
Improving Automatic Verification of Security

Protocols with XOR

Xihui Chen1,2, Ton van Deursen1⋆, and Jun Pang1

1 Faculty of Sciences, Technology and Communication
University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

2 School of Computer Science and Technology
Shandong University, Jinan, 250101 China

Abstract. Küsters and Truderung recently proposed an automatic ver-
ification method for security protocols with exclusive or (XOR). Their
method reduces protocols with XOR to their XOR-free equivalents, en-
abling efficient verification by tools such as ProVerif. Although the pro-
posed method works efficiently for verifying secrecy, verification of au-
thentication properties is inefficient and sometimes impossible.
In this paper, we improve the work by Küsters and Truderung in two
ways. First, we extend their method for authentication verification to
a richer class of XOR-protocols by automatically introducing bounded
verification. Second, we improve the efficiency of their approach by de-
veloping a number of dedicated optimizations. We show the applicability
of our work by implementing a prototype and applying it to both exist-
ing benchmarks and RFID protocols. The experiments show promising
results and uncover a flaw in a recently proposed RFID protocol.

1 Introduction

Cryptographic security protocols typically consists of a series of message ex-
changes among two or more agents over a hostile network. They aim to achieve
various security goals such as authentication, secrecy, key agreement, privacy,
and anonymity. However, designing secure protocols is an error-prone task and
incorrect protocols may become ideal entry points for various attacks. Starting
from the seminal work by Lowe [1], automated symbolic verification methods
for security protocols have shown their strength in finding attacks and proving
correctness of security protocols.

As attacks that rely on cryptographic primitives are hard to prove and diffi-
cult to be automatically checked, cryptographic primitives are usually treated as
functions without any algebraic properties in symbolic methods. This is called
the perfect cryptography assumption [2], namely no cryptographic message can
be opened without the correct key. Based on this assumption, many automatic
tools have been designed and implemented, among which ProVerif [3] is consid-
ered as the state of the art [4]. However, ProVerif cannot uncover attacks that

⋆ Ton van Deursen was supported by a grant from the Fonds National de la Recherche
(Luxembourg).



make use of certain algebraic properties of cryptographic primitives. Cortier,
Delaune and Lafourcade give a survey on algebraic properties of common cryp-
tographic primitives and attacks making use of them [5]. Therefore, some relax-
ation of the perfect assumption needs to be investigated. Exclusive or (XOR) is
one binary operator with typical algebraic properties that has drawn a lot of in-
terest. For example, XOR is often used in radio frequency identification (RFID)
systems, which have become popular in recent years.

We call security protocols employing the exclusive or operator (⊕) XOR-
protocols. The ⊕-operator has the following four properties.

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z (associativity) (1)

x ⊕ y = y ⊕ x (commutativity) (2)

x ⊕ 0 = x (neutral element) (3)

x ⊕ x = 0 (nilpotence) (4)

In order to detect attacks on XOR-protocols, we need to model intruders with
the ability of exploring the above algebraic properties, in addition to the perfect
cryptography assumption.

Related work. In the literature, several approaches have been proposed to deal
with the verification of XOR-protocols [6–8], but few of them are practical to
implement. A few tools can cope with a certain class of XOR-protocols [8, 9], all of
them have strict restrictions on the range of protocols they can be applied to. For
example, the tool of Cortier, Keighren, and Steel can only handle protocols with
the ⊕-operator and symmetric encryption. More recently, Küsters and Truderung
proposed a more general approach [10] to automatic verification of cryptographic
XOR-protocols based on ProVerif. Their main idea is to reduce protocol analysis
with XOR to the XOR-free case. The XOR-reduction step transforms Horn
theories modeling XOR-protocols to the ones free from algebraic properties of the
⊕-operator, by computing a family of legal substitutions for terms containing ⊕.
Thus, verification is reduced to a syntactic derivation problem. They implement
their transformation step in a tool called XorProverif [10]. The use of ProVerif
allows the modeling of essential cryptographic primitives and the verification of
security protocols with an unbounded number of sessions. However, there are
still a few limitations of this XOR-reduction approach – only ⊕-linear protocols
can be handled (see Sect. 2 for the definition of ⊕-linearity) and it is likely to
suffer from exponential blow up of the number of substitutions (Lem. 12, [10]).
In this paper, we develop several methods to tackle these restrictions of the
XOR-reduction approach, and implement a prototype to evaluate and illustrate
our methods by experiments on existing benchmarks and recent RFID protocols.

Our main contribution. One goal of this research is to develop a systematic
method to improve efficiency of the XOR-reduction approach. Our first idea is to
reduce the number of substitutions during the transformation, by exploring the
freshness of nonces generated during the executions of the XOR-protocols. By



this further reduction, the time taken by ProVerif for verification is decreased
and some false attacks can be removed as well.

We also propose a new approach to use bounded verification to make the
XOR-reduction approach available to verify authentication of more protocols
which violate ⊕-linearity. In this approach, session identifiers are considered as
constants instead of variables [10] and we can verify protocols using models with
a certain bounded number of sessions. Our bounded verification can be further
optimized by restricting the order between sessions and by checking the secrecy
property first. RFID protocols are a special class of protocols that require au-
thentication. They often use the ⊕-operator to build protocol messages. In terms
of the characteristics of RFID protocols, more optimizations can be introduced
and their protocol models could be much more simplified.

We implement a prototype to evaluate and illustrate our methods: it first au-
tomatically transforms the original Horn theory of an XOR-protocol to a multi-
session model, then it reduces the model XOR-free and performs the introduced
optimizations when necessary. In the end, ProVerif is applied to the final result
of the transformations. A number of XOR-protocols including RFID protocols
have been analyzed and experimental results show that our approach is effective
and improves the verification of XOR-protocols based on the XOR-reduction
approach. In one case, a new attack is detected on a RFID protocol in its multi-
session model.

Structure of this paper. In Sect. 2, we present the main idea of the XOR-
reduction approach with a running example. The concepts of bounded verifica-
tion are introduced in Sect. 3. Several different ways to do optimizations are
presented in Sect. 4. We discuss our implementation and experimental results in
Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we illustrate how security protocols with ⊕ can be modeled by
Horn theories and explain the main ideas behind the reduction process proposed
by Küsters and Truderung. More details can be found in the original paper [10].

2.1 Basic Concepts

We use Σ to denote a finite signature containing the binary function symbol ⊕
and V to denote a set of variables. The set of terms is defined as usual over Σ
and V . We use s ⊑ t to denote that s is a subterm of t. Terms containing no
variables are ground and are also called messages. For a unary predicate q and a
(ground) term t, we call q(t) a (ground) atom. A substitution σ is a set of pairs
{t1/x1, . . . , tn/xn}, where t1, . . . , tn are terms and x1, . . . , xn are variables. We
use dom(σ) to denote the domain of σ, which contains the variables x1 . . . xn. A
term is standard if its top symbol is not ⊕, otherwise it is called non-standard.
Equations (1)-(4) define a congruence relation ∼ on terms. A term is in reduced



form if equations (1)-(2) and equations (3)-(4), when interpreted as reductions
from left to right, can no longer be applied.

A Horn clause is of the form of a1, . . . , an → a0 where a0, . . . , an are atoms.
A set of Horn clauses constitutes a Horn theory. Given a ground atom a, we
use T ⊢ a to denote that there is a derivation π for a from the Horn theory T .
A derivation π is a sequence of ground atoms b1, . . . , bℓ with bℓ = a. For each
bi there exists a substitution σ of a Horn clause a1, . . . , an → a0 in T , we have
a1σ, . . . , anσ → a0σ where a0σ = bi and for every j ∈ {1, . . . , n} there exists
k ∈ {1, . . . , i − 1} with ajσ = bk. Similarly, if the congruence relation ∼ is used
instead of syntactic equality =, we can say a can be derived from T modulo ⊕,
denoted by T ⊢⊕ a.

One crucial notion in [10] is ⊕-linearity. A term is ⊕-linear if for each of its
subterms of the form t⊕ s, t or s is ground. For example, a⊕x is ⊕-linear while
a ⊕ x ⊕ y is not, where x, y are variables and a is a constant. The concept of
⊕-linearity extends to Horn theories and derivations in a straightforward way.
Küsters and Truderung also define the notion of C-domination [10]. Let C denote
a finite set of standard reduced ground terms such that C does not contain two
terms m and m′ such that m 6= m′ and m ∼ m′. We use C⊕ to denote the
⊕-closure of C, that is,

C⊕ = {t | there exist c1, . . . , cn ∈ C s.t. t ∼ c1 ⊕ · · · ⊕ cn}.

A term is C-dominated if for each of its subterms of the form t ⊕ s, it is true
that either t or s is in C⊕. The concept of C-domination extends to Horn clauses
and derivations. A Horn theory is called C-dominated if each clause in T is C-
dominated, except for the rule I(x), I(y) → I(x⊕y) which models the intruder’s
ability to perform XOR operations. The set C is always finite and must be chosen
as small as possible in order to make the XOR-reduction efficient (see Lem. 2
and Lem. 12 in [10]).

2.2 Modeling Protocols by Horn Theories

A Horn theory modeling security protocols contains three parts: initial intruder
facts, intruder rules, and protocol rules. It uses the predicate I. A fact I(t) means
that the intruder can obtain the term t. The initial intruder facts represent the
initial intruder knowledge, typically names of principals and public keys, for in-
stance, I(a) denotes that the intruder knows the name a and I(pub(ska)) denotes
that the intruder knows the public key of a where ska represents its private key.
The set of Dolev-Yao intruder [2] rules representing the ability to derive new
messages can be found in [10], where a special clause I(x), I(y) → I(x ⊕ y),
called the ⊕-rule, is used to allow the intruder to perform the XOR operation
on arbitrary messages. The protocol rules represent the actions performed in
a protocol. Each rule i is of the form I(t1), . . . , I(ti) → I(si) where t1, . . . , ti
describe messages the principal has received up to step i and I(si) describes the
message the principal will send out at step i.

The secrecy property of a term t can be formulated as the fact that I(t)
cannot be derived from the set of clauses, while authentication properties are



often expressed as correspondence assertions of the form end(x) → begin(x),
where x describes the value on which both agents agree [11]. Due to the dif-
ference, we give the Horn theories for secrecy and authentication verification of
our running example NSL′

⊕ separately. Fig. 1(a) depicts the NSL′
⊕ protocol,

which is a variation of the protocol by Lowe [1] that fixes a vulnerability in the
Needham-Schroeder protocol [12].

In this paper, we use role to refer to the protocol steps an agent expects to
carry out, for instance A and B in Fig. 1(a)3. For example, agent a playing role
A has two steps. To start, a generates a nonce and sends the first message to the
agent playing role B. Then upon receiving the second message and checking its
correctness, a sends back the last message. A run is the execution of a role by
an agent. Several runs can be executed at the same time. By session, we mean a
(prefix of a) complete run of an agent. Let P denote the sets of participants and H
be the set of honest agents. The notations ska and pub(ska) represent the private
and the corresponding public key of a ∈ P . Comon-Lundh and Cortier prove that
for secrecy (authentication properties), only two (three) participants [13] need
to be considered. Therefore, we have P = {a, b}, H = {a} for NSL′

⊕-sec and
P = {a, b, c}, H = {a, b} for NSL′

⊕-auth. We use n(a, b) to denote the nonce in
the first message in which a ∈ P is the generator and b ∈ P is the receiver, and
m(b, a) in the second message to denote the nonce sent from b to a. Encryption
of a term t under a key k is denoted by {t}k.

skA, pub(skB)

A

skB, pub(skA)

B

nonce n

{n, A}pub(skB)

nonce m

{m, m ⊕ n ⊕ B}pub(skA)

{m}pub(skB)

auth B auth A

secret n secret m

(a)

ska, pub(ska), pub(ske)

a

ske, pub(ska), pub(skb)

eve

skb, pub(ska), pub(ske)

b

nonce n

{n, a}pub(ske)

{n ⊕ b ⊕ eve, a}pub(skb)

nonce m

{m, m ⊕ n ⊕ eve}pub(ska)

{m, m ⊕ n ⊕ eve}pub(ska)

{m}pub(ske)

secret m

(b)

Fig. 1: Description of the NSL′
⊕ protocol (a) and one of its attacks (b).

3 We use message sequence charts for the descriptions of protocols and/or their pos-
sible attacks, where capital letters represent roles and small letters are used to rep-
resent agents.



Model for secrecy verification NSL′
⊕-sec. We model the protocol using the fol-

lowing clauses:

I({n(a, b), a}pub(skb)) for a ∈ H, b ∈ P (5)

I({x, a}pub(skb)) → I({m(b, a),m(b, a) ⊕ x ⊕ b}pub(ska )) for b ∈ H, a ∈ P (6)

I({y, y ⊕ n(a, b) ⊕ b}pub(ska )) → I({y}pub(skb)) for a ∈ H, b ∈ P (7)

We denote the set of clauses above by NSL′
⊕-sec. One attack breaking the

secrecy claim of m(b, a) is described in Fig. 1(b) where the adversary imperson-
ates a to b. After receiving the message {n(a, eve), a}pub(ske), it makes use of
the algebraic properties of XOR and its knowledge of the protocol to send out
a message {n(a, eve) ⊕ b ⊕ eve, a}pub(skb) to b. It replays the response from b,
{m(b, a),m(b, a) ⊕ n(a, eve) ⊕ eve}pub(ska ), to a. In the end, the adversary can
obtain m(b, a) by decrypting the last message from a.

Model for authentication NSL′
⊕-auth. For authentication verification, nonces

generated in a session are typically chosen as the parameter x in the events
begin(x) and end(x). To guarantee their freshness and prevent replay attacks,
session identifiers need to be added to nonces to make expressing correspondence
of sessions possible. The following Horn theory models the protocol rules to verify
if role A can be authenticated by B.

I({n(a, b, sid), a}pub(skb)) for a ∈ H, b ∈ P (8)

I({x, a}pub(skb)) → I({m(b, a, sid), m(b, a, sid) ⊕ x ⊕ b}pub(ska )) for b ∈ H, a ∈ P (9)

begin(a, b, y), I({y, y ⊕ n(a, b, sid) ⊕ b}pub(ska )) → I({y}pub(skb)) for a ∈ H, b ∈ P (10)

I({m(b, a, sid)}pub(skb)) → end(a, b,m(b, a, sid)) for b ∈ H, a ∈ P (11)

The set of clauses we defined above is denoted by NSL′
⊕-auth.

2.3 The XOR-reduction Process

We refer to the process of reducing the deduction problem modulo XOR to the
one without XOR for C-dominated theories as XOR-reduction. XOR-reduction
aims to construct a Horn theory that can be analyzed by ProVerif and makes
sure that any derivation obtained from the theory modulo XOR can also be
derived from the constructed one.

Each C-dominated term can be turned into normal form after fixing a linear
ordering on C. The operator p·q denotes this operation. Any two C-dominated
terms t and t′ such that t ∼ t′ have the same normal form, that is ptq = pt′q. If
all terms in C⊕ are in normal form, we have the set C⊕

norm . A fragile subterm t′

of a C-dominated term t is a non-ground, standard term occurring in a subterm
of t of the form t′ ⊕ s or s ⊕ t′. We use F(t) to represent the set of all fragile
subterms of t. The concept of fragile subterms extends to Horn clauses.

For example, the dominating set for NSL′
⊕-sec is

{m(a, b),m(a, a), n(a, b), n(a, a), a, b}.

Considering the term m(b, a) ⊕ x ⊕ b in rule (6), its fragile subterm is x.



Definition 1 (Def. 4 in [10]). Let t be a C-dominated term. The family of
substitutions

∑
(t) for t with respect to F(t) is defined as follows. The domain

of every substitution in
∑

(t) is the set of all variables which occur in some
s ∈ F(t). Consider a substitution σ ∈

∑
(t). For each x ∈ dom(σ) one of the

following three cases holds: (i) σ(x) = x; (ii) x ∈ F(t) and σ(x) = c ⊕ x for
some c ∈ C⊕

norm, c 6= 0; (iii) x occurs in a fragile subterm s and there exists a
substitution σ′ in normal form satisfying sσ′ ∈ C⊕ then σ(x) = σ′(x).

Now given a Horn theory modulo XOR, T , we can reduce it to an XOR-free
one T+ as follows

pr1σq, · · · , prnσq → pr0σq for each σ ∈
∑

(〈r0, . . . , rn〉) (12)

I(c), I(c′) → I(pc ⊕ c′q) for each c, c′ ∈ C⊕
norm (13)

I(c), I(x) → I(c ⊕ x) for each c ∈ C⊕
norm (14)

I(c), I(c′ ⊕ x) → I(pc ⊕ c′q ⊕ x) for each c, c′ ∈ C⊕
norm (15)

I(c ⊕ x), I(c′ ⊕ x) → I(pc ⊕ c′q) for each c, c′ ∈ C⊕
norm (16)

where rule (12) is applied to each rule r1, . . . , rn → r0 of T . The Horn clauses
except for the ⊕-rule can be simulated by the rules in (12). The rules (13)-(16)
are used to simulate the ⊕-rule. Küsters and Truderung prove that a message
can be derived from T modulo XOR if and only if it can be derived from T+

only with a syntactic derivation, that is, no algebraic properties of XOR need to
be considered.

We take NSL′
⊕-sec as an example to show how the reduction works. It is

⊕-linear with dominating set C = {m(a, b),m(a, a), n(a, b), n(a, a), a, b}. We sup-
pose the order on C is how they are listed. The set C⊕

norm can also be computed.
Since only the Horn clauses in (6) and (7) have a fragile subterm x, we need to
compute its set of substitutions whose domain is {x}. Other clauses should be
included in the new theory unchanged.

Consider an instantiated clause of rule (6)

I({x, a}pub(ska)) → I({m(a, a),m(a, a) ⊕ x ⊕ a}pub(ska)) (17)

According to Def. 1, case (i) always holds so it gives σ1(x) = x. Case (ii) gives
63 substitutions such as σi(x) = m(a, a) ⊕ n(a, a) ⊕ x. For case (iii), we have
another 64 substitutions. For instance, σj(x) = m(a, b)⊕n(a, a) will be included.
In the end, we have 128 substitutions in total. For each of them, we obtain an
instance of rule (6). For example, after applying σi we have:

I({m(a, a) ⊕ n(a, a) ⊕ x, a}pub(ska)) → I({m(a, a), n(a, a) ⊕ a ⊕ x}pub(ska))

We can obtain the reduced Horn clauses for other instantiated clauses in a simi-
lar way. The clauses (13)-(16) model the ⊕-rule. In our running example, for in-
stance, I(m(a, a)⊕a), I(a⊕x) → I(m(a, a)⊕x) will be an instance of clause (15).



3 Bounded Verification of Authentication Protocols

In the Horn theory based approach new protocol runs do not necessarily use fresh
nonces [10]. Therefore, nonces from different runs need to be disambiguated. The
standard solution is to add a special session identifier variable (sid) to terms
representing nonces. During verification, sid is automatically instantiated by a
fresh random value. Freshness of nonces is only required when verifying security
properties that need correspondence at run level. Note the difference between
m(a, b, sid) and m(a, b) in NSL′

⊕-auth and NSL′
⊕-sec, respectively.

As a consequence, Horn theories that are ⊕-linear when verifying secrecy
can become non-⊕-linear when verifying authentication properties. For instance,
NSL′

⊕-auth is not ⊕-linear since it contains a term m(b, a, sid)⊕x⊕b, where both
m(b, a, sid) and x are non-ground. As observed by Küsters and Truderung [10],
sid is a special variable, because it cannot be substituted by C-dominated terms.
In the sequel, we call variables that can be substituted by C-dominated terms
C-variables. Protocol models that are not ⊕-linear solely because of the intro-
duction of session identifiers form a special class of XOR-protocols, which we
call nonce-⊕-linear.

Definition 2 (Nonce-⊕-linear). A term is nonce-⊕-linear if for each of its
subterms of the form s ⊕ t, s or t contains no C-variables.

For example, the term h(n(a, b, sid))⊕ x is nonce-⊕-linear while h(n(a, b, sid)⊕
x) ⊕ y is not, where n(a, b, sid) is a nonce and x, y are variables. The concept
of nonce-⊕-linearity extends to Horn clauses and theories in a similar fashion to
⊕-linearity.

By instantiating the variable sid with a fixed finite set S = {s1, . . . , sn} of
session identifiers, nonce-⊕-linear protocols can be transformed into ⊕-linear
protocols. Note that S must not intersect with T . We then obtain the multi-
session Horn theory Tn by replacing sid with each si ∈ S.

Definition 3 (Multi-session Horn Theory). Let T be a Horn theory, and
let σi (1 ≤ i ≤ n) be the substitutions mapping sid to si and the identity map
for other terms. Then multi-session Horn theory of T is defined by

Tn =
⋃

1≤i≤n

σi(T )

Clearly, transforming a nonce-⊕-linear Horn theory into a multi-session Horn
theory as in Def. 3 makes it ⊕-linear.

We now give a theorem about the correctness of our multi-session transfor-
mation. Suppose there is a C-dominated message using at most n sessions of
any agent to derive. We can derive it from T if and only if it can also be derived
from T⊕

n through syntactic derivations. Since T⊕
n is XOR-free, ProVerif can be

used to analyze it.

Theorem 1. Given a nonce-⊕-linear Horn theory T , the corresponding multi-
session XOR-free Horn theory T⊕

n and a C-dominated message f which can be
derived using at most n sessions of participating agents, T ⊢⊕ f iff T⊕

n ⊢ f .



In the sequel, let Tn be the n-session model transformed from T . We prove the
theorem by proving the following two lemmas.

Lemma 1. If π is a syntactic derivation for f from T⊕
n , then π is a derivation

for f from T modulo XOR.

Proof. From Lem. 13 in [10], if there is a derivation π for f from T⊕
n , then π is

also a derivation for f from Tn modulo XOR. Therefore, to prove this lemma it
suffices to prove that if π is a derivation for f from Tn modulo XOR, then it is
also a derivation for f from T . Thus, we need to prove each π(i) can be obtained
by a derivation modulo XOR from T and π<i. (We use π(i) to denote the i-th
atom in π, and π<i to denote those atoms π(j) with j < i.)

Suppose π(i) is obtained using a protocol rule r1, . . . , rm → r0 in Tn. There
exists a substitution θ with r0θ ∼ π(i) and for each k ∈ {1, . . . ,m}, we have
j < i such that rkθ ∼ π(j). By Def. 3, there must be a rule r′1, . . . , r

′
m → r′0 in T

and a substitution σ such that for each ℓ ∈ {0, . . . ,m}, rℓ = r′ℓσ. Thus for each
k ∈ {1, . . . ,m}, we have j < i such that r′k(σθ) = (r′kσ)θ = rkθ ∼ π(j). Thus we
obtain r′0(σθ) = r0θ ∼ π(i) using the rule r′1, . . . , r

′
m → r′0.

Lemma 2. If π is a derivation for f from T modulo XOR, then pπq is a deriva-
tion for f from T⊕

n .

Proof. Let S be the set of session identifiers occurring in π and suppose its size
is n. By Def. 3, we obtain a multi-session theory Tn using S. From Lem. 15
in [10], we know if π′ is a derivation for f from Tn modulo XOR, then pπ′

q is
a syntactic derivation for f from T⊕

n . Thus, to prove this lemma, it suffices to
prove π is also a derivation from Tn. Now, we have to prove each π(i) is obtained
by a derivation modulo XOR from Tn and π<i.

Suppose π(i) is obtained from a rule r1, . . . , rm → r0 in T . Then there exists
a substitution θ with r0θ = π(i) such that for each k ∈ {1, . . . ,m}, we have
j < i and rkσ = π(j). The domain of θ can be divided into two parts; session
identifiers V1 and C-variables V2. It is clear that there exist two substitutions
σ and θ′ such that rjθ = rjσθ′ where dom(σ) = V1 and dom(θ′) = V2. From
Def. 3, there exists a rule r′1, . . . , r

′
m → r′0 in Tn such that for each ℓ ∈ {0, . . . ,m}

r′ℓ = rℓσ. Thus we obtain π(i) = (r0σ)θ′ = r′0θ
′ from r′1, . . . , r

′
m → r′0.

From the above two lemmas, we immediately obtain that T ⊢⊕ f iff T⊕
n ⊢ f .

4 Optimizations of XOR-reduction

4.1 Optimization Based on Nonce Freshness

Recall that a protocol model in a Horn theory T consists of a set of rules ri

(i ∈ {1, . . . n}) of the form I(t1), . . . , I(ti) → I(si). Such rules should be read as
“after receiving the messages t1, . . . , ti the agent sends si”. The terms on both
sides may contain C-variables to which substitutions are applied in the XOR-
reduction process. Consider a rule ri in which some tj (1 < j ≤ i) and si contain



a variable x. If ri generates a nonce m, substituting m for x may lead to false
attacks. For example, applying substitution σ(x) = m(b, a) ⊕ x to rule (6) gives

{m(b, a) ⊕ x, a}pub(skb) → {m(b, a), b ⊕ x}pub(ska ),

indicating a pre-play of the nonce m(b, a) by the adversary, contradicting fresh-
ness of nonces. We call rules that are vulnerable to this type of illegal substi-
tutions challenging rules. To identify challenging rules we assume a strict total
order ≺ on protocol rules of a role according to the execution order of the pro-
tocol steps, and use t ⊑ r to denote that a term t appears in the Horn clause r
(formally t is a subterm of the left-hand side or right-hand side of the rule r).

Definition 4 (Challenging Rule). Let M be the set of nonces occurring in a
Horn theory and R = {r1, · · · , rn} the corresponding set of protocol rules. We
say ri is a challenging rule if there exists m ∈ M such that m ⊑ ri and for each
rj ∈ R such that rj ≺ ri, m 6⊑ rj.

We now define which terms in a clause can be cancelled by applying a sub-
stitution to them.

Definition 5 (Cancelling Term Set). Let t be a C-dominated term and s ⊑ t
be a fragile term. We define the set of cancelling terms N (s, t) to be a set of terms
such that there exists a substitution for s resulting in cancellation of another
subterm of t:

N (s, t) = {s′|∃u s.t. s ⊕ u ⊕ s′ ⊑ t ∨ s′ ⊕ u ⊕ s ⊑ t}.

For example, the cancelling term set N (x, t) for t = m(a, b)⊕x⊕a is {m(a, b), a}.
Now, let M be a set of nonces that are freshly generated in rule r. We can

restrict the set of C-dominated substitutions for r to substitutions that do not
cancel any term with m ∈ M .

Definition 6 (Legal Substitution). Let t be a C-dominated term and M be
the set of nonces that are freshly generated. Then σ is a legal substitution for t
if it contains all variables x that occur in t and for each x one of the following
three cases holds:

i. σ(x) = x,
ii. x ∈ F(t), σ(x) = c⊕x for some c ∈ C⊕

norm, c 6= 0 and for each m ∈ M , there
does not exist n ∈ N (x, t) such that m ⊑ n ∧ n ⊑ c.

iii. if x occurs in a fragile subterm s and there exists a substitution σ′ in normal
form satisfying sσ′ ∈ C⊕ and for each m ∈ M , there does not exist n ∈
N (s, t) such that m ⊑ n ∧ n ⊑ sσ′, then σ(x) = σ′(x).

Recall that there are 128 substitutions for clause (17). Clearly, N (x, t) is
{m(a, a), a} where t = m(a, a)⊕ x⊕ a. Since m(a, a) is fresh in this challenging
rule, M = {m(a, a)}. According to Def. 6, any substitution in cases (ii) and (iii)
having m(a, a) as a subterm is not legal. For instance, the substitutions such
as σ(x) = m(a, a) ⊕ x and σ(x) = m(a, a) ⊕ n(a, a) are removed. Applying this
optimization removes 64 rules.



4.2 Optimization Based on Session Ordering

The bounded verification that we have introduced in Sect. 3 extends the class
of XOR-protocols that can be automatically verified. However, their verification
is often inefficient. Recall that the number of rules of an XOR-reduced protocol
grows exponentially in the size of the dominating set. Therefore, in particular
the verification of protocols that are nonce-⊕-linear but not ⊕-linear becomes
less efficient if the number of sessions grows. In this section, we aim to reduce
the number of rules obtained from the XOR-reduction process by computing a
dominating set for each rule with fragile subterms.

We first observe that the session identifiers we introduced in Sect. 3 are
only needed to disambiguate nonces from different sessions. They carry no other
information and do not appear anywhere else in the protocol specification. We
can therefore enforce an order on the challenging rules that create these nonces.
In the following we assume that each role of a protocol contains at most one
challenging rule, but we note that our theory can be extended to roles with
more than one challenging rule.

Let Cr(si) be the challenging rule of an agent in session si ∈ {s1, . . . , sn}. In
these sessions, the agent plays the same role and communicates with the same
partner as well. We now extend the order ≺ introduced in Sect. 4.1 by defining
the order between these challenging rules such that Cr(si) ≺ Cr(sj) if and only
if i < j. The main observation for this optimization is that by fixing an order on
the execution of the challenging rules, we can eliminate illegal substitutions. In
order to do so, we compute a dominating set for each rule having fragile subterms
separately. This dominating set only contains nonces that have been generated
in previous sessions (based on ≺).

As a starting point we take a dominating set C (see Sect. 2.1). We then
eliminate terms that contain subterms that are generated in later challenging
rules. Let Nt(Cr) denote the set of nonces generated in challenging rule Cr.
Then the dominating set C ′ for rule r is defined by the set C from which any
term that depends on a nonce that is generated after or in r is eliminated:

C ′(r) = {s ∈ C|there does not exist n ∈
⋃

r≺r′

Nt(r′) ∪ Nt(r) s.t. n ⊑ s}.

With the size of the dominating set decreasing, the number of substitutions
decreases as well. Consider an instance of rule (9) in NSL′

⊕-auth. Suppose two
sessions s1 and s2 in which agent b plays role B and talks to a. Let r1 and r2

represent the rules in session s1 and s2 respectively:

I({x, a}pub(skb)) → I({m(b, a, s1),m(b, a, s1) ⊕ x ⊕ b}pub(ska)

I({x, a}pub(skb)) → I({m(b, a, s2),m(b, a, s2) ⊕ x ⊕ b}pub(ska)

Since they are both challenging rules with Nt(r1) = {m(b, a, s1)} and Nt(r2) =
{m(b, a, s2)}, and we also have r1 ≺ r2, the dominating set C ′(r1) cannot contain
terms with m(b, a, s1) and m(b, a, s2) as subterms.



4.3 Secrecy-based Authentication Verification

By the result of Comon-Lundh and Cortier [13], we need one more participant
to verify authentication than secrecy (see Sect. 2.2). Therefore, Horn theories for
verifying authentication are generally bigger than models of the same protocols
for verifying secrecy. The situation becomes worse when bounded verification is
applied. We propose to optimize verification of authentication properties by first
verifying secrecy for certain terms in the Horn theory.

Consider two nonce-⊕-linear Horn theories Tsec and Tauth . Let F be the set of
facts that ProVerif will check for their secrecy when deriving the goals in Tauth .
With the results from the secrecy verification for F using Tsec , we can prevent
ProVerif from deriving these facts during authentication verification.

For the sake of efficiency, F should be carefully chosen. Typically, F contains
shared keys and C-dominated terms. The observation is that by this choice we
can eliminate the rules violating secrecy after reduction. For example, for NSL′

⊕

after reduction of its two-session model, we have a rule:

I({n(a, b, s1), c}pub(skb)) → I({m(b, c, s1),m(b, c, s1) ⊕ n(a, b, s1) ⊕ b}pub(skc).

If we know that n(a, b, s1) is secret, according to this rule and the ⊕-rule the
intruder can obtain it after decrypting the message and computing the XOR of
m(b, c, s1)⊕ n(a, b, s1)⊕ b with m(b, c, s1) and b. This contradicts the secrecy of
n(a, b, s1). To identify these rules, we define secrecy-violating rules:

Definition 7 (Secrecy-violating Rule). Let S be a set of verified secrets and
r be a reduced rule. We say r is a secrecy-violating rule if after repeatedly using
the intruder rules, the intruder can obtain a secret t ∈ S.

This optimization concentrates on finding secrecy-violating rules in order to
reduce the size of the resulting Horn theory. Therefore, we can improve the
efficiency of verification using ProVerif. We only implemented a light-weight
process to remove some of the rules automatically. How to remove all such rules
is an interesting research topic.

4.4 RFID-based Optimizations

Radio frequency identification (RFID) systems are used to identify tagged ob-
jects through wireless channels. Since tags must be manufactured at a very low
cost, only simple operations can be performed by the tag. Therefore, XOR is
an operator that is often used in RFID protocols. Compared to general security
protocols, RFID protocols have their own characteristics that allow optimization
of the verification process. In this section, we discuss three characteristics and
present their corresponding optimizations.

During communications, readers are initiators and they aim to authenticate
tags. Tags receive challenges and run the steps described by the protocol. For
this reason, an agent can only play one role: an agent is either reader or tag.
This allows us to simplify the Horn theories for verification of authentication. For



instance, assume NSL′
⊕ is used as an RFID protocol and let the set of protocol

participants be {tag , reader , intruder}. In rule (8) of NSL′
⊕-auth, a can only be

substituted by reader while b can be substituted by either tag or intruder .
Since information such as keys is embedded in tags, only the readers of the

same system can talk to tags. Moreover, tags always belong to one RFID system.
There never exist secrets shared between the intruder and tags. We therefore do
not model the intruder as an insider, preventing the derivation of insider-attacks.

In particular, we propose to remove the rules in which tag believes to be
talking to intruder . For example, with the assumption that NSL′

⊕ is an RFID
protocol, in rule (9), we have a ∈ {tag}, b ∈ {reader}. In this way, we decrease
the number of Horn clauses in the model. In particular, the size of dominating
set will be smaller as a number of nonces is removed.

We observe that tags are manufactured in such a way that they can only
have one active protocol execution at a time. Therefore, we do not have to
model attacks that rely on a parallel execution of two or more runs of one tag.
Hence, a tag’s runs are completely sequential. For bounded verification, the order
≺ introduced in Sect. 4.1 can be extended to all rules of the tag. Suppose there
are ℓ rules in a session and n sessions are modeled in total. Let r(i, sk) be the
rule that represents the ith step of the tag in session sk ∈ {s1, . . . , sn}. Given
i, j ≤ ℓ, k1, k2 ≤ n, we have r(i, sk1

) ≺ r(j, sk2
) if (i < j ∧ k1 = k2) ∨ (k1 < k2).

Now, the optimization in Sect. 4.2 can be applied to the simplified models with
the strict order on the tag’s rules.

4.5 Optimization Based on ⊕-rule Reduction

In the implementation of XorProverif, Küsters and Truderung introduce a com-
pact way to represent clauses (13)-(16). They do not keep all the copies for every
pair c, c′ ∈ C⊕

norm, but rather introduce a function xtab(c, c′, pc ⊕ c′q) to denote
clauses of the form of (13). The Horn clauses (14)-(16) are represented below:

xarg(x), I(x), I(y) → I(x ⊕ y)) (18)

xarg(x), I(x ⊕ y), I(x) → I(y) (19)

xtab(x, y, z), I(x ⊕ t), I(y) → I(z ⊕ t) (20)

xtab(x, y, z), I(x ⊕ t), I(y ⊕ t) → I(z) (21)

where xarg(x) denotes x ∈ C⊕
norm in the first two clauses and x, y, z are variables

in the last two. When instantiating rule (20) with the substitution {a/x, b/
y, pa⊕bq/z}, we have xtab(a, b, pa⊕bq), I(a⊕ t), I(b) → I(pa⊕bq⊕ t). Similarly,
for substitution {b/x, a/y, pa⊕ bq/z} we have xtab(b, a, pa⊕ bq), I(b⊕ t), I(a) →
I(pa⊕bq⊕t). As shown by this example, rule (20) requires both xtab(a, b, pa⊕bq)
and xtab(b, a, pa⊕ bq) existing in the Horn theory to capture both scenarios. By
introducing the following symmetric clause to rule (20)

xtab(x, y, z), I(y ⊕ t), I(x) → I(z ⊕ t)

we can remove xtab(b, a, pa ⊕ bq) as long as xtab(a, b, pa ⊕ bq) remains in the
Horn theory in the previous example, since the second substitution is captured



by the newly introduced clause. In this way, we can remove rules of the form
xtab(a, b, pa ⊕ bq). With the size of the dominating set C⊕

norm becoming larger,
the number of reduced rules also becomes larger.

5 Implementation and Experiments

In order to validate our ideas, we have built an implementation [14] of the
bounded verification (as descried in Sect. 3) and the optimizations (as described
in Sect. 4). In order to check the effects of our improvements, we have compared
our implementation with that of XorProverif.

5.1 Implementation

We use SWI prolog for our implementation. The input Horn theory consists of
three parts: (1) declaration of function symbols that are used in the theory, (2)
necessary initial intruder facts, intruder rules, and protocol rules, (3) verifica-
tion goals, either secrecy or authentication. We introduce a function nonce to
declare nonces, and an auxiliary function to provide necessary information about
a protocol rule including its position and session. The latter is needed in order
to implement optimizations in Sect. 4.

Fig. 2: Structure of the implementation.

As shown in Fig. 2, our implementation mainly performs three steps. Each
step takes the output of its previous step as the input Horn theory and outputs
a new Horn theory after. The input Horn theory at the very beginning must be
nonce-⊕-linear. Step (i) is optional. It can choose a set of terms to check if they
are secret, and the results of the secrecy verification are added to the output.
Step (ii) transforms its input into a multi-session ⊕-linear model, which is nec-
essary for bounded verification (see Sect. 3). Step (iii) checks ⊕-linearity and
computes C-dominating sets as done by XorProverif. It also applies optimiza-
tions as described in Sect. 4 whenever possible and reduces the Horn theory to
the XOR-free one. In the end, ProVerif performs the last part of the verification.

5.2 Experiments

We first present experimental results for secrecy verification with optimizations
applied to the XOR-reduction step and compare them with XorProverif (see



Tab. 1). Then we apply bounded verification to a number of nonce-⊕-linear
protocols including some RFID protocols to check authentication (see Tab. 2).
All experiments are performed on a Dell Latitude E5500 laptop with a 2.26GHz
Intel CoreTM 2 Duo P8400 processor and 2GB RAM.

Secrecy verification. We first describe the protocols in that we use for our
experiments.

The first protocol we consider is our running example NSL′
⊕-sec. We propose

two fixes to the protocol that counter the attack depicted in Sect. 2.2. In NSL′
⊕-

fix-0, we replace the message {m,m⊕ n⊕ b}pub(ska) with {m⊕ n, b}pub(ska) and
in NSL′

⊕-fix-1 with {m,h(m⊕n)⊕ b}pub(ska), where h denotes a hash function.
Note that these protocols are only meant to fix the secrecy flaw.

The protocol NSL⊕ is the example used by Küsters and Truderung [10]
where the second message is of the form {m,n ⊕ b}pub(ska). CCA is short for
Common Cryptographic Architecture (CCA) API [15], designed by IBM. This
series of CCA protocols are also checked by Küsters and Truderung [10].

Inspired by Millen’s ffgg protocol [16], we design a family of protocols which
we call fgms. The family contains protocols that can be attacked in n sessions,
but not in n − 1 sessions, for any n. In order to attack the secrecy claim, the
algebraic properties of ⊕ need to be used.

The specification of fgms-2, the protocol that can be attacked in two sessions
but not in one, is as follows. Role A and B initially share a secret k. An agent
in role A initiates the protocol by sending {na, k}k to B. The agent playing role
B does not verify the values of na and k inside the encryption, but only the
encryption key k. He then generates a nonce nb and replies with 〈x, nb, {nb ⊕
y, x}k〉. The protocol is shown in Fig. 3.

k

A

k

B

nonce na

{na, k}k

nonce nb

na, nb, {k ⊕ nb, na}k

secret k secret k

auth B

Fig. 3: Description of the fgms-2 protocol.



We can obtain the protocol fgms-3 by adding an extra nonce to both mes-
sages. The first message is replaced by {na, n′

a, k}k and the second message by
na, nb, {n′

a ⊕ nb, k, na}k. In a similar way fgms-n for any n > 2 can be designed.
Tab. 1 gives the reduction time required by XorProverif (referred to as ‘XPv’)

and our implementation (referred to as ‘optimized’), and the ProVerif verifica-
tion time with and without our optimizations. From the results, we observe a big
improvement for NSL′

⊕ and its fixes, if our optimization for secrecy is applied.
For the CCA protocols, due to the optimization in Sect. 4.5, the analysis also be-
comes more efficient. For the fgms family of protocols, without our optimization
ProVerif cannot terminate.

Table 1: Results for secrecy verification (n.t. for non-terminating).

XOR-protocols correct
reduction ProVerif time

saved
XPv optimized - opt. + opt.

NSL′
⊕-sec no 0.67s 0.52s 16.12s 7.16s 55.6%

NSL′
⊕-fix-0 yes 0.13s 0.12s 0.14s 0.08s 42.9%

NSL′
⊕-fix-1 yes 0.71s 0.53s 14.95s 6.60s 55.9%

NSL⊕ no 0.07s 0.07s 0.02s 0.01s 50%

CCA-0 no 0.24s 0.22s 129s 117s 9.3%

CCA-1A yes 0.09s 0.09s 0.69s 0.64s 7.2%

CCA-1B yes 0.12s 0.11s 1.17s 1.11s 5.1%

CCA-2B yes 0.20s 0.18s 12.7s 10.4s 18.1%

CCA-2C yes 0.25s 0.22s 69.60s 64.34s 7.6%

CCA-2E yes 0.09s 0.09s 1.48s 1.34s 9.5%

fgms-2 no 0.06s 0.06s n.t. 0.21s -

fgms-3 no 0.07s 0.07s n.t. 0.37s -

fgms-4 no 0.07s 0.07s n.t. 0.40s -

fgms-5 no 0.08s 0.08s n.t. 0.51s -

Bounded verification of authentication properties. For the analysis of
our verification method for authentication we use the following protocols.

The protocols containing NSL′
⊕ in their names include our running exam-

ple and one of its fixes. Lee et al. [17] and Song and Mitchell [18] proposed
RFID protocols, which we call LAK06 and SM08 after the last names of the
authors. Attacks on both protocols have been reported by Van Deursen and
Radomirović [19]. We also analyze a variant of the protocol by Choi et al. [20]
(CLL09).

Our final example is the mutual RFID authentication protocol proposed by
Cai et al. [21], which is depicted in Fig. 4. In order to comply with the EPCglobal
C1G2 specification, the protocol only uses a 16-bit Pseudo-Random Number
Generator (PRNG) and a 16-bit Cyclic Redundancy Check (CRC). The reader
R and tag T share secrets TID (Tag Identifier) and PWA (Access Password).



The reader starts by sending a query and a nonce Rr. The tag generates a nonce
Rt and computes the XOR of PWA and the concatenation of Mℓ and Mh, as
given in Fig. 4.

The reader checks the the correctness of the received message before sending
the response. Burmester et al. give two attacks on the protocol [22], which both
rely on the homomorphic properties of CRC functions.

Using our prototype, we find a new attack on tag authentication using
bounded verification. To impersonate a tag the intruder proceeds as follows. He
challenges the tag with any nonce Re and obtains the reply 〈Rt, (CRC (TID l ⊕
Re ⊕ Rt) ‖ CRC (TIDh ⊕ Re ⊕ Rt)) ⊕ PWA〉. This message suffices for the in-
truder to respond to any reader challenge Rr by replacing Rt in the message
with Re ⊕ Rr ⊕ Rt. The attack is depicted in Fig. 5.

TID ,PWA

R

TID ,PWA

T

nonce Rr

Query,Rr

nonce Rt

Mℓ = CRC (TIDℓ⊕Rr⊕Rt)
Mh = CRC (TIDh⊕Rr⊕Rt)
M = (Mℓ ‖ Mh) ⊕ PWA

Rt, M

M ′
ℓ = CRC (TIDℓ ⊕ Rt)

M ′
h = CRC (TIDh ⊕ Rt)

M ′ = (M ′
ℓ ‖ M ′

h) ⊕ PWA

M ′

auth T auth R

Fig. 4: Description of the CZW08 protocol.

Tab. 2 gives the number of sessions (#sid) used for multi-session transforma-
tion, the time used for our optimized XOR-reduction, the verification time taken
by ProVerif after the multi-session transformation (without the optimizations)
and our bounded verification with optimizations, and the number of generated
derivations (#derivations). For general protocols, we apply the optimization in
Sect. 4.2. For RFID protocols, the optimization in Sect. 4.4 is also applied. The
table clearly shows that our optimizations can reduce both the verification time
by ProVerif, and the number of derivations.



TID ,PWA

r eve

TID ,PWA

t

nonce Re

Query, Re

nonce Rt

Mℓ = CRC (TIDℓ⊕Re⊕Rt)
Mh = CRC (TIDh⊕Re⊕Rt)
M = (Mℓ ‖ Mh) ⊕ PWA

Rt,M

nonce Rr

Query, Rr

Re ⊕ Rt ⊕ Rr,M

M ′
ℓ = CRC (TIDℓ ⊕ Rt ⊕ Re ⊕ Rr)

M ′
h = CRC (TIDh ⊕Rt ⊕Re ⊕Rr)

M ′ = (M ′
ℓ ‖ M ′

h) ⊕ PWA

M ′

auth T

Fig. 5: An attack on the CZW08 protocol.

Table 2: Results of bounded verification of authentication.

XOR-protocols correct #sid reduction
ProVerif time

saved
#derivations

- opt. + opt. - opt. + opt.

NSL′
⊕-authA no 1 4.47s 17.67s 7.39s 58.2% 2 1

NSL′
⊕-authA-fix-0 yes 1 6.50s 0.132 0.072s 45.5% 1 1

NSL′
⊕-authA-fix-0 yes 2 97.2s 6916s 2907s 58.0% 2 2

NSL′
⊕-authB-fix-0 no 1 3.01s 0.32s 0.08s 75.0% 1 1

LAK06 no 1 0.152s 0.012s 0.004s 66.7% 8 4

SM08 no 1 0.128s 0.036s 0.016s 55.6% 8 4

CLL09 yes 1 0.068s 0.124s 0.064s 48.4% 13 5

CLL09 no 2 0.62s 244.4s 139.4s 42.9% 156 14

CZW08 no 1 0.17s 0.064s 0.028s 56.2% 8 4



6 Conclusion and Future Work

In this paper, we have focused on the verification of security protocols with XOR.
We improve the XOR-reduction approach of Küsters and Truderung [10] for the
verification of XOR-protocols modeled by Horn theories.

First, we extend their approach for authentication verification to a richer class
of XOR protocols using the idea of bounded verification. We consider session
identifiers as constants instead of variables [10] and verify protocols using models
with a bounded number of sessions. The corresponding transformation process
is performed automatically.

Second, we make their approach more efficient by developing a number of
dedicated optimizations including the usage of freshness of generated nonces and
secrecy of certain terms to reduce the number of substitutions, restricting session
order in our bounded verification, and exploring the specific characteristics of
RFID protocols. All these ideas have been implemented in a prototype. The
experimental results show the feasibility of our methods and the reduction in
verification time by ProVerif looks in all respects promising. We also found a
new attack on a recently proposed RFID protocol.

We conjecture that our optimizations presented in the current paper do not
sacrifice the soundness of Küsters and Truderung’s approach. However, their for-
mal correctness proofs are left for the future. There are several ways to proceed.
Our implementation is still preliminary, we want to improve it and test it with
more experiments. Especially we are interested in bigger examples. We want to
extend our work by identifying more optimizations. Küsters and Truderung have
extended their reduction approach to protocols with Diffie-Hellman exponenti-
ation [23]. It will be interesting to see to what extent our optimizations can be
applied to those protocols as well.

Acknowledgement. We thank the anonymous referees for their valuable com-
ments.

References

1. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Proc. 2nd Workshop on Tools and Algorithms for the Construction and
Analysis of Systems. Volume 1055 of Lecture Notes in Computer Science., Springer
(1996) 147–166

2. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–207

3. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proc. 14th IEEE Computer Security Foundations Workshop, IEEE Computer
Society (2001) 82–96

4. Cremers, C., Lafourcade, P., Nadeau, P.: Comparing state spaces in automatic
protocol analysis. In: Formal to Practical Security. Volume 5458 of Lecture Notes
in Computer Science., Springer (2009) 70–94

5. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1) (2006) 1–43



6. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in presence of exclusive or. In: Proc. 8th Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society (2003) 271–280

7. Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some
algebraic properties. In: Proc. 16th Conference Term Rewriting and Applications.
Volume 3467 of Lecture Notes in Computer Science., Springer (2005) 294–307

8. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the security of XOR-
based key management schemes. In: Proc. 13th Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Volume 4424 of Lecture Notes
in Computer Science., Springer (2007) 538–552

9. Lowe, G.: Casper: A compiler for the analysis of security protocols. In: Proc. 10th
Computer Security Foundations Workshop, IEEE Computer Society (1997) 18–30

10. Küsters, R., Truderung, T.: Reducing protocol analysis with XOR to the XOR-
free case in the horn theory based approach. In: Proc. 15th ACM Conference on
Computer and Communications Security, ACM Press (2008) 129–138

11. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4) (2009) 363–434

12. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM 21(12) (1978) 993–999

13. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci-
ence of Computer Programming 50(1-3) (2004) 51–71

14. Chen, X., van Deursen, T., Pang, J.: Improving automatic verification of pro-
tocols with XOR (implementation) (2009) Available at http://satoss.uni.lu/

software/.
15. International Business Machines Corporation: CCA basic services reference

and guide. (2003) Available at http://www-306.ibm.com/security/cryptocards/
pdfs/CCA_Basic_Services_241_Revised_20030918.pdf.

16. Millen, J.K.: A necessarily parallel attack. In: Proc. Workshop on Formal Methods
and Security Protocols. (1999)

17. Lee, S., Asano, T., Kim, K.: RFID mutual authentication scheme based on synchro-
nized secret information. In: Proc. Symposium on Cryptography and Information
Security. (2006)

18. Song, B., Mitchell, C.J.: RFID authentication protocol for low-cost tags. In: Proc.
2nd ACM Conference on Wireless Network Security, ACM Press (2008) 140–147

19. van Deursen, T., Radomirović, S.: Algebraic attacks on RFID protocols. In: Proc.
3rd Workshop in Information Security Theory and Practices: Smart Devices, Per-
vasive Systems, and Ubiquitous Networks. Volume 5746 of Lecture Notes in Com-
puter Science., Springer (2009) 38–51

20. Choi, E.Y., Lee, D.H., Lim, J.I.: Anti-cloning protocol suitable to EPCglobal
class-1 generation-2 RFID systems. Computer Standards & Interfaces (2009) In
press.

21. Cai, Q., Zhan, Y., Wang, Y.: A minimalist mutual authentication protocol for
RFID system and BAN logic analysis. In: Proc. ISECS Colloquium on Computing,
Communication, Control and Management. (2008) 449–453

22. Burmester, M., Medeiros, B., Munilla, J., Peinado, A.: Secure EPC gen2 compliant
radio frequency identification (2009) Available at http://eprint.iacr.org/.

23. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: Proc. 22th IEEE Computer Security Foundations
Symposium, IEEE Computer Society (2009) 157–171


