
A Group Signature Based
Electronic Toll Pricing System

Xihui Chen∗, Gabriele Lenzini∗, Sjouke Mauw∗†, Jun Pang†
∗Interdisciplinary Centre for Security Reliability and Trust, University of Luxembourg, Luxembourg

†Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg

Abstract—With the prevalence of GNSS technologies, nowa-
days freely available for everyone, location-based vehicle services
such as electronic tolling pricing systems and pay-as-you-drive
services are rapidly growing. Because these systems collect and
process travel records, if not carefully designed, they can threaten
users’ location privacy. Finding a secure and privacy-friendly
solution is a challenge for system designers. Besides location
privacy, communication and computation overhead should be
taken into account as well in order to make such systems widely
adopted in practice. In this paper, we propose a new electronic toll
pricing system based on group signatures. Our system preserves
anonymity of users within groups, in addition to correctness and
accountability. It also achieves a balance between privacy and
overhead imposed upon user devices.

I. I NTRODUCTION

Electronic Toll Pricing (ETP) systems, by collecting tolls
electronically, aim to eliminate delays due to queuing on toll
roads and thus to increase the throughput of transportation
networks. Since Norway built the first working ETP system
in 1986, ETP systems have been implemented worldwide.
Nowadays, by exploiting the availability of free Global Nav-
igation Satellite Systems (GNSS), traditional ETP systems
are evolving into more sophisticated location-based vehicular
services. They can offer smart pricing, e.g., by charging less
who drive on uncongested roads or during off-peak hours.
Insurance companies can also bind insurance premiums to
roads that their users actually use, and offer a service known
as “Pay-As-You-Drive” (PAYD) [1]. Moreover, the collected
traffic usage records can be used for public interest, such
as planning roads’ maintenance, or resolving legal disputes
in case of accidents. As location is usually considered as a
sensitive and private piece of information, ETP and PAYD sys-
tems raise obvious privacy concerns. In addition, by processing
locations and travel records, they can learn and reveal users’
sensitive information such as home addresses and medical
information [2], which consequently can lead to material loss
or even bodily harm. Building secure ETP and PAYD systems
that guaranteelocation privacyand high quality of service is
actually a scientific challenge.

In the last few years, secure ETP and PAYD systems have
been widely studied [1], [3], [4], [5], [6], [7]. They can roughly
be divided into two categories based on whether locations are
stored in user devices or collected by central toll servers.
PriPAYD [1], PrETP [5], the cell-based solution described
in [6], and Milo [7] belong to the first category. In these
systems, locations and tolls are managed by user devices while

servers are allowed to process only aggregated data. In the
second category we find VPriv [4], where the server stores a
database of users’ travel history, and the ETP system described
in [3], where the server collects the hash values of trip records.

Both categories have advantages and disadvantages. Hiding
locations from servers drastically reduces the concerns about
location privacy. However, the load for user devices is con-
siderable. Typically, devices have to manage the storage of
locations and proofs which convince servers that they have
not cheated, e.g., making use of zero-knowledge proofs. On
the other side, the availability of location databases collected
by servers, e.g., in VPriv, can help improve applications such
as traffic monitoring and control although the integration of
multiple systems should be carried out carefully. Whereas,
offering preservation of location privacy become a mandatory
requirement. In this paper, we follow the design principlesof
VPriv [4].

In VPriv, users select a set of random tags beforehand
and send their locations attached with these tags to the toll
server. The server then computes and returnsall location
fees. Each user adds up his location fees according to his
tags and proves the summation’s correctness to the server by
using zero-knowledge proof, without revealing the ownership
of the tags. This process needs to run several rounds to
avoid user behaviours deviating from the system. Thus the
main disadvantage with VPriv is that the computation and
communication overhead increases linearly with the number
of roundsexecuted and with the number ofusers.

Our contributions. We propose a novel but simple ETP sys-
tem which achieves a balance between privacy and overhead
for users. By dividing users into groups and calculating tolls in
one round, we reduce the amount of exchanged information as
well as the computation overhead due to the smaller number
of locations of a group. We use group signature schemes
to guarantee anonymity within a group, with an authority
being the group manager. Note that the concept of groups,
however, requires us to design an effective group division
policy to optimally preserve users’ location privacy (discussed
in Sect. VI). We have proved that our system is correct, which
guarantees that users always pay their usage to the server,
and assures accountability, which guarantees originatorsof
misbehaviours can always be found. Moreover, our system
is also proved to be able to enforce conditional unlinkability
between users and their locations.



Structure of the paper. Sect. II describes the participants
of our system, the threat model and the assumptions, and
also states the security goals of our design. Sect. III recalls
group signature schemes and other cryptographic primitives
we adopt. Our ETP system is fully described in Sect. IV.
Sect. V defines the security properties and shows their en-
forcement by our system. We conclude our paper in Sect. VI
with some discussions and ideas for future work.

II. SYSTEM MODEL

A. Principals

The system consists of four principals:users, their carswith
on board units (OBUs), the authority, and the toll server(see
Fig. 1).

Users own and drive cars, and are also responsible for toll
payments. To be entitled to use the electronic tolling service,
a user brings his car to the authority, which registers the car
and installs an OBU on it. The authority is a governmental
department trusted by both users and the toll server. It also
builds up the group signature scheme and manages groups of
users. An OBU computes locations using GNSS, e.g., GPS
(Global Positioning System), and stores them, for example,
in a USB stick or a TPM, which interfaces the OBU and
contains security information. It transmits location datato the
toll server, which is a logical organisation that can be run
by multiple agents in practice. The server collects location
data and computes the fee of each location record. It can also
contact the authority to resolve disputes when some users cheat
on their tolls.

OBU

Cars
Users

Server

Authority

GNSS Satellites
manage

chargetransmit location data

issue

own

Fig. 1. The relationship among the principals.

B. Adversary model

With regards to the deployment environment of ETP sys-
tems, the possible threats can come from: 1) manipulated
OBUs, which generate false location records; 2) dishonest
users, who (partially) avoid paying their road usage; 3) dis-
honest toll servers, who intend to increase their revenue and
breach users’ privacy; 4) the honest but curious authority.

C. Assumptions

Considering the practice of ETP systems, we make a general
assumption that users of such systems tend to pay less tolls
and the server wants no economic loss (Assumption 1). For
instance, in our system dishonest servers can perform any
actions to satisfy their strong economic motivation and cu-
riosity . They can deviate from the protocols and collude with

other attackers. The attackers considered in the system follow
the Dolev-Yao intruder model [8] (Assumption 2). Specifically,
they have full control over the network, which means they can
eavesdrop, block and inject messages anywhere at anytime.
However, an encrypted message can never be opened unless
they have the right key. We assume that location tuples are
transmitted to toll servers anonymously (Assumption 3). This
can be achieved by the architecture in [9], for instance,
which uses a communication service provider to separate
authentication from data collection.1 The authority is supposed
to be curious but not to collude with any other participants,
meaning that it tries to peek users’ privacy only based on the
data learnt during the execution of the protocols it is involved
in (Assumption 4).

It has been shown that users’ moving traces can be re-
constructed from anonymised positions, e.g., by multi-target
tracking techniques [10] or taking into account users’ mobility
profiles [11], and users’ private information can thus be
inferred [12]. However, we observed from experiments in
the literature that tracking users remains difficult in practice,
especially when the intervals between transmissions are big
(about one minute) and the number of traveling users is not
small. Therefore, similar to VPriv, in this paper, we focus on
privacy leakage from ETP systems without considering the
above mentioned techniques and attacks (Assumption 5).

D. Security Properties

In addition to reducing communication and computation
overheads, our system should employ proper measures to pro-
tect honest users and servers. Referring to what other systems
achieve (e.g., [1], [4], [5]), we address the following security
properties, their formal definitions are given in Sect. V. :

Correctness.Clients pay their road usage and the server
collects right amount of tolls.

Accountability. If a malicious action that deviates from the
specification of the system occurs, sufficient evidence can be
gathered to identify its originator.

Unlinkability. An intruder cannot link a given location record
to its generator.

III. C RYPTOGRAPHICPRIMITIVES

Group Signature Schemes.Group signatures [13] provide the
signers anonymity among a group of users. A group signature
scheme consists of group members and a group manager. The
task of the group manager is to organise the group, set up the
group signature infrastructure and reveal signers if needed.
The signature of a message, signed by a group member, can
be verified by others based on the group public key while the
identity of the signer remains secret.

Group signature schemes contain at least the following five
functions: SETUP, JOIN, SIGN, VERIFY and OPEN. Function
SETUP initialises the group public key, the group manager’s
secret key and other related data. The procedure JOIN allows

1Thus identification based on message transmission is out of thescope of
our paper.

2



new members to join the group. Group members call function
SIGN to generate a group signature based on their secret keys.
The VERIFY function makes use of the group public key
to check if a given signature is signed by a group member.
Function OPEN determines the signer of a signature based on
the group manager’s secret key.

We take group signature schemes as an essential building
block of our system because they have the following proper-
ties, which effectively meet our security goals.

• CORRECTNESSSignatures produced by a group member
using SIGN must be accepted by VERIFY.

• UNFORGEABILITY Only group members can sign mes-
sages on behalf of the group.

• ANONYMITY Given a valid signature of some message,
identifying the actual signer is unfeasible for everyone
but the group manager.

• UNLINKABILITY Deciding whether two different valid
signatures were computed by the same group member is
unfeasible.

• EXCULPABILITY Neither a group member nor the group
manager can sign on behalf of other group members.

• TRACEABILITY The group manager is always able to
open a valid signature and identify the actual signer.

• COALITION -RESISTANCE A colluding subset of group
members cannot generate a valid signature that the group
manager cannot link to one of them.

There are some other properties we desire as well, e.g., ef-
ficiency and dynamic group management. Efficiency concerns
the length of signatures and computation time of each function,
which determines the feasibility of our system. Dynamic group
management enables users to join or quit their current groups
at any time when they are new or not satisfied (e.g., see [14]).

In the last decade, efficient group signature schemes with
new fancy features have been developed, e.g., group message
authentication [15] and group signcryption [16]. Some of
the schemes may improve the security of our system. For
instance, an efficient group signcryption scheme can prevent
attackers from eavesdropping users’ location signatures over
the network. In the description of our system, we will make
use of an abstract version of group signature schemes as any
group signature scheme with the required security properties
can be adopted.

Public Key Cryptographic Primitives. We adopt a public
key cryptosystem with classic security properties for applica-
tions of confidentiality and digital signatures. Furthermore, we
assume that the public key encryption is probabilistic in order
to prevent possible off-line dictionary attacks.

Cryptographic Hash Function. In the system, we also use
cryptographic hash functions, which are publicly known and
satisfy the minimum security requirements – preimage resis-
tance, second preimage resistance and collision resistance.

IV. T HE ETP SYSTEM

A. Overview

Our system is organised into four phases. The first phase
is about the service subscription and set-up. A user first
signs a contract with a toll server in order to get access
to the toll service, and establishes a security communication
channel with the server. Afterwards, when users contact the
authority to join a group, the authority assigns them to groups
according to a group division policy (see Sect. VI). Clients’
private keys for group signatures are also established during
the communication with the authority. At the end of this phase,
the server is informed of the groups containing its users and
the corresponding group public keys.

The second phase is about collecting location data. Dur-
ing driving, OBUs compute their locations and time, which
together with the group name formlocation tuples. OBUs
periodically send location tuples and the corresponding group
signatures on the hash values of the location tuples (called
location signatures) to the server, who stores them in its
location database. In order to increase entropy of the hash
values, a random number is generated and added in every
location tuple.

The third phase is about calculating tolls. At the end of
a toll session, each user contacts the server using a user
interface through browsers (not OBUs). According to the
public charging policy, a user calculates the fees of his location
tuples and his toll payment subsequently by adding them up.
The server then collects all users’ payments.

The fourth phase is about resolving a dispute. This phase
takes placeonlywhen the sum of users’ paymentsin a groupis
not equal to the sum of all location tuples’ fees. The authority
is involved to determine misbehaving participants. The server
sends all location signatures and location tuples with their fees
to the authority. When location signatures are opened, for each
user, the authority calculates the fees belonging to his location
tuples, whose sum is compared to the committed payment of
the user. An inequality indicates misbehaviour from eitherthe
server or the user. The authority then contacts the user to ask
for proofs. Based on the received proofs, the authority can
find out who originated the mistake and decide the type of
the misbehaviour. If the user has cheated, he has to pay their
unpaid tolls to the server (possibly with an additional fine). If
the server has misbehaved, it will be punished by the authority
as well.

B. Notations

Tab. I summarises the important notations. Withc, S, andA
we indicate a user, the server, and the authority, respectively.
With f(ℓ, t) we indicate the fee to be paid when passing
location ℓ at time t, while costc is the amount of fees thatc
committed to pay after the toll sessionsid . We useSigc(m) to
denote the signature on messagem signed byc, andGsc(m)
denotes the group signature ofc on messagem. For other
cryptographic primitives, we use standard notations.

3



TABLE I
NOTATIONS.

f(ℓ, t) The fee of passing positionℓ at time t
costc The committed toll payment of userc
tollc The amount of tolls of userc computed based on the

fees the server calculates
Rc The set of location tuples of userc
R The set of dispute solutions
L The set of location tuples that the server has collected

sid The identifier of the toll session
SigX(m) Signature of messagem generated by a principalX
Gsc(m) Group signature of messagem generated by a group

memberc
gpk(G) The group public key of groupG
pk(X) The public key of a principalX
sk(X) The private key of a principalX
h(m) The hashvalue of messagem

Encpk(X)(m) The messagem encrypted withX ’s public key
pk(X)

C. Protocol Specifications

Here we specify the four protocols that implement the
phases of our system, namely:Set-up, Driving, Toll Calcu-
lation, and Dispute Solving. In the following discussion, we
fix a groupG of users.

Phase 1: Set-up.This protocol accomplishes two tasks. The
first is to establish the public key infrastructure between the
users, the server and the authority. The second task is to set
up the group infrastructure.

We make use of two secrets to achieve the security goal
of this phase –pin codesandserial numbers. The former are
generated by the server for users to prove their legal accessto
the toll service, while a serial number is issued with each OBU
as a secret between the authority and a user. We take userc as
an example. Letpin be his pin code andsn the serial number.
The Set-up protocol is depicted in Fig. 2. Upon receiving the
user’s public key, the server checksc’s signature onpin. If
valid, the server replies with its signature on the key, which
the user sends to the authority subsequently when joining a
group. A replay attack onc’s message to the authority is not
feasible, as the same group would be returned if the same
request message arrives again. Fig. 2 does not include the
last step where the server learns from the authority its users’
groups and the group public keys, since such information can
be made public.

sk(S), pin

S

pk(A), pk(S), sk(c), pin, sn

c

pk(S), sk(A), sn

A
pk(c), Encpk(S)(c, Sigc(pin))

Encpk(c)(SigS(pk(c), c))

nonce m

Encpk(A)(SigS(pk(c), c), pk(c), c, sn, S,m)

Encpk(c)(gpk(G),G,m)

Secure group Join communication

Fig. 2. TheSet-upprotocol.

Phase 2: Driving. The driving protocol specifies how users
periodically transmit location tuples and location signatures
to the server. Let〈ℓ, t, r,G〉 be a location tuple wherer is a

random number. A message from userc, a member of groupG,
is denoted by(〈ℓ, t, r,G〉,Gsc(h(ℓ, t, r)). After receiving this
message, the server verifiesGsc(h(ℓ, t, r)) using the group
public key gpk(G). If valid, the received message is stored.
The hash function and random numbers added are used to keep
location tuples secret from the curious authority (see Phase 4).

Phase 3: Toll Calculation. This protocol aims to reach an
agreement on toll payments between the server and its users.
With Rc denoting the locations whichc has travelled and are
stored on the USB stick, we depict the protocol in Fig. 3.

pk(S), sk(c),Rc

c

pk(c), sk(S)

S

Compute
costc =

∑
〈ℓ,t,r〉∈Rc

f(ℓ, t)

Encpk(S)(costc, Sigc(costc, sid))

Encpk(c)(SigS(costc, sid , c))

Fig. 3. TheToll Calculationprotocol.

The user starts with calculating his toll paymentcostc in
toll sessionsid . For each〈ℓ, t, r〉 in Rc, the user computes
its feef(ℓ, t) according to the server’s public charging policy
and obtainscostc by adding all tuple fees up. Then the user
sends to the server his signature oncostc and session identifier
sid , which indicates that userc’s toll payment in toll session
sid is costc. After receivingc’s message, the server verifies
the signature before sending back its signature onc’s toll
payment. In addition to prove the acceptance of the user’s
payment, the server’s signature also works as proof of the
user’s accomplishment of the toll calculation phase.

Phase 4: Dispute Resolving.In this protocol, with the help of
the authority, the server finds cheating users and the amountof
tolls unpaid. The server initiates dispute resolving only when,
with respect to a group, the sum of committed payments is
not equal to the sum of fees of all location tuples. In practice,
as users tend to pay less, the server asks for dispute resolution
only when it has collected less tolls. LetL be the set of
location tuples of groupG, then the condition can be formally
described as ∑

c∈G

costc <
∑

〈ℓ,t,r〉∈L

f(ℓ, t)

A dispute resolution involves the authority, who can link
a location signature to its signer. At the beginning of the
dispute resolution, the server constructs two setsS and T .
Set S consists of the hash values of location tuples, the
corresponding fees, and the location signatures that the server
has received in Phase 2:

S = {〈h(ℓ, t, r), f (ℓ, t), GSc
(h(ℓ, t, r))〉 | ∀(ℓ, t, r) ∈ L, ∀c ∈ G}

T consists of the users’ committed toll payments in Phase 3:

T = {〈c, costc, Sigc(costc, sid)〉 | ∀c ∈ G}

4



Subsequently, the server constructs a message consisting of
S,T and SigS(S, sid), and sends it to the authority. Upon
receiving the message, the authority starts to compute users’
tolls based onS and find the inconsistency with users’
committed toll payments. This process is described as Function
SvrDisRes shown in Alg. 1. We usechecksign(sign,m, pk)
to check if thesign is a signature ofm using pk and group
signature functions VERIFY and OPEN work as described in
Sect. III. The check on setT (line 4-7) and verification of
the signature onS (line 8-9) and location signatures (line 11-
12) exclude the possibility of modifying users’ toll payments
by the malicious server. Each user’s toll payment inS (i.e.,
tollc) is computed in lines 16-17. When it is not larger than
the user’s committed one (i.e.,costc), the user has paid the
amount of tolls that the server asks for. In other words, the
user’s committed cost has covered all his location tuples inS.
Otherwise, the server or the user (or both) is cheating (line19).
For instance, the server may increase the fees of some location
tuples or add fake location tuples inS, while some users are
also possible to have committed smaller payments. For any
userc with tollc > costc, there is a pair(c, tollc − costc) in
the resultres . Moreover, all corresponding tuples of userc in
S are stored in setSc.

Algorithm 1 FunctionSvrDisRes

1: Input : S, T , signS
2: Output : res
3: res := ∅; Sc = ∅; tollc := 0;
4: for all (c, cost , sign) ∈ T do
5: if checksign(sign, (cost , sid), pk(c)) = false then
6: return ‘check of T failed’ ;
7: end if
8: end for
9: if checksign(signS , (S, sid), pk(S)) = false then

10: return ‘check of integrity ofS failed’ ;
11: end if
12: for all 〈hashLoc, feeLoc, gsign〉 ∈ S do
13: if VERIFY(gsign, hashLoc) = false then
14: return ‘Faked location signatures’ ;
15: else
16: c :=OPEN(gsign) ;
17: tollc := tollc + feeLoc;
18: Sc := Sc ∪ {〈hashLoc, feeLoc, gsign〉};
19: end if
20: end for
21: for all tollc > costc do
22: res := res ∪ {(c, tollc − costc)};
23: end for
24: return res

After getting res , the authority needs to verify its correct-
ness. In other words, the related users should try to prove their
innocence. The authority sends a private message to ask each
user appearing inres to initiate the dispute solving protocol (in
Fig. 4) with it. A deadline for dispute solving is also included.
Any user who misses the deadline has to pay the rest of his

tolls indicated byres. For the sake of simplicity, we omit the
cryptographic details in Fig. 4.

pk(A), sk(c)

c

pk(c), sk(A), gpk(G)

A

Mutual authentication

Sc

compute
R′

c = {〈ℓ, t, r〉 | ∃〈h(ℓ, t, r), fee, gsign〉 ∈ Sc

∧f(ℓ, t) < fee}

R′
c, Sigc(R

′
c, sid)

rc = UsrDisRes(R′
c, res,Sc)

SigA(rc, sid), rc

Fig. 4. TheUser Dispute Resolvingprotocol.

The user finds the set of location tuplesR′
c ∈ Rc with larger

fees inSc, and sends it back to the authority. The authority
then determines how many tolls the related users still need to
pay by functionUsrDisRes , which is shown in Alg. 2. First,
the authority checks the integrity ofR′

c by verifying the user’s
signature (line 4-5). Then for each location tuple〈ℓ, r, t〉 ∈ R′

c,
the authority finds the tuple〈hashLoc, fee, gsign〉 ∈ Sc where
hashLoc = h(ℓ, t, r), and accumulates the extra fee added by
the server, i.e.,fee − f(ℓ, t) (line 6-9). The resultδ is the
amount of tolls that the server has added toc’s real tolls. By
subtracting the user’s committed paymentcostc, we obtain the
rest of tolls the user still needs to pay, i.e.,rc (line 10) which
is calleddispute resolutionin the following discussion.

Algorithm 2 FunctionUsrDisRes

1: Input : R′
c, signRc, Sc

2: Output : rc
3: δ := 0;
4: if checksign(signRc, (R′

c, sid), pk(c)) = false then
5: return ’check ofR′

c failed’;
6: end if
7: for all 〈ℓ, t, r〉 ∈ R′

c do
8: if ∃〈h(ℓ, r, t), fee, gsign〉 ∈ Sc then
9: δc := δc + (fee− f(ℓ, t));

10: end if
11: end for
12: rc := (c, tollc − costc − δc);
13: return rc

For each userc, rc = (c, 0) indicates that the server has
misbehaved and the user is innocent whilerc = (c, tollc −
costc) means the server is honest and the user paid less. If
tollc−costc−δc < 0, the user has paid what the server asks for
(i.e., all his location tuples inS). Otherwise, both the user and
the server have misbehaved. At last, the authority constructs a
setR = {(c, v) | v = tollc − costc − δc ∧ v > 0}, consisting
of all misbehaved users’ dispute resolution and sends it back
to the server. With the authority’s signature onR, the server

5



proves the authenticity of the resolution to users, which forces
them to pay their unpaid tolls. Note that after resolving, the
authority only learns the location tuples with manipulatedfees
given by the server and the number of location records of each
user in that particular group. If the misbehaved server were
captured, the authority might enforce a punishment policy and
make this information public. The server then has to undertake
some economic loss and its reputation is thus damaged.

After executing our protocol, the server collects no less tolls
than it asks for. This is why a server who wants no loss of
tolls should not throw away any location tuples inL which is
is the set of locations that the server has collected in the toll
session. Otherwise, the user whose location tuple(s) is (are)
omitted, may pay less by committing a cost larger than what
the server asks for but smaller than what he should pay.

Theorem 1. Let S ′ be the set containing location tuples sent
by the server to the authority during dispute resolution. Ifthe
server wants no loss of users’ tolls, then for all(ℓ, t, r) ∈ L
there exists〈h(ℓ, t, r), fee,Gsc(h(ℓ, t, r))〉 ∈ S ′.

V. SECURITY PROPERTIES& A NALYSIS

In this section we define precisely what we mean by cor-
rectness, accountability and unlinkability, and briefly discuss
how our system satisfies each of them. The full proof of our
main theorem is given in Appendix A.

A. Correctness

Correctness means that the server can collect the right
amount of tolls and all users pay their tolls exactly. Recallthat
there are two underlying assumptions according to practical
toll scenarios. One is that a user has no intention to pay more
than his actual tolls while the other is that the server wants
no loss of users’ tolls. For our system, this means that the
server never throws away location tuples and decreases fees,
and users never commit larger payments.

Let costc be the real amount of tolls that userc should pay
andpayc be the amount of tolls that userc actually pays to the
server after Phase 4 of our system. LetcostG =

∑
c∈G costc be

the real amount of tolls from all users andpayG =
∑

c∈G payc

the amount of tolls that the server actually collects from the
group G after Phase 4 of our system. With Theorem 1, the
property of correctness can be defined as follows:

Definition 1 (Correctness). Suppose the server wants no loss
of users’ tolls and users have no intention to pay more than
their tolls, then for anyc ∈ G it holds that (payc = costc),
and for the server it holds that (payG = costG).

In our system, whenever a user has paid less, the server
initiates the dispute resolving protocol with the authority who
would give the correct toll of that user. Meanwhile, because
of the properties of group signatures, e.g., UNFORGEABILITY

and EXCULPABILITY , the server is unable to charge more
locations than the ones users submitted.

B. Accountability

Accountability means that upon detection of malicious
behaviour, our system can identify which principal has mis-
behaved.

Let B be the set of all potential misbehaviours from the
attackers in our system. So relationA = B × U represents
all possible attacks and the corresponding attackers. In our
system,U = C∪{S,A}. Let attacker : A → U be the function
mapping an attack to the attacker, e.g.,attacker((β, c)) = c.
Let E be the set of evidences during the run of our system
andP(E) the power set ofE. Thus,accountabilityis defined
as follows:

Definition 2 (Accountability). Let A′ ⊆ A be the attacks
that actually happen during the execution of our system in a
toll session. For anyα ∈ A′, our system is able to provide
a set of evidencesE′ ∈ P(E) and there exists a function
find : P(E)×A → U such thatfind(E′, α) = attacker(α).

At steps where attackers may misbehave, our system pro-
vides sufficient evidence to find the originators. For instance,
when the server did not send a user’s toll payment to the
authority on purpose, the server’s signature on the user’s
payment could be taken as the evidence to prove the server’s
misbehaviour.

Despite the fact that our system assures accountability, re-
solving disputes is still a costly step. We can establish a proper
punishment policy to discourage misbehaviours. This in turn
also improves the efficiency and performance of our system.
For instance, by punishing cheating users, the frequency of
dispute resolving can actually be ensured to be very small in
practice.

C. Unlinkability

Unlinkability holds when, from the information learned
from the execution of our system, the attacker cannot decide
whether a user has travelled on any location. In order to
enforce this property, we should consider the following two
aspects.

First, from all messages learned after the execution of our
system, the attacker cannot link any location to its originator.
For users, the properties of group signature schemes, i.e.,
ANONYMITY and UNLINKABILITY guarantee this property
with regards to the malicious server. With regards to the
honest but curious authority, who does not collude with other
attackers,conditional unlinkability is satisfied. If the server
does not manipulate the fees inS, the authority learns nothing
about the owner of any location but the number of each
user’s location tuples. This is due to the properties of the
hash function and the randomness of location tuples (random
numbers added). Whereas, if the server cheats on the fees
of some tuples, then the affected users have to reveal those
location tuples. This allows the authority to learn their owners
as a result. As the choice of the revealed locations cannot be
controlled by the authority, our system enforces conditional
unlinkability.

6



Second, the communication process of the system does
not leak any information about linkability, meaning that the
attacker cannot break unlinkability by analysing differences
between executions of the system. To define unlinkability and
check its satisfaction w.r.t. this situation, we make use of
formal verification (see Appendix A).

We now give the main theorem addressing that our ETP
system satisfies the defined properties. The full proof of the
theorem is given in Appendix A.

Theorem 2. Our ETP system satisfies correctness, account-
ability and unlinkability.

We also verified secrecy and authentication, whose results
are given in Appendix B.

VI. D ISCUSSION& CONCLUSION

In this paper, we have proposed a simple design for ETP
systems which preserves users’ anonymity within groups.
The main goal of our system is to balance users’ privacy
with communication and computation overhead: a large group
means better privacy for users, while this gives rise to more
overhead when running the system. With the help of group
signature schemes, our system is proved to guarantee correct-
ness, accountability and unlinkability. To be complete, westill
have the following issues to address.

Comparison with VPriv. As mentioned in Sect. I, our sys-
tem resembles VPriv [4] that the server collects locations.
However, VPriv imposes a relatively high overhead to users
and the server. Compared with VPriv, in our system, the
communication overhead between users and the server is
reduced. Our system does not require the server to provide the
set of location tuples with fees to users during toll calculation,
which is usually large even for groups of small size. Second,
we apply the principle of separation of duties in our system,
namely the authority takes the responsibility to find misbe-
haved users or server. Hence, the server and users are released
from a heavy computation overhead by avoiding running zero-
knowledge proof protocols as in VPriv. Resolving disputes
needs to open all location signatures, which is time consuming
for the authority. However, with punishment policies and the
accountability property of our system, the authority can have
a very low frequency of resolving disputes. Last but not least,
we consider a malicious server with more power, which is not
passive but can perform active attacks, such as increasing fees
or other attacks to learn users’ whereabout.

Group management.A good group management policy can
improve the protection of users’ privacy in our system. In
principle, groups should be chosen to maximise the difficulty
for the adversary to construct users’ traces. One way to achieve
this goal is to group people according to ‘similarity’ criteria
based on multi-level hierarchical structure, as proposed in [17].
For instance, at the root level, we have the group of all users
in a city. Subgroups at the next level contain those that usually
travel in the same region. At lower levels the subgroups can
include users having a similar driving style. Other factorscan

be considered as well, e.g., driving periods, car models, etc.
The information needed to group people is collected by the
authority at the moment of registration. The provision of such
information is not compulsory but users are encouraged if they
desire a better privacy protection.

Dynamic group management, which enable users to change
their group memberships, is also necessary. For instance, users
move to another city or they are not satisfied with their current
group. To find the optimal group size which can protect users’
anonymity is part of our future work. Note that if a user has
joined in multiple groups, the similarity between his travel
records of these groups would decrease his anonymity.

Tamper resistant devices vs. spot checks.In order to ensure
OBUs are not manipulated by users, e.g., to transmit false
locations, we have to consider possible solutions. One way
is to utilise devices that are tamper resistant. However, users
can always turn off the device. Therefore, as discussed in
VPriv and PrETP, we can use sporadic random spot checks
that observe some physical locations of users. A physical
observation of a spot check includes location, time and the
car’s plate number. Let〈ℓ, t, pn〉 be an observation of carpn
whose owner is userc ∈ G. Then there should be at least
one location record〈ℓ′, t′〉 of groupG such that| t, t′ |< ǫ/2
and | ℓ, ℓ′ |< γ· | t, t′ | whereǫ is the interval between two
transmissions andγ is the maximum speed of vehicles. If there
are no such location tuples, then the server can determine that
userc has misbehaved. Otherwise, the server could send the
tuples with nearby locations to the authority to check if there
is one belonging toc. According to [4], a small number of
spot checks with a high penalty would suffice.

Future work. In future, we plan to develop a prototype
of our system and conduct experiments to evaluate different
group management policies and to compare the efficiency of
our system with PrETP and VPriv. A recently proposed ETP
system Milo [7] provides techniques based on blind identity
based encryption to strengthen spot checks in PrETP [5] to
protect against large-scale driver collusion. It is interesting to
see how to adopt these techniques into our system. Nowadays,
automatic fare collection systems are increasingly used in
public transport, which give user similar concerns on their
privacy. It is also interesting to see whether we can extend the
ideas in this paper to develop a new fare collection system.

ACKNOWLEDGEMENT

We thank Flavio Garcia for his comments that helped to
improve the paper.

REFERENCES

[1] C. Troncoso, G. Danezis, E. Kosta, and B. Preneel, “PriPAYD: Privacy
friendly pay-as-you-drive insurance,” inProc. WPES. ACM, 2007, pp.
99–107.

[2] Z. Ma, F. Kargl, and M. Weber, “Measuring long-term location privacy in
vehicular communication systems,”Computer Communications, vol. 33,
no. 12, pp. 1414–1427, 2010.

[3] W. de Jonge and B. Jacobs, “Privacy-friendly electronictraffic pricing
via commits,” in Proc. FAST, ser. LNCS, vol. 5491. Springer, 2008,
pp. 143–161.

7



[4] R. A. Popa, H. Balakrishnan, and A. J. Blumberg, “VPriv: Protecting
privacy in location-based vehicular services,” inProc. USENIX Security
Symposium. USENIX Association, 2009, pp. 335–350.

[5] J. Balasch, A. Rial, C. Troncoso, and C. Geuens, “PrETP: Privacy-
preserving electronic toll pricing,” inProc. USENIX Security Sympo-
sium. USENIX Association, 2010, pp. 63–78.

[6] F. Garcia, E. Verheul, and B. Jacobs, “Cell-based roadpricing,” in Proc.
EuroPKI, ser. LNCS, vol. 7163. Springer, 2011, pp. 106–122.

[7] S. Meiklejohn, K. Mowery, S. Checkoway, and H. Shacham, “The
phantom tollbooth: Privacy-preserving electronic toll collection in the
presence of driver collusion,” inProc. USENIX Security Symposium.
USENIX Association, 2011.

[8] D. Dolev and A. C.-C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–207,
1983.

[9] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Enhancing security
and privacy in traffic-monitoring systems,”IEEE Pervasive Computing,
vol. 5, no. 4, pp. 38–46, 2006.

[10] ——, “Preserving privacy in GPS traces via uncertainty-aware path
cloaking,” in Proc. CCS. ACM, 2007, pp. 161–171.

[11] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” inProc. S&P. IEEE CS, 2011.

[12] J. Krumm, “Inference attacks on location tracks,” inProc. Pervasive,
ser. LNCS, vol. 4480. Springer, 2007, pp. 127–143.

[13] D. Chaum and E. van Heyst, “Group signatures,” inProc. EUROCRYPT,
ser. LNCS, vol. 547. Springer, 1991, pp. 257–265.

[14] M. Bellare, H. Shi, and C. Zhang, “Foundations of group signatures:
The case of dynamic groups,” inProc. CT-RSA, ser. LNCS, vol. 3376.
Springer, 2005, pp. 136–153.

[15] B. Przydatek and D. Wikström, “Group message authentication,” in
Proc. SCN, ser. LNCS, vol. 6280. Springer, 2010, pp. 399–417.

[16] M. Abe, S. S. M. Chow, K. Haralambiev, and M. Ohkubo, “Double-
trapdoor anonymous tags for traceable signatures,” inProc. ACNS, ser.
LNCS, vol. 6715. Springer, 2011, pp. 183–200.

[17] J. Guo, J. P. Baugh, and S. Wang, “A group signature basedsecure
and privacy-preserving vehicular communication framework,”in Proc.
INFOCOM Workshops. IEEE CS, 2007, pp. 103–108.

[18] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” inProc. POPL. ACM, 2001, pp. 104–115.

[19] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-type
properties of electronic voting protocols,”Journal of Computer Security,
vol. 17, no. 4, pp. 435–487, 2009.

[20] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” inProc. CSFW. IEEE CS, 2001, pp. 82–96.

[21] G. Lowe, “A hierarchy of authentication specification,” in Proc. CSFW.
IEEE CS, 1997, pp. 31–44.

APPENDIX

APPENDIX A: PROOF OFTHEOREM 2

A. Correctness

We prove correctness from the following two perspectives
of users and the server.
We start proving that our system enforces that each user pays
his real tolls, which is∀c∈G payc = costc. Assume that a
user c has committed a smaller payment in Phase 3, i.e.,
costc < costc. The server would find that

∑
c′∈G costc′ <∑

〈ℓ,t,r〉∈L f(ℓ, t) and thus construct and sendS and T to
the authority for solving the dispute. Then at least one of the
following situation occurs depending on whether the server
misbehaves.

CASE 1. The server is honest and dataS, T are correct. Then
the authority computes the setres by function SvrDisRes

which contains an item(c, tollc − costc) with tollc = costc.
During the dispute resolving protocol with the authority, the
user cannot provide any correct location tuple〈ℓ, t, r〉 that has
a corresponding tuple inSc with a larger fee. This is because

all tuples inSc are correct. Thus, the user’s dispute resolution
rc = (c, costc − costc) is returned to the server, and the user
has to pay the amount of tollspayc = costc − costc + costc,
equivalent tocostc.
CASE 2. The server is dishonest. With the assumption that
the server wants no loss of tolls, the setSc has the same
size with Rc, and the setR′

c ∈ Rc have a corresponding
set of tuplesS ′

c ∈ Sc with larger fees. Furthermore, we have
costc = tollc − δ where δ =

∑
〈h(ℓ,t,r),fee,gsign〉∈S′

c

(fee −
f(ℓ, t)). During the dispute resolution with the authority, user
c identifiesS ′

c from Sc with the charging policy. As no users
want to pay more than they should, a rational user sendsS ′

c

back to the authority. Suppose the user’s dispute resolution
rc = (c, v), then v = tollc − costc − δ. Therefore,payc =
v + costc = costc.

We prove thatpayG =
∑

c∈G costc straightly from the
following two facts: 1) Our above proof has shown that for
each userc ∈ G, payc = costc; 2) payG =

∑
c∈G payc.

B. Accountability

In our system, the setB consists of the following misbe-
haviours:

• β1: dishonest users send smaller toll payment to the
server;

• β2: malicious users refuse to pay tolls;
• β3: the server attaches wrong fees to location tuples;
• β4: the server sends false location tuples to the authority;
• β5: the server sends less toll payments to the authority;

We prove accountability is secured against misbehaviours as
described in the setB.

CASE 1. Assumeα = (β1, c) happens, i.e.,costc < costc.
From the proof of correctness, we know the authority would
have a dispute resolution(c, costc−costc) in R. From the au-
thority’s signature onR, the server learns that userc has given
a smaller payment. Together with userc’s signature oncostc
andR′

c, andSigS(S, sid), c cannot deny his misbehaviour.
CASE 2. Assume(β2, c) happens. We have the following two
evidences – (i) the server does not have userc’s signature on
costc; (ii) userc cannot provide the server’s signature oncost ,
i.e., SigS(costc, sid , c).
CASE 3. Assume(β3, S) happens. In this attack, we have
at least one tuple inS with a higher fee. Let it be
〈h(ℓ, t, r), fee, gsign〉 where fee > f(ℓ, t), and the location
〈ℓ, t〉 belongs to userc. Whenc receivesSc, he identifies the
tuple by comparingh(ℓ, t, r) and adds〈ℓ, t, r〉 to R′

c. With
the server’s signature onS and the unforgeability ofgsign,
the user can prove to the authority that the server originates
the attack.
CASE 4. Assume (β4, S) happens. With the proper-
ties UNFORGEABILITY, EXCULPABILITY and COALITION -
RESISTANCE of group signature schemes, the server cannot
forge any location with a correct group signature from any
honest user. Therefore, a failure of function VERIFY (line 11
in Alg. 1) will indicate the server’s misbehaviour.

8



CASE 5. Assume(β5, S) happens. Suppose the server omits
userc’s payment, i.e.,costc, which has been committed to the
server during toll calculation. In this case, the authoritywould
execute the user dispute solving protocol with the user. Asc
has the server’s signature oncostc (i.e., SigS(costc, sid , c)),
he can prove to the authority the server’s omission of his
payment.

C. Unlinkability

For attacks on analysis of messages used during the execu-
tion of the system, we prove that no significant information
about linkability is learnt by a malicious server and a curious
authority. First, we examine the information that the server
can obtain from the system.

CASE 1. The set of location tuples summarised inS during
the driving phase. Because of the anonymous channel and the
properties ofANONYMITY and UNFORGEABILITY of group
signatures, the server cannot link any location to its originator.
CASE 2. The set of users’ committed payments summarised in
T . As the attack based on partitioning is not feasible, users’
payments do not reveal any relationship between users and
their locations.
CASE 3. The set of dispute resolution summarised inR. The
server only learns the tolls that misbehaved users have not
paid. Nothing about specific locations is revealed.

Second, we examine the information the authority can obtain.

CASE 1. The setS and T . Due to the preimage resistance
of hash primitives, the authority cannot learn users’ locations
through opening location signatures.
CASE 2. The setR′

c of userc if the server increases the fee of
any location tuple of userc. The authority learns the user has
travelled the locations inR′

c but the authority cannot choose
the locations, which instead are determined by the server.
With the assumption of no collusion between the server and
the authority,conditional unlinkabilityis satisfied.

The second type of attacks on unlinkability is through
observing the difference between system executions where
users’ locations are varied. We start from defining unlinkability
w.r.t. this type of attacks and proceed proving our system’s
security using automatic formal verification. We use processes
to denote participants’ behaviours in protocols. LetC〈ϕ〉 be
the process representing userc originating location recordϕ
and letA be the process of the authority. We useC〈ϕ〉 | A
to represent the parallel composition of these two processes,
which admits all possible communications and interleavings.
The intuition behind unlinkability is that if any two users
swap a pair of locations, the adversary cannot observe the
difference. Recall that the attacks on unlinkability exploring
fees and users’ payments are not feasible in practice. The ‘dif-
ference’ does not include the changes of users’ payments after
swapping locations.Observational equivalence, which defines
indistinguishability between two processes [18], gives usan
effective way to formalise unlinkability in our system. Similar
to [19], we need at least two traveling users. Otherwise, an
intruder can easily link all location tuples to one user.

Definition 3 (Unlinkability). Assume thatG is a group with
at least two usersc and c′ and assume any two location
recordsϕ andϕ′. Unlinkability between a location tuple and
its generator holds if

A | C〈ϕ〉 | C ′〈ϕ′〉 ≈ A | C〈ϕ′〉 | C ′〈ϕ〉

Def. 3 is formulated against the malicious server. Similarly,
conditional unlinkability against the authority can be defined
by replacing the property withC〈ϕ〉 | C ′〈ϕ′〉 ≈ C〈ϕ′〉 |
C ′〈ϕ〉, where ϕ and ϕ′ are not in R′

c. ProVerif [20] is
an efficient tool for verifying security properties. It takes a
protocol modelled as a process in the appliedπ calculus [18]
as input and checks if the protocol satisfies a given property.
As observational equivalence can be modelled and verified
by ProVerif, unlinkability is able to be automatically verified.
We have modelled our system and the unlinkability property,
and got positive results from ProVerif. (ProVerif codes are
available on request.)

APPENDIX B: VERIFICATION OF SECRECY AND

AUTHENTICATION

We use ProVerif [20] to formally prove that our system
as a whole does not suffer from attacks on security and
authentication. The results are listed in Tab. II.

TABLE II
VERIFICATION OF AUTHENTICATION AND SECRECY.

Protocols
Authentication

Secrecy
injective non-injective

setupCS – c & S pin

setupCA A c sn

Toll Calculation – c & S costc

Dispute resolving S & A – Sc,R
′

c, rc

We use setupCS to denote the protocol between the server
(S) and a user (c) in the setup phase and setupCA is between
a user and the authority (A). We say a term is secret if the
attacker cannot get it by eavesdropping and sending messages,
and performing computations [20]. For authentication, we
consider two notions, namely,agreementand the slightly
stronger notioninjective agreement[21]. Agreement roughly
guarantees to an agentA that his communication partnerB
has run the protocol as expected and thatA andB agreed on
all exchanged data values. Injective agreement further requires
that each run ofA corresponds to a unique run ofB. (ProVerif
codes are available on request).

9


