Noname manuscript No.
(will be inserted by the editor)

Protecting Query Privacy in Location-based Services*

Xihui Chen - Jun Pang

Received: date / Accepted: date

Abstract The popularity of location-based services (LBSs) leads to severe concerns on
users’ privacy. With the fast growth of Internet applications such as online social networks,
more user information becomes available to the attackers, which allows them to construct
new contextual information. This gives rise to new challenges for user privacy protection
and often requires improvements on the existing privacy-preserving methods.

In this paper, we classify contextual information related to LBS query privacy and focus
on two types of contexts — user profiles and query dependency: user profiles have not been
deeply studied in LBS query privacy protection, while we are the first to show the impact of
query dependency on users’ query privacy. More specifically, we present a general frame-
work to enable the attackers to compute a distribution on users with respect to issuing an
observed request. The framework can model attackers with different contextual information.
We take user profiles and query dependency as examples to illustrate the implementation of
the framework and their impact on users’ query privacy. Our framework subsequently allows
us to show the insufficiency of existing query privacy metrics, e.g., k-anonymity, and pro-
pose several new metrics. In the end, we develop new generalisation algorithms to compute
regions satisfying users’ privacy requirements expressed in these metrics. By experiments,
our metrics and algorithms are shown to be effective and efficient for practical usage.

Keywords Location-based services - query privacy - anonymity - measurement

* This article is a revised and extended version of our two conference papers [7,8].

Xihui Chen is supported by an AFR PhD grant from the National Research Fund, Luxembourg.

X. Chen

Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg

6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
Tel.: +352-4666445806

E-mail: xihui.chen@uni.lu

J. Pang (Corresponding author)

Faculty of Science, Technology and Communication
University of Luxembourg

6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
Tel.: +352-4666445625

E-mail: jun.pang @uni.lu

2 Xihui Chen, Jun Pang

1 Introduction

Location-based services (LBSs) are services customised according to users’ locations. In the
last fifteen years, LBSs have endured a great growth, especially after GPS-enabled devices
such as smartphones became popular. An LBS request contains the issuer’s location and a
query — the type of information of interest, for instance, ‘where the nearest gas stations are’.
In spite of the great convenience brought to users’ daily life, LBSs lead to severe privacy
concerns especially in cases where LBS providers are not considered trustworthy and share
users’ request with the attackers. In the literature, two major privacy concerns in LBSs have
been studied — location privacy and query privacy [23] — in terms of the types of sensitive
information. The former is related to the disclosure of users’ exact locations while query
privacy, the focus of our paper, concerns the disclosure of queries.

The basic idea to protect users’ query privacy in LBSs is to break the link between
user identities and requests [4]. However, in the context of LBSs, only removing or re-
placing identities with pseudonyms has been proved insufficient. Locations contained in re-
quests can still reveal issuers’ identities, since attackers can acquire users’ locations through
a number of methods, e.g., triangulating mobile phones’ signals and localising users’ ac-
cess points to the Internet. In such cases, users’ spatial and temporal information serves as
quasi-identifiers. Anonymisation techniques from other research areas such as sensitive data
release [23] are thus introduced, including k-anonymity and its different extensions (e.g., ¢-
diversity and ¢-closeness [30,31]). Locations or time are replaced with regions or periods so
that a certain number of users (at least k£ for k-anonymity) share the same quasi-identifier
with the real issuer. The calculation of the regions or periods is termed as generalisation
or cloaking. Since in practice LBS providers are usually required to offer immediate re-
sponses, throughout the paper, temporal generalisation is out of the scope. We call a request
generalised if the location is generalised and the user identity is removed.

However, when the adversary has access to additional information, new privacy risks
will emerge. For instance, “outlier” attacks are found on some existing generalisation algo-
rithms when their implementation is made public [34]. Some users are eliminated from the
set of potential issuers as the algorithms cannot output the same generalised region to all of
them when they issue the request. Such information is classified as contextual information in
the literature and the privacy in LBSs related to contextual information has been recognised
as context-aware privacy [38]. Many types of contextual information have been studied so
far. For example, Shin et al. [43,44] study user profiles and propose metrics based on k-
anonymity by restricting levels of similarity among users in terms of their profiles. Mascetti
et al. [11] propose the concept of historical k-anonymity against attacks where the adversary
learns a trace of associated requests, e.g., issued by the same user.

Our motivations. The research on context-aware privacy usually follows a two-step ap-
proach. It starts with identifying a type of contextual information and demonstrating its
impact on users’ privacy and then it proceeds with developing specific privacy protection
mechanisms. There are a few restrictions with this line of research. First, the privacy con-
cern of contextual information is usually illustrated in a possibilistic way with a focus on
whether the impact exists or not. In spite of the claim that attackers can learn more infor-
mation about issuers, it is not clear what changes have been exactly made on the attackers’
knowledge by this piece of contextual information. Second, variants of contextual informa-
tion are studied independently. Although new privacy properties are defined and based on
them privacy protection mechanisms are proposed, they are only effective for the identified
contextual information. In particular, with the fast development of information and com-

Protecting Query Privacy in Location-based Services* 3

munication techniques, new contextual information will always be identified. We need a
framework to uniformly capture contextual information. Moreover, we need to define new
generic privacy metrics for users to express their privacy requirements precisely and design
(generalisation) algorithms to support such requirements.

Our contributions. We summarise our main contributions in this paper as follows to address
the above identified research questions:

1. We develop a formal framework for context-aware query privacy analysis. In particular,
this framework gives a probabilistic interpretation of the attacks on query privacy. With
this interpretation, we show how query privacy can be breached form the adversary’s
viewpoint. We take the contextual information — user profiles as an example to illustrate
the instantiation of our framework.

2. Within the formal framework, we propose a systematic classification of contextual in-
formation related to query privacy, according to whether the information changes over
time — static and dynamic.

3. Along with the development of LBSs, new contextual information can be collected and
abused by the attackers. We identify a new type of contextual information — query de-
pendency and study its impact on query privacy within our framework.

4. Our probabilistic framework allows us to define several new metrics to measure users’
query privacy from different perspectives. Moreover, these metrics enable users to ex-
press their privacy requirements effectively. In order to compute generalised regions
that satisfy users’ requirements, we propose new generalisation algorithms which are
efficient and can ensure a good quality of the responses from the LBS providers.

5. Through experiments, we show that our framework can significantly improve the adver-
sary’s analysis of users’ query privacy. In particular, we validate that query dependency
can effectively reduce the uncertainty of the adversary about the real issuer of a request.
Furthermore, we show that our generalisation algorithms are efficient to meet the de-
mands on real-time responses and can generate regions satisfying privacy requirements
when various contextual information are considered. We also show that the different
strengths of our metrics can help a user choose a right metric to achieve a balance be-
tween privacy and the quality of service delivered by different LBS providers.

Structure of the paper. In Section 2, we discuss the related work. We define our formal
framework and the adversary model in Section 3. In Section 4 we take user profiles as an
example of contextual information to show the application of our framework. We formally
study the impact of query dependency on query privacy in Section 5 by incorporating it into
our framework. Our query privacy metrics are defined in Section 6 and our new generalisa-
tion algorithms are presented in Section 7. Section 8 summarises the experimental results
and the corresponding analysis. We conclude the paper in Section 9.

2 Related Work

2.1 Query privacy and request generalisation

Protecting users’ query privacy is essentially to prevent the adversary from learning their
issued queries. A number of techniques have been proposed in the literature to protect query

privacy and they can be classified into three main groups — obfuscation [29,50], general-
isation [23,49] and cryptographic transformation [18]. The methods of obfuscation forge

4 Xihui Chen, Jun Pang

User Anonymiserer LBS provider

query, location,requirement query, generalized region

candidate results candidate results

Fig. 1: A centralised framework of LBSs.

dummy requests with different queries such that the real queries are hidden in the dummy
ones. The idea of generalisation is to hide the real issuer in a number of users such that
he is indistinguishable from the others from the view of the adversary. The concept of k-
anonymity has been extensively studied in this group. In the methods exploring crypto-
graphic transformation, users’ queries are encrypted and remain secret for LBS providers so
as to offer strong privacy protection. All of these methods introduce extra processing over-
head. For instance, Ghinita et al. [18] build a protocol based on computational private infor-
mation retrieval (cPIR) — their protocol requires one extra round of communication between
users and LBS providers and imposes additional computation overheads on both sides due
to the encryption of queries and decryption of responses. In this paper we focus on request
generalisation and use it to protect query privacy with respect to contextual information.

The notion of k-anonymity was originally proposed by Samarati and Sweeney in the
field of database privacy [40]. The idea of k-anonymity is to guarantee that a database en-
try’s identifier is indistinguishable from other k — 1 entries. However, this method does not
always work. For instance, the fact that an HIV carrier is hidden in k& carriers does not pro-
tect his infection of the virus. Further research has been done to fix this problem [30]. In the
context of privacy in LBSs, k-anonymity was first studied by Gruteser and Grunwald [23].
Its purpose is to compute a region containing at least other k—1 users (i.e., area generali-
sation) and replace the issuer’s location with it. Because of its simplicity, k-anonymity has
been studied and refined in many ways. For instance, Tan et al. define information leakage
to measure the amount of revealed location information in spatial cloaking, which quantifies
the balance between privacy and performance [47]. Xue et al. [49] introduce the concept
of location diversity to ensure generalised regions to contain at least ¢ semantic locations
(e.g., schools). However, deeper understanding of k-anonymity reveals its drawbacks in pre-
serving location privacy. Shokri et al. analyse the effectiveness of k-anonymity in protecting
location privacy in different scenarios in terms of adversaries’ background information [46],
i.e., real-time location information, statistical information and no information. They show
its flaws which the adversary can exploit to infer users’ current locations and conclude that
spatial cloaking (e.g., k-anonymity) is only effective for protecting query privacy. As a con-
sequence, in this work we use area generalisation only to protect query privacy.

The generalisation of LBS requests is usually implemented in two ways — centralised
and distributed. A centralised structure (depicted in Fig. 1) relies on a trusted agent, the
anonymiser, to collect users’ requests and anonymise them before sending them to LBS
providers. However, in a distributed implementation users cooperate with each other to con-
struct a generalised region [19,41]. The centralised framework is easy to implement and
well-studied in the literature while the distributed framework requires more communica-
tions between collaborators and security analysis, e.g., with respect to insiders, is not well
studied. In the centralised framework, normally it is assumed that the communication chan-
nels between users and the anonymiser are secure while the ones between the anonymiser
and the LBS provider are public.

Protecting Query Privacy in Location-based Services* 5

2.2 Context-aware privacy analysis

The effectiveness of area generalisation can be compromised when the adversary has access
to auxiliary contextual information. In fact, area generalisation guaranteeing k-anonymity is
proposed to protect query privacy against the adversary who has users’ real-time locations
in their knowledge. Mascetti et al. [34] identify the ‘outlier’ attack on some generalisation
algorithms if the adversary learns their implementations. k-anonymity is violated because
the algorithms cannot ensure that all the potential issuers have the same generalised area as
the real issuer. Shokri et al. [45] use mobility patterns modelled as Markov chains of loca-
tion transition and propose a probabilistic framework to de-anonymise generalised traces.
Personal information (e.g., gender, job, salary) has been becoming more accessible on the
Internet, e.g., due to online social networks such as Facebook and LinkedIn, and can also
serve as a type of contextual information which we call user profiles. Shin et al. [43,44]
identify the concern of query privacy caused by user profiles and propose metrics based on
k-anonymity by restricting similarity levels between users in terms of their profiles.

The contextual information (e.g., user profiles and generalisation algorithms) mentioned
above is irrelevant to users’ past LBS requests. Actually LBS requests can also be explored
by the adversary to refine his guess on the issuers. Two types of LBS requests have been
studied in the literature — associated requests [11,4,14] and recurrent requests [39]. Re-
quests are associated once they are recognised as issued by a same (anonymous) user, which
can be achieved for example by multi-target tracking techniques [25] or probabilistic rea-
soning [45]. By calculating the intersection of all associated requests’ anonymity sets the
adversary can reduce the number of possible issuers. To handle such privacy threats, Bet-
tini et al. [11,4] introduce historical k-anonymity, which is then extended for continuous
LBSs by Dewri et al. [14]. Historical k-anonymity aims to guarantee that associated re-
quests share at least & fixed users in the generalised regions. Requests are recurrent when
they are issued at the same time. When multiple recurrent requests contain the same query
and region, the protection of query privacy offered by spatial cloaking (e.g., k-anonymity)
will be degraded [39]. For instance, in the extreme case, when all users in a region send an
identical query, no user has query privacy. Riboni et al. [39] identify the threat and make
use of t-closeness to guarantee that the distance between the distribution over the queries
from an issuer’s generalised region and that of the whole region is below a threshold. Dewri
et al. [15] identify a scenario in continuous LBSs which has both associated and recurrent
requests. They propose m-invariance to ensure that in addition to k fixed users shared by the
associated requests, at least m different queries are generated from each generalised region.

2.3 Area generalisation algorithms

The first generalisation algorithm called IntervalCloaking is designed by Gruteser and
Grunwald [23]. Their idea is to partition a region into quadrants with equal area. If the
quadrant where the issuer is located contains less than k users, then the original region is
returned. Otherwise, the quadrant with the issuer is taken as input for the next iteration. The
algorithm CliqueCloak [17] is proposed by Gedik and Liu in which regions are generalised
based on the users who have issued queries rather than all potential issuers. The major im-
provement is that this algorithm enables users to specify their personal privacy requirements
by choosing different values for k. Mokbel et al. [35, 12] design the algorithm Casper which
employs a quadtree to store the two-dimensional space. The root node represents the whole
area and each of other nodes represent a quadrant region of its parent node. The generali-

6 Xihui Chen, Jun Pang

sation algorithm starts from the leaf node which contains the issuer and iteratively traverses
backwards to the root until a region with more than & users is found. Another algorithm
NNASR [28] simply finds the nearest k users to the issuer and returns the region containing
these users as the anonymising spatial region.

The above algorithms suffer from a particular attack called “outlier problem” [3], where
the attackers have the generalisation algorithms and users’ spatial distribution as part of
their knowledge. An algorithm against this attack needs to ensure that for any user in the
anonymity set it returns the same region. Kalnis et al. design the first algorithm called
hilbASR that does not suffer from the outlier problem [28]. The algorithm exploits the
Hilbert space filling curve to store users in a total order based on their locations. The curve
is then partitioned into blocks with & users. The block with the issuer is returned as the gen-
eralised region. Mascetti et al. propose two algorithms, dichotomicPoints and grid, which
are also secure against the outlier problem [34]. The former iteratively partitions the region
into two blocks until less than 2k users are located in the region while the latter draws a grid
over the two-dimensional space so that each cell contains & users and returns the cell with
the issuer. Because of the simplicity of implementation and the relatively smaller area of the
generalised regions, we adopt and extend these two algorithms in our algorithm design (see
Section 7). The area of generalised regions is usually used to measure the quality of the LBS
response, as smaller regions lead to more accurate results and less communication overhead.

3 Our Framework

In this section, we present our framework for query privacy analysis in LBSs. This frame-
work allows us to precisely specify relevant components and attacks on query privacy with
various contextual information.

3.1 Mobile users

We assume a set of users who subscribe an LBS and use the service frequently during
their movements. Let ¢/ be the set of such users. We use £ to denote the set of all possible
positions where a user can issue a request. The accuracy of any position ¢ € L is determined
by the positioning devices used. We represent time as a totally ordered discrete set 7, whose
granularity, e.g., minutes or seconds, is decided by the LBS provider. The function whereis :
U xT — L gives the exact position of a user at a given time. Thus, for any time ¢ € T, users’
spatial distribution is dis; = {{(u, whereis(u,t)) |u € U}. Suppose the set of queries (e.g.,
the nearest gas station) supported by LBS providers is represented by Q. An LBS request is
then in the form of (u,¢,t,q) € U x L x T x Q, where £ = whereris(u,t).

3.2 Request generalisation algorithms

Given a request (u, ¢, t, q), the anonymising server (anonymiser) will remove the issuer’s
identity (i.e., u) and replace his location (i.e., £) with an area to protect his query privacy. We
only consider spatial generalisation in this paper as in LBSs users require instant responses.
Let 2% be the power set of £ and then the set of all possible generalised regions can be
denoted by R C 2%. Given (u, £, t, q), the anonymising server outputs a generalised request
in the form of (r,t,¢), where r € R is the generalised area and ¢ € r. The generalisation

Protecting Query Privacy in Location-based Services* 7

algorithm of the anonymiser can thus be represented as a function f : U x L x T x Q —
R x T x Q. We use function query to obtain the query of a (generalised) request (i.e.,
query((u,£,t,q)) = q and query((r,t,q)) = q).

The generalisation algorithm also takes users’ privacy requirements as part of its input.
In our framework, a privacy requirement is represented by a pair — a chosen privacy metric
and the corresponding value (e.g., (k—anonymity, 5)). We use req((u, ¢,t,q)) to represent
u’s privacy requirement on request (u, ¢, t, q).

3.3 The adversary

Privacy risks and countermeasures should be categorised according to the adversary’s model
and goals [4]. For query privacy, the adversary’s goal is obviously to associate issuers to their
queries while the model should be defined in terms of his knowledge and attack(s) [44].

The knowledge of an adversary can be interpreted as the contextual information that he
has access to. We denote by C; his collection of contextual information at time ¢. In this
paper, we assume that some contextual information is inherently contained in C;.

The adversary knows the deployed request generalisation algorithm (i.e., f) and users’
spatial distributions before the current time ¢ (i.e., D¢ = (dist,, . . ., dist,) where ¢, = ¢ and
Vi<i<nti < ti11). This is a common assumption used in the literature and it makes a strong
adversary which allows us to analyse query privacy in the worst cases. The availability of
dist enables the adversary to obtain the set of users located in any region r at time ¢, which
is denoted as ul(r,t).

Given a generalised request (r, ¢, q) and C;, the objective of an attack performed by the
adversary on query privacy is to track the request’s issuer. In most of the cases, it is not
practical for the adversary to be completely sure of the issuer. Uncertainty is thus inevitable.
We use a posterior probability distribution over users to capture his certainty and quantify
the expected correctness of his attack. Let variable U be the issuer of (r,t, ¢). For any user
u € U, his probability to issue the request (r, ¢, ¢) from the view of the adversary with C; can
be represented as p(U = u|(r, t, q),Ct). In the following, we give one method the adversary
can adopt to calculate the distribution. Through the Bayesian rule we have equation:

_ p((r,t,q)\u,Ct)
p((r,t,q),Ct)
_ p((r;t, q) [u,Ct) - p(u|Ct) - p(Ct)
Zu’ p((r, t, q> |'LL/, Ct) . p(u’ ‘ Ct) . p(Ct) .

In the above equation, there are three new distributions. The distribution p(C;) measures
the probability of the adversary having learned the collection of contextual information C;.
It is difficult to evaluate its value. Whereas, since it appears in both the numerator and the
denominator, we can eliminate it from the formula. The distribution p(u | C;) represents the
probability for user « to issue a request at time ¢ based on the contextual information C;. As
we have no information about the distribution, it can be assumed as uniform according to
the principle of maximum entropy [26,27], which leads to p(u|C:) = p(u/|C:) (Vu' € U).
Thus, the target posterior distribution can be further simplified as:

p((?”, tv Q> |U,Ct)
Zu’EZ/I p((r, t, Q> |'LL/, Ct) .

The probability p({r,t,q) | u,C:) indicates the likelihood that ‘if user u generates a
request at time ¢ then the request will be generalised as (r,¢,q)’. This is actually a joint

p(U = U‘ <T7 i q),Ct)

p(U =u|(r,t,q),Ct) =

ey

8 Xihui Chen, Jun Pang

Table 1: Notations.

U | setof users

T | setof time instances

L | setof locations

R | setof possible generalised regions
Q

wl(r, t
req((u, £, t, q)
query((r,t, q)

set of users located in region r at time ¢
user u’s privacy requirement on (u, £, t, q)
the query of (r, ¢, ¢)

qE a query supported by the LBS
(u,2,t,q) | arequestissued by w at position £ at time ¢
(r,t,q) | ageneralised request
whereis(u,t) | position of user u at time ¢
f({u,£,t,q)) | analgorithm computing generalised queries
dis¢ spatial distribution of users in I/ at time ¢
)
)
)

probability of the following two probabilities. The first is the probability that user u issues
the request (u, whereis(u, t), t, q) when he sends a request at ¢. It can also be formulated as
the probability that u chooses query ¢ at time ¢ to consult the LBS provider. We call this
probability the a priori probability of user u. The second probability is the likelihood that
the area generalisation algorithm outputs a region r for whereis(u,t). We use py(g|Ct) and
p(f ((u, whereis(u,t),t,q)) = (r,t,q)) to represent these two probabilities, respectively.
Based on the above discussion, formally we have

p((r;t,) [u,Co) = pulq|Ct) - p(f ((u, whereis(u, t),t,q)) = (r,t,q)). @

We assume that the generalisation algorithms mentioned in this paper are determin-
istic. In other words, there is always a unique generalised request corresponding to each
LBS request, which leads to p(f((u, whereis(u,t),t,q)) = (r,t,q)) being either 1 or 0.
Furthermore, given an LBS request and a generalised request, the value of this probability
is available to the adversary as generalisation algorithms are public. Therefore, the key of
query privacy analysis is to calculate p,(q|Ct) for any query g € Q.

The calculation of py (g | Ct) depends on C, i.e., the available contextual information.
In the following discussion, we give the instantiations of our framework when two different
types of contextual information are added into the adversary’s knowledge, i.e., user profiles
(see Section 4) and query dependency (see Section 5). In this way, we not only show that our
framework can handle the contextual information that has been studied (i.e., user profiles),
but also demonstrate that it is generic to cope with new context (i.e., query dependency).
The important notations are summarised in Table 1.

3.4 Classifying contextual information

From the above discussion, we can see that the adversary can learn new knowledge along
with time and we should explicitly distinguish some contextual information at different time.
For instance, the contextual information about users’ spatial distributions (i.e., D;) records
the sequence of the snapshots of mobile users’ locations up to time ¢ and this knowledge
keeps growing with time. However, we also notice that certain contextual information re-
mains stable over time such as user mobility patterns and user profiles.

According to this observation, we classify contextual information into two classes —
static and dynamic. Formally they can be defined as follows:

Protecting Query Privacy in Location-based Services* 9

Definition 1 (Static & dynamic context) Let ¢; € C; be the value of a type of contextual
information at time ¢. We say that the contextual information is static if and only if for any
two time points ¢ and t’ in T, 1 = ;s. Otherwise, the contextual information is dynamic.

Note that in practice the above definition can be relaxed. When a type of contextual in-
formation keeps stable for a sufficiently long period, we can also consider it as static. For
instance, a user profile can be interpreted as static even though the user may change his job
as switching jobs is not frequent.

In Fig. 2, we classify the contextual information mentioned in this paper. To attack query
privacy, the adversary usually combines different contextual information. For instance, when
associated requests are explored [11,4,14], request generalisation algorithms and users’
real-time spatial distribution are also part of the adversary’s knowledge.

__ spatial
user distribution
profiles | recurrent
generalisation requests
algorithms @ Contextual @ | associated
mobility information requests
patterns | observed
query requests
dependency | request
history

Fig. 2: A classification of contextual information.

4 Privacy Analysis based on User Profiles

In this section, we demonstrate the implementation of our framework when user profiles
are explored by the adversary. Although user profiles and their impact on query privacy
have been discussed by Shin et al. [43], they do not describe precisely how to exploit user
profiles and quantify the amount of benefits gained by the adversary. On the contrary, with
our framework we can formally define the attack and use a posterior probability distribution
to describe the adversary’s knowledge about the issuer.

As discussed in Section 3, given a generalised request (r, ¢, ¢) the key of query privacy
analysis is to compute users’ a priori probabilities, e.g., p.(q|Ct). Before presenting the cal-
culation, we start with formulating the adversary’ knowledge. User profiles are associated
with a set of attributes, e.g., contact attributes (zip codes, addresses), descriptive attributes
(age, nationalities, jobs) and preference attributes (hobbies, moving patterns) [43]. The val-
ues of these attributes can be categorical (e.g., nationality) or numerical (e.g., salary, age).
Let (a1 : A1,...,am : Am) be the list of the attributes where a; is the name of the attribute
and A; is its domain. The profile of user u can be represented as a tuple of values each of
which corresponds to an attribute. Let &, = (a1,...,am) € A1 X ... X Ap, be the tuple
where «; is the value of a; and denoted by &;*. Thus the contextual information learnt by
the adversary at time ¢ can be represented as the following:

Ct = D¢, f, {Pulu € U}}.

10 Xihui Chen, Jun Pang

Our main idea to calculate p,(q | Ct) is to compute the relevance of user u’s profile to
each query and compare the relevance to g with those to other queries. Given an attribute
a;, we can discretise its domain .A4; into intervals if it is numerical or divide the domain
into sub-categories if it is discrete. For instance, the domain of attribute address can be
categorised in terms of districts while the numerical values of salary can be discretised into
three intervals, such as ‘< 1000’, ‘1000 —5000" and ‘> 5000’. Note that the intervals are
mutually exclusive and their union is equal to the original domain.

With the list of the intervals, we can transform the value of an attribute into a vector of
binary values based on which interval or category it belongs to. Suppose A; is divided into
the list of intervals (A},...,.A¥) where forany 1 < 2,y < k, A? N AY and U, < j< A =
A;. Let &7 be the vector of &7’ and [®77]; be the jth value. Thus, we have

o 1 ifd% e A,
[q)uz}j = e B j
0 ifol ¢ Al

If a user has a salary of 3000 euros, then ®52™ = [0 1 0].

Each query ¢ € Q has a set of related attributes that determines whether it is likely for
a user to issue the query ¢. Furthermore, for a given related attribute, its value decides the
amount of likelihood. For instance, for the query asking for expensive hotels, the associated
attributes should include salary, jobs and age while gender is irrelevant. Among them, a
salary is much more relevant than age and moreover, a salary of more than 5000 euros is
much more important than one of less than 1000 euros. Therefore, we introduce a relevance
vector for each attribute to express the relation between attributes’ values and queries. Let
W¢t = [w1...wny] be the relevance vector of query g of attribute a;. For any v € ¢ and
q € Q, the relevance value of user u’s profile to query ¢ can be calculated as follows:

vu(g) = Y @5 - [Wi)"

i<m

where [W¢]T is the transpose of W' Suppose the relevance vector of attribute salary to
a five-star hotel is [0 0.2 0.6] then vy(g) = [0 1 0] - [0 0.2 0.6]7 = 0.2. Finally, we can
calculated u’s a priori probability p., (q|C:) as follows:

vu(q)
pu(q|Ct) = ui,
Zq’ € Vu (q)
As users are independent from each other to decide next queries to issue and user profiles
are the only additional information in C; to the inherent contexts, for the sake of simplicity
we use py(q|Pu) to replace pu(q|Ct) when there is no confusion from the context.

5 Privacy Analysis based on Query Dependency

In this section, we identify a new type of contextual information — query dependency and
present how to incorporate it into our framework.

Since the first commercial LBSs launched in 1996, LBSs have evolved from simple
single-target finder to diverse, proactive and multi-target services [2]. However, due to the
lack of user privacy protection, especially at the beginning, LBS providers accumulate a
large amount of users’ historical requests. What makes the situation worse is the shift of LBS
providers from telecom operators (who were viewed as trusted entities) to open businesses

Protecting Query Privacy in Location-based Services* 11

such as Google Latitude, Foursquare, and MyTracks. This increases the risk of potential
misuse of the accumulated records due to the new sensitive information derived from them.

The dependency between queries is one type of such sensitive but personal information.
It is contained in users’ requests because of users’ preference in arranging their daily activ-
ities [22]. This preference leads to a repetitive pattern in their requests. For instance, a user
often posts a check-in of a coffee house after lunch. The fact that users’ frequent queries are
usually restricted to a small set makes the extraction of query dependency more precise.

Users’ query dependency can be abused and becomes a potential risk to users’ query
privacy. As far as we know, we are the first to explore query dependency for query privacy
protection. We illustrate this by a simple example.

Example 1 Bob issues a request about the nearest night clubs in a 2-anonymous region with
Alice being the other user. Suppose the adversary has also learnt that Alice just issued a
query about the nearest clinics and Bob queried about bars. As it is not common to ask clubs
after clinics compared to bars, the adversary can infer that Bob is more probable to issue the
request about night clubs. In this example, even if Alice and Bob share a similar profile, the
dependency between queries obviously breaks 2-anonymity for all users in the region who
are supposed to be equally likely to issue the request.

In the rest of this section, we start with a formal definition of the adversary’s knowledge
and then give an approach to derive dependency between queries for a user from his request
history. Then we propose a method for the adversary to breach users’ query privacy by
exploring query dependency.

5.1 Updating the adversary’s knowledge

Besides the contextual information considered in Section 4, there are two new types of
contextual information added — request history and observed request traces.

As we have mentioned before, LBS providers have collected users’ request history. For
each user u, we assume that the adversary has a user «’s request history for a sufficiently
long period. We use a sequence to denote the requests of user u collected by the adversary,
ie, Hu = ((u, 1, t1,q1), -+, (U bn, o, gn)) (Vi<i<p—1ti < ti+1). The ith request in Hy,
is represented by H., (7). We call this sequence user request history, whose length is denoted
as len(H.). For the sake of simplicity, we assume that H,, is complete, namely there do not
exist any requests that are issued by « during the period but are not included in #,.

Another assumption is that the adversary has access to the public channel which trans-
mits generalised requests. This means that the adversary can obtain any generalised requests
from users. We denote this contextual information by a sequence of generalised requests
in the chronologically ascending order. Up to time ¢, the sequence of observed requests
is O = ({r1i,t1,q1),--,(rn,tn,qn)) (Vi<i<nti; < ti+1 and t, < t)). For the sake of
simplicity, we do not consider recurrent queries, i.e., those elements in O; with the same
time-stamps. Furthermore, for each request in O;, the adversary calculates its anonymity
set, i.e., the users located in the generalised region. Thus, for each user, the adversary can
maintain a sequence of generalised requests, whose anonymity sets contain this user. We
call this sequence an observed request trace and denote the one of user u up to ¢ as Oy ¢
whose length is len(Oy,¢). Obviously with time passing, a user’s observed request trace
keeps growing. The difference between H., and O, is that the adversary is certain about
the issuer of each request in #,, but uncertain about the issuers of the requests in Oy, ;.

12 Xihui Chen, Jun Pang

To summarise, the knowledge of the adversary can be formulated as the following:

Ct = {D¢, f,{Pu|u €U}, O, {Hu|u € U}}.

5.2 Deriving query dependency

Query dependency can be used to predict a user’s next query based on his past queries.
However, when a user has no past queries or the past queries have little impact on his future
queries, we need to consider users’ a priori preference on queries.

Query dependency. We model query dependency with the assumption that the query that a
user will issue next can only be affected by the last query that the user has issued (i.e., the
Markov property). For a pair of queries ¢; and ¢;, the dependency of query g; on ¢; can thus
be expressed by the conditional probability pu(g; | ¢;)-

To find dependent queries, we need to identify the successive requests. Intuitively, two
requests are successive if there are no other requests between them in the request history.
This simply means that H,, (i +1) is the successive request of H, (i) for i < len(H,,). All the
occurrence of query ¢; depending on ¢; can be captured by the set of successive request pairs
Sij = {(Hu(k), Hu(k+1)) | req(Hu(k)) = @i A req(Hu(k+1)) = ¢;,0 < k < len(Hu)}
Given a request history H., the adversary can derive for the user « his dependency between
any pair of queries based on the sets S; ;. In this paper we make use of Lidstone’s or additive
smoothing [33] to ensure that there is no dependency of degree zero for g; on g; due to
no occurrence of the pair (¢;, g;) in the request history. Formally, let A be the smoothing
parameter which is usually set to 1. The dependency px(g; | ¢;) is calculated as follows:

(g]0i) = [Sij |+
D YR eI DY

A priori preference. There are many cases that a query does not depend on its past queries.
For example, users may issue an LBS query for the first time or accidentally for an emergent
need. In such cases, the best the adversary can do is to apply users’ a priori preference to
find the possible issuer.

We model the a priori preference of a user u as a distribution over the set of queries
indicating the probability of the user to issue a query. For query ¢; € O, we denote by
pu(g;) the probability that user w issues the query g; when there is no dependence on any
previous queries. It is obvious that 3 o pu(gi) = 1.

There are many sources of information reflecting users’ a priori preference. Users’ per-
sonal information, i.e., user profiles, have been discussed in Section 4 and shown effective
in assessing users’ preference on queries [43,44]. Moreover, a user’s request history also
reflects his preference. Thus, we estimate a user’s a priori preference by combining his re-
quest history (#H,,) and his user profile. Recall that we calculate a distribution for each user
over the set of queries indicating the probability that the user issues a query based on his
profile, i.e., pu(g; | Pu). Moreover, let py(g; | Hu) be the likelihood for user u to issue g;
based on his request history. We can use the frequency of the occurrence of the query in the
request history to estimate py (g; | Hu):

_ [{Hu(k) | query(Hu(k)) = ¢} |
len(Hu) '

pu(Qi ‘ Hu)

Protecting Query Privacy in Location-based Services* 13

The two distributions evaluate a user’s a priori preference on next queries from two dif-
ferent perspectives. An agreement between them is needed. This is equivalent to aggregate
expert probability judgements [5]. We use linear opinion pool aggregation which is empir-
ically effective and has been widely applied in practice [1]. By assigning a weight to each
distribution, i.e., wp and wy with wp + wy = 1, we can calculate py(g;) as follows:

pul(gi) = wp - pu(qi| Pu) + wyg - pu(qi | Hu)-

Remark. The way we model users’ query dependency and a priori preference has some re-
strictions. For instance, we do not consider the influence of factors such as the time when
LBS requests are issued — usually a user’s behaviours on weekdays are different from week-
ends [10]. By distinguishing the request history at different time periods, the impact of time
can be taken into account. We have also assumed that a query is only dependent on its imme-
diate previous query. This restriction can be lifted by considering, e.g., the last & historical
queries. However, such dependency might not be as efficient and accurate as the probabili-
ties of the form of py(g; | ¢j). An interesting factor is the time intervals between successive
requests, which may present certain patterns as well. For instance, a user may prefer to issue
arequest within a specific amount of time after the previous one. This leads to various prob-
abilities for a user to issue a query when he chooses different issuing time. In Section 5.4,
we take time intervals between requests as an example to illustrate how to extend our model
of query dependency to capture more influencing factors.

5.3 Query privacy analysis

Recall that the purpose of the adversary is to calculate the distribution p(U = u|(r,,q),Ct)
given a generalised request (r, ¢, ¢). In the adversary’s knowledge, the observed request list
(Oy) is the only dynamic context besides the spatial distribution (i.e., D¢) which is inherently
contained. For the sake of simplicity, we use p(u | (r, t, q), O¢) for short to represent p(U =
u|{r,t,q),Ct) whenever no confusion exists.

The key of query privacy analysis is still to calculate p,, (¢ |Ct) (i-e., pu(q| O) for short).
Due to the independence between users with respect to issuing requests, a user’s requests
have no influence on the next query of any other user. Thus, py(¢|Ot) = pu(q|Ou.t)-

The size of O, is an important factor determining the accuracy and the complexity of
the calculation of py (g | Ou,t). Recall that O, + consists of all the observed requests that
may be issued by user u up to time ¢. Intuitively, the longer O, ¢ is, the more computational
overhead is required to obtain p(u | (r,t, q), O¢). Therefore, it is not practical to consider
the complete O, ;. Instead, we fix a history window which consists of the latest n observed
requests of user u (n < len(Oy,t)). Our problem can thus be reformulated as to compute
p"(u|(r,t,q), O:), indicating that the distribution is based on the last n observed requests.

In Fig. 3, we show an example of a history window which contains n observed requests,
<T’i1 iy Qiy Yyeens <Tin7t’in’ qin> with tij > tij71 (7 > 1). Let qu((’)u,t) be the jth latest
observed request in O, ¢, whose query is query((qj (Ou)) = qi; - In the following discus-
sion, we simply write £g; if Oy ¢ is clear from the context. It is obvious that {q, is the latest
observed request of user u.

Once p" (u| (r, t, q), O) is calculated, it is added into the adversary’s knowledge. There-
fore, for a past request (', t',q') in O, ¢ (t' <t), the adversary has p(u | (', t',¢), 0}). In
the sequel, we simply denote it as p(u| (', %', ¢')) in cases without confusion.

14 Xihui Chen, Jun Pang

oo] [T P] (o]

<Ti1 ytins Qiy > <Ti2 ytig, qi2> <Tin ylin, Qiy >

Fig. 3: A history window of n observed requests.

A user’s latest request determines the probability distribution of his next query. Whereas,
it is uncertain which is the latest in the history window. To handle this uncertainty, we
distinguish three cases which are depicted in Fig. 4.

1. User u has issued both the last request (i.e., £q;, see Fig. 4(a)) and the current request
(i.e., (r,t,q)). Considering query dependence, the probability of this case is
pu(ullqr) - pulqlai,).

2. User u has issued the current request (r, ¢, q) and his latest request is £gm (1 < m < n)
(see Fig. 4(b)). The probability of ¢g,, being the latest request is the production of the
probability that the last m — 1 requests are not issued by u and the probability that « has
issued £gm, i.e., p(u|lgm) - [T7Z (1= plul £q;)). Considering query dependence, the
probability of this case is

m—
pu(qlai,,) - p(ullgm) - H (1 —p(ulegj)).

3. User u did not issue any request in the hlstory window (see Fig. 4(c)). In this case, we
suppose that the user issued the current request according to his a priori preference, i.e.,
pu(q). Based on the probability that the user’s latest request is outside of the history
window as []7_, (1 — p(u|£g;)), the probability of this case is

H UMQJ)

We sum up the above three probabilities to compute the probability for user « in region r at
time ¢ to issue ¢ when a history window of size n is considered:

Pu(qOut) = p(ullqy) - pu(ql query(€qy)) 3)

n m—1
+ > p(ultg,y,) pulql query(fq,,)) - T (1 - p(ultq;))
Jj=1

m=2
n
+ pu(q) - H 1 —p(ulg;)).

We use the following example with n = 2 to show the calculation.

Example 2 Suppose the last two requests are (r”,t” ¢") and (', t',¢') with t’/ <t/ <t in
Ou,t. Let (r,t, q) be an observed request. Then for user u, the probability that he issues the
request is computed as follows:
Pu(a|Oup) = pulald) - plul(r',t',q))
+ (@ =plul (' ¢d))) - p(ul ("7, 4")) - pulalq”)
+ (1 =plul (' ¢d))) - (1= p(ul ", q"))) - pulq).

Protecting Query Privacy in Location-based Services* 15

pu(q|aiy)

N
oo =] [] o] -

(risti, qi)
(a) The latest request is £q1 .

Pu(q|Giy,)
<T7t7'1>‘ | Lq1 | ‘ Lqm, ‘ ‘ Lan ‘ ’éqn+1

(ri,ti, qi)
(b) The latest request is £gm (1 < m < n).
Pu (Q)

¥
<T,t7q)H Lq1 ‘ ‘ L2 ‘ Lan,
(ri,ti, qi)

(c) The latest request is not in the history window.

Fig. 4: The three cases.

5.4 Handling the time intervals between requests

In this section, we study a factor that has impact on query dependency — time intervals
between two successive requests.

It has been noted that not only the behaviours of a user follow certain patterns but also
the amount of time between behaviours. For instance, Giannotti et al. [20,21] study and
extract the pattern of the time intervals between events in sequential pattern mining. The
idea is also adopted by Chen et al. [9] for constructing and comparing user mobility profiles.
Similarly, with respect to LBS requests, users can also have their preferences on the time
intervals between two successive requests.

Example 3 Consider a user who is in a city centre and wants to meet his friends at a bar.
He first sends an LBS request asking for nearby friends who can potentially meet together.
Then the user contacts those friends and discuss with them about their availability, which
takes about half an hour. Afterwards, he issues another request for nearby bars.

In the above example, the time interval between the two requests should usually be around
30 minutes. Suppose that the user sent another query two minutes after the first query about
nearby friends. Then this query is less likely to be a query on nearby bars, compared to the
situation when a query is issued about 30 minutes later. Therefore, query dependency should
vary according to when the next query is issued.

To capture the influence of query issuing time, given two queries ¢; and ¢;, instead of
pu(gj | ¢i) we calculate the distribution py(gj | i, 7), where 7 is the amount of time after
user u issued the last request with query g¢;. This distribution can be calculated based on

16 Xihui Chen, Jun Pang

other distributions deduced from the following equation:

pu(T0,¢) - pulaj, i)
pulajlai, ™) =

u(9j14i:7) pu(T]4:) - pulas)
pu(Tlq5,4:)

:W 'pu(Qj |q2)

There are two new distributions in the above equation. The first one is p. (7 | ¢) indicating
the probability that a user issues a successive query with time interval 7 after issuing query
q € Q. The other distribution is pu (7 | ¢;, ¢;) meaning the likelihood that if user u issues
query g, after g;, then time interval between them is .

The time interval between requests can be considered as a random variable 7'. The above
two distributions can thus be calculated based on the probability density functions of 7" in
different cases, i.e., f(T'|q) and f(T'|q;, ¢;). Let ¢ be the granularity of time, e.g., a second
or a minute. Then given a time interval 7, we have

T+€ R T+€ R
parla) = [@ 1a0Ts purlapa) = [FTlga)dr
T T

The problem of density estimation based on observed data has been extensively studied and
some classic methods have been developed in practice, e.g., the kernel estimator [13]. In
our case, the key to estimate the density function of 7" is to extract the corresponding set of
observed samples of time intervals. Take f (T'| g5, qi) as an example. The samples of time
intervals form a multi-set which can be obtained from users’ request history, e.g., H.,. Recall
that S; ; is the set of pairs of successive requests whose queries are g; and g;, respectively.
Then the observed set of time intervals is

{t" = t1((rtoq0), ('t 45)) € Si 5}

The calculation of user u’s a priori probability at time ¢ to issue query ¢ (i.e., Eq. 3)
can thus be extended to handle the query dependency with respect to time intervals. The
calculation is shown in Eq. 4:

Pu(q|Out) = plullqy) - pulq|query(ly,),t — time(lq,)))
+ Z p(u|q,,) - pulq| query(lq,,), t — time(fq,,)) H p(ullq;))
m=2 j=1
+pulq) - [J (1 = pullg))).
j=1

6 Measuring Query Privacy

LBS requests are generalised to protect the issuers’ query privacy. The level of query privacy
offered by the generalisation algorithms should be quantified precisely. This is due to (i) the
generalisation algorithm requires the evaluation so as to improve their performance; (ii) LBS
users need the quantification to express their privacy requirements for their requests.
Besides k-anonymity, many privacy metrics have been proposed in the literature, such
as correctness-based [45], estimation error-based [36] and feeling-based [48]. These metrics
quantify query privacy from different perspectives. For instance, the feeling-based metric

Protecting Query Privacy in Location-based Services* 17

makes use of entropy to evaluate the average uncertainty of the adversary to guess the is-
suer in a given scenario (e.g., shopping mall) which is subsequently used as the privacy
requirement of users. Correctness-based metrics quantify privacy as the probability of the
adversary choosing the right issuer when he makes a single guess. Using our framework,
we can adopt the ideas of these metrics, which leads to a diverse and comprehensive series
of measurements for query privacy. In this section, we present three new metrics on query
privacy and formally define them using our framework.

Inspired by anonymity degrees defined by Reiter and Rubin [37], we come up with the
following two new privacy metrics — k-approximate beyond suspicion and user specified
innocence. Note that user specified innocence coincides with the idea of correctness-based
metrics. Furthermore, we propose a third metric by exploring entropy.

k-approximate beyond suspicion. Beyond suspicion means from the attacker’s viewpoint
the issuer cannot be more likely than other potential users in the anonymity set to issue the
query. In the context of LBSs, we need to find a set of users in which users are the same
likely to send a given query. This set is taken as the anonymity set whose size determines the
degree of users’ privacy as in k-anonymity. Let AS : Q" — 24 denote the anonymity set of
a generalised request. The issuer of query (u, whereis(u,t),t,q) is beyond suspicious with
respect to the corresponding generalised request (r, ¢, q) if and only if Vu' € AS({r,t,q)),

pul(r,t,q),Ct) = p(u'|(r,t,q),Ct).

In practice, the number of users with the same probability to send a query is usually small,
which leads to a large generalised area with a fixed k. So we relax the requirement to com-
pute an anonymity set consisting of users with similar probabilities instead of the exact same
probability. Let ||p1, p2|| denote the difference between two probabilities and € be the pre-
defined parameter describing the largest difference allowed between similar probabilities.

Definition 2 (k-approximate beyond suspicion) Let (u, whereis(u, t),t,q) € Q be a query
and (r,t,q) € Q' the corresponding generalised request. The issuer u is k-approximate be-
yond suspicious if

| {u" € AS({r,t,q)) | lp(ul(r,t,q),Ce),p(u’ | (r,t,q),Ce)l| < €| > k.

Different from k-anonymity, the set of users that are k-approximate beyond suspicious
is computed based on the spatial distribution of users with similar probabilities rather than
the original distribution involving all users. The users in an anonymity set have similar
probabilities and the size of the anonymity set is larger than k. Therefore, k-approximate
beyond suspicion can be seen as a generalised version of k-anonymity. If for a specific
query ¢ € Q, any two users have the same probability to issue it, then k-approximate beyond
suspicion is equivalent to k-anonymity. For short, we use k-ABS to denote k-approximate
beyond suspicion in the following discussion.

User specified innocence. Probable innocence and possible innocence are proposed by Re-
iter and Rubin [37]. An issuer is probably innocent if from the attacker’s view the issuer
appears no more likely to be the originator of the query. In other words, the probability of
each user in the anonymity set to be issuer should be less than 50%. Meantime, possible
innocence requires the attacker not be able to identify the issuer with a non-trivial proba-
bility. We extend these two notions into a metric with user-specified probabilities (instead
of restricting to 50% or non-trivial probability which is not clearly defined). We call the
new anonymity metric user specified innocence where o € [0, 1] is the specified probabil-
ity given by the issuer. Intuitively, for a query, an issuer is a-user specified innocent, if the

18 Xihui Chen, Jun Pang

anonymiser generates the same region for any user in the region with the same specified
value a. In other words, in the generalised region, the most probable user has a probability
smaller than «. Recall that uf(r, t) denotes the set of users in region r at time ¢. It is clear
that the anonymity set consists of all users in the generalised area.

Definition 3 (User specified innocence) Let o € [0, 1], (u, whereis(u,t),t,q) € Q be
a query and (r,t,q) € Q' the corresponding generalised request. The issuer u is a-user
specified innocent if for all u’ € ué(r,t),

p(’U/ ‘ <T7 t, q>7 Ct) <a.
We abbreviate a-user specified innocence as a-USI.

An entropy-based metric. Serjantov and Danezis [42] define an anonymity metric based
on entropy and Diaz et al. [16] provide a similar metric that is normalised by the number
of users in the anonymity set. The concept entropy of a random variable X is defined as
H(X) = = > ,ex p(z)-logp(z) where X is the domain (all possible values) of X. In
our context, entropy can also be used to describe the attacker’s uncertainty to identify the
issuer of a generalised request. Let variable U denote the issuer of query (r, ¢, ¢). Then the
uncertainty of the attacker can be expressed as

HU|(r,t,q),C) =— > p('|(rt,q),Ct) - logp(u'|(r,t,q),Ct).
u’' eul(r,t)

For a given generalised request (r, ¢, ¢) and a given value 3, we say that the issuer is entropy-
based anonymous with respect to the value S if all users in region » can have r as the
generalised region when issuing the same query and the entropy H (U | (r,t,q),C:) is not
smaller than 3.

Definition 4 (Entropy-based anonymity) Let 5 > 0, (u, whereis(u,t),t,q) € Q be a
query and (r,t,q) € Q' the corresponding generalised request. The issuer u is 3-entropy
based anonymous if

H(U| <T, 2 q>7 Ct) > 5

For short, we call g-entropy based anonymity S-EBA.

Remark. When users use these metrics to express their privacy requirements, at least three
elements should be provided — a metric, the values of the parameters required by the chosen
metric (e.g., k,), and the values of the parameters used to calculation posterior probabilities
(e.g., the size of history windows).

In practice it is difficult and cumbersome for a user to give exact values to the elements.
First, all the metric values in requirements should be determined before requests are gener-
alised (i.e., ex-ante) but they are defined ex-post in nature in the metric. Furthermore, users
need to understand the meaning of each parameter and the corresponding implication on pri-
vacy protection. To avoid this situation, in this paper we provide a list of privacy levels, e.g.,
from low to very high. Each level corresponds to a setting of privacy parameters. For exam-
ple, when query dependency is considered, a user’s privacy requirement can be represented
as (kABS, high), which is then transformed into (kABS, (10,0.05), (5)). This ensures that
whenever a request is successfully generalised, the region contains 10 users with similar
posterior probabilities to the issuer’s, after taking into account the last 5 observed requests.
Furthermore, the distance between two such users’ posterior probabilities is bounded by
0.05. In practice, the transformation can be made automatic and embedded in the request
generalisation process. Note that the existing works can also be adapted to determine the
values, e.g., the feeling-based privacy metric [48].

Protecting Query Privacy in Location-based Services* 19

7 Generalisation Algorithms

In this section, we develop area generalisation algorithms to compute regions satisfying
users’ privacy requirements expressed in the proposed metrics in Section 6. As to find a
region satisfying k-ABS is similar to compute a region satisfying k-anonymity on a given
spatial distribution, we design an algorithm for k-ABS by combining the algorithm grid [34]
with a clustering algorithm. For the other metrics, we design a uniform algorithm based on
dichotomicPoints [34].

7.1 An algorithm for k-ABS

To find an area that satisfies k-ABS is to guarantee that at least k users in the area have
similar posterior probabilities. This task can be divided into two main steps. The first is
to obtain the spatial distribution of the users who have similar a priori probabilities to the
issuer (e.g., pu(q|Ct)). The second step is to run a k-anonymity generalisation algorithm to
find a region with at least k users based on the spatial distribution computed at the first step.

The first step can be transformed to the clustering problem. Given ¢ € Q, we need to
cluster the users in U such that the users with similar a priori probabilities with respect to
issuing ¢ are grouped together.

For the second step, we use algorithm grid by Mascetti et al. [34] as it generates regular
regions with smaller area compared to others. A two-dimensional space is partitioned into
a grid with L%j cells each of which contains at least £ users, where N denotes the number
of users in /. A user’s position is represented by two dimensions = and y. The algorithm
grid consists of two steps. First, users are ordered based on dimension z, and then on y. The

ordered users are divided into L\/gj blocks of consecutive users. The block with the issuer
enters the second step. The users in this block are then ordered first based on dimension y
and then z. These users are also partitioned into L\/gj blocks. Then the block with the
issuer is returned as the anonymity set. Details of the grid algorithm can be found in [34].

Alg. 1 describes our algorithm for k-ABS. In general, it gives the generalised region as
output which satisfies the user requirement k. Function cluster returns the cluster of users
with similar probabilities to that of u with respect to query g. Then the function grid outputs
a subset of sim_users with at least k£ users who are located in the rectangular region. The
generalised region is computed by function region.

Algorithm 1 A generalisation algorithm for k-ABS.

1: FUNCTION: kABS

2: INPUT: (u, whereis(u, t),t,q), dis(t), k, M(q) = {pu(q|C:)|u' € U}
3: OUTPUT: A region r that satisfies k-ABS

4.
5
6
7

: sim_users :=cluster(u, ¢, M(q));
. AS := grid(sim_users, dis(t), k);
: 1 1= region(AS)

Note that the clustering algorithm does not have to run each time when there is a request
coming to the anonymiser. As long as the spatial distribution remains static or does not have
big changes, for the requests received during this period, the anonymiser just executes the

20 Xihui Chen, Jun Pang

clustering algorithm once and returns the cluster containing the issuer as output of function
cluster. The choice of the clustering algorithms has an impact on the performance of the
generalisation algorithm. The complexity of Alg. 1 is the sum of those of the clustering
algorithm implemented and the gird algorithm (O(v/kN log vkN) [34]). The correctness
of Alg. 1 is stated as Theorem 1 and its proof is rather straightforward.

Theorem 1 For any (u,{,t,q) € Q, Alg. 1 computes a generalised region in which the
issuer u is k-approximate beyond suspicious.

7.2 An algorithm for «-USI and S-EBA

For privacy metrics a-USI and 8-EBA, we design a uniform algorithm where users can
specify which metric to use. Recall that in grid, the number of cells is pre-determined by &
and the number of users. Thus it is not suitable to perform area generalisation for metrics
without a predefined number k. Instead we use algorithm dichotomicPoints.

The execution of dichotomicPoints involves multiple iterations in each of which users
are split into two subsets. Similar to grid, positions are represented in two dimensions z
and y, and users are also ordered based on their positions. However, different from grid the
orders between axes are determined by the shape of intermediate regions rather than fixed
beforehand. Specifically, if a region has a longer projection on dimension x, then z is used
as the first order to sort the users. Otherwise, y is used as the first order. Users are then
ordered based on the values of their positions on the first order axis and then the second
order. Subsequently, users are partitioned into two blocks with the same or similar number
of users along the first order axis. The block containing the issuer is taken into the next
iteration. This process is repeated until any of the two blocks contains less than 2k users.
This termination criterion is to ensure security against the outlier problem (see Section 2).

However, in our uniform algorithm, instead of checking the number of users, we take
the satisfaction of users’ privacy requirement as the termination criterion, e.g., if all users in
the two blocks have a probability smaller than «.

Given a request, our uniform algorithm executes three main steps to calculate the gener-
alised region. The first step is to update users’ a priori probabilities (at time ¢) based on the
latest contextual information C;. This is done by the procedure updatePriori. This step can
be skipped if the evolution of the contextual information does not affect the a priori proba-
bilities, e.g., when only user profiles are contained. In the second step, after determining the
first order axis, we call function updateAS to find a smaller anonymity set. It takes a set of
users and partitions them into two subsets along the first order axis, both of which should
satisfy the issuer’s privacy requirement and updateAS returns the one containing the issuer
as the updated anonymity set. When it is not possible to partition users along the first order
axis, i.e., one of the two blocks generalised by any partition fails the issuer’s requirement,
the second order axis will be tried. If both tries have failed, updateAS simply returns the
original set, which means no possible partition can be made with respect to the privacy re-
quirement. In this situation, the whole algorithm terminates. Otherwise, the new set of users
returned by updateAS is taken into the next iteration. Last, if the request can be generalised,
then we should update the contextual information to include the generalised request, e.g., the
observed request lists (i.e., O, Oy,¢). This is done by calling the function updateContext
whose implementation is determined by the exploited contextual information.

Alg. 2 describes the uniform algorithm in detail. The function check(AS, req(qu)) cal-
culates the normalised a priori probability of each user in AS. Then the function takes the

Protecting Query Privacy in Location-based Services* 21

Algorithm 2 The uniform generalisation algorithm for «-USI and 8-EBA.

1: FUNCTION: uniformDP

2: INPUT: qu=(u, ¢, t,q), req(qu), C:

3: OUTPUT: Region r that satisfies req(qu)
4:

5: AS :=U,;

6: updatePriori(AS); \ foreach v’ € AS, calculate p,(g|Ct). *\
7: cont := check(AS, req(qu));

8: if cont = false then

9: return (;

10: end if

11: while cont do

12: ming := minyg cag whereis(u’).x;
13: miny := min,eas whereis(u’).y;
14: maz, = maxy cas whereis(u').z;
15: mazy = max, cas whereis(u').y;
16: if (maxy — ming) > (maz, — min,) then
17: first .= x;

18: second = y;

19: else
20: first :==y;
21: second := x;
22: endif
23: AS’ = updateAS(AS, req(qu), first);
24: if AS’ = AS then
25: AS’'=updateAS(AS, req(qu), second);
26: end if
27: if AS' # AS then
28: cont = true;
29: else
30: cont = false;
31: endif
32: end while
33:

34: updateContext(C;);
35: return region(AS);

resulted normalised probabilities as the users’ posterior probabilities and check whether they
satisfy the requirement req(qu). The boolean variable cont is used to decide whether the al-
gorithm should continue. It is set to false when the set of users in ¢/ does not satisfy the
requirement (line 7) or when AS cannot be partitioned furthermore (line 30). The former
case means that the requirement req(qu) is set too hight to be satisfied and the algorithm
should immediately terminate while the latter case indicates that the generalised region is
found. The anonymity set AS is represented as a two-dimensional array. After ordering
users in AS, AS[i] consists of all users whose positions have the same value on the first
order axis. We use len(order) to denote the size of AS in the dimension denoted by order.
For instance, in Fig. 5(a), axis = is the first order axis and AS[3] has three users with the
same x values. Moreover, len(first) is 6.

22 Xihui Chen, Jun Pang

Algorithm 3 The function updateAS.
: FUNCTION: updateAS

1

2: INPUT: AS, req(qu), order

3: OUTPUT: AS’ C AS that contains v and satisfies req(qu)
4:

5: AS := reorder(AS, order);

6: 1 := mid(AS, order);

7: if check(left(z), req(qu)) A check(right(2), req(qu)) then
8 AS := part(i,u);

9: else

10: found := false;

11: j7:=0;

12: while j < len(order) A —~found do

13: if check(left(j), req(qu)) A check(right(j), req(qu)) then
14: found := true;

15: AS = part(j,u);

16: else

17: j=7+1

18: end if

19: end while
20: end if
21: return AS;

The function updateAS shown in Alg. 3 is critical for our algorithm uniformDP. It
takes as input a set of users and outputs a subset that satisfies the issuer’s privacy require-
ment reg(qu). It first orders the users and then divides them into two subsets with the same
number of users along the first order axis (indicated by the variable order). This operation
is implemented by the function mid(AS, order) which returns the middle user’s index in the
first dimension of AS. If both of the two subsets satisfy req(qu), then the one containing
the issuer is returned (implemented by function part(i, u)). Otherwise, an iterative process
is started. In jth iteration, the users are partitioned into two sets one of which contains the
users in AS[1],..., AS[j] (denoted by left(j)) and the other contains the rest (denoted by
right(5)). These two sets are checked against the privacy requirement req(qu). If both left(5)
and right(j) satisfy reg(qu), the one with issuer w is returned by part(j, w). If there are no
partitions feasible after len(order) iterations, the original set of users is returned.

An example execution of Alg. 2 is shown in Fig. 5. The issuer is represented as a black
dot. In Fig. 5(a) the users are first partitioned into two parts from the middle. Assume both
parts satisfy reg(qu), so the set by is returned as the anonymity set AS for the next iteration.
As b1’s projection on axis y is longer, the first order is set to axis y (Fig. 5(b)). If after
dividing the users from the middle, the set b2 does not satisfy req(qu). Thus, the users are
partitioned from AS[1] to AS[4] (Fig. 5(c)). Suppose no partitions are feasible. The first
order axis is then switched to axis x. Function updateAS is called again to find a partition
along axis x (Fig. 5(d)).

We can see Alg. 2 iterates for a number of times. In each iteration, some users are re-
moved from the previous anonymity set. Operations such as partition and requirement check
are time-linear in the size of the anonymity set. The number of iterations is logarithmic in
the number of the users. So in the worst case, the time complexity of Alg. 2 is O(N log N),
where N denotes the number of all users in &/. The correctness of Alg. 2 is stated as Thm. 2.

Protecting Query Privacy in Location-based Services* 23
Yhp L Yy
: @
: N
(D @ @ AS[1] [oee (GRS (088
) PQ PY: 7 o
N I P AS[3] [@
A N
© © P AS[A] [ror e @rrereeeees O
oo : : : b2
AS[1] AS[2] AS[3] AS[4] AS[5] AS[6] X
(a) (b)
Y YA by .

o
ast p@e @ @ @
ASI2] feeeeieieeeeane O O 10)
AS[3] [roeeeeeees @ §

o O é ;
AS[A] 2o O O © 6]
b3 I
AS[1] AS[2] AS[3]
© (@

Fig. 5: An example execution of our algorithm uniformDP.

Theorem 2 For any query (u,£,t, q), Alg. 2 computes a generalised region that satisfies the
issuer u’s privacy requirement req({u, whereis(u,t),t,q)).

Proof By Def. 3 and Def. 4, Alg. 2 computes a region r for a query (u, whereis(u,t),t, q)
that satisfies a constraint related to the issuer’s posterior probability and the entropy about
the issuer. We take «-USI as an example to show the correctness of our algorithm and the
proofs of the other two are analogous.

By Def. 3, we have to prove the posterior probability of each user v’ € uf(r,t) is smaller
than «, ie., p(u' | (r,t,q),Ct) < a. According to Eq. 1 and Eq. 2, we need to prove for
any u' € wl(r,t) (1) f({u', whereis(u',t),t,q)) = (r,t,q) and (2) his normalised a priori
probability over those of all users in region r should be smaller than ¢, i.e.,

p(q | ula Ct)
< a. 5
S e plalu G = © ®)

Let u’ be any user in the generalised region r of Alg. 2. Let AS; and AS;- be the values
of AS in the jth iteration of Alg. 2 of u and u’, respectively. To prove (1), we show that
AS; = AS' by induction on the number of iterations, i.e., j.

INDUCTION BASIS: Initially, we suppose that I/ satisfied the requirement. Then we have
ASy = AS).

INDUCTION STEP: Assume at jth iteration AS; = AS;. We have to show that the algorithm
either terminates with AS; and AS;-, or enters the next iteration with AS;; = AS;- +1-The

24 Xihui Chen, Jun Pang

equality that AS; = AS’; is followed by that mid(AS;, order) = mid(AS’, order). There
are three possible executions.

Case 1: if left(i) and right(i) of AS; and AS satisfy the requirements (line 7 of Alg. 3),
the part containing the issuer is returned. Thus AS ;1 contains u as well as all other
users in wl(r, t), including u'. Thus, AS;; = AS, ;.

Case 2: if the check at line 7 of Alg. 3 fails, then the algorithm switches to find from the
beginning the first feasible partition. Suppose the partition is made at the position « for
AS;. Then z is also the right position for AS’ as AS; = AS’. Because of the similar
reason in the previous possible execution, the same subset is set to AS; 4 and AS; T1
Thus, AS; 1 = AS;_H.

Case 3: if there are no possible partitions, Alg. 3 returns AS;; and AS} 11 in both
cases. Then the first order is changed and Alg. 3 is called again. If one of the first two
execution is taken, with the analysis above, we have AS;; = AS;- +1- Otherwise,
Alg. 2 terminates with region(AS ;) and region(AS;-) which are equal.

We proceed with (2). Recall that the function check(AS, req(qu)) returns true for metric
«-USI only if Eq. 5 holds for each user in AS because it takes users’ normalised a priori
probabilities as their posterior probabilities. At the line 5 of Alg. 2, we set AS to the original
user set I/ and the algorithm continues only if the function check(U, req(qu) returns true.
Otherwise, it is impossible to return a region satisfying the requirement. The set AS is only
reassigned to another set when a partition is made (line 8 or line 15 in Alg. 3). For the two
sets by the partition check all returns true and the one containing the issuer is assigned to
AS. Thus, it is guaranteed that for each user u’ € uf(r,t), Eq. 5 holds. O

8 Experimental Results

We conduct experiments to evaluate our work from two aspects. First, we test the effective-
ness of our framework in terms of the changes of issuers’ posterior probabilities. In this way,
we illustrate that users’ personal profiles and request histories do cause privacy risks. Sec-
ond, we implement our algorithms presented in Section 7 and with the experimental results
we show and compare the characteristics of our new metrics proposed in Section 6.

To perform the experiments, we construct two sample datasets to simulate the spatial
distributions of a collection of mobile users (mobility dataset) and their issued requests
during movements (request dataset). We generate the mobility dataset using the moving
object generator [6] and it consists of the trajectories of 38, 500 users in a period with 50
discrete time points. We compose a series of request datasets corresponding to different
numbers of active users. A user is called active if he subscribes certain LBSs and would
issue requests during the period. Given a number of active users, we simulate a trace of
requests for each of them according to his query dependency and his a priori preference
on queries. Note that throughout the experiments, we do not distinguish users’ a priori
preferences from the a priori probabilities computed based on user profiles. This is because
they are both static and a priori probabilities have already been considered in the calculation
of a priori preferences. We assume 6 types of queries for users to choose. This makes users’
a priori preference around 17% on average. As we mentioned, our purpose is to evaluate the
privacy risk incurred by contextual information and the effectiveness of the algorithms. Thus
we assume that users’ query dependency is available and generate it by a random procedure.
Users’ a priori preference is assessed in a similar way.

Our simulation is implemented with Java and run on a Linux laptop with 2.67 Ghz Intel
Core (TM) and 4GB memory.

Protecting Query Privacy in Location-based Services*

-8-n=1

Phe 0.8
a-- T -6-n=2
1.5 ~e-n=3 ey
& U-e-n=
e 0.6f{-e-n=4 S
P n=5 ’ .,
1 .8 ’
,’ a . /X
& £ os e
< L o S R
05 . < 58,
2 - =) ok -
z -4 > T 6_—9 _E
’ < 02t o= o " o]
0 ,’:r B ’:'»O‘o,_,u-—ﬂ"a_
,, gk
L oF "
-0.5r @ E:g;
o’
1 _0ol—
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7
P Pala,

q
(a) Appf VS. pu(Q)~ (b) Apdep Vs. p(qi |qi,1) and n.

Fig. 6: Impact of user profiles and query dependency on Ap.

8.1 Impact of contextual information

We validate the effectiveness of our framework by checking if it can increase the likeli-
hood of the adversary to correctly identify issuers by obtaining more contextual information.
Given a generalised request, we can use the issuer’s posterior probability as the measure-
ment of the correctness of the adversary’s attack on query privacy [45]. If a type of contex-
tual information can help breach users’ query privacy, then issuers will have larger posterior
probabilities than those computed without the information on average. The main idea of our
validation is to check whether the framework can capture this increase.

In our experiments, we construct three attack scenarios where k-anonymity spatial gen-
eralisation is deployed. In the first scenario, the adversary only learns the inherent contex-
tual information while in the other two scenarios, users’ a priori preferences and request
histories are added sequentially to the adversary’s knowledge. We denote the corresponding
contextual information by CP25'c, Ctpf and C°P, respectively.

We define correctness increase ratio (CIR), and use it to quantify the increase of is-
suers’ posterior probabilities when more contextual information is explored. Specifically, it
is computed as the ratio of the increase over the posterior probabilities calculated without
considering the contextual information. In this paper, we consider two CIRs, i.e., Apys and
Apgep- For a generalised request (r, ¢,) issued by u, they can be calculated as follows:

(U ‘ <T7 t, q>7cff) _ p(u | <r7 t, q>7 C%)asi(:)
p(ul{r,t,q), Cfasm)

p
Appf =

where
1

[{u € U |whereis(u,t) € r}|

p(u{rt,q),CP*) =

and similarly,

p(u|(r,t,q),C%) — p(ul (r,t,q),CP")
p(ul(r,t,q),CP)

In Fig. 6, we show how the correctness increase ratio changes with issuers’ a priori pref-
erences and the dependency between the last two queries. With respect to query dependency,

Apdep =

26 Xihui Chen, Jun Pang

-8-n=1-6-n=2-#%-n=3 -e—n=4

0.25¢
o
S o
0.15}

0.1

0.05 3 4 5 6 7

Percentage of active users

Fig. 7: Ap vs. #active users and n.

we also illustrate the impact of the history window sizes (see Fig. 6(b)). The results are ob-
tained by a simulation with 8,000 requests. We divide the requests into clusters according
to the a priori preference or query dependency of the issuers when sending the requests.
Specifically, we set pg = 0.05 - cid where cid (1 < cid < 20) is the identifier of a cluster to
be the maximum value of issuers’ a priori preference allowed in the cluster cid. For exam-
ple, if p; = 0.15, the issuer of any request in the cluster has an a priori preference between
0.1 and 0.15 with respect to the issued query. Similarly, we define pg, 4., = 0.05 - cid
to represent the maximum query dependency allowed in cluster cid when the issuers issue
the queries. Fig. 6 depicts the average Apys and Apge,, of the generalised requests in each
cluster satisfying k-anonymity with k¥ = 10 and with 2.6% of the users being active.

We observe that the curves in Fig. 6(a) and Fig. 6(b) follow two similar patterns. First,
the CIR increases monotonically when p grows. Second, the average correctness increase
ratio reaches O when the a priori preferences and query dependency fall into the interval
between 0.15 and 0.2. This is due to the fact that users’ average a priori preference on each
type of queries (pu(g;)) is around 17%. With regard to Apy¢, the issuer with an a priori
preference of 0.17 will eliminate his difference from the other users in the same region as
the average of their a priori preferences is also close to 0.17. For Apgep, the little difference
between py,(q; | g;—1) and py(g;) eliminates the influence of query dependency.

We can see that Apgep, is also sensitive to the size of history windows in Fig. 6(b). Larger
history windows lead to bigger correctness increase ratios when the dependency between the
last two queries (i.e., pu(g; | ¢;—1)) is bigger than 0.17. For instance, for the requests with
query dependency between 0.3 and 0.4, the average value of Apgep increases by 0.051,
0.036, 0.031 when n grows from 1 to 2, from 2 to 3, from 3 to 4, respectively. By more
experiments with larger n, we can show that bigger window sizes do not necessarily lead to
more privacy leakage. For instance, when n is set to 5, the average increase of CIR is 0.029
which is almost the same as the case of n = 4.

From the above discussion, we can conclude that if a user issues a query with a large
preference value or high dependency on the last queries, he will have less privacy if the
adversary adopts our framework. This also shows that our framework is useful to increase
the likelihood of attackers to correctly learn the real issuers although we have negative CIRs

Protecting Query Privacy in Location-based Services* 27

when users issue queries independently from their profiles or last queries. This is because in
most of the cases, users’ behaviour should be consistent with their profiles and past habits.
Beside the size of history windows, the number of active users has impact on Apgep
as well. It decreases when there are more active users issuing LBS requests, but the influ-
ence becomes smaller with larger history windows. Fig. 7 shows that the average Apgep
decreases by 30%, 24% 19% and 18% for n = 1,2, 3 and 4, respectively, when the percent-
age of active users increases from 2.5% to 7.5%. This is because more active users lead to
more observed requests added into users’ observed request traces and mixed with users’ real
requests, while bigger history windows have larger chances to include users’ real requests.

8.2 Effectiveness of the new privacy metrics

In this section we discuss the features of our privacy metrics in terms of (1) area of the gen-
eralised regions and (2) issuers’ posterior probabilities. To compare the metrics presented in
Section 6, we define a normalised value norm: norm==k for query-dependent k-ABS while
norm=2" for B-EBA and norm = L for a-USL. In the following experiments, we take cdep
as the knowledge of the adversary due to its large coverage of contextual information.

Experiment setting. We set the percentage of active users to 2.6% and use the first 1,000
requests after 8, 000 requests have been observed. Each number shown in the following
discussion is an average of the 1, 000 samples.

Recall that in the generalisation algorithm kABS (see Alg. 1) we make use of a cluster-
ing algorithm to calculate the set of users with similar a priori probabilities. Clustering has
been extensively studied in the literature and a number of clustering algorithms have been
proposed to satisfy different properties, e.g., density-based and distribution-based [24]. In
the case of generalising LBS requests, the chosen clustering algorithm should satisfy at least
two properties. First, the clustering algorithm should be efficient because LBS responses
need to be sent back to uses in real time. Second, we need a strict partitioning clustering
algorithm as each user should belong to exact one cluster.

In the implementation of KABS, we use the K-means clustering algorithm [32]. This
is mainly due to its linear time complexity with the number of users. Its main idea is to
choose K centroids, one for each cluster. In our algorithm, the K centroids are selected
randomly among the users. Then each user is associated to the nearest centroid according
the difference between their a priori probabilities, which results in K clusters. The centroids
of these K clusters are updated as the new centroids based on which all users re-calculate
their centroids to associate. The process continues until the centroids remain unchanged
between two consecutive iterations. In our case, K is selected and fixed by the anonymiser.
In fact, it defines the ‘similarity’ in the definition of £-ABS in Section 6, i.e., €. The larger
K 1is, the smaller € becomes.

In order to determine a proper value of K, we run our KABS algorithm by assigning
different values to K. In Fig. 8, we show the changes of the average distance between any
two users’ a priori probabilities in the calculated clusters and the area of the generalised
regions along with K. It can be seen that a larger K enables users to have closer a priori
probabilities but leads to larger generalised areas. In addition, the area increases faster than
the decrease of the distance. Considering the relatively small generalised regions and the
similarity between users in the resulted clusters, we set K to 10 in the following experiments.

28 Xihui Chen, Jun Pang

—&—avgDistance
—o—Avg Area (% of Dataspace)

10 15 20 25

Fig. 8: The impact of K.

Impact of history window sizes. From the above discussion, we learn that users will have
less query privacy when larger history windows are used in our framework. Fig. 9 shows
how issuers’ posterior probabilities and the area of generalised regions change according
to the normalised value norm and the history window size n. Note that when n = 0, the
generalisation algorithm only considers users’ a priori preference.

For k-ABS, issuers’ posterior probabilities are about % as the generalised regions have
at least k users with similar posterior probabilities. However, after taking a closer look, we
can find that a larger n leads to a larger distance to % This is because larger history windows
make the issuers’ posterior probabilities more different from the others, which in turn makes
it more difficult to find users with similar posterior probabilities. This also explains why the
generalised regions become larger with larger history windows as shown in Fig. 9(b).

For a-USI, issuers’ posterior probabilities are always below ﬁ, which satisfies its
definition (see Fig. 9(c)). Moreover, issuers’ posterior probabilities become larger when
more historical observed requests are explored. However, the area of generalised regions
differs little between different history window sizes (see Fig. 9(d)). This is because the
increase of the posterior probabilities is too small to initiate the computation of a new region.

For 8-EBA, issuers’ posterior probabilities can remain almost unchanged in some seg-
ments of the curves. The projection of the middle point of such a segment on axis norm has
an logarithm of integer, such as 16 and 32 (see in Fig. 9(e)). Similar to k-ABS, larger history
windows increase the issuers’ posterior probabilities, which leads to smaller entropy. This
can be seen from Fig. 9(f) where the generalised regions of larger n double their sizes earlier
than the regions of smaller n.

We can also observe from Fig. 9 that for the same value of norm, although the metric 8-
EBA cannot always ensure issuers’ posterior probabilities as close to % as k-ABS, the area
of generalised regions is about ten times smaller than that of k-ABS and only half of that
of a-USI. Since bigger regions lead to worse quality of service, this indicates that a balance
between privacy protection and quality of services needs to be considered in practice.

Impact of query dependency. The protection of issuers’ privacy varies with issuers’ query
dependency. Fig. 10 plots posterior probabilities and average area of generalised regions for
issuers with different levels of query dependency. The results are collected with the history
window size n=3. Our general observation is that issuers with larger dependencies have
bigger posterior probabilities and larger generalised regions.

Protecting Query Privacy in Location-based Services*

29

Pl (r,t.q).0))

0.022
0.02

0.018

Avg Area (% of Dataspace]
° o o o
> 2 o o o
8 85 2 2 &
8 2 8 & &

0.006

0.004

(r.t,

plu

norm

@) p(ul|(r,t,q), Ot) vs. n (k-ABS).

35 40 45 50

30
norm

(b) Average area vs. n (k-ABS).

AvgArea (% of Dataspace)

10 15 20 25 3 35 40 45 50 10 15 20 25 30 35 40 45 50
norm norm
©) p(ul{r,t,q), O) vs. n (a-USI). (d) Average area vs. n (a-USI).
»
0.12 T T T T T T 7‘77"_0 2.5X1O T T T T T T T
~ ---n=0
— =
0.1 nall n=2
o ol ——n= 1
§ n=4
— 0.08 4 g_
= 8
< £ 15f ,
= o
~ 0.06 5
= S
£ @ 1r 1
= o
0.04 <
(=
S
<
0.02 08y i
o o ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 15 20 25 35 40 45 50 10 15 20 25 30 35 40 45 50

30
norm

(e) p(“' <T7 t7 Q>a Ot) vs. n (B'EBA)

norm

(f) Average area vs. n (8-EBA).

Fig. 9: Impact of history window size n.

Table 2 summarises the corresponding average increases (in percentage) for issuers with
high (> 0.45) and medium (0.25 — 0.45) dependencies, when compared with those with
low dependencies (< 0.25). The table shows that posterior probabilities of the issuers, when
B-EBA is used, are more sensitive to the degree of dependency (43.1% increase for high-
level dependency), while the generalised regions are more sensitive to dependency (62.9%
increase for high-level dependency) when k-ABS is used.

30 Xihui Chen, Jun Pang

0.025

p,(@]a,_,)< [0.45,0.70] p,(afa,_,)< [0.45,0.70]
0.11 - - -Pp,ala_,)= 025, 0.45] ___p,(ala,_,) [0:25,0.45]
——P,(Ga;_)e [0.15,0.25]) p,(@]a;_,)< [0.15,0.25]

0.02

0.015

Avg Area (% of Dataspace)
o
2

0.005

0.02 : : : : : . . 0 : : : :
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
norm norm
(@) p(ul{r,t,q), Ot) vs. p(qi|gi—1) (k-ABS). (b) Average area vs. p(g; | gi—1) (k-ABS).
0.07 : x10°

P,(G[9,_))= 1045, 0.70]
___p,(alq,_,)< [0.25,0.45]
0.06

p,(aja,_,)e [0.15, 0.25]

P69,)< [0.45, 0.70]
51 ___p,(gla,_,)< [0.25, 0.45]
p,(aa,_)e [0.15,0.25]

~
o

IS

@
o

%)

[N

AvgArea (% of Dataspace)
& &

05
% 15 20 25 a0 @ 40 45 50 % 15 20 2 30 3 40 45 50
norm norm
©) p(ul(r,t,q),O) vs. p(qi | gi—1) (a-USI). (d) Average area vs. p(q; | gi—1) (a-USI).
014 552107 ‘ ‘ ‘ ‘

p,(aa,_,)< [0-45,0.70]
__-p,aa;_,)e [0.25, 0.45]
p,(g/q,_,)s [0.15, 0.25]

PL(aq,)< 045, 0.70]
- - =P, (@a,_)e [0-25, 0.45]
p,aja_Je 015,028 [______]

0.12

[N

o

AvgArea (% of Dataspace)

0 L L L L L L L 0 L L L L

10 15 20 25 nggm 35 40 45 50 10 15 20 25 n(:)i)(')m 35 40 45 50
@) p(ul(r,t,q), Ot) vs. p(qi | gi—1) (B-EBA). (f) Average area vs. p(q; |gi—1) (B-EBA).

Fig. 10: Impact of dependency p(q; | q;—1)-

Performance of the proposed generalisation algorithm. In Fig. 11, we present the per-
formance of our generalisation algorithms to deal with users’ various requirements. For the
sake of comparison, we show in Fig. 11 the performance of the algorithms when contex-
tual information is set to C}’ " and C; P, respectively. The computation time recorded is the
average time per request based on executions with the same 100 requests.

Protecting Query Privacy in Location-based Services* 31

Table 2: Increases in posterior probabilities and average area of generalised regions.

k-ABS B-EBA a-USI
medium [high medium [high medium [high
Posterior Prob. 2.1% 9.5% 11.1% | 43.1% 11.9% | 40.0%
Avg Area 21.3% 62.9% 23.3% | 30.1% 10.7% | 19.1%

As discussed in Section 7, it is necessary to update the status of each user when dynamic
contextual information is explored. For instance, observed request traces and the correspond-
ing posterior probabilities have to be updated for each request when Cf “P is used. This is
time-consuming, especially when the initial region is huge and contains a large number of
users. In our implementation, we reduce the computation overhead by restricting the size of
initial regions. The number of users located in an initial region is fixed as ten times as many
as what users require for. For instance, for k-ABS, if k=10, then we first call k-anonymity
generalisation algorithm to get an initial region with 100 users. As the generalisation algo-
rithm is deterministic, which means for any user in a generalised region, it always returns
the same region. Thus, our implementation does not have the “outlier” problem [34].

50 : : . . ! :
—k-ABS (dep)
45— EBA (dep) 1
USI (dep)
__40[| - - - k-ABS (profile) 1
£ ||---EBA (profile)
< 39 USI (profile)
€
+= 30 1
c
Re]
T 25]
>
o
£
o
&}

Fig. 11: Average computational time (history window n = 3).

From Fig. 11, we can see that the computation time increases as norm gets bigger. This
is because the algorithm has to consider larger initial regions and more users are involved in
the calculation of dependency-based posterior probabilities. For 5-EBA and «-USI, about
20ms are needed when norm=>50, while k-ABS requires more time (around 35ms) as the
K-means clustering algorithm is executed first to find similar users. When compared to
the original algorithms, the computation time increases by about two times for 5-EBA and
a-USI while it is about four times for k-ABS when norm=50.

There are some ways to improve the efficiency of our implementation. For instance, we
can use better data structures to maintain users’ status. We can expect that with a powerful
anonymiser our algorithms are efficient enough to handle concurrent requests and give real-
time responses.

32 Xihui Chen, Jun Pang

9 Conclusion

In this paper, we have developed a formal framework for query privacy analysis exploring
contextual information. In the framework, we systematically categorise contextual infor-
mation and propose a probabilistic way to model the adversary’s attacks on query privacy.
Specifically, we use a posterior probability distribution to describe the knowledge learnt by
the adversary about the issuers after the analysis. This interpretation allows us to define new
metrics for query privacy from different perspectives, which also facilitate users to flexibly
and precisely express their privacy requirement.

We took two types of contextual information to exemplify the application of our frame-
work. One application focuses on user profiles while the other one is further extended with
contextual information — query dependency, which has not been investigated in the litera-
ture. To protect query privacy we have designed new spatial generalisation algorithms to
generalise requests which can satisfy users’ privacy requirements in various metrics.

Through experiments, we have shown (1) our framework is effective to increase the cor-
rectness of the adversary’s guess on real issuers; (2) the newly identified query dependency
does cause privacy leakage about users’ queries; (3) the proposed metrics are effective to
protect users’ query privacy; and (4) the generalisation algorithms are efficient.

For experiments, we made use of simulated datasets about users’ movements and request
traces due to the lack of real-life data with respect to LBSs. This causes some difficulties for
us to test the impact of time intervals between requests. As part of our future work, we want
to check whether we can collect and use users’ logs in Geo-social networks in order to have
a more comprehensive validation of our work.

References

1. Ariely, D., Au, W.T., Bender, R.H., Budescu, D.V., Dietz, C.B., Gu, H., Wallsten, T.S., Zauberman,
G.: The effects of averaging subjective probability estimates between and within judges. Journal of
Experimental Psychology: Applied 6, 130-147 (2000)

2. Bellavista, P., Kiipper, A., Helal, S.: Location-based services: Back to the future. IEEE Pervasive Com-
puting 7(2), 85-89 (2008)

3. Beresford, A.R.: Location privacy in ubiquitous computing. Ph.D. thesis, University of Cambridge
(2005)

4. Bettini, C., Mascetti, S., Wang, X.S., Freni, D., Jajodia, S.: Anonymity and historical k-anonymity in
location-based services. In: Privacy in Location-Based Applications, Lecture Notes in Computer Science,
vol. 5599, pp. 1-30. Springer (2009)

5. Bolger, F., Wright, G.: Coherence and calibration in expert probability judgement. Omega 21(6), 629—
644 (1993)

6. Brinkhoff, T.: A framework for generating network-based moving objects. Geolnformatica 6(2), 153—
180 (2002)

7. Chen, X., Pang, J.: Measuring query privacy in location-based services. In: Proc. 2nd ACM Conference
on Data and Application Security and Privacy (CODASPY), pp. 49-60. ACM Press (2012)

8. Chen, X., Pang, J.: Exploring dependency for query privacy protection in location-based services. In:
Proc. 3rd ACM Conference on Data and Application Security and Privacy (CODASPY), pp. 37-47.
ACM Press (2013)

9. Chen, X., Pang, J., Xue, R.: Constructing and comparing user mobility profiles for location-based ser-
vices. In: Proc. 28th ACM Symposium on Applied Computing (SAC), pp. 261-266. ACM Press (2013)

10. Chen, X., Pang, J., Xue, R.: Constructing and comparing user mobility profiles for LBSs. ACM Trans-
actions on the Web (TWEB) (under review)

11. Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy in mobile data manage-
ment infrastructures. In: Proc. 6th International Workshop on Privacy Enhancing Technologies (PET),
Lecture Notes in Computer Science, vol. 4258, pp. 393—412. Springer (2006)

12. Chow, C.Y., Mokbel, M.E,, Aref, W.G.: Casper*: Query processing for location services without com-
promising privacy. ACM Transactions on Database Systems 34(4), 1-48 (2009)

Protecting Query Privacy in Location-based Services* 33

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Devroye, L., Lugosi, G.: Combinatorial Methods in Density Estimation. Springe (2001)

Dewri, R., Ray, L., Ray, L., Whitley, D.: On the formation of historically k-anonymous anonymity sets in
a continuous LBS. In: Proc. 6th International Conference on Security and Privacy in Communication
Networks (SecureComm), Lecture Notes in Computer Science, vol. 50, pp. 71-88. Springer (2010)
Dewri, R., Ray, 1., Ray, 1., Whitley, D.: Query m-invariance: Preventing query disclosures in continuous
location-based services. In: Proc. 11th International Conference on Mobile Data Management (MDM),
pp. 95-104. IEEE Computer Society (2010)

Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Proc. 2nd International
Workshop on Privacy Enhancing Technologies (PET), Lecture Notes in Computer Science, vol. 2482,
pp. 54-68. Springer (2003)

Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: Architecture and algo-
rithms. IEEE Transactions on Mobile Computing 7(1), 1-18 (2008)

Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location based
services: anonymizers are not necessary. In: Proc. the ACM SIGMOD International Conference on
Management of Data, pp. 121-132. ACM Press (2008)

Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: anonymous location-based queries in distributed mo-
bile systems. In: Proc. 16th International Conference on World Wide Web (WWW), pp. 371-380. ACM
Press (2007)

Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining sequences with temporal annotations. In:
Proc. 21st ACM Symposium on Applied Computing (SAC), pp. 593-597. ACM Press (2006)
Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Axiak, M.: Trajectory pattern mining. In: Proc. 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 330-
339. ACM Press (2007)

Gonzilez, M.C., Hidalgo, C.A., Barabdsi, A.L.: Understanding individual human mobility patterns. Na-
ture 453, 779-782 (2008)

Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal
cloaking. In: Proc. st International Conference on Mobile Systems, Applications, and Services (Mo-
biSys). USENIX Association (2003)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2000)

Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving privacy in GPS traces via uncertainty-aware
path cloaking. In: Proc. 14th ACM Conference on Computer and Communications Security (CCS), pp.
161-171. ACM Press (2007)

Jaynes, E.T.: Information theory and statistical mechanics. Physical Review Series II 106(4), 620-630
(1957)

Jaynes, E.T.: Information theory and statistical mechanics ii. Physical Review Series 11 108(2), 171-190
(1957)

Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in
anonymous spatial queries. IEEE Transactions on Knowledge and Data Engineering 19(12), 1719-1733
(2007)

Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies for location-based ser-
vices. In: Proc. 21st International conference on Data Engineering (ICDE), pp. 12-48. IEEE Computer
Society (2005)

Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and [-diversity. In:
Proc. 23rd International Conference on Data Engineering (ICDE), pp. 106—115. IEEE Computer Society
(2007)

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ¢-diversity: Privacy beyond k-
anonymity. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)

MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proc.
5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-297. University of
California Press (1967)

Manning, C., Schuiitze, H.: Foundations of Statistical Natural Language Processing. Cambridge (1999)
Mascetti, S., Bettini, C., Freni, D., Wang, X.S.: Spatial generalization algorithms for LBS privacy preser-
vation. Journal of Location Based Services 1(3), 179-207 (2007)

Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: A privacy-aware location-based database server.
In: Proc. 23rd International Conference on Data Engineering (ICDE), pp. 1499-1500. IEEE Computer
Society (2007)

Rebollo-Monedero, D., Parra-Arnau, J., Diaz, C., Forné, J.: On the measurement of privacy as an at-
tacker’s estimation error. International Journal of Information Security 12(2), 129-149 (2013)

Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Transactions on Information
and System Security 1(1), 66-92 (1998)

34

Xihui Chen, Jun Pang

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Riboni, D., Pareschi, L., Bettini, C.: Privacy in georeferenced context-aware services: A survey. In:
Proc. 1st International Workshop on Privacy in Location-Based Applications (PiILBA), CEUR Workshop
Proceedings, vol. 397. CEUR (2008)

Riboni, D., Pareschi, L., Bettini, C., Jajodia, S.: Preserving anonymity of recurrent location-based
queries. In: Proc. 16th International Symposium on Temporal Representation and Reasoning (TIME),
pp- 62-69. IEEE Computer Society (2009)

Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge
and Data Engineering 13(6), 1010-1027 (2001)

Santos, F., Humbert, M., Shokri, R., Hubaux, J.P.: Collaborative location privacy with rational users.
In: Proc. 2nd International Conference on Decision and Game Theory for Security (GameSec), Lecture
Notes in Computer Science, vol. 7037, pp. 163—181. Springer (2011)

Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Proc. 2nd Inter-
national Workshop on Privacy Enhancing Technologies (PET), Lecture Notes in Computer Science, vol.
2482, pp. 41-53. Springer (2003)

Shin, H., Atluri, V., Vaidya, J.: A profile anonymization model for privacy in a personalized location
based service environment. In: Proc. 9th International Conference on Mobile Data Management (MDM),
pp. 73-80. IEEE Computer Society (2008)

Shin, H., Atluri, V., Vaidya, J.: A profile anonymization model for location-based services. Journal of
Computer Security 19(5), 795-833 (2011)

Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying location privacy. In: Proc.
32nd IEEE Symposium on Security and Privacy (S&P). IEEE Computer Society (2011)

Shokri, R., Troncoso, C., Diaz, C., Freudiger, J., Hubaux, J.P.: Unraveling an old cloak: k-anonymity
for location privacy. In: Proc. 2010 ACM Workshop on Privacy in the Electronic Society (WPES), pp.
115-118. ACM Press (2010)

Tan, K.W., Lin, Y., Mouratidis, K.: Spatial cloaking revisited: Distinguishing information leakage from
anonymity. In: Proc. 11th International Symposium on Spatial and Temporal Databases (SSTD), Lecture
Notes in Computer Science, vol. 5644, pp. 117-134. Springer (2009)

Xu, T., Cai, Y.: Feeling-based location privacy protection for location-based services. In: Proc. 16th
ACM Conference on Computer and Communications Security (CCS), pp. 348-357. ACM Press (2009)
Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location based ser-
vices. In: Proc. 4th International Symposium on Location and Context Awareness (LoCA), Lecture Notes
in Computer Science, vol. 5561, pp. 70-87. Springer (2009)

Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: Spacetwist: Managing the trade-offs among location privacy,
query performance, and query accuracy in mobile services. In: Proc. 24th International conference on
Data Engineering (ICDE), pp. 366-375. IEEE Computer Society (2008)

