctness of the public

key of u′.

4.3 Web of Trust

An N Web of Trust is a variation of the hierarchical public key infrastructure.
There are only users. Users can sign certificates, and by doing that, extend trust.
A user u trusts another user u′ when there is a chain of certificates from u to u′,
with length at most N . We note that a 0 web of trust simply means that users
only trust certificates that they signed themselves. When we want to describe a
web of trust with unlimited chaining, we simply pick N greater than the number
of users.

We define the following model of a web of trust more formally: Let U be a
set of users. Let N be an integer, representing the chain length threshold. Let
E(a, b) denote that agent a extends his trust to b. Let Dn(a, b) denote that there
is a chain with length at most n of trust-extensions from a to b. More formally:
D0(a, b) = E(a, b), and Dn(a, b) = (E(a, b) ∨ ∃c∈A(E(a, c) ∧Dn−1(c, b))). Agent
a trusts agent b if and only if it observes Dn(a, b).

The set of agents A is equivalent to the set of users U . The set of predicates P
is {Ea | a ∈ A}. The predicate Ea(b) is true when E(a, b), thus when a extends
his trust to b. We assume that Ea(a), so that we can lengthen a chain without
breaking it. Then we need to define the network. The connection of a user a
will contain precisely the observations of a. In other words, a has a connection∑
b∈A,observesa(E(a,b)Ea(b) +

∑
b,c∈A,observesa(E(b,c)) b.Eb(c).

An agent a trusts another agent b, if there is a list L of users of size n ≤ N ,
such that a = L0, b = Ln and for all 0 ≤ i < n, E(Li, Li+1). For all 0 ≤ n ≤ N :

T
Itn
ζn

(a)

where:

Itn(a) =
∨
b∈A

(Eb(a) ∧ T I
t
n−1

ζn−1
(b))

and:

ζn = {(a, b, Eb(c)) | a, b, c ∈ A ∧ T
Itn−1

ζn−1
(b)}

Lemma 3. Let u and u′ be users. Let there be a transitive interpretation, as
defined above. User u trusts correctness of the public key of u′, iff K, w |=
KuT

ItN
ζN

(u′).

Proof. Since It is essentially the same as Ii, this is a straightforward adaptation
from Lemma 2.
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5 Conclusion

A generalized semantics is given, requiring observations, in the form of connec-
tions, and interpretations, in the form of objective predicates. We formalized
connections, by providing a clear syntax and semantics. We showed how inter-
pretations of trust can act transitively, using examples. We asserted that if an
agent knows that a target is trustworthy, he will trust the target.

We studied three particular examples, namely flat and hierarchical public
key infrastructures, and PGP’s web of trust. In all of them, we have instantiated
the network in a way that we found natural. We gave the interpretations of trust
as a straightforward translation, from natural language, to predicate logic. Then
we proceeded to prove equivalence between our model and the existing model.
We have hence successfully applied our approach to these three examples.

There is an important aspect that has not been discussed in this paper. The
question whether the generalized semantics can be completely axiomatized. Due
to the work on algebraization of predicate logic in [14], we expect that this is pos-
sible. Therefore, we will proceed to research such axiomatizations. They should
axiomatize the core of all trust systems. Furthermore, it should be researched
whether there is a way to generate axiomatizations given interpretations. If a
standard way exists to axiomatize interpretations, then the axiomatizing existing
systems is reduced to formalizing existing models in our formalism.

Another interesting exercise would be to formalize more complex models, that
do not have a simple and concise logical description. If there is a translation into
our formalism, proving equivalence to the original might not be feasible for such
systems. We are interested in formalizing simple recommender systems. Given
that the number of possible ratings is finite, we should be able to describe the
real world of recommender systems in our language. Our intuition is therefore
that formalizing recommender systems should be possible in our formalism.

An interesting existing formalism is subjective logic, as defined by Jøsang
in [8]. In subjective logic, reasoning is done over opinions. It is assumed that
these opinions are independent. This leads to the lack of idempotency of fu-
sion in subjective logic. In subjective logic, fusing two identical opinions means
fusing two different, independent opinions that happen to have the same value.
Hence, we suspect that our methodology can be combined with subjective logic
in a sequential way. Assume there is a way to transform arbitrary connection
expressions to a form with independent fusion. Then we can input any network,
reformulate it in an equivalent network, with only independent fusion, and apply
subjective logic.

Finally, it is worth studying probability instead of possibility. Every world
will have a certain probability, depending on its valuation. Interpretations will
no longer be black and white issues, but assign opinions to situations. We ex-
pect that this approach will lead to subjective logic, when all information is
independent. If it is equivalent to subjective logic, that would strongly support
both the probability approach and subjective logic. Furthermore, the probabil-
ity approach should also be able to fuse opinions with overlapping information
properly, hence extending subjective logic.
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