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Abstract. Trust appears in asymmetric interactions, where one party
(the active party) can easily betray a stakeholder (the passive party).
Over the Internet, the amount of information that a passive party can
use to determine the integrity of an active party is often limited. The
scenario where there is only one passive party and one active party is
well studied, and has been solved under some assumptions. We generalize
the setting to allow for more parties. In particular, the paper contains a
formal derivation of conjunction (and disjunction) of trust opinions.

1 Introduction

Trust has a diverse meaning to different people. Consequently, definitions of
trust in the literature vary. A definition of trust can be found in [1]: “First, one
trusts another only relatively to a goal, i.e. for something s/he wants to achieve,
that s/he desires. (..) Second, trust itself consists of beliefs. Trust is a mental
state (..) about the behavior (..) relevant for the result.” From that definition,
we see that the authors clearly see trust as a mental state, regarding interactions
where the result (rather than the intention) is important. In [2] an economical
perspective is taken: “Trust is a psychological state comprising the intention
to accept vulnerability based upon positive expectations of the intentions or
behavior of another.” Here, it is clear that intention is relevant, and trust is
still about a mental state and a specific interaction. Existing reputation systems
must take trustworthiness as an objective property, rather than a mental state,
in order for reputation to have meaning. Definitions with a psychological accent
often do not depend on interactions, but tie trust to agents, as written in [3]:
“Trust in things or people entails the willingness to submit to the risk that they
may fail us, with the expectation that they will not (..).” These definitions, as
well as informal intuitions share properties that are difficult to characterize. In
this paper, we take the view that trust helps us to reason about trust systems
(such as reputation systems and recommender systems) on the Internet. This
means that trustworthiness, or integrity, is taken as an inherent property of the
agents. It also means that agents trust each other with respect to interactions
within the system. Furthermore, it means that only the result of the interaction
matters, not the intention of the agent.

In each of the previously discussed definitions of trust an agent makes an
assessment of another agent’s future behavior using information they have gath-
ered in the past. Such an assessment is called a simple trust opinion. If an agent



makes an assessment about the future behavior of several agents, it is called a
composite trust opinion. A trust opinion does not only predict the future behav-
ior that is most likely, but also indicates the certainty of the prediction. In this
paper, we formalize the aforementioned notion of trust, using trust opinions. To
obtain meaningful results, we must specialize the notion of trust.

In an interaction, there are several parties that have an agreement. There is
at least one active party, who has an opportunity to ignore the agreement, and
there is one passive party, which cannot affect the outcome of the interaction and
may be harmed if active parties ignore the agreement. If an active party adheres
to the agreement, we say the active party’s behavior is good behavior, if he fails
to adhere, we say it is bad behavior. Since the passive party may be harmed
if one of the active parties shows bad behavior, the passive party may form a
trust opinion about the active parties before (potentially) interacting. If an agent
forms a (composite) trust opinion about (several) agents, he is called the subject.
The combination of the active parties concerning the potential interaction is
called the target. To express composite trust opinions we denote the target in
propositional logic, where atomic propositions represent good or bad behavior
of active parties. To illustrate the use of composite trust, consider the following
example.

Example 1. Take an imaginary web service, CLOUD, that offers computational
power to users, by CPU-scavenging in a similar fashion to BOINC [4], i.e.
CLOUD is a grid. A user that delegates a computation is a client, and a user
that offers CPU cycles is a provider. Unlike BOINC, the CLOUD system is a
commercial system, where clients pay for computations, and providers get paid
for offering computational power.

The identity of the machines in CLOUD is visible, and users can delegate
computations to specific (groups of) machines. The infrastructure of CLOUD
is very open, which means that malicious users can easily join as a provider.
Malicious users may sometimes take shortcuts in the computation, providing
wrong results. Furthermore, non-malicious users may prematurely terminate a
computation before a result is provided, for example, when the computer shuts
down, restarts or drops the network. It may occur that a single computation is
delegated to a group of computers working concurrently to reduce latency. It
may also occur that a single computation is delegated to more than one (group
of) provider(s), to avoid extra latency when one of the (groups of) providers
fails.

A client, A, on CLOUD has an instance of an NP-complete problem, and
sends the problem to a provider, D, and a copy of the problem to a pair of
concurrent providers, B and C. See Figure 1 for a visual representation of the
interaction.

In our terminology, clients are passive parties (i.e. potential subjects), and
providers are active parties (i.e. potential targets). Good behavior for a provider
is delivering a correct result within a specified time frame. Bad behavior for a
provider is returning a wrong result, returning it too late, or not at all. Since
a client can quickly verify a (positive) solution to an NP-complete problem,
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Fig. 1. The two outgoing arrows from A are delegations for a computation. One for D,
the other is split and runs concurrently on B and C.

correct and incorrect solutions can easily be distinguished. Hence, it suffices for
the subject A to receive at least one correct result within the specified time frame
from the target. If either the single provider D or both other providers B and
C provide the correct result in time, the whole target’s behavior is considered
good. We can denote this composite trust opinion as D ∨ (B ∧ C).

The subject not only wants to know the probability that the target succeeds,
but also the uncertainty. If the probabilities b, c and d of B, C and D succeeding
are independent, then one may anticipate that the expected probability of the
target succeeding to be d+ b · c− d · b · c. We formally show the foresight on this
trust opinion to be correct in Section 4.

To derive trust opinions, as the ones in the previous example, in a formal
way, we need to define the context. We assume to be in an environment where
all information comes from interactions between passive and active parties and
that active parties operate independently of each other. Furthermore, we assume
that each active party has an (hidden) integrity parameter that represents the
probability of good behavior in unknown contexts. Therefore, in our framework,
a trust opinion is a probability distribution over integrity parameters. From
such a probability distribution, one can derive the expected probability of good
behavior and the uncertainty of the estimate. In Section 3, we define the context
(including trust opinions) formally.

The framework that we operate in is inspired by work in [5] and [6], where
the authors independently derived a formal trust model (the beta model) of
trust opinions. The context of the beta model is very similar to ours, but only
allows simple trust opinions, not composite trust opinions. In the beta model,
probability distributions known as beta distributions [7] represent trust opinions.

The beta model inspired several very popular extensions, such as Subjective
Logic [8], TRAVOS [9] and CertainTrust [10]. Like our trust model, Subjective
Logic contains conjunction and disjunction operators, and CertainTrust has been
extended to CertainLogic [11] which also contains these operators. Unlike in our
trust model, their trust model composite trust opinions are beta distributions.
In Section 4, we show that models where composite trust opinions are beta
distributions must violate reasonable assumptions

3



Not all models with conjunction, disjunction and uncertainty are based on
the beta model; important examples are Fuzzy logic [12] and Dempster-Shafer
theory [13,14]. Trying to apply our results to these models is more difficult, due
to some inherently different assumptions and approaches.

There are also trust models that are based on the beta model, which have
been extended beyond it. Often, they are the result of tweaking the assumptions
of the beta model. In [15], for example, the assertion that behavior is good or
bad is generalized into an assertion that a behavior value is selected from a
range of values. For CLOUD, this means that incorrect results are distinguished
from late results, or lack of results. In [16], the assumption of equal weight to
all interactions is dropped. In the case of CLOUD, this implies that interactions
that lie further in the past are less relevant than more recent interactions; or
that providers behave differently during peak-load periods and off-peak periods.

In Section 2 of this paper, we introduce the necessary concepts from prob-
ability theorem. On the basis of these concepts, we formalize the assumptions
necessary to reason about trust in our context, in Section 3. We argue that it
is useful to have such a collection of simple assumptions from which to derive
trust opinions (as opposed to defining how to derive trust opinions directly).
That trust operators can be derived from the assumptions is shown in Section 4,
where we derive conjunction and disjunction.

2 Preliminaries

The setting of the model is probabilistic in nature. We require the following
concepts from probability theory (see e.g. [17,18]).

Definition 1 (σ-algebra, measure, probability measure). Let Ω be a set
of events. A set F of subsets of Ω is called a σ-algebra if the following three
properties hold.

1. ∅ ∈ F .
2. If A ∈ F it follows that Ω \A ∈ F .
3. If A1, A2, . . . ⊂ F it follows that

⋃
nAn ∈ F .

Let P be a map from F → R∪{∞}. Then, this map is called a measure if

1. P (∅) = 0.
2. P (A) ≥ 0 for all A ∈ F .
3. If A1, A2, . . . ⊂ F such that Ak ∩ Al = ∅ for all k 6= l, it follows that

P (
⋃
nAn) =

∑
n P (An).

If P maps to [0, 1] and P (Ω) = 1, it is called a probability measure.

The tuple (Ω,F) from Definition 1 is called a measurable space. The triple
(Ω,F , P ) is called a measure space. If P is additionally a probability measure,
the triple is called a probability space.
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Definition 2 (Random Variable). Let (Ω,F , P ) be a probability space and
(E, E) a measurable space. A mapping X : Ω → E is a random variable, if

{ω ∈ Ω|X(ω) ∈ B} ∈ F for all B ∈ E .

When Ω and E are at most countable, the σ-algebras F and E can be assumed
to be the power sets over Ω and E, respectively.

In probability theory, the expression {ω ∈ Ω|X(ω) ∈ B} is often abbreviated
to {X ∈ B}.

Definition 3 (Probability space of a random variable). Let (Ω,F , P ) be
a probability space, (E, E) a measurable space and X : Ω → E a random variable.
Then PX(B) := P ({X ∈ B}), B ∈ E defines a probability measure PX on (E, E).

The expression P ({X ∈ B}) is usually shorthanded to P (X ∈ B).

Definition 4 (Distribution of a random variable). The probability measure
PX is called the distribution of the random variable X.

The probability space (E, E , PX) is called discrete, if E is at most countable.

Definition 5 (Independence of random variables). Let (Ω,F , P ) be a
probability space and let X1, . . . , Xn be n random variables (over Ω) with val-
ues in the measurable spaces (Ei, Ei), i ∈ {1, . . . , n}. The random variables
X1, . . . , Xn are called independent, if for arbitrary B1 ∈ E1, . . . , Bn ∈ En, the
events {X1 ∈ B1}, . . . , {Xn ∈ Bn} are independent.

This definition is equivalent to the following.

X1, . . . , Xn indep. ⇔ P (X1 ∈ B1, . . . , Xn ∈ Bn) =

n∏
i=1

PXi
(Bi) for Bi ∈ Ei.

As shorthand notation we write X ⊥⊥ Y, Z when X,Y, Z are independent.

Definition 6 (Conditional independence of variables). Let (Ω,F , P ) be
a probability space and let X,Y, Z be random variables (from Ω) with values in
the measurable spaces (Ei, Ei), i ∈ {X,Y, Z}. Two random variables X and Y
are conditionally independent given the variable Z if

P (X ∈ A, Y ∈ B|Z ∈ C) = P (X ∈ A|Z ∈ C)P (Y ∈ B|Z ∈ C).

for each A ∈ EX , B ∈ EY and C ∈ EZ .

As shorthand we write P (X,Y |Z) = P (X|Z)P (Y |Z), (X ⊥⊥ Y )|Z or even
X ⊥⊥ Y |Z. Note that the definition is equivalent to P (X|Y,Z) = P (X|Z).
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Theorem 1 (Law of total probability). Let (Ω,F , P ) be a probability space,
A and C events and let B1, . . . , Bn be a partition in that probability space. Then

P (A|C) =

n∑
i=1

P (A|Bi, C)P (Bi|C).

The law of total probability also holds for continuous random variables X, and
Y with positive density functions fX and fY , respectively.

fY (y) =

∫ ∞
−∞

fY (y|X = x) · fX(x) dx.

Theorem 2 (Bayes’ law for conditional probabilities). Let (Ω,F , P ) be a
probability space and B and C events and let A1, . . . , An be a partition in that
probability space. Then

P (Aj |B,C) =
P (B|Aj , C)P (Aj |C)

P (B|C)
=

P (B|Aj , C)P (Aj |C)∑n
i=1 P (B|Ai, C)P (Ai|C)

.

Note that in this form Bayes’ theorem also holds for variables (instead of
events). This is true for discrete random variables, continuous random variables
as well as a mixture of discrete and continuous random variables. If continuous
variables are involved, they need to have a positive density function.

Theorem 3 (Product distribution). Let X and Y be two independent con-
tinuous variables, with positive probability density functions f(x) and g(x). Then
U = X · Y is a continuous random variable with probability density function h.
Explicitly

h(u) =

∫ ∞
−∞

1

|y|
· f(

u

y
) · g(y) dy.

An important distribution we refer to in the next sections is the beta distri-
bution.

Definition 7 (Beta distribution). A beta distribution is a family of continu-
ous probability distributions in the interval [0, 1], parameterized by two positive
parameters, α, β ≥ 1. The probability density function of a beta distribution with
parameters α and β is

fB(x;α, β) =
xα−1(1− x)β−1∫ 1

0
yα−1(1− y)β−1 dy

.

The expression under the fractions is known as the beta function on α and β, and

for positive integers α and β, the beta function fulfills B(α, β) = (α−1)!(β−1)!
(α+β−1)! .

To quantify information, we define a notion of entropy as in [19].
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Definition 8 (Entropy). The entropy H of a discrete random variable X with
possible values x1, ..., xn for n ∈ N is given by H(X) = E(I(X)), where E is
the expected value and I(X) is the random variable denoting the information
content of X. If p denotes the probability mass function of X and c ∈ N, then
the entropy can explicitly be written as1

H(X) =

n∑
i=1

p(xi) I(xi) =

n∑
i=1

p(xi) log
1

p(xi)
.

If p(xi) is equal to 0 for some i ∈ {1, . . . , n} and n ∈ N, then p(xi) log(p(xi)
−1

)
is taken to be 0.

Entropy can be extended for continuous random variables X ranging from a
to b, with probability density function fX

h(X) =

∫ b

a

fX(x) log(
1

fX(x)
) dx.

3 Model assumptions

On a flea market, you see the sellers face to face, see whether they are well orga-
nized and you can determine whether they are popular. On an online e-commerce
system, such detailed information is not available. You choose the seller based
on previous interactions with this sellers, often by including information about
interactions that others claim to have had with these sellers. Our trust model is
much more relevant for e-commerce systems (and other online services, such as
CLOUD), than it is for an actual flea market.

In this section, we formalize the assumptions that we have for trust in a
system based on asymmetric interactions (like transactions in e-commerce sys-
tems), where expectations are clearly defined. First, we informally introduce
our assumptions with motivations, then we formally state the assumptions as
relations between random variables.

To reiterate some assertions from the introduction: Interactions are the build-
ing blocks in our trust analysis. Interactions are between a passive party (the
subject) and active parties (the target). A subject may form a trust opinion
about a target, before the subject interacts as passive party with the active
parties in the target. The observed behavior of the active party is objectively
classified as good (well) or bad (badly). Furthermore, the probability that the
active party behaves well is determined by its integrity parameter p. An agent
will most likely exhibit non-probabilistic behavior, and will therefore behave well
in some situations and badly in others. However, we do not know the correlation
between situations and behaviors, nor do we necessarily know the situation. In
the light of this, we can view the integrity p as the chance that an agent is in a
situation where his behavior is good (or even where behaving well is in his best

1 In our considerations the base of the logarithm is not important.

7



interest in some iterative game2, as in [20]). Lastly, we assume that p neither
changes over time nor with respect to the environment. This assumption allows
us to treat previous interactions in a mathematically coherent way, since all in-
teractions are equally relevant for the current situation. In the model, an agent
will never know the integrity of another agent, but will have an estimate based
on these previous interactions.

To formulate the above assumptions in a formal manner, we need to define
interactions of agents, integrity parameters of agents, sets of interactions that
agents made in the past, and composite targets. To comply to notation used
in probability theory (Bernoulli, binomial and beta distributions), we refer to
good behavior of the active party as success, s, and bad behavior as failure,
f. We are often interested in the previous interactions between a passive party
and an active party, which we call an interaction history of the passive party
about the active party. Furthermore, we take an interaction history to be a pair of
natural numbers: the first number as representing the number of successes (good
behavior by an active party), the second number as representing the number of
failures. Let A denote the set of agents. The targets T are defined by ϕ ::= A ∈
A |ϕ ∧ ϕ |ϕ ∨ ϕ. For A,B,C ∈ A, T ∈ T and a set of events Ω, we define the
following random variables.

– ET : Ω → {s, f} is a discrete random variable modeling the outcome of the
corresponding interaction with target T .

– RT : Ω → [0, 1] is a continuous random variable modeling the (hidden) in-
tegrity parameter of target T , defining the probability of success.

– OAB : Ω → N × N is a discrete random variable modeling the interaction
history of A about B, representing the past interactions between A as passive
party and B as active party.

Recall that a trust opinion is a distribution over the integrity parameter of a
target, based on the interaction history about the involved active parties. Hence,
if a subject A establishes a trust opinion about a target T , where B,C, . . . are
the active parties in T (denoted B,C, . . . ∈ act(T )), the density function looks
like fRT

(x|OAB ∩ OAC ∩ . . .). In this setting, the only type of information that is
important to the subject, are the interaction histories of this subject. If there
are other types of information (interaction histories of others, recommendations,
a priori knowledge) available, they can be modeled as additional conditions (on
additional random variables).

The definition of the random variables alone does not suffice to compute a
query such as fRB∧C

(x|OAB ∩ OAC). To calculate these trust opinions, we need
to provide the dependencies and independencies between the random variables.
These (in)dependencies are merely a formal denotation of the assumptions that
we have. For a more concise formulation of these (in)dependencies, we introduce

2 Agents expect to interact multiple times with other agents, and even if betrayal is
profitable on the short run, it may be more profitable to conform on the long run.
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sets of random variables.

E := {ET : T ∈ T},
R := {RT : T ∈ T},
O := {OAB : A,B ∈ A},
W := E ∪ R ∪O.

Let x ∈ [0, 1], n, k ∈ N and λ : N → [0, 1] be a probability distribution. For
all A,B ∈ A and S, T ∈ T we set up the following dependency and independent
relations as our assumptions.

D1 RA is the uniform distribution on [0, 1].
If we know nothing about the integrity of A, we assert all values equally
likely. For specific applications, statistical data about behaviors of agents
may be used to construct an alternative distribution. A suitable distribution
has a probability density function that is non-zero on (0, 1).

D2 P (ET=s|RT=p) = p.
We assume that the probability of good behavior is determined by the in-
tegrity parameter p.

D3 ES∧T = s iff ES = s and ET = s, for act(S) ∩ act(T ) = ∅.
We define conjunctions of independent targets in such a way that the con-
junction succeeds if both targets succeed.

D4 ES∨T = s iff ES = s or ET = s, for act(S) ∩ act(T ) = ∅.
We define disjunctions of independent targets in such a way that the dis-
junction succeeds if at least one target succeeds.

D5 There exists a function f , withRS∧T = f(RS , RT ), when act(S)∩act(T ) = ∅.
We assert that the integrity of a composite target is determined by the
integrity of its active parties.

D6 P (OAB=(k, n− k)|RB=x) =
(
n

n−k
)
xk(1− x)n−kλ(n).

Assumes that the probability that A and B had an interaction history with
size n is λ(n), and that each past interaction had success probability x.

I1 For W ∈W\{OAB}, it holds that OAB ⊥⊥ W |RB .
The interaction history is completely determined by its size, and the proba-
bility of a success in a single interaction (by Dependency D6).

I2 For W ∈W\{ES : A ∈ act(S), ES ∈ E}, it holds that EA⊥⊥ W |RA.
The behavior of A is completely determined by its integrity parameter (by
Dependency D2).

I3 For W ∈W\{RB}, it holds that RB ⊥⊥ W |EB ∩
⋂
C∈A{OCB}.

The only indicators of the integrity parameter of B, are interactions with it.

Independency I2 can be generalized for composite targets.

Proposition 1. For all W ∈ W\{ES : act(T ) ∩ act(S) 6= ∅, RS ∈ E}, it holds
that ET ⊥⊥ W |RT .

Proof. Apply structural induction. The base case precisely matches Indepen-
dency I2. For the induction step use, that by definition of act(·), it holds that
act(T ) ∪ act(T ′) = act(T ∧ T ′) = act(T ∨ T ′).
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Our assumption is that trust adheres to D1-D6 and I1-I3.
A trust opinion of A about T can now be seen as the probability density

function given by fRT
(x|ϕ), where ϕ is a condition that represents all knowledge

of A about T , modulo the relations of the random variables. Typically, ϕ is the
intersection of OAC , for different agents C ∈ A. In other words, subjects have
interaction histories about a group of active parties. If we restrict ϕ to merely
the interaction history about a single active party, we get a beta distribution
representing a simple trust opinion.

Lemma 1. The simple trust opinion obtained from an interaction history with
m successes and n failures is the beta distribution fB(x;m+ 1, n+ 1).

Proof.

fRB
(x|OAB=(m,n))

=
P (OAB=(m,n)|RB=x) · fRB

(x)∫ 1

0
P (OAB=(m,n)|RB=x′) · fRB

(x′) dx′

=

(
m+n
m

)
xm(1− x)nλ(m+ n) · fRB

(x)∫ 1

0

(
m+n
m

)
(x′)m(1− x′)nλ(m+ n) · fRB

(x′) dx′

=

(
m+n
m

)
xm(1− x)n∫ 1

0

(
m+n
m

)
(x′)m(1− x′)n dx′

=fB(x;m+ 1, n+ 1).

The beta model ([5] and [6]) is based upon the notion that simple trust
opinions are beta distribution. We can imagine an operator, trust aggregation,
that updates trust opinions by adding more interactions. Formally, if we have a
trust opinion X based on interaction history (xs, xf) and a trust opinion Y based
on interaction history (ys, yf), then the aggregate of X and Y is a trust opinion
based on (xs + ys, xf + yf). As such, the beta model inherits the mathematical
property that the set of beta distributions is closed under trust aggregation.

Our assumptions regarding simple trust opinions are in line with the beta
model, and are in fact sufficient to derive it (as demonstrated in Lemma 1).
Hence, those assumptions can be seen as valid for the numerous models based
on the beta model [8,9,10]. We extend the assumptions about simple trust
opinions, by adding assumptions about composite trust opinions (Dependen-
cies D3, D4 and D5). Under these assumptions, we show in Theorem 5 that
composite trust opinions cannot generally be represented as beta distributions.

4 Composite Trust

In Example 1, we introduced the CLOUD grid. An example of a composite
target was D ∨ (B ∧ C), where B, C and D are providers. The subject, A, has
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OA
B = (bs, bf )

RB∧C

RD∨(B∧C)

Fig. 2. Solid arrows represent interaction histories. Dashed arrows represent composite
trust opinions. Arrows are labeled with the relevant random variables.

a (potentially empty) interaction history about B, C and D. In Example 2, we
formally derive the trust opinion of A.

Example 2. The subject wants to form a trust opinion about D∨ (B∧C), using
only the interaction history of A about active parties B, C and D. The random
variables OAB , OAC and OAD represent the interaction history of A about B, C and
D. The random variableRD∨(B∧C) represents the (unknown) integrity parameter
of the target D ∨ (B ∧ C), and the random variable ED∨(B∧C) represents the
(unknown) outcomes of the next interaction with the target D ∨ (B ∧ C). We
are interested not just in the probability of the next outcome of the target is a
success (ED∨(B∧C)), but also in additional information, i.e. the random variable
RD∨(B∧C). Figure 2 depicts the relation between the users and the involved
random variables. As stated in Section 3, given failures and successes of past
interactions (bs, bf, cs, cf, ds, df), the query for the trust opinion is of the shape
fRD∨(B∧C)

(x|OAB = (bs, bf) ∩ OAC = (cs, cf) ∩ OAD = (ds, df)). In other words, the
trust opinion represents the probability distribution of a random variable that
predicts the probability that the target succeeds.

Whenever a subject wants to compute a composite trust opinion about a
target, he chooses the correct conditions and the correct random variable to
form a distribution over, as illustrated in Example 2. Therefore, we can assume,
without loss of generality, that we are given the term representing the probability
distribution, and we want to compute an explicit probability density function.

We are interested in a random variable RT , where T is not a single agent
(unless the subject wants a simple trust opinion). However, we have not provided
direct relations between RT and observation histories OAB or integrity parameters
of single agents RA. The only random variable that we can immediately relate
RT to is ET . For more concise notation, we note the following lemma.

Lemma 2. If S and T do not share any active parties, then RS∧T = RS ·RT .
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Proof. The product RS ·RT of two random variables is defined as (RS ·RT )(ω) :=
RS(ω) ·RT (ω).

By Dependency D2, it holds that

P (ES∧T = s|RS∧T = x) = x.

And, using Proposition 1 as well as Dependencies D2 and D3 we obtain

P (ES∧T |RS = y ∩RT = z)

=P (ES = s ∩ ET = s|RS = y ∩RT = z)

=P (ES = s|ET = s ∩RS = y ∩RT = z) · P (ET = s|RS = y ∩RT = z)

=P (ES = s|RS = y) · P (ET = s|RT = z)

=y · z.

Assume, without loss of generality, that RS(ω) = y and RT (ω) = z. By De-
pendency D5, there is a function f such that x = P (ES∧T = s|RS∧T =
x) = P (ES∧T = s|f(RS , RT ) = x). That implies that x = f(y, z), and thus
P (ES∧T = s|f(RS , RT ) = f(y, z)) = f(y, z). Now, since RS(ω) = y and
RT (ω) = z, we have

f(y, z)

=P (ES∧T = s|f(RS , RT ) = f(y, z)) = f(y, z)

=P (ES∧T )

=P (ES∧T |RS = y ∩RT = z)

=y · z.

Thus RS ·RT = f(RS , RT ) = RS∧T .

A similar proof exists for disjunction, using independency over union rather
than intersection, yielding RS∨T = RS +RT −RS ·RT

We can derive the probability density function of RS∧T under any condi-
tion ϕ.

Theorem 4. If S and T do not share any active parties, then

fRS∧T
(x|ϕ) =

∫ 1

x

1

y
· fRS

(
x

y
|ϕ) · fRT

(y|ϕ) dy.

Proof. Apply Theorem 3 and Lemma 2. It suffices to verify the integral bounds.
fRS

(xy |ϕ) = 0 for 0 > x
y and 1 < x

y , so we can ignore cases where y < x and
y > 1.

The case for disjunction can be calculated in a similar fashion. Theorem 4 is
sufficient to derive trust opinions about arbitrary targets (where no active parties
appear more than once), given arbitrary interactions with the active parties.

Corollary 1. For every (finite) target where no active parties appear more than
once, an explicit function for the trust opinion can be computed by the subject.

12



Proof. Apply structural induction over the shape of the target. The base case
(simple trust opinions) is proven in Lemma 1. To prove the induction step, take
Theorem 4 as a rewrite rule from left to right.

In Example 3, we derive an explicit formula for the trust opinion of B ∧ C,
and look at some of its properties.

Example 3. Assume that the subject, A, wants to establish a trust opinion about
the target, B∧C. In the past, A has interacted as a passive party with B several
times; five times B behaved well, and once badly. Furthermore, A has interacted
with C, too; four times C behaved well, and twice badly. The trust opinion of A
about B ∧C is fRB∧C

(x|OAB = (5, 1)∩OAC = (4, 2)). Using Theorem 4, the trust
opinion can be computed as∫ 1

x

1

y
· fRB

(
x

y
|OAB = (5, 1) ∩OAC = (4, 2)) · fRC

(y|OAB = (5, 1) ∩OAC = (4, 2)) dy.

By Independency I3, we obtain∫ 1

x

1

y
· fRB

(
x

y
|OAB = (5, 1)) · fRC

(y|OAC = (4, 2)) dy.

Which by Lemma 1 is equal to∫ 1

x

1
y · (

x
y )6 · (1− x

y )2 · y5 · (1− y)3

B(5, 1) · B(4, 2)
dy.

The formula can be formulated without an integral, and instead using some
combinatorial functions, so that it reduces to

x2 · (1− x)4 · Γ (2) · Γ (3) · 2F1(2, 3; 5; x−1x )

Γ (5) · B(5, 1) · B(4, 2)
.

where Γ is the gamma function, B the beta function (not to be confused with
the beta distribution) and 2F1 a hypergeometric distribution. This, in turn,
simplifies to

2205x4(1 + 4x− 5x2 + 2x(2 + x) log(x)).

The conjunction operation is depicted graphically in Figure 3. The rightmost
distribution is the conjunction of the other two distributions. Recall that the
abscissa depicts the integrity parameter of the targets in question. Thus, the
more mass is on the right hand side of the graph, the bigger the probability that
the target has a high integrity. As we can see, both active parties (B and C)
have a relatively high integrity, but their conjunction (B ∧ C) does not.

The expected value of the trust opinion about a target is equal to the prob-
ability that the target succeeds, computation for B ∧C yields 15

32 . The expected
value for the single agent B to succeed is 3

4 and for C to succeed is 5
8 . Not

coincidentally, the expected value for B ∧ C is the product of that of B and C,
namely 15

32 = 3
4 ·

5
8 .
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Fig. 3. From left to right: trust opinion about B, about C and about B ∧ C.

The entropy of the trust opinion can be calculated by applying Definition 8
to our probability density function. This results in an entropy value of approx-
imately −0.67685 bits. The entropy in the trust opinions for the single agents
B and C is −0.86157 bits and −0.62058 bits, respectively. We can see that the
amount of information we have about B ∧ C is between the amount of infor-
mation we have on B and on C. This does not generally hold. If we swap the
successes and failures, the entropy for B and C does not change, but the entropy
for B ∧C becomes −2.0811 bits. The reason for the difference in information is
obvious, as conjunction is not symmetric with respect to the duality of successes
and failures. For conjunction, a failure carries more information, since failures
outweigh successes similar to how false overrules true in the logical conjunction.

As we suspected in Section 1, and seen for a specific case in Example 3, the
expected behavior of a conjunction of targets, is equal to product of the expected
behavior of both targets.

Corollary 2. If S and T do not share any active parties, then

E(RS∧T ) = E(RS) ·E(RT ).

Proof. Immediate consequence of Lemma 2.

Although the derivation in Example 3 seems asymmetrical with respect to S
and T , commutativity and associativity hold.

Corollary 3. Conjunctions and disjunctions of independent trust opinions are
commutative and associative.

Proof. Immediate consequence of Lemma 2.

In Example 3, we have shown a specific composite trust opinion to be

fRB∧C
(x|OAB = (5, 1) ∩OAC = (4, 2)) = 2205x4(1 + 4x− 5x2 + 2x(2 + x) log(x)).

Now, one can wonder whether there exists a beta distribution with a probability
density function of that shape. It is important to realize that if (composite) trust
opinions are closed under conjunction (and disjunction), then there must be such
a beta distribution.

14



Theorem 5. A composite trust opinion need not be representable by a beta dis-
tribution.

Proof. The expression 2205x4(1 + 4x − 5x2 + 2x(2 + x) log(x)), is a composite
trust opinion, but not a polynomial. The probability density function of a beta
distribution is always a polynomial (see Definition 7). Hence that composite
trust opinion is not based on a beta distribution.

From Theorem 5, we can conclude that every trust model in which the trust
opinions are (isomorphic to) beta models violates one of the assumptions. A
famous example is Subjective Logic [8] (binomial, without base rate), other ex-
amples include CertainLogic [11]. As the methodology of this paper is inspired
by Subjective Logic, Dependencies D1, D2 and D6 are in line with the assump-
tions in Subjective Logic. Furthermore, the Independencies I1, I2, and I3 are
also based on (non-formal formulations in) Subjective Logic. By the pigeon hole
principle, Dependency D3 for conjunctions (or Dependency D4 for disjunctions)
or Dependency D5 must be violated. Dependency D3 states that ES∧T = s iff
ES = s and ET = s (for independent S and T ), and Dependency D5 asserts that
the integrity of a composite target is determined by the integrity of the active
parties. We believe that these assertions may not be considered erroneous. We do
not propose to alter Subjective Logic, as one of the strong points of Subjective
Logic is its simple representation (triples with belief, disbelief and uncertainty
components), which is isomorphic to beta distributions. And, as proven in The-
orem 5, we cannot adhere to all assumptions and have a representation of trust
opinions isomorphic to beta distributions.

5 Conclusion

The paper makes several assumptions about the trust domain. The assump-
tions are designed having interactions over the Internet in mind. There, agents
have trust opinions about other agents, and they update their trust opinions
when new information becomes available. We argue that a trust opinion is not
just an estimated integrity parameter of a target, but that a trust opinion is
a probability distribution over the integrity of a target. The advantage is that
the subject can derive much more than just the expected value from a probabil-
ity distribution. Examples of additional key figures that can be deduced from a
probability distribution are uncertainty (as entropy), confidence intervals, most
probably integrity value (which does not usually equal the expected integrity),
error margins (as variance) and the impact of new information (by updating the
probability distribution with the new information).

The idea of using probability distributions over an integrity parameter is
not new in the trust domain, as it was used in [5] and [6]. The novel idea is
to not just use probability distributions over integrity as trust opinions, but to
pick fX(x|I) as the probability distribution, where X is the target of the trust
opinion, and I is the information the subject has. To get an explicit formula for
the probability density function, we must introduce specific assumptions. The
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advantage of deriving the formula from these assumptions is threefold. First,
by having explicit assumptions, any criticism on the resulting formula must be
reducible to a disagreement about one of the assumptions. Second, if there is a
disagreement about the assumptions, one can simply alter the assumption, and
look at the implications. In particular, the assumption that all integrity param-
eters are equally likely for a simple target in the absence of information, is a
strong assumption. The assumption can be replaced by asserting a different ini-
tial distribution of integrity parameters, and the model does not fundamentally
change. Third, extending the formalism with new constructs may be achieved
by adding new random variables and assumptions thereon.

An obvious candidate for extending the model is trust chaining, i.e. having
the ability to use a recommendation as a (potential) source of information. If we
extend the framework with trust chaining, we need to introduce random vari-
ables for (possible) recommendations, and introduce assumptions about when
agents make honest recommendations and when they make dishonest recommen-
dations. The suggested variants for trust chaining in different models are even
more diverse than for conjunction and disjunction, partially due to different im-
plicit assumptions and partially due to different insights [21]. Our approach may
help unifying some insights, as well as force the assumptions to be formulated
explicitly, thereby mitigating misunderstandings.

In this paper, however, we have applied the approach to composite trust
opinions; trust opinions about conjunctions and/or disjunctions of agents. Thus,
we have derived an explicit definition of a trust opinion of the shape “Can I
trust that both A and B will behave according to agreement?” Of course, more
general statements exist, where for “A and B” any propositional formula can be
substituted and our result also generalizes to encompass these as well. We have
proven some properties about composite trust opinions. First, the trust opinion
about a target S ∧T has the expected value s · t, where s and t are the expected
values of the trust opinion about S and T . (Similarly, for S∨T , it is s+ t−s · t.)
Second, a composite trust opinion is in general not a beta distribution. Hence,
no trust model with elements isomorphic to beta distributions can satisfy all our
assumptions.
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