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ABSTRACT
The popularity of location-based services leads to serious concerns
on user privacy. A common mechanism to protect users’ location
and query privacy is spatial generalisation. As more user informa-
tion becomes available with the fast growth of Internet applications,
e.g., social networks, attackers have the ability to construct users’
personal profiles. This gives rise to new challenges and reconsider-
ation of the existing privacy metrics, such ask-anonymity. In this
paper, we propose new metrics to measure users’ query privacy tak-
ing into account user profiles. Furthermore, we design spatial gen-
eralisation algorithms to compute regions satisfying users’ privacy
requirements expressed in these metrics. By experimental results,
our metrics and algorithms are shown to be effective and efficient
for practical usage.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy

General Terms
Security, measurement

Keywords
Location based services, query privacy, anonymity, measurement

1. INTRODUCTION
The popularity of mobile devices with localisation chips and

ubiquitous access to Internet give rise to a large number of location-
based services (LBS). Consider a user who wants to know where
the nearest gas station is. He sends a query to a location-based
service provider (LBSP) using his smart-phone with his location
attached. The LBSP then processes the query and responds with
results. Location-based queries lead to privacy concerns especially
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Figure 1: A centralised framework of LBSs

in cases when LBSPs are not trusted. Attackers can cooperate with
LBSPs and have access to users’ location-related queries. The
amount and risk of information leakage from LBS queries have
been discussed, for example, in [7, 13]. The analysis mainly fo-
cused on information leakage from locations. However, query con-
tent itself is also a source of users’ privacy leakage. For instance,
a query about casinos implies the issuer’s gambling habit which
the issuer wants to keep secret. Thus besides location privacy, the
anonymity of issuers with respect to queries is also important in
privacy preservation. Intuitively,query privacyis the ability to
prevent other parties to learn the issuers of queries. One way to
protect query privacy is to anonymise queries by removing users’
identities. However, this does not suffice when considering loca-
tions which can help reveal users’ identities, since attackers can ac-
quire users’ locations through a number of ways, e.g., triangulating
mobile phones’ signals and localising users’ access points to In-
ternet. Sometimes, public information such as home addresses and
yellow pages can also help obtain users’ positions. Therefore, loca-
tions within queries are critical in protecting users’ query privacy as
well. Replacing locations with a generalised area is an alternative
to break the linkability between users and their locations, which is
calledspatial cloaking[16, 20].

In the last few years,k-anonymity [24] has been widely used and
investigated in the literature on releasing microdata, e.g., medical
records. A user isk-anonymous if he is indistinguishable from at
least otherk − 1 users. In the context of query privacy in LBS,k-
anonymity can be interpreted as: given a query, any attacker based
on the query location cannot identify the issuer with probability
larger than1

k
[15]. Most of existing works adopt the centralised

framework (depicted in Fig. 1), where a trusted agentanonymiser
is introduced. Users first send their queries to the anonymiser who
anonymises the queriesandgeneralises the locationsbefore send-
ing them to the LBSP. The responses from the LBSP are first sent
to the anonymiser and then forwarded to the corresponding users.
In the centralised framework, normally it is assumed that the com-
munication channels between users and the anonymiser are secure
while the ones between the anonymiser and the LBSP are public.

A common assumption fork-anonymity is that all users have the
same probability to issue queries. In other words, a uniform proba-
bility distribution is assumed over users with respect to sending any



query, which is often not realistic especially when attackers gain
more information about the users. Given a specific query, certain
users tend to be more likely to issue it when compared to others.
For instance, users who love movies are more possible to search
for nearing cinemas. For any user in a generalised area satisfying
k-anonymity, the probability to be the issuer is no longer1

k
in such

situations. The case can be worse especially for those users who
are more likely than others. Suppose ak-anonymised region of a
query from a young person for searching clubs at midnight. If there
are only two young people in the generalised region, then they are
more likely to be taken as the candidates for the issuer from attack-
ers’ view than other users in this region. Therefore,k-anonymity
is not a sufficient metric to describe users’ privacy requirements
when taking into account user profiles, which was addressed first
by Shin et al. [26]. Nowadays, the popularity of social networks
and more exposure of people’s information on Internet provide at-
tackers sources to gather enough background knowledge to obtain
user profiles. Besidespassive attacksin which attackers simply
observe the connection between users, attackers can also perform
active attacks, e.g., by creating new accounts so as to identify users
even in an anonymised social network [17]. Wu et al. give a lit-
erature study on the existing attacks to obtain users’ profiles [33].
Therefore, it is a new challenge to measure and protect users’ query
privacy in LBSs with the assumption that attackers have the knowl-
edge of user profiles.

Our contributions. In this paper, we extendk-anonymity and pro-
pose new metrics to correctly measure users’ query privacy in the
context of LBSs, which enable users to specify their query privacy
requirements in different ways. Furthermore, we design new gen-
eration algorithms to compute anonymising spatial regions accord-
ing to users’ privacy requirements. Through experiments, we show
that our algorithms are efficient enough to meet users’ demands on
real-time responses and generate regions satisfying privacy require-
ments. We also show the different strengths of our metrics which
help users choose the correct requirements to achieve a balance be-
tween privacy and the quality of service delivered by the LBSP.

Structure of the paper. Sect. 2 gives a brief investigation of related
work on measuring anonymity, query privacy and area generalisa-
tion algorithms. In Sect. 3, we present our formal framework, the
threat model, and the derivation of user profiles. We formally define
a number of query privacy metrics in Sect. 4 and develop general-
isation algorithms in Sect. 5. In Sect. 6, through experiments we
discuss features of the metrics and evaluate the performance of the
generalisation algorithms. The paper is concluded in Sect. 7.

2. RELATED WORK
We give a brief literature study on measuring anonymity and on

query privacy metrics with focus onk-anonymity. Then we sum-
marise existing region generalisation algorithms.

2.1 Anonymity metrics
In the literature, various ways to measure anonymity have been

proposed. Chaum [6] uses the size of an anonymity set to indicate
the degree of anonymity provided by a network based on Dining
Cryptographers. An anonymity set is defined as the set of users
who could have sent a particular message as observed by attack-
ers. Berthold et al. [3] define the degree of anonymity aslogN ,
whereN is the number of users. Reiter and Rubin [22] define the
degree of anonymity as the probability that an attacker can assign
to a user of being the original sender of a message. They introduce
metrics like beyond suspicion, probable innocence and possible in-
nocence. Serjantov and Danezis [25] define an anonymity metric

based on entropy and a similar metric is given by Díaz et al. [11]
which is normalised by the number of users. Zhu and Bettati [35]
propose a definition of anonymity based on mutual information.
The notion relative entropy is used by Deng et al. [10] to measure
anonymity. Different information-theoretic approaches based on
Kullback-Leider distance and min-entropy are proposed [5, 9, 31]
to define information leakage or the capacity of noisy channels.

2.2 Query privacy metrics
The concept ofk-anonymity was originally proposed by Sama-

rati and Sweeney in the field of database privacy [24]. The main
idea ofk-anonymity is to guarantee that a database entry’s identifier
is indistinguishable from otherk−1 entries. However, this method
does not work in all cases. For instance, the fact that an HIV car-
rier is hidden ink carriers does not help protecting his infection of
the virus. Further research has been done to fix this problem [18].
In the context of privacy in LBSs,k-anonymity is first introduced
by Gruteser and Grunwald [15]. It aims to protect two types of
privacy – location privacyandquery privacy. The former means
that given a published query, attackers cannot learn the issuer’ ex-
act position while the latter enforces the unlinkability between the
issuer and the query. Because of its simplicity,k-anonymity has
been studied and refined in many ways. For instance, Tan et al.
defineinformation leakageto measure the amount of revealed lo-
cation information in spatial cloaking, which quantifies the balance
between privacy and performance [32]. Xue et al. [34] introduce
the concept oflocation diversityto ensure generalised regions to
contain at leastℓ semantic locations (e.g., schools, hospitals).

Deeper understanding ofk-anonymity reveals its drawbacks in
preserving users’ location privacy. Shokri et al. analyse the ef-
fectiveness ofk-anonymity in protecting location privacy in differ-
ent scenarios in terms of adversaries’ background information [30],
i.e., real-time location information, statistical informationandno
information. Based on the analysis, they conclude that cloaking
(e.g.,k-anonymity) is effective for protecting query privacy but not
location privacy. They also show its flaws which the adversary can
exploit to infer users’ current locations. In this paper, we focus on
protecting query privacy using cloaking with the assumption that
the adversary learns users’ real-time locations.

Recently, Shokri et al. design a toolLocation-Privacy Meter
that measures location privacy of mobile users in different attack
scenarios [28, 29]. Their work assumes that attackers can utilise
user profiles (e.g., mobility patterns) extracted from uses’ sample
traces to infer the ownership of collected traces. It is in spirit close
to our work. They use the incorrectness of attackers’ conclusions
on users’ positions drawn from observations as the privacy metric.
In this paper, we focus on users’ query privacy with regards to an
individual query rather than query histories. Moreover, we make
use of users’ static and public personal information, such as pro-
fessions and jobs as user profiles. Considering information such as
mobility patterns and query histories is part of our future work.

The work by Shin et al. [26] is most closely related. They de-
scribe user profiles using a set of attributes whose domains are
discretised into disjoint values. User profiles are represented by
profile vectorswith a bit for each value. Shin et al. propose three
new metrics based onk-anonymity by restricting different levels of
similarity between profiles of users in generalised regions. This is
analogous to our notion ofk-approximate beyond suspicionwhich
will be discussed in Sect. 4. Compared to Shin et al.’s work [26],
we define a more comprehensive set of metrics that can measure
query privacy from different perspectives and develop correspond-
ing generalisation algorithms.



2.3 Area generalisation algorithms
The first generalisation algorithm calledIntervalCloaking is de-

signed by Gruteser and Grunwald [15]. Their idea is to partition
a region into quadrants with equal area. If the quadrant where the
issuer is located contains less thank users, then the original re-
gion is returned. Otherwise, the quadrant with the issuer is taken
as input for the next iteration. The algorithmCliqueCloak [14] is
proposed by Gedik and Liu in which regions are generalised based
on the users who have issued queries rather than all potential is-
suers. The major improvement is that this algorithm enables users
to specify their personal privacy requirements by choosing differ-
ent values fork. Mokbel et al. [21, 8] design the algorithmCasper
which employs a quadtree to store the two-dimensional space. The
root node represents the whole area and each of other nodes rep-
resents a quadrant region of its parent node. The generalisation
algorithm starts from the leaf node which contains the issuer and
iteratively traverses backwards to the root until a region with more
thank users is found. Another algorithmnnASR [16] simply finds
the nearestk users to the issuer and returns the region containing
these users as the anonymising spatial region.

The above algorithms suffer from a particular attack called “out-
lier problem” [2], where attackers have the generalisation algo-
rithms and users’ spatial distribution as part of their knowledge.
Intuitively, this happens when some users in a generalised region
do not have the same region returned by the algorithm as the issuer.
Thus, these users can be removed from the anonymity set, resulting
in a set with less thank users. Hence, an algorithm against this at-
tack needs to ensure that for each user in the anonymity set it always
returns the same region. Kalnis et al. design the first algorithm
calledhilbASR that does not have the outlier problem [16]. The
algorithm exploits the Hilbert space filling curve to store users in a
total order based on their locations. The curve is then partitioned
into blocks withk users. The block with the issuer is returned as
the generalised region. Mascetti et al. propose two algorithms,di-
chotomicPoints andgrid, which are also secure against the outlier
problem [20]. The former iteratively partitions the region into two
blocks until less than2k users are located in the region while the
latter draws a grid over the two-dimensional space so that each cell
containsk users and returns the cell with the issuer. Because of the
simplicity of implementation and the relatively smaller area of the
generalised regions, we adopt and extend these two algorithms in
our algorithm design.

The area of generalised regions is usually used to measure the
quality of service responded by LBSPs, as smaller regions lead to
more accurate query results and less communication overhead.

3. PRELIMINARIES
In this section, we present a formal framework, define the at-

tacker model subsequently, and discuss how to derive a priori prob-
abilities for users to issue a query based on their profiles.

3.1 A formal framework
LetU denote a set of users,L the set of locations (positions), and

T the set of time instances that can be recorded. The granularity of
time instances is determined by LBSs. Given a timet, we have a
function to map a user to his location att: whereis : U × T → L.
The userspatial distributionat time t can be defined as the set
{(u,whereis(u, t)) | u ∈ U}, denoted bydis(t). Suppose the
set of queries supported by LBSs is represented byQ, e.g., the
nearest gas station. LetQ ⊆ U ×L× T ×Q be the set of queries
from usersU at a specific time. An element inQ is a quadruple
〈u,whereis(u, t), t, q〉, whereu ∈ U andq ∈ Q.

Table 1: Notations
U set of users
T set of time instances
L set of locations
R set of possible generalised regions

q ∈ Q a query supported by the LBS
〈u, ℓ, t, q〉 ∈ Q a query issued byu at positionℓ at timet
〈r, t, q〉 ∈ Q′ a generalised query sent by the anonymiser

dis(t) spatial distribution of users inU at timet
M(q) probability distribution of user to issueq

uℓ(r, t) set of users located in regionr at timet
req(〈u, ℓ, t, q〉) useru’s privacy requirement on〈u, ℓ, t, q〉

p(u |q) probability ofu to issueq among users inU
p(u | 〈r, t, q〉) probability ofu to issue〈r, t, q〉
whereis(u, t) position of useru at timet
f(〈u, ℓ, t, q〉) an algorithm computing generalised queries

Given a query〈u,whereis(u, t), t, q〉 ∈ Q, the anonymising
server (anonymiser) would remove the user’s identity and replace
his location with a larger area to protect his query privacy. We only
considerspatial generalisationin this paper as in LBSs users re-
quire instant responses. Let2L be the power set ofL and then we
useR ⊂ 2L to denote the set of all possible generalised regions.
The corresponding output of the anonymising server can be repre-
sented as〈r, t, q〉, wherer ∈ R andwhereis(u, t) ∈ r. Suppose
the set of generalised queriesQ′ ⊂ R × T × Q. The generali-
sation algorithm of the aonymiser can be represented as a function
f : Q → Q′. For instance, we havef(〈u,whereis(u, t), t, q〉) =
〈r, t, q〉.

The generalisation algorithm used by the anonymiser to com-
pute generalised queries makes use of current user spatial distri-
bution and might also take users’ privacy requirements as part of
its input. In our framework, a privacy requirement is represented
by a pair – a chosen privacy metric by the issuer and the corre-
sponding specified value (see more discussion in Sect. 4 and 5).
We usereq(〈u,whereis(u, t), t, q〉) to denoteu’s requirement on
query〈u,whereis(u, t), t, q〉.

We usep(uj |qi) to denote the conditional probability of useruj

to be the issuer when queryqi is observed, and
∑

uj∈U
p(uj |qi) =

1. Variations of users’ profiles along with time and positions are
out of the scope of this paper, and considered as part of our future
work. For the sake of simplicity, in the following discussion we
use a probability matrixM, where elementmij = p(uj | qi). We
useM(qi) to denote thei-th row ofM, the probability distribution
over users to issue the queryqi.

Let uℓ : R × T → 2U be the function mapping a region to
the set of users located in it. In other words,uℓ(r, t) = {u ∈
U | whereis(u, t) ∈ r}. Given a generalised query〈r, t, q〉, user
u’s probability to be the issuer among the users in regionr can be
computed as follows:

p(u | 〈r, t, q〉) = p(u |q)
∑

u′∈uℓ(r,t) p(u′ |q)

We summarise the list of important notations in Tab. 1.

3.2 The attacker model
Through generalising locations, users’ query privacy is protected

by preventing attackers from re-identifying issuers with high prob-
abilities. Most approaches in the literature (e.g., see [20]) assume
that attackers have a global view of users’ real-time spatial distri-
bution (Assumption 1). This assumption is conservative but possi-



ble in real scenarios. There are many ways to gather users’ real-
time locations. For instance, most people send queries from some
fixed positions, e.g., office and home. Referring to address books
or other public database, the potential issuers can be identified. We
also adopt this assumption in this paper. It is also natural to assume
that the attacker controls the communication channel between the
anonymiser and the LBS server (see the second part of Fig. 1) (As-
sumption 2). This allows the attacker to acquire any generalised
queries forwarded by the anonymiser. Meantime, we assume the
anonymiser is trustworthy and users have a secure connection with
the anonymiser through SSL or other techniques (see the first part
of Fig. 1). The generalisation algorithm used by the anonymiser is
assumed to be public (Assumption 3). This leads to an additional re-
quirement. For each user in an anonymity set, a plausible algorithm
must compute the same area as the one computed for the issuer.

Different from attackers in the literature (e.g., [20, 32, 30]), the
attacker in our model has access to an a priori distribution over
users with regards to issuing queries (i.e., the probability matrix
M) (Assumption 4). Thus, instead of assuming a uniform distri-
bution among users for issuing a particular query, the attacker has
a precise probabilistic distribution by exploring user profiles ob-
tained, e.g., by available public information [17, 26].

Users may have different privacy requirements for queries de-
pendent on time, positions and sensitivity of queries, which is usu-
ally a subjective decision. So we assume that attackers have no
knowledge about this requirement decision process (Assumption 5).
However, attackers can learn users’ privacy requirements after ob-
serving the generalised queries by the anonymiser (Assumption 6).
This is realistic as from the features of the generalised queries, at-
tackers can infer the corresponding privacy requirements.

Last but not least, we assume that the attacker cannot link any
two queries from the same user (Assumption 7). All queries are
independent from the attacker’s perspectives. This assumption is
strong but still realistic as users tend to issue occasional queries and
an issuer’s identity is always removed by the anonymiser before
forwarding the query to the LBSP.

3.3 Deriving probabilities from user profiles
User profiles can be associated with a set of attributes which can

be divided into several categories, e.g., contact attributes (zip codes,
addresses), descriptive attributes (age, nationalities, jobs) and pref-
erence attributes (hobbies, moving patterns) [26]. The values of
these attributes can be discretised into a categorical form. For in-
stance, the value of a home address can be represented by the cor-
responding zone which it lies in. In this way, each attribute has a
finite number of candidate values.

Let φu = 〈a1, . . . , am〉 be the profile of useru, wherem is
the number of attributes. Note thatai is represented by a string of
bits, each of which denotes a possible value of the corresponding
attribute. We use|ai |to denote the length ofai andφ̂u to represent
the concatenation of the strings of all attributes. Moreover, letφ̂u[j]

be thej-th bit of φ̂u. As the values in the domain of any attribute
are disjoint, there is at most one bit to be1 for any ai (perhaps
all zeros because of lack of information). Consider a user profile
consisting of two attributes – salary and gender. As the domain of
gender consists of two values –maleandfemalewe use two bits to
represent them,01 and10, respectively. We divide the numerical
values of salary into three intervals – ‘≤ 1000’, ‘ 1000−5000’ and
‘≥ 5000’. Then user profileφu = 〈001, 01〉 means useru is male
and has a salary more than 5000, andφ̂u = 00101.

Each queryq ∈ Q must have a subset of correlated attributes
that can be used to deduce the issuer. Furthermore, each value of a
relevant attribute has a different weight measuring the probability

that the user issues the given query when having the attribute value.
For instance, for the query asking for expensive hotels, the associ-
ated attributes should include salary, jobs and age while gender is
irrelevant. Among them, a salary is much more relevant than age
and moreover, a salary of more than 5000 euros is much more im-
portant than one of less than 1000 euros. Therefore, we introduce a
relevance vector to express the relation between attributes’ values
and queries. LetW (q) = 〈w1, . . . , wn〉 be the relevance vector of
queryq wheren =

∑

i≤m |ai |.
For anyu ∈ U andq ∈ Q, letV(u, q) = ∑

i≤n
wi · φ̂u[i] be the

relevance of useru’s profile to queryq. Subsequently, we have:

p(u |q) = V(u, q)
∑

u′∈U
V(u′, q)

4. QUERY PRIVACY METRICS
We propose a number of new metrics (except fork-anonymity)

to measure query privacy taking into account user profiles and for-
mally define them using the framework discussed in Sect. 3.

k-anonymity. In k-anonymity, a natural numberk is taken as the
metric of users’ query privacy, which is the size of the anonymity
set of the issuer. This means, for a given query, there are at least
k users in the generalised region including the issuer. Moreover,
in order to prevent attacks based on public generalisation algo-
rithms [20], any user in the anonymity set must have the same gen-
eralised region for the same query. Similar to the definitions in the
literature [27, 20],k-anonymity can be formally defined as follows:

DEFINITION 1. Let 〈u,whereis(u, t), t, q〉 ∈ Q be a query
and 〈r, t, q〉 ∈ Q′ the corresponding generalised query. The is-
sueru is k-anonymousif

| {u′ ∈ U | whereis(u′, t) ∈ r ∧
f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉} | ≥ k

Note that in Def. 1, as all users in the anonymity set taker as
the generalised region for the queryq at time t, they are allk-
anonymous. The following proposed new anonymity metrics enjoy
the same property.

k-approximate beyond suspicion.As discussed in Sect. 1, when
user profiles are considered as part of the attacker’s knowledge, the
size of an anonymity setk cannot be a fair metric for query privacy.
Especially for users with high a priori probabilities, they can easily
be chosen as candidates of issuers. Inspired by anonymity degrees
defined by Reiter and Rubin [22], we come up with the following
new privacy metrics.

Beyond suspicionmeans from the attacker’s viewpoint the issuer
cannot be more likely than other potential users in the anonymity
set to send the query. In other words, users in the anonymity set
have the same probability to perform an action. In the context of
LBSs, we need to find a set of users in which users are the same
likely to send a given query. This set is taken as the anonymity
set whose size determines the degree of users’ privacy as ink-
anonymity. LetAS : Q′ → 2U denote the anonymity set of a
generalised query. An issuer of query〈u,whereis(u, t), t, q〉 is
beyond suspicious with respect to the corresponding generalised
query〈r, t, q〉 if and only if ∀u′ ∈ AS(〈r, t, q〉),

p(u | 〈r, t, q〉) = p(u′ | 〈r, t, q〉)
In practice, the number of users with the same probability to send a
query is usually small, which leads to a large generalised area with
a fixedk. So we relax the requirement to compute an anonymity
set consisting of users withsimilar probabilitiesinstead of the ex-
act same probability. Let‖p1, p2‖ denote the difference between



two probabilities andǫ be the pre-defined parameter describing the
largest difference allowed between similar probabilities.

DEFINITION 2. Let 〈u,whereis(u, t), t, q〉 ∈ Q be a query
and 〈r, t, q〉 ∈ Q′ the corresponding generalised query. The is-
sueru is k-approximate beyond suspiciousif

| {u′ ∈ AS(〈r, t, q〉) | ‖p(u | 〈r, t, q〉), p(u′ | 〈r, t, q〉)‖ < ǫ ∧
f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉} | ≥ k.

Different fromk-anonymity, the set of users that arek-approximate
beyond suspicious is computed based on the spatial distribution of
users with similar probabilities rather than the original distribution
involving all users. The users in an anonymity set have similar
probabilities and the size of the anonymity set is larger thank.
Therefore,k-approximate beyond suspicion can be seen as a gen-
eralised version ofk-anonymity. If for a specific queryq ∈ Q,
any two users have the same probability to issue it (i.e.,M(q) is
a uniform distribution), thenk-approximate beyond suspicion is
equivalent tok-anonymity.

THEOREM 1. For a given queryq ∈ Q, if for any two users
u1, u2 ∈ U we havep(u1 | q) = p(u2 | q), thenk-anonymity is
k-approximate beyond suspicion with respect toq.

For short, we usek-ABS to denotek-approximate beyond suspi-
cion in the following discussion.

User specified innocence.Two weaker anonymity metrics,proba-
ble innocenceandpossible innocence, are proposed by Reiter and
Rubin as well [22]. An issuer is probably innocent if from the at-
tacker’s view the issuer appears no more likely to be the originator
of the query. In other words, the probability of each user in the
anonymity set to be issuer should be less than 50%. Meantime,
possible innocence requires the attacker not be able to identify the
issuer with a non-trivial probability. We extend these two notions
into a metric with user-specified probabilities (instead of restrict-
ing to 50% or non-trivial probability which is not clearly defined).
We call the new anonymity metricuser specified innocencewhere
α ∈ [0, 1] is the specified probability given by the issuer.

DEFINITION 3. Letα ∈ [0, 1], 〈u,whereis(u, t), t, q〉 ∈ Q be
a query and〈r, t, q〉 ∈ Q′ the corresponding generalised query.
The issueru is α-user specified innocentif for all u′ ∈ uℓ(r, t),

p(u′ | 〈r, t, q〉) ≤ α ∧ f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉.
Recall thatuℓ(r, t) denotes the set of users in regionr at timet.

It is clear that the anonymity set consists of all users in the gener-
alised area. We abbreviateα-user specified innocence asα-USI.

Intuitively, for a query, an issuer isα-user specified innocent,
if the anonymiser generates the same region for any user in the
region with the same specified valueα. In other words, in the gen-
eralised region, the most probable user has a probability smaller
thanα from the attacker’s point of view. With this property,α-USI
can also be captured bymin-entropy, which is an instance of Rènyi
entropy [23] and is used to measure the uncertainty of theone-try
adversary who has exactly one chance to guess the originator in our
scenario. Obviously, the best strategy for the adversary is to choose
the one with the highest probability. Formally, themin-entropy
of a variableX is defined asH∞(X) = − logmaxx∈X p(x)
whereX is the domain ofX. Let U be the variable that stands
for the issuer and its domain isU . Then for query〈r, t, q〉, the min-
entropy of the attacker can be described asH∞(U | 〈r, t, q〉) =
− logmaxu∈uℓ(r,t) p(u | 〈r, t, q〉). It is maximised when the users
in regionr at timet follow a uniform distribution with regards to is-
suing queryq. It is easy to verify that if a generalised query〈r, t, q〉
guarantees the issuerα-user specified innocent, then it also ensures
that the corresponding min-entropy is bigger than− logα.

An entropy based metric. Serjantov and Danezis [25] define an
anonymity metric based on entropy and Díaz et al. [11] provide
a similar metric that is normalised by the number of users in the
anonymity set. The conceptentropyof a random variableX is de-
fined asH(X) = −∑

x∈X
p(x) · log p(x) whereX is the domain

(all possible values) ofX. In our context, entropy can also be used
to describe the attacker’s uncertainty to identify the issuer of a gen-
eralised query. Let variableU denote the issuer of query〈r, t, q〉.
Then the uncertainty of the attacker can be expressed as

H(U | 〈r, t, q〉) = −
∑

u′∈uℓ(r,t)

p(u′ | 〈r, t, q〉) · log p(u′ | 〈r, t, q〉).

Users can express their query privacy by specifying an entropy
value. For a given generalised query〈r, t, q〉 and a given valueβ,
we say the issuer is entropy based anonymous with respect to the
valueβ if all users in regionr can haver as the generalised region
when issuing the same query and the entropyH(U | 〈r, t, q〉) is not
smaller thanβ.

DEFINITION 4. Let β > 0, 〈u,whereis(u, t), t, q〉 ∈ Q be a
query and〈r, t, q〉 ∈ Q′ the corresponding generalised query. The
issueru is β-entropy based anonymousif for all u′ ∈ uℓ(r, t),

H(U | 〈r, t, q〉) ≥ β ∧ f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉.

For short, we callβ-entropy based anonymityβ-EBA.

A mutual information based metric. The notionmutual infor-
mation in information theory quantifies the mutual dependence of
two random variables. It is usually denoted asI(X;Y ) and com-
puted as the differenceH(X) − H(X | Y ) whereH(X | Y ) is
the conditional entropy ofX when knowingY . In the context
of query privacy, we can use mutual information to evaluate the
uncertainty reduced after revealing the generalised query. Before
the generalised query is known to the attcker, he only knows that
the queryq can be issued by a userU in U with the probability
p(U | q). So the uncertainty of the attacker can be described as
entropyH(U | q). After the attacker learns the generalised query,
the uncertainty on the issuer can be described as the conditional en-
tropyH(U | 〈r, t, q〉). Therefore, for a given queryq the amount of
information gained by the attacker after observing the correspond-
ing generalised query can be computed as

I(U |q; 〈r, t, q〉) = H(U |q)−H(U | 〈r, t, q〉)
= −∑

u′∈U
p(u′ |q) · log p(u′ |q)

+
∑

u′∈uℓ(r,t) p(u
′ | 〈r, t, q〉)·

log p(u′ | 〈r, t, q〉).
Similar to β-EBA, the issuer of query〈r, t, q〉 is γ-mutual infor-
mation based anonymous ifI(U | q; 〈r, t, q〉) is less thanγ and all
users in regionr have it as the generalised region when issuingq.

DEFINITION 5. Let γ > 0, 〈u,whereis(u, t), t, q〉 ∈ Q be a
query and〈r, t, q〉 ∈ Q′ the corresponding generalised query. The
issueru is γ-mutual information based anonymousif for all u′ ∈
uℓ(r, t),

I(U |q; 〈r, t, q〉) ≤ γ ∧ f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉

For short, we callγ-mutual information based anonymityγ-MIA.

5. GENERALISATION ALGORITHMS
In this section, we develop generalisation (or spatial cloaking)

algorithms to compute regions satisfying users’ privacy require-
ments in terms of the metrics presented in Sect. 4. As to find a
region satisfyingk-ABS is similar to compute a region satisfying
k-anonymity on a given spatial distribution, we design an algorithm



for k-ABS by combining the algorithmgrid [20] with the cluster-
ing algorithmK-Means [19]. For the other metrics, we design a
uniform algorithm based ondichotomicPoints [20] with a newly
developed functionupdateAS to update the intermediate regions.

5.1 An algorithm for k-ABS
To find an area that satisfiesk-ABS, we have two main steps. The

first is to obtain the spatial distribution of users who have similar
probabilities to the issuer. The second step is to run ak-anonymity
generalisation algorithm to find a region with at leastk users based
on the distribution computed at the first step.

The task of the first step can be transformed to the clustering
problem. Givenq ∈ Q, we need to cluster the elements inM(q)
such that the users with similar probabilities are grouped together.
K-Means is the simplest learning algorithm to solve the cluster-
ing problem [19]. The number of clusters is fixed a priori. The
main idea is to defineK centroids, one for each cluster. In our
algorithm, theK centroids are chosen uniformly in[0, 1]. Then
the points (the elements inM(q) in our case) are associated to the
nearest centroid, resulting inK clusters. The centers of theseK
clusters are updated as the new centroids. Afterwards, all points
need to be binded to the current centroids. This process continues
until the centroids remain unchanged between two consecutive it-
erations. In our case,K is chosen and fixed by the anonymiser. In
fact, it defines ‘similarity’ in the definition ofk-ABS in Sect. 4, i.e.,
ǫ. The largerK is, the smallerǫ becomes.

For the second step, we use algorithmgrid by Mascetti et al. [20]
as it generates more regular regions with smaller area compared
to others. A two-dimensional space is partitioned into a grid with
⌊N

k
⌋ cells each of which contains at leastk users, whereN denotes

the number of users inU . A user’s position is represented by two
dimensionsx andy. The algorithmgrid consists of two steps. First,
users are ordered based on dimensionx, and then ony. The ordered

users are divided into⌊
√

N
k
⌋ blocks of consecutive users. The

block with the issuer enters the second step. The users in this block
are then ordered first based on dimensiony and thenx. These users

are also partitioned into⌊
√

N
k
⌋ blocks. Then the block with the

issuer is returned as the anonymity set. Details of thegrid algorithm
can be found in [20].

Alg. 1 describes our algorithm fork-ABS. In general, it takes
the user requirementk and the number of clustersK defined by the
anonymiser as inputs and gives the generalised region as output.
FunctionK-Means returns the cluster of users with similar proba-
bilities to that ofu with respect to queryq. Then the functiongrid
outputs a subset ofsim_users with at leastk users who are located
in the rectangular region. The generalised region is computed by
functionregion.

Algorithm 1 A generalisation algorithm fork-ABS.

1: FUNCTION:kABS
2: INPUT: 〈u,whereis(u, t), t, q〉, dis(t),M(q),K, k
3: OUTPUT: A regionr that satisfiesk-ABS
4:
5: sim_users :=K-Means(u, q,K,M(q));
6: AS := grid(sim_users, dis(t), k);
7: r := region(AS)

Note that the clustering algorithm does not have to run each time
when there is a query coming to the anoymiser. As long as the spa-
tial distribution remains static or does not have big changes, for the
queries received during this period, the anonymiser just executes

the clustering algorithm once and returns the cluster containing the
issuer as output of functionK-Means directly.

In Alg. 1, K-Means can terminate in timeO(NK+1 logN)where
N is the number of users [1]. The complexity ofgrid algorithm is
O(

√
kN log

√
kN) [20]. Therefore, in general, the complexity of

Alg. 1 is O(NK+1 logN +
√
kN log

√
kN). The correctness of

Alg. 2 is stated as Thm. 2.

THEOREM 2. For any〈u, ℓ, t, q〉 ∈ Q, Alg. 1 computes a gen-
eralised region in which the issueru is k-approximate beyond sus-
picious.

5.2 An algorithm for α-USI, β-EBA, γ-MIA
For privacy metricsα-USI,β-EBA, andγ-MIA, we design a uni-

form algorithm where users can specify which metric to use. Re-
call that ingrid, the number of cells is pre-determined byk and the
number of users. Thus it is not suitable to perform area generalisa-
tion for metrics without a predefined numberk. Instead we use the
algorithmdichotomicPoints to achieve our design goal.

The execution ofdichotomicPoints involves multiple iterations
in each of which users are split into two subsets. Similar togrid,
positions are represented in two dimensionsx andy, and users are
also ordered based on their positions. However, different fromgrid
the orders between axises are determined by the shape of interme-
diate regions rather than fixed beforehand. Specifically, if a region
has a longer projection on dimensionx, thenx is used as the first
order to sort the users. Otherwise,y is used as the first order. Users
are then ordered based on the values of their positions on the first
order axis and then the second order. Subsequently, users are par-
titioned into two blocks with the same or similar number of users
along the first order axis. The block containing the issuer is taken
into the next iteration. This process is repeated until any of the two
blocks contains less than2k users. This termination criterion is to
ensure security against the outlier problem fork-anonymity (see
Sect. 2).

However, in our uniform algorithm, instead of checking the num-
ber of users, we takes the satisfaction of users’ privacy requirement
as the termination criterion, e.g., if all users in the two blocks have a
probability smaller thanα. When issuing a queryq ∈ Q, the issuer
u’s privacy requirementreq(〈u,whereis(u, t), t, q〉) consists of a
chosen metric (i.e., USI, EBA, MIA) and its corresponding value
(i.e.,α, β, γ). For instance, if a user wants to hide in a set of users
with a probability smaller than 20% for issuing a query, then his
privacy requirement is specified as (USI,20%).

In our uniform algorithm, after the determination of the first or-
der axis, we call functionupdateAS. It takes a set of users and
partitions them into two subsets along the first order axis, both
of which should satisfy the issuer’s privacy requirement andup-
dateAS returns the one containing the issuer as the updated anonymity
set. When it is not possible to partition users along the first order
axis, i.e., one of the two blocks generatlised by any partition fails
the issuer’s requirement, the second order axis will be tried. If both
tries have failed,updateAS simply returns the original set, which
means no possible partition can be made with respect to the privacy
requirement. In this situation, the whole algorithm terminates. Oth-
erwise, the new set of users returned byupdate AS is taken into
the next iteration.

Our uniform algorithm is described in Alg. 2. The boolean vari-
ablecont is used to decide whether the algorithm should continue.
It is set tofalse when the set of users inAS does not satisfy the
requirement (line 6) or whenAS cannot be partitioned furthermore
(line 26). In both cases, the algorithm terminates. The anonymity
setAS is represented as a two-dimensional array. After ordering
users inAS, AS[i] consists of all users whose positions have the



Algorithm 2 The uniform generalisation algorithm forα-USI, β-
EBA, andγ-MIA.

1: FUNCTION:uniformDP
2: INPUT: qu=〈u,whereis(u, t), t, q〉, req(qu), dis(t), M(q)
3: OUTPUT: Regionr that satisfiesreq(qu)
4:
5: AS := U ;
6: cont := check(AS, req(u));
7: while cont do
8: minx := minu′∈AS whereis(u′).x;
9: miny := minu′∈AS whereis(u′).y;

10: maxx := maxu′∈AS whereis(u′).x;
11: maxy := maxu′∈AS whereis(u′).y;
12: if (maxx −minx) ≥ (maxy −minx) then
13: first := x;
14: second := y;
15: else
16: first := y;
17: second := x;
18: end if
19: AS ′ = updateAS(AS , req(qu),first , dis(t),M(q));
20: if AS ′ = AS then
21: AS ′=updateAS(AS , req(qu), second , dis(t),M(q));
22: end if
23: if AS ′ 6= AS then
24: cont := true;
25: else
26: cont := false;
27: end if
28: end while
29: return region(AS );

same value on the first order axis. We uselen(order) to denote
the size ofAS in the dimension denoted byorder. For instance,
in Fig. 2(a), axisx is the first order axis andAS[3] has three users
with the samex values. Moreover,len(first) is 6.

The functionupdateAS shown in Alg. 3 is critical for our al-
gorithm uniformDP. It takes as input a set of users and outputs
a subset that satisfies the issuer’s privacy requirementreq(qu). It
first orders the users and then divides them into two subsets with
the same number of users along the first order axis (indicated by
the variableorder). This operation is implemented by the function
mid(AS, order) which returns the middle user’s index in the first
dimension ofAS. If both of the two subsets satisfyreq(qu), then
the one containing the issuer is returned (implemented by func-
tion part(i, u)). Otherwise, an iterative process is started. Injth
iteration, the users are partitioned into two sets one of which con-
tains the users inAS[1], . . . , AS[j] (denoted byleft(j)) and the
other contains the rest (denoted byright(j)). These two sets are
checked against the privacy requirementreq(qu). If both left(j)
andright(j) satisfyreq(qu), the one with issueru is returned by
part(j, u). If there are no partitions feasible afterlen(order) itera-
tions, the original set of users is returned.

An example execution of Alg. 2 is shown in Fig. 2. The issuer is
represented as a black dot. In Fig. 2(a) the users are first partitioned
into two parts from the middle. Assume both parts satisfyreq(qu),
so the setb1 is returned as the anonymity setAS for the next itera-
tion. As b1’s projection on axisy is longer, the first order is set to
axisy (Fig. 2(b)). If after dividing the users from the middle, the
setb2 does not satisfyreq(qu). Thus, the users are partitioned from
AS[1] toAS[4] (Fig. 2(c)). Suppose no partitions are feasible. The

Algorithm 3 The functionupdateAS.

1: FUNCTION:updateAS
2: INPUT:AS, req(qu), order , dis(t),M(q)
3: OUTPUT:AS′ ⊆ AS that containsu and satisfiesreq(qu)
4:
5: AS := reorder(AS, order);
6: i := mid(AS, order);
7: if check(left(i), req(qu)) ∧ check(right(i), req(qu)) then
8: AS := part(i, u);
9: else

10: found := false;
11: j := 0;
12: while j ≤ len(order) ∧ ¬found do
13: if check(left(j), req(qu)) ∧ check(right(j), req(qu))

then
14: found := true;
15: AS := part(j, u);
16: else
17: j := j + 1;
18: end if
19: end while
20: end if
21: return AS;

first order axis is then switched to axisx. FunctionupdateAS is
called again to find a partition along axisx (Fig. 2(d)).

We can see Alg. 2 iterates for a number of times. In each it-
eration, some users are removed from the previous anonymity set.
Operations such as partition and requirement check are time-linear
in the size of the anonymity set. The number of iterations is loga-
rithmic in the number of the users. So in the worst case, the time
complexity of Alg. 2 isO(N logN), whereN denotes the number
of all users inU . The correctness of Alg. 2 is stated as Thm. 3.

THEOREM 3. For any query〈u, ℓ, t, q〉, Alg. 2 computes a gen-
eralised region that satisfies the issueru’s privacy requirement
req(〈u,whereis(u, t), t, q〉).
Detailed proof of the theorem is given in the appendix.

6. EXPERIMENTAL RESULTS
We have performed an extensive experimental evaluation of the

metrics presented in Sect. 4 using the algorithms in Sect. 5. The ex-
periments are based on a dataset with 10,000 users’ locations gen-
erated by the moving object generator developed by Brinkhoff [4].
Users’ locations are scattered in the city of Oldenburg (Germany).
As we focus on evaluating our generalisation algorithms, we ran-
domly assign a priori probabilities to users although it is possible
to generate user profiles as in [26] and calculate the probabilities
using our methodology described in Sect. 3.

We implemented the algorithms using Java and experiments are
run on a Linux laptop with 2.67Ghz Intel Core(TM) and 4GB mem-
ory. The results discussed in this section are obtained by taking the
average of 100 simulations of the corresponding algorithms.

Through experiments, for all the proposed metrics we present
the impact of the user specified parameters to the average area of
generalised regions, in order to help users determine the right trade-
off between privacy protection and the quality of services. More-
over, we illustrate the features of different metrics. In particular,
we show thatk-ABS gives a better protection thank-anonymity to
users, who are potentially more likely to issue a query that others.
The other metricsα-USI, β-EBA, γ-MIA are insensitive to users’
a priori probabilities. Last, we show our algorithms are efficient
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Figure 2: An example execution of our algorithmuniformDP

enough for practical applications which require real-time response
by evaluating the average processing time.

6.1 k-ABS
We first address the comparison betweenk-anonymity andk-

ABS and discuss the impact of the parameterK used in the clus-
tering algorithmK-Means (see Alg. 1). In Fig. 3 we show how
a user’s a posteriori probability (p(u | 〈r, t, q〉) changes with with
respect tok andK. We have selected a user with a relatively high a
priori probability so as to compare the performance of both metrics
in protecting users who are more likely to issue the query.

First, the user’s a posteriori probability decreases ask increases.
This is because largerk means more users are in the generalised
region. Second, for a givenk, the issuer’s a posteriori probability is
normally larger than1

k
whenk-anonymity is used, but closer to1

k

whenk-ABS is adopted. This is because that in an anonymity set
of k-anonymity, uses have larger differences among their a priori
probabilities than the users in an anonymity ofk-ABS. Third, in
k-ABS, for a givenk, the issuer’s a posteriori probability is much
closer to 1

k
when more clusters are divided (i.e., biggerK). This

can be explained by the observation that more clusters make the
users in a cluster containing the issuer become more probable to be
the same likely to issue the query.

Fig. 4 shows the average area of generalised regions by Alg. 1.
In general, the area becomes larger whenk increases. We can also
observe that compared tok-anonymity,k-ABS has larger regions
for a given value ofk. Moreover, whenk is fixed the area gets
larger whenK increases. These observations are all due to the fact
that more clusters result in fewer users in each cluster, which in
turn leads to larger regions to coverk users.

According to the above observations, the anonymiser can deter-
mine an appropriate value ofK based on users’ a priori distribution
for a query (i.e.M(q)) in order to balance users’ query privacy and
quality of service (smaller area, better quality).

6.2 α-USI
An issuer satisfiesα-USI if from the attacker’s view each user in

the generalised region has a probability smaller than the specified
valueα to be the issuer.
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In Fig. 5, we show that the average a posteriori probabilities of is-
suers with different a priori probabilities (indicated by lines marked
‘high’, ‘medium’ and ‘low’) and different specified values ofα.
We use a reference line to indicate the difference between users’
requirement (α) and the result of Alg. 2. First, we find that users’
a posteriori probabilities are always smaller thanα, which shows
the correctness of our algorithm. Second, for users with relatively
high a priori probabilities, their a posteriori probabilities are closer
to their requirements in terms ofα. Meanwhile, for the users with
low a priori probabilities, the value ofα does not have a big influ-
ence on users’ a posteriori probabilities. This can be explained by
the definition ofα-USI. A generalised region has to ensure that all
users within it have a posteriori probabilities smaller thanα (this is
required to fix the outlier problem).

Fig. 6 shows changes of generalised regions’ area along with
α and the impact of users’ a priori probabilities. The generalised
regions become smaller asα increases. As we can see in Alg. 2,
issuers’ positions andα determine the generalised regions. Users’ a
priori probabilities have little impact on the generalisation process.
This is also confirmed by experiments. In Fig. 6 users with different
levels of a priori probabilities have regions with similar sizes.

Usually, for a given query users have an approximate estima-
tion of their a priori probabilities compared to others, e.g., high or
low. The above analysis enables users to estimate their a posteri-
ori probabilities with regards to different values ofα. This in turn
helps them to choose an appropirate value forα to balance their
query privacy and quality of service.
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6.3 β-EBA and γ-MIA
A generalised region that satisfiesβ-EBA ensures that the en-

tropy over users in the region is larger thanβ, whileγ-MIA ensures
that the amount of uncertainty reduced is less thanγ.

In Fig. 7 and Fig. 9, we show that the entropies and mutual infor-
mation corresponding to the generalised regions by our algorithm
satisfy the definitions ofβ-EBA andγ-MIA. We can observe that
users’ a priori probabilities do not have impact on the outputs – the
two lines for users with high and low a priori probabilities almost
coincide. Similar toα-USI, this is because a generalised region is
determined by the valuesβ or γ and issuers’ positions rather than
their a priori probabilities. The values of entropy (resp. mutual
information) change sharply whenβ (resp. γ) is getting close to
integers, this is due to the nature of entropy. Similarly, we show
how the average area of generalised regions changes along withβ
andγ in Fig. 8 and Fig. 10, respectively – the area usually gets
doubled whenβ andγ are increased by one.

6.4 Performance analysis
We illustrate the performance of Alg. 1 through Fig. 12. Al-

though the clustering algorithm needs to run only once for a spatial
distribution for a givenK, we execute it for each query instead
in order to test the performance in the worst case when there hap-
pens to be only one query issued. As algorithmK-Means has a
complexity depending onK, for a givenk the computation time
increases whenK becomes larger. WhenK = 5, the average
computation time is about 140ms while it is around 250ms when
K = 20.
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Fig. 11 shows the average computation time of Alg. 2 (forα-
USI andβ-EBA) andgrid (for k-anonymity). In this figure, we use
a normalised valuenorm to compare the performance for differ-
ent metrics:norm = k for k-anonymity, whilenorm = 1/α for
α-USI andnorm = 2β for β-EBA, respectively. The computa-
tion time ofβ-EBA (11 – 12ms) is a bit larger thanα-USI (about
10ms) because computing entropy is a bit more complex. Further-
more, asnorm increases, more time is needed forβ-EBA. This is
also determined by Alg. 3, where largerk leads to more time to
traverse the region in order to find a possible partition. The imple-
mentation forγ-MIA is based on the calculation of entropies, so in
general the computation time ofγ-MIA is almost same asβ-EBA.
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We can observe that the computation time of algorithmgrid is lin-
ear withk (seek-anonymity in Fig. 11), which confirms the results
in [20]. However, due to the complexity of the clustering algorithm
K-Means used in Alg. 1, the impact ofk is not obvious in Fig. 12.

There exist a few ways to improve the efficiency of our imple-
mentations such as using a better data structure and reducing re-
dundant computation. With powerful servers deployed in practice,
our roposed generalisation algorithms are efficient enough to han-
dle concurrent queries and give real-time responses.
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7. CONCLUSION
In this paper, we consider a powerful attacker who can obtain

user profiles and has access to users’ real-time positions in the con-
text of LBSs. Assuming this stronger attacker model, we propose
new metrics to correctly measure users’ query privacy in LBSs,
includingk-ABS,α-USI,β-EBA andγ-MIA. For information the-
ory based metrics, the determination of users’ specified values is
not intuitive. However, users can use other metrics as references.
For instance,k-anonymity corresponds tolog k-EBA when the dis-
tribution for users to issue a query is (close to) uniform. Spacial
generalisation algorithms are developed to compute regions satis-
fying user’s privacy requirements specified in the proposed metrics.
Extensive experiments show our metrics are effective in balancing
privacy and quality of service in LBSs and the algorithms are effi-
cient to meet the requirement of real-time responses.

Our metrics are not exhaustive, and there exist other ways to
express query privacy. For instance, we can use min-entropy to
express information leakage [31] in a way analogous to mutual in-
formation: I∞(X;Y ) = H∞(X) − H∞(X | Y ). Intuitively, it
measure the amount of min-entropy reduced after the attacker has
observed a generalised query. It is very interesting to study differ-
ential privacy [12] to see how it can be adopted for LBS scenarios.

In future, we want to develop an application for an LBS, making
use of the proposed metrics to protect users’ query privacy. This
can lead us to a better understanding of privacy challenges in more
realistic situations. The implementation of our algorithms can also
be improved as well, e.g., using a better clustering algorithm for
kABS. Another interesting direction is to study a more stronger
attacker model, where the attacker, for instance, can have access to
mobility patterns of users.
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APPENDIX

A. PROOF OF THM. 3

PROOF. By Def. 3, Def. 4 and Def. 5, Alg. 2 computes a re-
gion r for a query〈u,whereis(u, t), t, q〉 that satisfies a constraint
related to the issuer’s a posteriori probability, entropy, or mutual
information. Furthermore, for anyu′ ∈ uℓ(r), the algorithm com-
putes the same region. We takeα-USI as an example to show the
correctness of our algorithm and the proofs of the other two are
analogous.

By Def. 3, we have to prove (1) the a posteriori probability of
useru is smaller thanα, i.e., p(u | 〈r, t, q〉) ≤ α; (2) for any
u′ ∈ uℓ(r), f(〈u′,whereis(u′, t), t, q〉) = 〈r, t, q〉.

(1) At the line 5 of Alg. 2, we setAS to the original user setU
and the algorithm continues only ifU satisfies the issuer’s require-
mentreq(〈u,whereisu, t, q〉). Otherwise, it is impossible to return
a region satisfying the requirement. The setAS is only reassigned
to another set when a partition is made (line 8 or line 15 in Alg. 3).
The two sets by the partition satisfy the requirement and the one
containing the issuer is assigned toAS . Thus, it is guaranteed that
the final regionr ensuresp(u | 〈r, t, q〉) ≤ α.

(2) Letu′ be any user in the generalised regionr of Alg. 2. Let
AS j andAS ′

j be the values ofAS in thejth iteration of Alg. 2 of
u andu′, respectively. We show thatASj = AS ′ by induction on
the number of iterations, i.e.j.



INDUCTION BASIS: Initially, we supposeU meets the require-
ment. Then we haveAS1 = AS ′

1.
INDUCTION STEP: Assume atjth iterationAS j = AS ′

j . We
have to show that the algorithm either terminates withAS j and
AS ′

j , or enter the next iteration withAS j+1 = AS ′
j+1. The

equality thatAS j = AS ′
j is followed by thatmid(AS j , order) =

mid(AS ′
j , order). There are three possible executions.

Case 1: ifleft(i) andright(i) of AS j andAS ′
j satisfy the

requirements (line 7 of Alg. 3), the part containing the issuer is
returned. ThusAS j+1 containsu as well as all other users inuℓ(r),
includingu′. Thus,AS j+1 = AS ′

j+1.
Case 2: if the check at line 7 of Alg. 3 fails, then the algorithm

switches to find from the beginning the first feasible partition. Sup-
pose the partition is made at the positionx for AS j . Thenx is also
the right position forAS ′

j asAS j = AS ′
j . Because of the similar

reason in the previous possible execution, the same subset is set to
AS j+1 andAS ′

j+1. Thus,AS j+1 = AS ′
j+1.

Case 3: if there are no possible partitions, Alg. 3 returns
AS j+1 andAS ′

j+1 in both cases. Then the first order is changed
and Alg. 3 is called again. If one of the first two execution is taken,
with the analysis above, we haveAS j+1 = AS ′

j+1. Otherwise,
Alg. 2 terminates withregion(AS j) and region(AS ′

j) which are
equal.


