
A framework for compositional verification of

security protocols

Suzana Andova a,1, Cas Cremers c,4, Kristian Gjøsteen b,2,
Sjouke Mauw d, Stig F. Mjølsnes a, Saša Radomirović d,∗,1,3

a Dept. of Telematics, NTNU, N-7491 Trondheim, Norway.
b Dept. of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway.
c Dept. of Computer Science, ETH Zürich, 8092 Zürich, Switzerland.

d Université du Luxembourg, Faculté des Sciences, de la Technologie et de la
Communication, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg.

Abstract

Automatic security protocol analysis is currently feasible only for small protocols.
Since larger protocols quite often are composed of many small protocols, composi-
tional analysis is an attractive, but non-trivial approach.

We have developed a framework for compositional analysis of a large class of
security protocols. The framework is intended to facilitate automatic as well as
manual verification of large structured security protocols. Our approach is to verify
properties of component protocols in a multi-protocol environment, then deduce
properties about the composed protocol. To reduce the complexity of multi-protocol
verification, we introduce a notion of protocol independence and prove a number of
theorems that enable analysis of independent component protocols in isolation.

To illustrate the applicability of our framework to real-world protocols, we study
a key establishment sequence in WiMAX consisting of three subprotocols. Except
for a small amount of trivial reasoning, the analysis is done using automatic tools.

Key words: compositionality, security protocols, automatic verification, WiMAX,
security properties, authentication, confidentiality, semantics

Preprint submitted to Elsevier 9 August 2007

1 Introduction

Security protocols are a crucial component of many contemporary applica-
tions. Their security is however very difficult to assess for humans, mainly
due to the vast number of attack options available to an adversary. To deal
with this complexity, a structured approach is needed. Starting from abstract
protocols, formal methods faciliate the systematic detection of attacks or the
generation of a proof of correctness. Automating this process in order to min-
imize the risk of human error is one of the major goals in security protocol
analysis.

Automatic protocol verification is, in general, a complex task even for short
protocols. The time needed for verification of a protocol using modern methods
employed by state of the art tools such as Scyther [11] or AVISPA [4] is still
exponential with respect to the number of messages. Consequently, automatic
verification of large protocols is currently infeasible. In this paper, we attempt
to narrow the gap between small, academic protocols and large, industrial
protocols by taking advantage of compositional verification.

Large protocols are usually built from structured components. They typically
consist of several (optional) protocols composed in parallel, or a sequential
composition of a key establishment protocol and a secure data transfer pro-
tocol that uses the key. For instance, IPSec, SET, and WiMAX have all been
designed with such a principle in mind. A compositional approach to the de-
sign and analysis of security protocols is therefore natural and expected to
reduce the complexity of the analysis of the large protocol to the order of the
complexity of the analysis of the largest component. This could be achieved
by first verifying properties of the components in isolation and then using
the results to deduce properties of the composed protocol. However, as no
generic compositionality results are known, further assumptions are needed to
facilitate this type of reasoning.

We illustrate the non-triviality of protocol composition by means of the well-
known Needham-Schroeder-Lowe (NSL) public key authentication protocol [32,

∗ Corresponding author. Phone: (+352) 46 66 44 5484, Fax: (+352) 46 66 44 5500
Email addresses: suzana@item.ntnu.no (Suzana Andova),

cremersc@inf.ethz.ch (Cas Cremers), kristian.gjosteen@math.ntnu.no
(Kristian Gjøsteen), sjouke.mauw@uni.lu (Sjouke Mauw), sfm@item.ntnu.no
(Stig F. Mjølsnes), sasa.radomirovic@uni.lu (Saša Radomirović).
1 This work was partially carried out during the tenure of an ERCIM Fellowship.
2 Supported in part by the Norwegian Research Council project 158597 NTNU
Research Programme in Information Security.
3 Supported in part by a Centre de Recerca Matemàtica Postdoctoral Fellowship.
4 Supported in part by the Hasler Foundation project 2071.

2

ni, ni′

i

nr, nr′

r

{|ni, i |}pk(r)

{|ni, nr, r |}pk(i)

{|nr |}pk(r)

{|ni′, i |}pk(r)

{|ni′, nr′, r |}pk(i)

{|nr′ |}pk(r)

ni, ni′

i

nr, nr′

r

{|ni, i |}pk(r)

{|ni, nr, r |}pk(i)

{|nr |}pk(r)

{|ni′, i, nr |}pk(r)

{|ni′, nr′, r |}pk(i)

{|nr′ |}pk(r)

Fig. 1. Repeated NSL protocol: incorrect and correct chaining.

37]. In isolation, it satisfies even the strongest forms of authentication, such as
agreement and synchronization [16]. However, when sequentially composing
this protocol with itself (see the left drawing in Figure 1), authentication is
not preserved. The reason is that the initiator i may successfully finish his run
of the composed protocol, while the responder r possibly never executed the
second half of the protocol. This is because the second half of the initiator’s
run may match to the first half of a different run of the responder. This au-
thentication problem is illustrated in Figure 2. Here we see agent A executing
the initiator role i and agent B executing two different runs of the responder
role r. The intruder links the messages as indicated. Run A(i) and run B(r)♯2
will agree on the values of ni, and nr, but not on the values of ni′ and nr′,
since these last two values are not communicated between these two runs. In
a similar way, it is clear that run A(i) and run B(r)♯1 do not agree on the
supposedly shared nonces.

This problem is solved in the right drawing in Figure 1 by chaining the two
protocols. A nonce from the first instance of NSL is repeated as payload in the
second instance. In this way the two protocols become linked and the chained
protocol satisfies authentication. The authentication problem from Figure 2 is
now impossible.

Even though it is well known that the composition of secure protocols is in gen-
eral not secure [2,13,25,31] and compositionality has been recognised as one of
the open challenges for security protocol analysis [12,36], the vast majority of
formalisms and tools for security protocols have only addressed single-protocol
(i.e. non-composed) analysis and verification. Early work on identifying and
addressing the problem includes [38]. An initial attempt within the Strand
Spaces model [42] has led to some theoretical results about compositionality.
The Strand Spaces approach is similar to the one taken here in that both at-

3

A(i)

B(r)♯1

B(r)♯2

Fig. 2. Authentication problem in incorrectly chained NSL protocol.

tempt to identify the abstract properties two protocols need to satisfy in order
to be securely composable. However, this work significantly improves upon the
Strand Spaces approach in terms of efficiency in verifying composed protocols
and by considering sequential composition, which was absent in the Strand
Spaces model. One of the recent significant developments in compositional
protocol analysis is Protocol Composition Logic (PCL) [17, 18]. It provides
support for compositional reasoning, and has been applied in a number of
case studies, including the verification of the TLS and IEEE 802.11i proto-
cols [24] and contract signing protocols [5]. While the PCL approach is quite
general, it cannot, in contrast to the present approach, be easily automated.

In this paper, we develop a framework to verify security properties of protocols
that are composed from several smaller protocols. We prove several theorems
concerning the deduction of properties of a sequential composition of two
protocols from properties these protocols have when running together in a
multi-protocol environment. With these theorems, we reduce the analysis of
a sequential composition to the analysis of the component protocols running
together.

Analysing several protocols in a multi-protocol environment is, in general, no
easier than analysing their sequential composition. In order to make automatic
analysis feasible, we introduce the notion of protocol set independence, where
ciphertexts, signatures, and message authentication tags originating in one
protocol set will never be accepted by the other protocol set and vice versa.
This notion allows us to prove several theorems regarding the deduction of
properties of protocols running together in a multi-protocol environment from
properties these protocols have when running in isolation.

Verifying independence itself is non-trivial, therefore we need the notion of
strong independence, where the forms of ciphertexts, message authentication
tags, and signatures in the two protocol sets are sufficiently different to prevent
confusion. Strong independence can be easily verified at the syntactical level,

4

and implies independence. We show that through common design strategies
for security protocols in current use, strong independence will be satisfied.
Note that different protocols can use the same cryptographic keys and still be
both, independent and strongly independent.

The model we use is based on the operational semantics for security proto-
cols defined in [15]. In contrast to other approaches, in which only singular
protocols are considered, this model provides a semantics of protocols in a
multi-protocol setting. This makes it a good starting point for compositional
verification, since, as indicated, the problem of proving correctness of a com-
posed protocol can be translated into the problem of proving correctness of
the components in a multi-protocol setting comprising the components them-
selves.

To show the applicability of our work, we perform a case study. We have
chosen to focus on the IEEE 802.16 standard, also known as WiMAX. This
standard specifies the air interface of wireless access systems featuring a se-
curity sublayer intended to protect network operators from theft of service
and provide confidentiality to subscribers. WiMAX features a security sub-
layer consisting of several subprotocols for authentication, key management,
and secure communication. This makes WiMAX well suited for an analysis in
our framework. Our verification is completely tool-supported, except for some
trivial reasoning and theorem application.

Overview of the paper

We start off by giving a brief description of the security protocol model and
security properties used in Section 2. In Section 3, we develop a framework
for compositional reasoning about security protocols, and prove a number of
compositionality theorems. We show how the developed theory can be ap-
plied in practice by performing a case study on key management protocols in
the security sublayer of WiMAX in Section 4. Related work is discussed in
Section 5, and we draw conclusions and discuss future work in Section 6.

2 Security Protocols and Their Semantics

In this section we describe an existing formal framework for modeling security
protocols, and extend it with notions relevant for compositional reasoning.

We begin by giving a brief overview of the model in Section 2.1 before de-
scribing the full technical details in Sections 2.2 and 2.3. The model presented

5

here is based on the model defined in [15]. Readers who are familiar with the
basic model may skip to Section 2.4 on page 14, as the only change is the
introduction of parameters for protocols.

In Sections 2.4 and 2.5 we further extend the model with features not present
in the basic model defined in [15], namely trace restrictions (similar to pre-
conditions in PCL and elsewhere), satisfiability predicates, and new security
notions.

2.1 Overview

The basic entities in our framework are role specifications. Every role specifica-
tion consists of a sequence of uniquely labeled events describing the messages
an agent shall send and receive, when it executes the role specification, as
well as certain security claims. The role specification includes constants which
roughly correspond to nonces, variables which store values read from the net-
work, and parameters which represent input.

A protocol is a collection of role specifications that communicate by send-
ing and receiving messages. More precisely, a protocol is a partial function,
mapping role names to role specifications. A run is an execution of a role
specification by an agent. Communication between runs is asynchronous and
is modeled by agents reading messages from and writing messages to a shared
input/output buffer (by executing read and send events). As the buffer is com-
pletely under the control of the adversary, according to the standard Dolev-Yao
intruder model [19], we identify the buffer with the intruder knowledge. The
actual behavior of the entire system, consisting of the intruder and a set of
agents executing a number of runs, is encoded in the traces of the system. In
some situations, we are not interested in all possible traces but in a subset of
traces that have a certain property; for instance, the subset of traces whose
input values are secret. In that case, we talk about trace restriction.

Security properties in our framework are local to a role and are described by
the claim events in the role specifications. Every claim event in a trace results
in a statement about the trace that may or may not be true. In this paper, we
focus on three security properties: secrecy, authentication, and session key es-
tablishment. A secrecy claim event is essentially the statement that something
never enters the adversary’s knowledge, as determined by the trace. Authenti-
cation is captured by the notion of synchronization. A synchronization claim
event translates into the statement that there are runs for the other protocol
roles in the trace with read and send events that match this run’s send and
read events exactly, both in content and in order. Our notion of session keys
is that a session key is secret and identifies a protocol session, in the sense

6

that there is exactly one execution of every protocol role sharing the session
key.

2.2 Security Protocol Specification

Let ID be a set of identifiers, R a set of role names or roles for short, and
F a set of (global) functions. There are three types of identifiers: constants,
variables, and parameters. Constants include the general notion of nonces, and
we will informally refer to some constants as nonces. Concatenation or tupling
of terms is written as (x, y). Encryptions of a term x with a term y are denoted
by {| x |}y. Role terms can be considered as templates for messages that are
read or sent by the agents. The set of role terms is defined as:

RoleTerm ::= ID | R | F(RoleTerm∗)

| (RoleTerm,RoleTerm) | {|RoleTerm |}RoleTerm

Terms that have been encrypted with a term, can only be decrypted by its
inverse term which is either the same term (for symmetric encryption) or the
inverse key (for asymmetric encryption). We use k−1 to denote the inverse key
of a key k. In this work, functions from F are only used to construct long-term
keys, such as pk(r), sk(i), k(x, y). Short term session keys are represented by
constants. In the remainder of the paper x, y, z range over RoleTerm, and c, d
over the ID set.

Example 1. The first message sent by the initiator in the NSL protocol is
denoted by {|ni, i |}pk(r), where ni ∈ ID is a constant, i, r ∈ R are role names,
and pk() ∈ F .

We say that x1 is a subterm of x2 if x1 ⊑ x2, where ⊑ is the smallest transitive
relation satisfying the following rules, for all terms x1, x2:

x1 ⊑ x1, x1 ⊑ (x1, x2), x2 ⊑ (x1, x2), x1 ⊑ {| x1 |}x2, x2 ⊑ {| x1 |}x2.

For a given set of labels L and a set of claims Claim we define the set of events
E as:

E =
{

createℓ(r), send ℓ(r, r
′, x), read ℓ(r

′, r, x), claimℓ(r, c [, x]), end ℓ(r)
∣

∣

∣

ℓ ∈ L, r, r′ ∈ R, x ∈ RoleTerm, c ∈ Claim
}

The labels ℓ extending the events are needed to disambiguate multiple oc-
currences of an event in protocol specifications (e.g. when composing two in-
stances of the NSL protocol). A second use of these labels is to express which

7

send and read events are supposed to correspond (e.g. in NSL the first message
sent by the initiator is linked to the first message received by the responder).

Event send ℓ(r, r
′, x) denotes the sending of message x by r, apparently to r′.

Likewise, read ℓ(r
′, r, x) denotes the reception of message x by r′, apparently

sent by r. We interpret role terms of the form {| u |}v in a send event as en-
cryption with symmetric or public encryption keys, or signing with private
signing keys. In a read we interpret it as decryption with symmetric or private
encryption keys, or verification with public signing keys. An agent can encrypt
or decrypt a term only when it has the relevant key in its knowledge. Event
claimℓ(r, c [, x]) expresses that r upon execution of this event expects the se-
curity property associated with the claim c to hold with optional argument x.
A claim event is always local to a role, and does not imply that other roles
expect the security property associated with the claim c to hold for them.
Events createℓ(r) and end ℓ(r) are used to signal the start and end of the role.

Example 2. The first send event of the initiator in the NSL protocol is
denoted by send ℓ1(i, r, {|ni, i |}pk(r)), where ni ∈ ID is a constant and ℓ1 is
some label. The first read event of the responder in the NSL protocol is denoted
by read ℓ1(i, r, {|ni, i |}pk(r)), where ni ∈ ID is a variable.

A role specification is a pair (elist , type) where elist ∈ E∗ is a list of events and
type : ID → {const , param, variable} is a function that assigns types to the
identifiers that appear in elist . We require that there is only one create and one
end in the event list, and that they start and terminate the list. Furthermore,
we require that the role names in the create and end events are the same, and
they match the role names that appear in claim events and the sender and
recipient, respectively, in send and read events. This is the specification’s role
name. The set of all role specifications is denoted by RoleSpec.

Note that only in the context of a role specification rs can we talk about the
set of variables or parameters. For a role specification rs = (elist , type), we
write var rs(x) for the set of identifiers that appear in role term x and are
considered variables in the role specification.

A protocol is a partial mapping of role names to role specifications, i.e. R →
RoleSpec. We say that r is a role in protocol P if r ∈ dom(P), the domain of
P . If r is a role in protocol P and ℓ is a label of an event in the event list of r
then we write ℓ ∈ P (r). We extend this notation in the obvious way to ℓ ∈ P .
By ID(P) we denote the set of all identifiers that appear in protocol P . The
universe of protocols is denoted by Prot .

For a protocol P , we require that all labels are unique, except for the labels
of corresponding read and send events which have to be identical. For a set of
protocols Π, we require that a label is used in at most one protocol.

8

We define a relation ≺′ on the events of a protocol as the union of the obvious
event orders on the role specifications. We extend this relation with all pairs
of identically labeled send and read events so that such send events always
precede the corresponding read events. The partial order ≺ is the transitive
closure of ≺′ and represents causality preorder.

Example 3. The following example specifies the NSL’ protocol, which is the
bottom right subprotocol in Figure 1. Notice the parameter nr and the fact
that ni′ is considered a constant by role i, whereas it is a variable for role r.

NSL′(i) = (create1(i) · send2(i, r, {|ni′, i, nr |}pk(r))·

read3(r, i, {|ni′, nr′, r |}pk(i)) · send4(i, r, {|nr′ |}pk(r)) · end5(i),

{nr 7→ param, ni′ 7→ const , nr′ 7→ variable})

NSL′(r) = (create6(r) · read2(i, r, {|ni′, i, nr |}pk(r))·

send3(r, i, {|ni′, nr′, r |}pk(i)) · read4(i, r, {|nr′ |}pk(r)) · end7(r),

{nr 7→ param, ni′ 7→ variable, nr′ 7→ const})

2.3 Runs and Traces

In this section we describe how, through instantiation, an abstract role spec-
ification can be transformed into an execution of a role, which we call a run.
Furthermore, we define how the interleaved operation of a collection of runs
defines the traces of a system.

Run terms model the actual messages sent in a protocol. Since the run terms
are instantiations of role terms they are defined similarly. Let Runid be a set
of run identifiers, IT a set of intruder-generated run terms and A a set of
agent names which is a disjoint union of a set of trusted and a set of untrusted
agents, AT and AU respectively. The set of run terms is defined as:

RunTerm ::= A | F(RunTerm∗) | ID♯Runid | IT |

(RunTerm,RunTerm) | {|RunTerm |}RunTerm

The run terms of the form ID♯Runid and the terms in IT are called nonce
run terms. The subterm relation ⊑ on run terms is defined similarly to the
subterm relation on role terms. Since it is clear from the context which one is
used, we allow the same notation for both relations. In the remainder of the
paper t, u, v range over RunTerm.

A role term is turned into a run term when abstract role names are replaced
by concrete agent names, and constants are made unique by extending them

9

with a run identifier. This is done by means of an instantiation, which is a
triplet (rid, ρ, σ), where rid ∈ Runid , ρ is a partial function from role names
to agent names, and σ is a partial function from identifiers to run terms. We
denote the set of all possible instantiations by Inst .

In the context of some role specification rs with type function type , an instan-
tiation inst = (rid, ρ, σ) turns a role term x into a run term, if ρ is defined
for every role name that appears in x and var rs(x) ⊆ dom(σ). For any f ∈ F
and role terms x1, . . . , xn ∈ RoleTerm, instantiation is defined recursively by:

inst(x) =



































































ρ(r) if x ≡ r ∈ R

c♯rid if x ≡ c ∈ ID ∧ type(c) = const

σ(x) if x ∈ ID ∧ type(x) ∈ {param, variable}

f(inst(x1), . . . , inst(xn)) if x ≡ f(x1, . . . , xn)

(inst(x1), inst(x2)) if x ≡ (x1, x2)

{| inst(x1) |}inst(x2) if x ≡ {| x1 |}x2

If an instantiation cannot be applied because var rs(x) 6⊆ dom(σ), we say that
x has free variables in this context.

Example 4. If we apply instantiation (42, {i 7→ a, r 7→ b}, {ni 7→ ni♯41})
to the contents of the first send event of the responder in the NSL protocol
{|ni, nr, r |}pk(i), we obtain {|ni♯41, nr♯42, b |}pk(a),

Instantiations are essential ingredients to define the notion of a run of a role. A
run of a role specification rs = (elist , type) is a pair (inst, elist ′), where inst ∈
Inst and elist ′ is a suffix of elist . In this definition we express that one is mainly
interested in the current state of an agent executing a role. We model this
dynamic aspect by requiring that the list elist ′ ∈ E∗ contains the remaining
events in the role specification, and not the complete role specification. The
instantiation inst contains the actual values of the variables and parameters,
as well as the agent names expected to execute the other protocol roles. The
set of all runs is denoted by Runs. A run event is a pair (inst, ev) ∈ Inst ×E .
These are the events that can be observed when executing a system. A system’s
behavior is represented by a sequence of run events, which we call a trace. The
universe of traces is denoted by Traces.

Let P be a protocol with a role specification rs = (elist , type), and let inst =
(rid, ρ, σ) be an instantiation. The pair (inst, elist) is an initial run for rs if
and only if dom(ρ) = dom(P) and dom(σ) = type−1(param) (σ is defined for
all role parameters, specifying the run’s input). The set of all initial runs for

10

all roles of a protocol P is denoted by runsof (P). For a protocol set Π, we let

runsof (Π) =
⋃

P∈Π

runsof (P).

Example 5. An initial run of the initiator of the NSL’ protocol from Exam-
ple 3 is ((42, {i 7→ a, r 7→ b}, {nr 7→ ni♯41, nr′ 7→ ⊥}), create1(i)·
send2(i, r, {|ni′, i, nr |}pk(r))· read3(r, i, {|ni′, nr′, r |}pk(i))· send4(i, r, {|nr′ |}pk(r))·
end5(i)). Notice that nr is the only parameter (and thus must be initialized),
that variable nr′ has no initial value and that ni′ is a constant.

For a protocol set Π we consider a system with a number of runs (communicat-
ing with each other) executed by agents in presence of an intruder. We assume
a standard Dolev-Yao model, in which the intruder has complete control over
the communication network. The knowledge of the intruder, denoted by M ,
is a subset of run terms. He can decrypt messages if he knows the appropriate
decryption key, and he can construct messages from his knowledge set. We
express this by requiring that M is closed, that is:

∀u,v∈M (u, v) ∈ M ⇒ {| u |}v ∈ M

∀u,v{| u |}v, v
−1 ∈ M ⇒ u ∈ M

∀u,v(u, v) ∈ M ⇔ u, v ∈ M

The closure M of a set of run terms M is the smallest closed superset of M .

Due to the dynamic behavior of the system, the intruder knowledge increases
during the execution. We assume that the initial knowledge M0 of the intruder
can be derived from the protocol and the context (e.g. the public keys of
all agents and the secret keys of all compromised agents). We require that
IT ⊆ M0. The derivation of the initial intruder knowledge from the protocol
specification is treated in detail in [14].

The behavior of the system is defined as a transition relation between system
states. Every state is determined by an intruder knowledge set M containing
run terms (which is also used to model an asynchronous communication be-
tween agents), and a set F containing all active runs. We denote by runids(F)
the set of all run identifiers that appear in F . Every transition is labeled with
a run event (inst, ev) ∈ Inst × E .

The derivation rules for the system are given in Table 1. We denote by F [x/y]
the set obtained from F when x replaces y. Note that from run events used to
label transitions, one can uniquely determine role specifications. All instantia-
tions that appear in a rule are applied in the context of this role specification.

The create rule expresses that a new run can only be created if its run identifier
has not been used yet. The end and claim rules express that these events can
always be executed. Recall that M denotes the closure of the set M . The send

11

rule states that if a run executes a send event, the sent message (obtained by
instantiating a role term in the role specification context determined by the
run event) is added to the intruder knowledge and the executing run proceeds
to the next event.

The read rule determines when a read event can be executed, with the help
of a match predicate defined as follows:

Match(inst, m, t, inst′) ⇐⇒ inst = (rid, ρ, σ) ∧ inst′ = (rid, ρ, σ′) ∧ σ ⊆ σ′ ∧

dom(σ′) = dom(σ) ∪ var rs(m) ∧ inst′(m) = t.

The match predicate decides if an incoming message t can be matched against
a pattern specified by a role term m. With respect to the first instantiation
inst , the pattern may contain free variables. The idea is that the second in-
stantiation inst ′ extends the first instantiation by assigning values to the free
variables such that the incoming message equals the instantiated role term.
Note that the run event determines role specification rs.

Example 6. We have Match(inst, m, t, inst′) for inst = (42, {i 7→ a, r 7→
b}, {nr 7→ ⊥}), m = {|ni, nr, r |}pk(i), t = {|ni♯42, nr♯12, b |}pk(a), and inst′ =
(42, {i 7→ a, r 7→ b}, {nr 7→ nr♯12}). This models the first receive event of
agent a executing the initiator role of NSL in run 42. The symbol ⊥ means
that no value is assigned.

A state transition is the conclusion of an application of one of these rules. In
this way, starting from the initial state Σ0 = 〈M0, ∅〉, where M0 refers to the
initial intruder knowledge, we can derive all possible behaviors of a system
executing a protocol set Π.

We define the set of traces generated by the above derivation rules as a subset
of Traces. Let α ∈ Traces be a trace of length |α| = n, and denote by αi the
ith run event in α (starting with 0). Then α is a valid trace for the system

if there exist states Σ1, Σ2, . . . , Σn such that Σ0
α0→ Σ1

α1→ · · ·
αn−1
→ Σn is a

valid derivation. We denote the set of all valid traces for the protocol set Π
by Tr(Π). When we consider the trace set Tr({P} ∪ Π) we say that P runs
in the context of Π.

We reconstruct state information from a trace as follows. If αi is a run event
from trace α, then Mα

i is the intruder knowledge component M of the state
right before the execution of αi. Thus for all protocols P and traces α ∈ Tr(P),
Mα

0 = M0.

Next, we define a useful short hand. Let Π be a protocol set with P ∈ Π,
and let α ∈ Tr(Π). A cast for P in α is a map cast : dom(P) → Runid
such that for some fixed ρ, for every role r ∈ dom(P) there is a run event
αi = ((cast(r), ρ, ·), createℓ(r)) with ℓ ∈ P . Intuitively, for a trace α, a cast is

12

[create]
run = (inst, createℓ(r) · elist) ∈ runsof (Π), inst = (rid, ρ, σ), rid 6∈ runids(F)

〈M,F 〉
(inst,createℓ(r))

→ 〈M,F ∪ {(inst, elist)}〉

[end]
run = (inst, end(r)) ∈ F,

〈M,F 〉
(inst,endℓ(r))

→ 〈M,F [(inst, ε)/run]〉

[send]
run = (inst, send ℓ(m) · elist) ∈ F

〈M,F 〉
(inst,sendℓ(m))

→ 〈M ∪ {inst(m)}, F [(inst, elist)/run]〉

[read]
run = (inst, read ℓ(m) · elist) ∈ F, t ∈ M,Match(inst,m, t, inst′)

〈M,F 〉
(inst′,readℓ(m))

→ 〈M,F [(inst′, elist)/run]〉

[claim]
run = (inst, claimℓ(r, c [, x]) · elist) ∈ F

〈M,F 〉
(inst,claimℓ(r,c [,x]))

→ 〈M,F [(inst, elist)/run]〉

Table 1
Derivation rules.

an assignment of runs to roles, which expresses the possibility that these runs
together form a session of the protocol. We denote the set of casts for P and
α by Cast(P, α).

Example 7. We illustrate the concept of a trace by providing, in Figure 3,
a possible trace of the NSL’ protocol from Example 3. This trace consists
of the execution of three runs. The first run is an instantiation of role i,
with instantiation (1, {i 7→ a, r 7→ b}, {nr 7→ u, nr′ 7→ ⊥}), where a and b are
agents, u is a nonce run term, and ⊥ means that no value has been assigned yet.
The second run instantiates role i as (2, {i 7→ a, r 7→ b}, {nr 7→ v, nr′ 7→ ⊥}),
for nonce run term v 6= u. The third run is an instantiation of the responder
role r, through (3, {i 7→ a, r 7→ b}, {nr 7→ u, ni′ 7→ ⊥}). Since runs 1 and
3 are instantiated such that they correspond, they can be executed up to
completion. In contrast, run 2 is blocked.

After execution of this trace the intruder knowledge M is extended with the
information contained in the four send events from the trace. Thus we have
that M is equal to:

M0 ∪ {{|ni′♯2, i, v |}pk(r), {|ni′♯1, i, u |}pk(r), {|ni′♯1, nr′♯3, r |}pk(i), {|nr′♯3 |}pk(r)}

There are two casts for the NSL’ protocol in this trace: {i 7→ 1, r 7→ 3} and
{i 7→ 2, r 7→ 3}.

13

instantiation event

(1, ρ, {nr 7→ u, nr′ 7→ ⊥}) create1(i)·

(2, ρ, {nr 7→ v, nr′ 7→ ⊥}) create1(i)·

(2, ρ, {nr 7→ v, nr′ 7→ ⊥}) send2(i, r, {|ni′, i, nr |}pk(r))·

(1, ρ, {nr 7→ u, nr′ 7→ ⊥}) send2(i, r, {|ni′, i, nr |}pk(r))·

(3, ρ, {nr 7→ u, ni′ 7→ ⊥}) create6(r)·

(3, ρ, {nr 7→ u, ni′ 7→ ni′♯1}) read2(i, r, {|ni′, i, nr |}pk(r))·

(3, ρ, {nr 7→ u, ni′ 7→ ni′♯1}) send3(r, i, {|ni′, nr′, r |}pk(i))·

(1, ρ, {nr 7→ u, nr′ 7→ nr′♯3}) read3(r, i, {|ni′, nr′, r |}pk(i))·

(1, ρ, {nr 7→ u, nr′ 7→ nr′♯3}) send4(i, r, {|nr′ |}pk(r))·

(3, ρ, {nr 7→ u, ni′ 7→ ni′♯1}) read4(i, r, {|nr′ |}pk(r))·

(3, ρ, {nr 7→ u, ni′ 7→ ni′♯1}) end7(r)·

(1, ρ, {nr 7→ u, nr′ 7→ nr′♯3}) end5(i)

Fig. 3. Example trace of the NSL’ protocol (ρ = {i 7→ a, r 7→ b}).

2.4 Trace restrictions

In Sections 2.2 and 2.3 we have described the semantics proposed by Cremers
and Mauw in [15]. In this and the next section we define mechanisms for
properly handling parameters, and we add several new security properties to
the semantics, both important for protocol composition.

Note that there are essentially no restrictions on which values parameters take
in the semantics. We interpret parameters as input to the protocols, and as
such we need to specify where the protocol gets its input from. We do this on
the level of protocol sets by specifying which protocols produce output and
which protocols are allowed to use this output as input. This specification is
done by means of trace restrictions.

When we study protocols in isolation, we do not want to consider how the input
is created, we only want to consider what properties hold for the input. We
model these properties using trace restrictions. While some trace restrictions
are related or similar to security properties, trace restrictions do not model
protocol security properties, but rather usage of the protocols.

A trace restriction is essentially a predicate on a trace set. We use this predi-
cate as a filter, selecting a subset of the trace set.

14

Definition 8. Let Π be a protocol set, and let χ be a predicate on Tr(Π).
Then

Tr(Π; χ) = {α ∈ Tr(Π) | χ(α)}.

In practice, a user first executing a protocol P and then executing a second
protocol Q might pass values obtained from P as input to the execution of Q.
In a trace, the mechanism for passing the input value is encoded by initializing
the parameter for the Q-run of an agent in some role, to a value produced by
the P -run of the same agent acting in the same role.

There are two variants to this use. Either the user inputs a value generated by
P into one or more executions of the same role of Q, or he inputs a value into
just one execution of the Q role. We define two trace restrictions corresponding
to these uses, labeled IO and IO!.

We say that a protocol P establishes an identifier c if for any trace α and
every occurrence of events (inst, end ℓ(r)), ℓ ∈ P , in the trace, inst is defined
at c. This condition can be verified by a syntactical analysis.

For the remainder of this section, let Π be a protocol set, let Π′ ⊆ Π be a set
where every protocol establishes c, and let Π′′ ⊆ Π be a protocol set where
every protocol has d as a parameter in every role. Let α ∈ Tr(Π), and let I
contain all subscripts of events in α which correspond to a create event from
Π′′:

I = {i | αi = (insti, createℓ(ri)) ∧ ℓ ∈ Π′′}.

For each i ∈ I, define the sets

Ai = {j | αj = (instj , createℓ(rj)) ∧ ℓ ∈ Π′′ ∧ instj(d) = insti(d)} and

Bi = {j | αj = (instj , endℓ(ri)) ∧ ℓ ∈ Π′ ∧ instj(c) = insti(d)}.

The set Ai contains the runs that received the same input as the run that was
started in αi, and Bi contains the set of runs that could have produced this
input. We also define the following subsets:

A′
i = {j ∈ Ai | ∀r ∈ R : instj(r) = insti(r)} and

B′
i = {j ∈ Bi | ∀r ∈ R : instj(r) = insti(r)},

where the equality is in the sense that either both are defined and equal, or
both are undefined. The set A′

i is therefore the subset of Ai of which the runs
have the same ρ as αi, that is, they believe they are communicating with the
same partners. The set B′

i has a similar interpretation.

Definition 9. Let Π′ 6= ∅, Π′′ be such that all protocols in Π′ ∪ Π′′ have the
same role set. We define the predicates

χIO(α; Π′, Π′′, c, d) ⇔ ∀i ∈ I ∃j ∈ B′
i ∀k ∈ A′

i : j < k

15

and

χIO!(α; Π′, Π′′, c, d) ⇔

∀i ∈ I∃f : A′
i → B′

i : f injective ∧ (∀j ∈ A′
i : f(j) < j).

The trace restriction χIO(α; Π′, Π′′, c, d) says that a protocol set Π′′ takes its
input from a protocol set Π′. As explained before, this means that any run
of a role of a protocol in Π′′ initializes its input parameter d to a value that
has been recorded in c earlier in the trace, in a run of the corresponding role
of a protocol in Π′. (The initialization is specified by defining σ only at the
input parameters when the run is created.) In the stricter trace restriction,
χIO!(α; Π′, Π′′, c, d) it is required that at most one run of a role of a protocol in
Π′′ can take as its input a value produced in a run of the corresponding role of
a protocol in Π′. In order to ease notation, when Π = Π1∪Π2, Π′ is a subset of
Π1 and Π′′ is a subset of Π2, instead of writing Tr(Π; χIO(·; Π′, Π′′, c, d)) and
Tr(Π; χIO!(·; Π

′, Π′′, c, d)), we simply write Tr(Π1〈c〉∪Π2〈c/d〉) and Tr(Π1〈c〉∪
Π2〈c!/d〉) respectively.

Our main goal is to study security properties of component protocols in iso-
lation. When one protocol takes input from another protocol, we do not want
to include the second protocol in the analysis. Our strategy is instead to spec-
ify preconditions on the input to our protocol, sufficient for the protocol to
achieve its goals. We express these preconditions in terms of trace restrictions.

Next, we define what it means for input to be secret. We emphasize that
the trace restriction makes no claim about what eventually happens with the
input. It may very well not remain secret. But the construction is such that it is
possible to keep the input secret. As an example, consider the empty protocol
with a claim for secrecy of the input identifier. Under a secret trace restriction
on the input, the secrecy claim should always be satisfied. To achieve this, we
resort to a technical trick. The idea is that since d is a parameter in the run
with run identifier rid, the run term d♯rid is guaranteed by the semantics not
to be known by the adversary or any other execution at the start of the run.
Note that d♯rid should not be thought of as a locally generated nonce, it is
merely a convenient name for something generated elsewhere.

Definition 10. We define the predicate

χsecret(α; Π′′, d) ⇔ ∀i ∈ I : j = min Ai ∧ instj = (rid, ·, ·) ⇒ insti(d) = d♯rid.

A somewhat stronger notion of secrecy is that of session key, where we not
only have secrecy, but also a notion of a session.

Definition 11. Let the event αi have instantiation insti, label ℓi and role ri,

16

with ℓi ∈ Pi. We define the predicate

χsession(α; Π′, d) ⇔

∀i ∈ I : (∃j ∈ A′
i : instj = (rid, ·, ·) ∧ insti(d) = d♯rid) ∧

(∃f : A′
i → R : f injective ∧

∀j ∈ A′
i : ℓj ∈ Pi ∧ f(j) = rj)

Finally, a much simpler concept is that the protocol takes its input from the
adversary. In this case, the idea is that the protocol does not really care about
where its input comes from, just that it gets its input. We do not believe this
is interesting on its own, but it is a useful tool in analysis. One such example is
protocols where the chaining nonce is public, for instance NSL variants using
signatures instead of public key encryption.

Definition 12. We define the predicate

χadversary(α; Π′, d) ⇔

∀1 ≤ i ≤ |α| : αi = (inst, createℓ(r)) ∧ ℓ ∈ Π′ ⇒ inst(d) ∈ Mα
i .

To simplify the notation, we denote these trace sets simply as Tr(Π〈secret/d〉),
Tr(Π〈session/d〉) and Tr(Π〈adversary/d〉).

2.5 Security properties

We have already introduced claim events in the trace model. Claim events
are not real protocol events, but markers we put in a trace to indicate that
a certain statement about the trace is supposed to hold. We can, for in-
stance, extend the role definition of NSL′(i) from Example 3 with claim event
claim8(i, secret , ni′), which contains the claim secret . If an agent reaches this
claim event during his execution of role i, it is intended that an intruder will
never learn the value of his nonce.

The definition of security properties proceeds in three steps. First, we define
the general signature of a security property, which we consider a predicate on
protocol traces. Next, we express that such a property is satisfied if it holds for
all traces of the protocol. Finally, we define a number of security properties,
such as secrecy and authentication.

In general, a security property is a predicate on the traces of a protocol. So,
given protocol Π and a claim cl, fcl(Π, claimℓ(r, cl, m)) assigns truth values
to pairs (inst, α), where α is a trace of Π and inst is an instantiation of the
variables in the claim event.

17

Definition 13. A security property is a function fcl, cl ∈ Claim, that asso-
ciates with every pair (Π, ev) of a protocol set Π and a role claim event ev
with claim cl, a predicate on pairs of instantiations and traces:

fcl : P(Prot) × {claimℓ(r, cl, m) | ℓ ∈ L, r ∈ R, m ∈ RoleTerm} →
⋃

Π∈P(Prot)

{Inst × Tr(Π) → {true, false}},

where P(Prot) is the powerset of the set of all protocols.

Note that a context is needed to evaluate an instantiation, and the label ℓ on
the role claim event determines this context.

A security property fcl is satisfied in protocol set Π if it yields true for all
protocol traces containing this claim cl. This is expressed in the following def-
inition. However, we have included the additional restriction that only claims
concerning sessions between trusted agents are evaluated. One cannot expect,
for instance, that a shared secret is really secret if one of the communication
partners is corrupted. Notice that this does not rule out the possibility that
a secret in a trusted session is broken due to an interleaving of a session with
untrusted partners. Of course there are security properties for which this re-
striction is not appropriate, but since the properties used in this paper all
have this restriction in common, it is included in the following definition of
satisfaction.

Definition 14. Let fcl be a security property, Π a protocol set, and ℓ the label
of a claim event with claim cl. We say that Π satisfies the claim ℓ, denoted
by sat(Π, ℓ), if

∀α ∈ Tr(Π)∀i : αi = (inst, claimℓ(r, cl, m)) ⇒

fcl(Π, claimℓ(r, cl, m))(inst, α) ∨ (inst = (·, ρ, ·) ∧ im(ρ) 6⊆ AT).

We extend this in the obvious way with trace restrictions and to sets of claim
event labels writing sat(Π, {ℓi}; χ).

As an example, we can claim secrecy for a particular role term m by inserting
a suitable claim event into the protocol specification. That claim event will
translate into the following statement about a trace α: The adversary never
learns the run term inst(m) in the trace α.

Definition 15. Let α ∈ Tr(Π). The security property fsecret associates the
protocol set Π and the claim event ev = claimℓ(r, secret , m) with the statement

fsecret(Π, ev)(inst, α) ⇔ inst(m) 6∈ Mα
|α|+1,

where the initial intruder knowledge is determined from Π.

18

We also need to express that a given run is part of a session for its protocol.
We achieve this by requiring that no two runs of the same role of the protocol
have the same value for the session identifier (the argument). We call this
property session uniqueness.

Definition 16. The security property fsession-unique associates the protocol set
Π and the claim event ev = claimℓ(r, session-unique , m) with the statement

fsession-unique(Π, ev)(inst, α) ⇔ ∀1 ≤ i, j ≤ |α| :

(αi = (insti, claimℓ(r, ·, ·)) ∧

αj = (instj , claimℓ(r, ·, ·)) ∧

insti(m) = instj(m) = inst(m)) ⇒ i = j.

Many protocols establish session keys, and we identify three requirements that
a session key needs to satisfy:

(1) The session key must be secret.
(2) There must be a session, that is, one run of each role of the protocol must

know the session key.
(3) The key must act as a session identifier, that is, it must be unique across

all runs of the same role of the same protocol.

The first requirement is taken care of by the secrecy property and the third
requirement by the session-unique property. The second requirement is taken
care of by data agreement for the session key, which we now define. The idea
is that, for every other role in the protocol, there must exist a run that has
the same value for the argument term at some event causally preceding the
claiming event. These runs must also agree on which agent executes which
role, thus possibly forming a session of the protocol.

Definition 17. The security property fdata-agree associates the protocol set Π
and the claim event ev = claimℓ(r, data-agree, m), with ℓ ∈ P , P ∈ Π, with
the statement

fdata-agree(Π, ev)(inst, α) ⇔ ∃cast ∈ Cast(P, α) :

∀r′ ∈ dom(P) ∃j : αj = (instj , ·) ∧

instj = (cast(r′), ·, ·) ∧ instj(m) = inst(m).

Note that causal precedence is implicitly required in this definition. Given any
trace with a claim event, we can create a new trace by removing any event not
causally preceding the claim event. Hence, for the definition to be satisfied,
there must be agreeing events for all roles causally preceding the claim event.

Now we can define the session key claim.

19

Definition 18. The security property fsession associates the protocol set Π
and the claim event ev = claimℓ(r, session, m) with the statement

fsession(Π, ev)(inst, α) ⇔

fsecret(Π, claimℓ(r, secret , m))(inst, α) ∧

fsession-unique(Π, claimℓ(r, session-unique, m))(inst, α) ∧

fdata-agree(Π, claimℓ(r, data-agree, m))(inst, α).

We also define a weaker session key claim, where we drop the requirement
about the agreement with (and therefore existence of) communication part-
ners.

Definition 19. The security property fwsession associates the protocol set Π
and the claim event ev = claimℓ(r,wsession, m) with the statement

fwsession(Π, ev)(inst, α) ⇔

fsecret(Π, claimℓ(r, secret , m))(inst, α) ∧

fsession-unique(Π, claimℓ(r, session-unique, m))(inst, α).

Finally, we deal with authentication. Our preferred notion is synchroniza-
tion [16], a strong form of authentication. A non-injective synchronization
claim holds if there are executions of the other protocol roles whose read and
send events match the claiming execution’s events, up to the claim event. An
even stronger notion of authentication, injective synchronization, holds if there
is exactly one set of executions of the other protocol roles such that the read
and send events match the claiming execution’s events, up to the claim event.

Definition 20. The security property fsynch associates the protocol set Π
and the claim event ev = claimℓ(r, synch), ℓ ∈ P for some P ∈ Π with the
statement

fsynch(Π, ev)(inst, α) ⇔ ∃cast ∈ Cast(P, α), 1 ≤ i ≤ |α| : αi = (inst, ev) ∧

∀r′ ∈ dom(P)∀ℓ′ ∈ P (r) : ℓ′ ∈ P (r′) ∧ read ℓ′ ≺ ev

⇒ ∃j < k < i :

αj = (inst′′, send ℓ′(m)) ∧ αk = (inst′′′, read ℓ′(m
′)) ∧

inst′′(m) = inst′′′(m′) ∧

((inst′′ = (cast(r), ·, ·) ∧ inst′′′ = (cast(r′), ·, ·)) ∨

(inst′′ = (cast(r′), ·, ·) ∧ inst′′′ = (cast(r), ·, ·))).

Definition 21. The security property fi-synch associates the protocol set Π
and the claim event ev = claimℓ(r, i -synch), ℓ ∈ P for some P ∈ Π with the

20

statement

fi-synch(Π, ev)(inst, α) ⇔ ∃!cast ∈ Cast(P, α), 1 ≤ i ≤ |α| : αi = (inst, ev) ∧

∀r′ ∈ dom(P)∀ℓ′ ∈ P (r) : ℓ′ ∈ P (r′) ∧ read ℓ′ ≺ ev

⇒ ∃j < k < i :

αj = (inst′′, send ℓ′(m)) ∧ αk = (inst′′′, read ℓ′(m
′)) ∧

inst′′(m) = inst′′′(m′) ∧

((inst′′ = (cast(r), ·, ·) ∧ inst′′′ = (cast(r′), ·, ·)) ∨

(inst′′ = (cast(r′), ·, ·) ∧ inst′′′ = (cast(r), ·, ·))).

Certain security properties can be evaluated by merely looking at the events in
a trace that belong to the protocol in which the claim was made. This class of
properties are called protocol-centric, and as we will see, we can prove theorems
that apply to all properties in this class. Since authentication properties are
concerned with the occurrence of events of the given protocol, they are typical
members of this class.

Definition 22. Let P be a protocol, and Π a protocol set. Denote by πP and
πΠ the maps on traces that remove any protocol event that does not belong
to P or a protocol in Π, respectively.

Let s be any bijection on the set of nonce run terms {c♯rid | c ∈ ID, rid ∈
Runid} ∪ IT . This is basically a renaming of nonce run terms. Any such
bijection can be naturally extended to a bijection on the set of run terms. For
any trace α, we define s(α) to be the trace where every instantiation inst is
replaced with s ◦ inst.

Definition 23. We say that a security property fcl is protocol-centric if for
any (Π, ev) such that fcl is defined and ev belongs to a protocol P ∈ Π, and
for any renaming s on nonce run terms,

∀α, α′∀inst ∈ Inst : s(πP (α)) = πP (α′)

⇒ fcl(Π, ev)(inst, α) = fcl(Π, ev)(s ◦ inst, α′).

(The renaming s is included in this definition for technical reasons.)

We observe that session-unique, data-agree, synch and i -synch are protocol-
centric, while secret and therefore session are not.

21

3 Framework for reasoning

Automatically proving large protocols secure is computationally challenging.
If the protocol can be split into a sequential composition of several subproto-
cols, one approach to verification is to analyze the subprotocols in a common
context. Properties proved for each of the subprotocols running in this multi-
protocol context can often be used to deduce properties for the composed pro-
tocol. Note that some authors consider protocols running in a multi-protocol
context to be composed in parallel. We use “composition” only about opera-
tions that combine two or more protocol objects into a new protocol object.
The only form of composition considered in this paper is sequential composi-
tion.

Unfortunately, automatically verifying protocol properties in such a multi-
protocol context is not computationally easier than analysing the composed
protocol itself. The ideal is to study each subprotocol in perfect isolation,
without consideration of any other protocols. Our approach is to study under
which conditions protocols running in parallel can be shown not to interfere
with each other, such that results obtained by analysis in isolation will be
valid for a multi-protocol context.

Our approach is to use a very strong, but efficiently verifiable notion of in-
dependence between protocols. We show how to design protocols to ensure
such independence without incurring any significant performance penalty. We
then prove a number of theorems showing conditions under which protocols
can run in a multi-protocol context without interfering with each other. Fi-
nally, we define sequential protocol composition (similar to the one in PCL)
and show how properties of subprotocols can be combined to give security
properties for the composed protocols.

We use the formal model described in Section 2, with two restrictions:

(1) We require that the partial function σ in instantiations assigns only nonce
run terms to variables and parameters.

(2) We restrict ourselves to protocols that use secret long-term keys only as
keys, never as content of messages.

The first restriction is essential for the notion of strong independence, defined
in the next section. We refer to Section 6 for a discussion of the implications.
The second restriction could be lifted, but this would subtly complicate anal-
ysis, since the use of long-term secret keys becomes much harder to predict.

22

3.1 Independence

We say that two protocols are independent if no encryption term produced
by the first protocol running in the context of the second protocol will be
decrypted or verified by the second protocol, and vice versa. Formally:

Definition 24. Let Π1, Π2 be two disjoint protocol sets, and let χ be a (pos-
sibly empty) trace restriction. We say that Π1 and Π2 are independent in the
context of χ, denoted indep(Π1, Π2; χ) (alternatively if χ is empty, Π1 and Π2

are independent, denoted indep(Π1, Π2)), if

∀α ∈ Tr(Π1 ∪ Π2; χ) ∀x, y, x′, y′ ∈ RoleTerm :
(

αi = (inst, send ℓ(m)) ∧
(

αj = (inst′, read ℓ′(m
′)) ∨ αj = (inst′, send ℓ′(m

′)) ∨

αj = (inst′, claimℓ′(·, ·, m
′))

)

∧
(

{| x |}y ⊑ m ∧ {| x′ |}y′ ⊑ m′ ∧ inst({| x |}y) = inst′({| x′ |}y′)
)

)

⇒ (ℓ, ℓ′ ∈ Π1 ∨ ℓ, ℓ′ ∈ Π2).

In general, proving independence is a non-trivial problem, but for many pro-
tocol sets it is easy in the sense that the protocol sets satisfy an even stronger
notion of independence. We say that two protocol sets are strongly indepen-
dent if they have no encryptions of the same form. Unlike independence, strong
independence can be easily verified at the syntactical level, and it implies in-
dependence. Note that different protocols can use the same cryptographic keys
and still be strongly independent, and thus independent.

Definition 25. Let Π0 and Π1 be two disjoint protocol sets. We say that Π0

and Π1 are strongly independent, denoted s-indep(Π0, Π1), if for any b ∈ {0, 1},
any role specification (elist · send(m) ·elist′, type) in a protocol in Πb, any role
terms x, y, any role specifications (elist′′ · send(m′) · elist ′′′, type ′), (elist′′ ·
read(m′) · elist ′′′, type ′) or (elist′′ · claim(r, c, m′) · elist ′′′, type ′) in protocols of
Π1−b, any map s on the set ID and any map s′ on the set R,

{| x |}y ⊑ m ⇒ {| s(s′(x)) |}s(s′(y)) 6⊑ m′.

Note that any map s on identifiers and s′ on roles naturally induce maps on
the set of role terms and we identify these maps with s and s′. Also note
that since strong independence is a syntactical property, there is no need to
consider traces or trace restrictions.

Theorem 26. If two protocol sets Π1 and Π2 are strongly independent, then
they are independent.

23

Proof. Obvious from the fact that only nonce run terms are assigned to vari-
ables and parameters.

The notion of strongly independent protocols is obviously very strong, and
there are many independent protocols that are not strongly independent.
However, it is possible to verify strong independence by a simple syntactical
check on the protocols. Obviously, strong independence may not be useful for
analysing some existing protocols, but it does cover many deployed protocols
(see Section 4).

One way to achieve strong independence is to use separate key infrastructures
for every protocol. Unfortunately, this is expensive and wasteful. A more prac-
tical way to get strong independence is through protocol tags. Every protocol
is given a unique tag which is embedded into every ciphertext the protocol
makes. This trivially implies strong independence.

Protocol tags may be a desirable approach for protocol design, since they
typically require no extra bandwidth, and only modest extra computational
effort.

Modern signature schemes typically process the message to be signed with
a hash function, create a signature tag, and attach the tag to the message.
Adding a protocol tag of reasonable length (say 128 bits) to the message will
usually result in a minor increase in the cost of computing the hash function.
Since the signature is simply attached to the message, and both signer and
verifier know the protocol tag, there is no need to actually transmit the proto-
col tag. The signer can remove the tag from the message before transmitting,
the verifier puts the tag back in before verifying. A signature made by one
protocol will not pass the verification by a second protocol.

Modern encryption schemes typically allow for part of the message to be left
unencrypted but authenticated. Again, if we include the protocol tag in the
unencrypted part, the encrypter can remove the tag before transmission and
the decrypter can insert the tag prior to decryption. Typically, a protocol tag of
reasonable length will result in a minor increase in the cost of authentication.

As for hash-like function evaluations, most cryptographically interesting func-
tions either allow the protocol tag to be inserted into the function evaluation,
or allow cryptographic separation by choosing distinct parameters. The com-
putational cost of most such measures are expected to be modest.

To summarize, protocol tags typically have no bandwidth cost and modest
computational cost. This suggests that protocol tagging is a viable and sensible
strategy for protocol design.

24

3.2 Multi-protocol environments

Once we have independence, we are ready to prove that any protocol remains
correct in the presence of independent protocols. The general idea for proving
all of the results in this section is to define maps between trace sets, and then
argue that the predicate derived from a claim statement remains unchanged
under this map.

The next theorem says that if one protocol set keeps something secret, it will
keep it secret even in the presence of a second, but independent, protocol set.

Theorem 27. Let Π1 and Π2 be two independent protocol sets. Let ℓ be the
label of some secret claim event in Π1. Then

sat(Π1, ℓ) ⇒ sat(Π1 ∪ Π2, ℓ).

Proof. Let S be the set of nonce run terms in α originating in runs of roles
from protocols in Π2. Let s : S → IT be an injection such that no term in
the image of s appears in α. We can extend s to the set of nonce run terms
by letting s be the identity where it is not already defined. This map can then
be extended naturally to a renaming map on the set of run terms.

We construct a new trace α′ from α by removing any events belonging to
runs of roles from protocols in Π2, and replacing any other event (inst, ev) by
(s ◦ inst, ev). (Since s renames only nonce run terms, the composition s ◦ inst
may affect only the σ function of inst.) Note that by independence, if any
nonce run term originates in a run of a role of a protocol in Π2, the only way a
run of a role of a protocol in Π1 will read that nonce run term is if the adversary
also knows that nonce run term. From the semantics, we have that a nonce
of Π2 can only occur in a run of a role of Π1 as a subterm of an instantiated
variable. Therefore, if we replace the nonce run term by an attacker-generated
nonce run term (such that the type constraints on the containing variable are
met), the trace will still be valid even after the Π2-events are removed. This
means that α′ ∈ Tr(Π1).

There is always a canonical choice of injection s (given the well-ordering on
the nonce run terms induced by the natural numbers), and this gives us a map

τ : Tr(Π1 ∪ Π2) → Tr(Π1). (1)

Note that τ = s ◦ πΠ1 .

Now consider a run term t claimed secret in α. In α′, the corresponding run
term is s(t), and we know that this is secret. We first determine why s(t) is
secret, and we may as well assume that s(t) is a non-tuple run term. If s(t)

25

has the form f(u) for some function f and run term u, then t is secret by
assumption. If s(t) is a nonce run term, we know that first of all s(t) must
originate in a run of a role of a protocol in Π1. Second, every time it appears in
a sent run term, it must be inside an encryption term. By independence, no Π2-
run will decrypt that ciphertext. Therefore, t must be secret in α. Otherwise,
t must have the form {| u |}v for some run terms u and v. If s(u) is secret,
we must show that u is secret. We consider u instead of t and return to the
start of the argument. Otherwise, s(v) must be secret. By independence, it is
sufficient to show that v is secret, so we consider v instead of t and return to
the start of the argument.

Since terms cannot be infinitely nested, this argument chain must eventually
stop, and in the process prove that t is secret in α. This concludes the proof.

If secrecy of some nonce is not important for satisfying some secrecy claim in
some protocol set, then passing the nonce to an independent protocol set will
not compromise the secrecy claim. The intuition is that the worst an indepen-
dent protocol can do is to reveal the nonce to the intruder, and therefore we
only need to analyse what happens in that case.

Definition 28. Let P be a protocol establishing c. Then P 〈c∗〉 is the protocol

P 〈c∗〉 = {r 7→ s · send(r, νr0,r1(r), c) · end(r) | P (r) = s · end(r)},

where r0 and r1 are two distinct roles of P and νr0,r1(r) is r0 when r 6= r0,
otherwise r1.

We extend this notation to protocol sets in the obvious way, writing Π〈c∗〉.

Theorem 29. Let Π1〈c
∗〉 and Π2〈adversary/d〉 be two independent protocol

sets and let ℓ be the label of some secret claim event in Π1. Then

sat(Π1〈c
∗〉, ℓ) ⇒ sat(Π1〈c〉 ∪ Π2〈c/d〉, ℓ).

Proof. It is clear that Tr(Π1〈c〉 ∪ Π2〈c/d〉) embeds naturally in Tr(Π1〈c
∗〉 ∪

Π2〈adversary/d〉). Furthermore, under this embedding the intruder knowledge
is strictly increased. By Theorem 27, the secrecy claim holds in the latter trace
set. It must therefore also hold in the former trace set and the theorem is
proven.

If secrecy of some nonce may be important for some secrecy claim, then passing
the nonce to an independent protocol set that preserves the secrecy of its input
will not compromise the secrecy claim. (Note that the secrecy claims in the
second protocol must be positioned at the start of the role. Otherwise, the

26

protocol would be allowed to compromise the secrecy of the input as long as
none of its roles reaches its secrecy claim.)

Theorem 30. Let Π1〈c〉 and Π2〈c/d〉 be two protocol sets, let Π′
1 ⊆ Π1 be

a set of protocols establishing c and Π′
2 ⊆ Π2 be a set of protocols with d

as a parameter. Let ℓ ∈ Π1 ∪ Π2 be the label of some secret claim event. If
Π1 and Π2 are independent under the trace restrictions χIO(·; Π′

1, Π
′
2, c, d) and

χsecret(·; Π
′
2, d), then

sat(Π1, {ℓi} ∪ {ℓ}) ∧ sat(Π2〈secret/d〉, {ℓ
′
i} ∪ {ℓ}) ⇒ sat(Π1〈c〉 ∪ Π2〈c/d〉, ℓ).

Here we assume that {ℓi} are the labels of claim events {claimℓi
(ri, secret , c)}

in every role of every protocol in Π1 that establishes c and the {ℓ′i} are labels
of claim events {claimℓ′

i
(r′i, secret , d)} in every role of every protocol in Π2

that has d as a parameter. The event claimℓ′
i
(r′i, secret , d) is assumed to occur

before any send or read event in the role specification.

Proof. Let α ∈ Tr(Π1〈c〉 ∪ Π2〈c/d〉) be a trace. Let I be the set of indexes
such that αi = (insti, create(r)) for some role r of a protocol Q in Π2 that
takes c as input for the parameter d. For each i, define the set

Ai = {j ∈ I | instj(d) = insti(d)}.

Let ridi be such that αmin Ai
= ((ridi, ·, ·), ·). Note that for any i ∈ I, the

nonce run term d♯ridi never appears in α. Let S = {insti(d) | i ∈ I} and
S ′ = {d♯ridi | i ∈ I}, and let s be the substitution that maps insti(d) to
d♯ridi for all i in I.

We construct a new trace α′ from α by replacing any event (inst, ev) that
belongs to Π2 by the event (s ◦ inst, ev).

We claim that α′ ∈ Tr(Π1 ∪ Π2〈secret/d〉), and we get a map

τ : Tr(Π1〈c〉 ∪ Π2〈c/d〉) → Tr(Π1 ∪ Π2〈secret/d〉), (2)

along with a natural bijection

θ : Mα → Mα′

.

We will prove the claim and construct the map θ by induction. The theorem
will then follow from a simple observation.

Suppose α′
0 · · ·α

′
j−1 is a valid trace. The subterm relation ⊑ defines a partial

ordering on Mα
j and Mα′

j . Let Uj and U ′
j be the minimal elements of these

27

sets, together with the terms that cannot be inferred from smaller terms:

Uj = {x ∈ Mα
j | t ⊑-minimal} ∪ {{| t |}t′ ∈ Mα

j | t 6∈ Mα
j ∨ t′ 6∈ Mα

j },

U ′
j = {x ∈ Mα′

j | t ⊑-minimal} ∪ {{| t |}t′ ∈ Mα′

j | t 6∈ Mα′

j ∨ t′ 6∈ Mα′

j }.

Note that Mα
j = Uj and Mα′

j = U ′
j . Also note that any encryption term in Uj

and U ′
j must originate from some send event.

Define the sets

Vj = {t ∈ Uj | ∃t′ ∈ S : t′ ⊑ t} and V ′
j = {t ∈ U ′

j | ∃t′ ∈ S ∪ s(S) : t′ ⊑ t}.

Let Vj,1 and Vj,2 be the subsets of Vj of elements originating in Π1 and Π2,
respectively. Let

V ′
j,1 = {t ∈ U ′

j | ∃t′ ∈ S : t′ ⊑ t}

V ′
j,2 = {t ∈ U ′

j | ∃t′ ∈ s(S) : t′ ⊑ t}

Let Wj = Uj \ Vj and W ′
j = U ′

j \ V ′
j .

We can now prove the claim and construct the map θ by induction on j. The
induction hypothesis is that α′

0 · · ·α
′
j−1 is a valid trace and the following two

properties hold for the structure of the intruder knowledge:

(1) S ∩ Vj = ∅ and (S ∪ s(S)) ∩ V ′
j = ∅.

(2) There exists a bijection θ : Uj → U ′
j such that θ restricted to Wj ∪ Vj,1 is

the identity map, and θ restricted to Vj,2 corresponds to the map induced
by the substitution s.

Note that the bijection θ extends to a bijection θ : Mα
j → Mα′

j .

The induction basis is trivially satisfied for the empty trace and easy to verify
for α′

0.

The trace restriction on d is satisfied by design, so if αj is a create event,
α′

0 · · ·α
′
j is a valid trace. Also, the same substitution is applied to all events in

a run, so if αj is a send , claim or end event, α′
0 · · ·α

′
j is a valid trace, because

the instantiations will be consistent with the run (basically the instantiation
of the last event).

Next, we consider a read event αj = (inst, read ℓ(m)), α′
j = (inst′, read ℓ(m)).

We must prove that inst′(m) ∈ Mα′

j . We know that inst(m) ∈ Mα
j . If

inst(m) ∈ Wj we are done, and α′
0 · · ·α

′
j is a valid trace.

By independence we know that Vj,1 ∩ Vj,2 = ∅. Again by independence, if
ℓ ∈ Πb, then any run term in Vj that is a subterm of inst(m) is also in Vj,b, and

28

we get that inst(m) is in the closure of Vj,b∪Wj . Note that V ′
j,1∪W ′

j = Vj,1∪Wj

and V ′
j,2∪W ′

j = s(Vj,2∪Wj). If ℓ ∈ Π1 we have that inst′(m) = inst(m) ∈ Mα′

j .

If ℓ ∈ Π2 we must have that inst′(m) = s(inst(m)) ∈ Mα′

j . Therefore, under
the induction hypothesis, α′

0 · · ·α
′
j is a valid trace.

We finish the inductive step by showing that (1) and (2) are also satisfied
after the jth event. We need only consider the event αj = (inst, send ℓ(m)),
α′

j = (inst′, send ℓ(m)). The only interesting inference rule is ({| t |}t′, t
′) ⇒ t,

and we will show that the structure is unchanged by decryptions, up to some
trivial rewriting.

For any set of run terms T , let rcl(T) be the smallest set of run terms con-
taining T that is closed under tuple creation and dissolution, encryption with
known keys and removing signatures. This is the restricted closure, closure
without decryptions. Note that Mα

j = rcl(Uj).

Under the induction hypothesis for U and U ′, if we augment U by decrypting
a run term {| t |}t′, where t′ ∈ rcl(U), then we can augment U ′ by decrypting
the run term θ({| t |}t′), since θ(t′) ∈ rcl(U ′). If θ(t) = t, then clearly we
augment U and U ′ in the same way. Likewise, if θ(t) 6= t, then θ(t) and t
are equal up to substitution by s, and U and U ′ are augmented in the same
way, up to substitution. This means that S ∩ U = ∅, because we know that
(S ∪ s(S)) ∩ U ′ = ∅. The maps can therefore be extended, and (1) and (2)
still hold true after augmentation. Finally, if some of the elements in U are
no longer minimal and are not encryptions that should be preserved, then the
corresponding elements in U ′ will no longer be minimal, nor be encryptions
that should be preserved. The other direction also holds. Therefore, we can
discard all superfluous elements.

The list Uj+1 can be reached from Uj by adding the run terms obtained from
the send event to the list, then performing a finite sequence of decryption
operations, then possibly discarding some elements from the list. The above
argument shows that the same operations (up to substitution) will turn U ′

j

into U ′
j+1 in such a way that (1) and (2) still hold for Uj+1 and U ′

j+1. This
completes the inductive step.

To complete the proof of the theorem, we first observe that for any secrecy
claim event αj = (inst, claimℓ(·, ·, m)) there is α′

j = (inst′, claimℓ(·, ·, m)) and
note that sat(Π1 ∪ Π2〈secret/d〉, ℓ) is true by Theorem 27, thus inst′(m) 6∈
Mα′

. Next, if inst(m) ∈ Mα, then θ(inst(m)) would be defined and equal to
inst′(m), contradicting inst′(m) 6∈ Mα′

. We conclude that inst(m) 6∈ Mα and
the secrecy claim holds.

The following theorem states that protocol-centric claims remain valid if we
execute a protocol in the context of another protocol that is independent of

29

the first.

Theorem 31. Let Π1 and Π2 be two independent protocol sets, and let ℓ be
the label of some claim event in Π1. If the security property associated with ℓ
is protocol-centric, then

sat(Π1, ℓ) ⇒ sat(Π1 ∪ Π2, ℓ).

Proof. Since Π1 and Π2 are independent, we can use the trace map τ from
(1) on page 25. Let P be the protocol where the claim event with label ℓ
appears. By construction of the τ map, we have s(πP (α)) = πP (τ(α)), for
some substitution s. Since the claim is protocol-centric, we are done.

When one protocol establishes session for some nonce run term, and a second
protocol expects a session key as input, we can use the nonce run term from
the first protocol as input to the second, without compromising any protocol-
centric security properties.

Note that in the following two results, we restrict to exactly one protocol
creating output and one protocol taking input. This is for simplicity, and can
easily be solved using protocol tags to create many distinct variants of a single
protocol.

Theorem 32. Let Π1 and Π2 be two protocol sets, such that P ∈ Π1 is the only
protocol establishing c and Q ∈ Π2 is the only protocol taking c as input for d.
Let ℓ be the label of a protocol-centric claim event in Π1 or Π2. If Π1 and Π2 are
independent under the trace restrictions χIO!(·; P, Q, c, d) and χsecret(·; Q, d),
then

sat(Π1, {ℓi} ∪ {ℓ})∧ sat(Π2〈session/d〉, {ℓ′i} ∪ {ℓ}) ⇒ sat(Π1〈c〉 ∪Π2〈c!/d〉, ℓ),

where {ℓi} are labels of claim events {claimℓi
(ri, session, c)} in every role of

P , and {ℓ′i} are labels of claim events {claimℓ′
i
(r′i, secret , d)} in every role Q,

occurring before any send or read event in the role specification.

Proof. Let ℓ be in a protocol R. First, we note that the map τ : Tr(Π1〈c〉 ∪
Π2〈c!/d〉) → Tr(Π1 ∪ Π2〈secret/d〉) from (2) on page 27 exists, since the
session claims imply corresponding secret claims. Since for some substitution
s, s(πR(α)) = πR(τ(α)), we only need to show that the session trace restriction
is satisfied for the input to Q, and the result will follow from Theorem 31.
Because of the data-agree claims, we have a full session for P , and by the
session-unique claims, this session is unique. Thus for any end event for any
role r of P , there are no other end events for that role with the same value
for c. Hence, the session trace restriction is satisfied.

30

Finally, we combine the previous theorems into a statement about preservation
of session secrecy.

Corollary 33. Let Π1 and Π2 be two protocol sets, such that P ∈ Π1 is the
only protocol establishing c and Q ∈ Π2 is the only protocol taking c as input
for d. Let ℓ be the label of a (weak) session claim in Π1 or Π2. If Π1 and Π2 are
independent under the trace restrictions χIO!(·; P, Q, c, d) and χsecret(·; Q, d),
then

sat(Π1, {ℓi} ∪ {ℓ})∧ sat(Π2〈session/d〉, {ℓ′i} ∪ {ℓ}) ⇒ sat(Π1〈c〉 ∪Π2〈c!/d〉, ℓ),

where {ℓi} are labels of claim events {claimℓi
(ri, session, c)} in every role of

P , and {ℓ′i} are labels of claim events {claimℓ′
i
(r′i, secret , d)} in every role Q,

occurring before any send or read event in the role specification.

Proof. First we apply Theorem 27 and Theorem 31 to establish sat(Π1 ∪
Π2〈session/d〉, {ℓi} ∪ {ℓ′i}) (separately establishing the three parts of the ses-
sion claims: secret, session-unique and data-agree). The results follows by fur-
ther applications of Theorem 30 and Theorem 32.

3.3 Composition

In this section we study sequential composition and show how certain secu-
rity properties of a composed protocol follow from security properties of the
subprotocols analyzed in a multi-protocol setting.

As discussed in Section 1, sequential composition (without passing informa-
tion) of two protocols does not in general preserve synchronisation. The prob-
lem is that if there is no mechanism to bind the two subprotocols to each
other in the composed protocol, different runs can be interleaved with each
other, breaking synchronisation. Therefore, there must be a mechanism that
connects the two subprotocols. We achieve this by letting the first subprotocol
pass information to the next subprotocol. (A slightly more general definition
of chaining composition allowing more than one parameter appears in PCL.)

Definition 34. Let rs1 = (elist1 · end(r), type1) and rs2 = (create(r)·
elist2, type2) ∈ RoleSpec. The sequential composition of role specifications rs1

and rs2 is the role specification rs1 · rs2 = (elist1 · elist2, type) where

type(x) =



























type1(x) if type1(x) is defined;

type2(x) if type1(x) is undefined and type2(x) is defined;

undefined otherwise.

31

Definition 35. Let P and Q be two protocols such that dom(P) = dom(Q),
ID(P)∩ID(Q) = ∅. If P establishes c, and d is a parameter in all roles of Q,
the chaining composition P · Q of P and Q is defined as:

P · Q
def
=

{

r 7→ P (r) · Q(r)[c/d]
∣

∣

∣ r ∈ dom(P)
}

,

where Q(r)[c/d] denotes replacing d by c in the role specification Q(r).

Note that every event is relabeled after this composition, but there is a nat-
ural correspondence between the labels of P and Q, and the labels of P · Q
(excluding the end event of P and create event of Q).

The formal model described in Section 2 allows us to define explicitly the
concept of passing information from one protocol to another. This exactly
coincides with the idea of input and output, modeled using parameters. How-
ever, simply passing information does not suffice to preserve synchronization.
Intuitively, if agents of the first subprotocol do not all share the value to be
passed on to the next subprotocol, a mismatch between different runs of the
agents may occur and synchronization may be broken. Likewise, the next sub-
protocol must ensure that all agents got passed the same value. In order to
ensure this, we use data agreement for the value passed between subprotocols.

Theorem 36. Let P , Q be protocols such that P establishes c, d is a parameter
in all roles of Q and P · Q is defined. Let Π be a set of protocols, P, Q 6∈
Π. Let {ℓi} be a set of labels for one injective synchronization claim event
and one data agreement claim event with argument c in every role of P , the
synchronization claim events appearing after all read and send events in the
role. Let ℓ and ℓ′ be the labels of a data agreement claim event with d as
argument and a synchronization claim event, respectively, in some role Q such
that the claim event labelled ℓ causally precedes the one labelled ℓ′. Let ℓ′′ be the
label of a corresponding injective synchronization claim event in P · Q. Then

sat({P 〈c〉, Q〈c!/d〉} ∪ Π, {ℓi} ∪ {ℓ, ℓ′}) ⇒ sat({P · Q} ∪ Π, ℓ′′).

Proof. Let α ∈ Tr({P ·Q}∪Π). We map α to a trace α′ ∈ Tr({P 〈c〉, Q〈c!/d〉}∪
Π) as follows: Without loss of generality we can assume that the set Runid of
run identifiers is a subset of non-negative integers. Let the highest occurring
run identifier in α be ridB, and suppose we have a run with run identifier rid
of a role r of P ·Q with events αi1, αi2 , . . . , αik . If there is no event in the run
corresponding to an event of the protocol Q, we relabel all of the events to be
events of P . Otherwise, let il be the first event in the run corresponding to an
event of Q.

(1) We relabel αi1 , . . . , αil−1
to be events of P , and αil, . . . , αik to be events

of Q.

32

(2) We change the σ-parts of the instantiations of αil, . . . , αik so that they
are only defined at identifiers of Q.

(3) We change the run identifier of αil, . . . , αik to rid + ridB + 1.
(4) We apply to every other event in the trace the substitution {x♯rid 7→

x♯rid + ridB + 1 | x ∈ ID(Q) ∧ type(x) = const}, where Q(r) =
(elist , type).

(5) We insert a end for P (r) and a create event Q(r) with the proper value
for the parameter d just before αil in the trace.

When this operation is performed for every run of a role of P · Q, we get a
trace α′ ∈ Tr({P 〈c〉, Q〈c!/d〉} ∪ Π), and this gives us a map

τ : Tr({P · Q} ∪ Π) → Tr({P 〈c〉, Q〈c!/d〉} ∪ Π). (3)

Now consider a run of role r with run identifier ridr where the claim event
with label ℓ′′ occurs. First, we note that because of injective synchronization
for P , we have a unique cast cast for P in α′. This translates into a potential
cast cast ′ for Q in α′ given by cast ′(r′) = cast(r) + ridB + 1, as well as a cast
for P · Q in α. By data agreement for c in P , we know that every run in the
cast agree on the value of c. Since P does not take any input, the value of
c must originate with one of the roles, hence it must also be unique among
all the runs of P . Further, by data agreement on d in Q, we know that cast ′

really is a cast for Q in α′, it is unique, that every member of the cast agrees
on the value of d, and that this value is the same as the value of c.

Now we verify the i -synch claim with label ℓ′′ for ridr in α with the unique cast
cast . Consider a role r′ and a label ℓx such that ℓx ∈ P ·Q(r) and ℓx ∈ P ·Q(r′).
We must show that there are two events with this label in α, belonging to the
cast, and sending and reading the same message. Because of synchronization in
α′, we find matching events belonging to the cast for the corresponding labels
in α′. Note that since the map τ only changes instantiations by applying a
substitution, if the content of the messages is the same in α′, the same must
hold in α. We conclude that the injective synchronization claim with label ℓ′′

is satisfied in α.

The following theorem states the conditions under which secrecy is preserved
in a sequential protocol composition.

Theorem 37. Let P , Q be protocols such that P establishes c, d is a parameter
in all roles of Q and P ·Q is defined. Let Π be a set of protocols, P, Q 6∈ Π. Let
ℓ be the label of a secret claim event in P or Q, and let ℓ′ be the corresponding
label in P · Q. Then

sat({P 〈c〉, Q〈c!/d〉} ∪ Π, ℓ) ⇒ sat({P · Q} ∪ Π, ℓ′).

33

Proof. We use the map τ from (3). Note that instantiations are changed by at
most a nonce run term renaming under this map, so the intruder’s knowledge
is also changed by at most a nonce run term renaming. The predicate derived
from the secret claim does not change its value under nonce run term renaming,
from which the result follows.

The same conditions that preserve secrecy, also preserve session-unique and
data-agree in a sequential protocol composition.

Theorem 38. Let P , Q be protocols such that P establishes c, d is a parameter
in all roles of Q and P · Q is defined. Let Π be a set of protocols, P, Q 6∈ Π.
Let ℓ be the label of a session-unique or data-agree claim event in P or Q,
and let ℓ′ be the corresponding label in P · Q. Then

sat({P 〈c〉, Q〈c!/d〉} ∪ Π, ℓ) ⇒ sat({P · Q} ∪ Π, ℓ′).

Proof. We use the map τ from (3). By the construction of the map, if some
value only appears in one claim event in τ(α), it will only appear in one claim
event in α as well. This proves the theorem for session-unique .

As for data agreement, if events for some cast exist in τ(α) with the correct
value, they will also exist in α. This proves the theorem for data-agree.

By definition of session and wsession, the preceding two theorems give condi-
tions under which these two properties are preserved. This is expressed in the
following

Corollary 39. Let P , Q be protocols such that P establishes c, d is a parame-
ter in all roles of Q and P ·Q is defined. Let Π be a set of protocols, P, Q 6∈ Π.
Let ℓ be the label of a (weak) session claim event in P or Q, and let ℓ′ be the
corresponding label in P · Q. Then

sat({P 〈c〉, Q〈c!/d〉} ∪ Π, ℓ) ⇒ sat({P · Q} ∪ Π, ℓ′).

Proof. We use Theorem 37 and Theorem 38 to establish that the requisite
secret , session-unique and data-agree claims hold, and the result follows.

4 Mobile WiMAX

In this section we apply our framework to a handful of protocols from the
security sublayer of the IEEE 802.16-2005 amendment [27] of the IEEE 802.16-
2004 standard [26], commonly and in the following referred to as (mobile)

34

WiMAX. The aim is not a complete verification of WiMAX as this would
constitute a research topic of its own. Instead, we use WiMAX to illustrate
our framework on a real-world protocol suite and as a measure for our progress
towards the goal of a comprehensive theory of protocol verification. We stress
that even in the limited setting we consider, our methods are strong enough
to draw useful conclusions about protocol design and security flaws.

4.1 Introduction

The IEEE 802.16-2004 standard specifies the air interface of fixed broadband
wireless access systems supporting multimedia services in local and metropoli-
tan area networks. The 802.16-2005 amendment addresses mobility of sub-
scriber stations and features new security protocols.

A brief overview of the communication between a mobile station and base sta-
tion follows. The communication starts at the mobile station’s network entry
with the Ranging protocol. Its purpose is to set up physical communication
parameters and assign a basic connection identifier to the requesting mobile
station. This protocol is periodically executed later to re-communicate the
physical communication parameters. Next, a Registration protocol is carried
out in order to allow the mobile station into the network. During this proto-
col, the base station and mobile station’s security capabilities are negotiated.
The base station and mobile station can agree on unilateral or mutual au-
thentication, or no authentication at all, and on a variety of key management
protocols. The key management protocols are periodically repeated to update
the traffic encryption keys. The entire authentication chain is repeated on a
less frequent basis. Once the traffic encryption keys are established, user data
protocols start. To avoid service interruptions, traffic encryption keys have
overlapping lifetimes.

The authentication and key management protocols are specified in the security
sublayer of WiMAX. The security sublayer is meant to provide subscribers
with privacy and authentication and operators with strong protection from
theft of service [27, Chapter 7]. It employs an authenticated client/server key
management protocol in which the base station controls distribution of keying
material to the mobile station.

The security sublayer consists of two component protocols, an encapsulation
protocol for securing packet data across the network and a key management
protocol providing the secure distribution of keying data from the base sta-
tion to the mobile station. In the following sections we will focus on the key
management protocol. Through this key management protocol, the base sta-
tion and mobile station are to synchronize keying data and the base station

35

is meant to use the protocol to enforce conditional access to network services.

The overall security goals mentioned in the specification are “no theft of ser-
vice” for the operator of the base station and “confidentiality” for the user of
the mobile station. Confidentiality in WiMAX is defined to be “privacy” and
“authenticity” [27, Chapter 7, footnote 6]. The specification gives vague ideas
for the security properties that the subprotocols have, by calling them for in-
stance authentication protocols or key update protocols. But for a thorough
security analysis, precise security claims need to be made for each subprotocol
and the relation between the security properties achieved by the subprotocols
and the overall security goals needs to be understood. We are addressing these
issues in the following section.

4.2 Key management in the Security Sublayer

The privacy key management (PKM) component of the security sublayer con-
sists of authentication and key establishment protocols. Depending on the
negotiated security capabilities, the IEEE-802.16-2004 PKM protocols or the
new PKM version 2 protocols will be executed. In the following security anal-
ysis, we consider the sequence of the three PKM version 2 protocols PKMv2
RSA, PKMv2 SA-TEK, and PKMv2 Key . PKMv2 RSA authenticates the base
station (bs) and mobile station (ms) and establishes a shared secret which is
used by PKMv2 SA-TEK and PKMv2 Key to secure the exchange of traffic
encryption keys (TEKs). WiMAX does not explicitly state what the security
claims of these three protocols are. As indicated in the Introduction, it is
stated that the sequential composition of the three protocols achieves strong
authentication and privacy for the mobile station, and strongly protects the
base station from theft of service. Furthermore, it is implicitly stated that
the established keys are shared secrets and PKMv2 RSA is called a mutual
authentication protocol.

We are making these properties more precise by imposing the following require-
ments on the composition of the three protocols. In order to provide “strong
protection against theft of service” [27, Chapter 7] for the base station, the
client station has to be strongly authenticated at the end of the protocol com-
position, i.e. the role of the base station has to satisfy the i -synch claim and
all key material must be secret. Note that if the i -synch claim is true at the
end of the protocol composition then we are guaranteed that every message
read by bs up to that point has been sent by ms and exactly matches the
message sent by ms. Thus no theft of service can have occurred up to that
point. In order to provide privacy and authenticity for the subscriber station,
we demand that the base station is strongly authenticated at the end of the
protocol composition, and that all session keys and symmetric encryption keys

36

are secret and unique.

We argue now that the following security properties for the three protocols and
their sequential composition need to be fulfilled and prove in the next section
that these properties indeed imply our set security goals. Since PKMv2 RSA
needs to authenticate ms and bs and establish a shared secret which is to be
used as a key later on, it has to satisfy i -synch for both roles and session for
the shared secret. Since PKMv2 SA-TEK and PKMv2 Key need to establish
further keys while keeping up the authentication property between ms and
bs , they both need to satisfy synch for both roles, session for the shared
secret, and at least wsession for the traffic encryption keys 5 . This implies
in particular that the shared secret and traffic encryption keys have to be
secret in all three protocols. We summarize these requirements in Table 2. It
corresponds to the summary of verified security properties in Section 4.3.4.

Protocol Security Properties

PKMv2 RSA i -synch, session(pPAK)

PKMv2 SA-TEK i -synch, session(pPAK),wsession(TEK)

PKMv2 Key synch, session(pPAK),wsession(TEK)

Table 2
Required security properties for the PKMv2 subprotocols in WiMAX.

Before we start the description of the protocols, some technical remarks on
our WiMAX model are in order. We will restrict ourselves to non-handover
scenarios with unicast communication, leaving out multicast and broadcast
communication, mesh communication, and group security. We further restrict
ourselves to one Security Association as opposed to a list of several security
associations offered by the base station. This is simply for convenience as
it implies that there is only one pair of TEK keys instead of several pairs
identified by SAID’s and managed by parallel sessions of the PKMv2 Key
protocol.

In our model, we have simplified messages by omitting irrelevant terms and
headers. In particular, the fact that all messages in WiMAX are formatted
using a type/length/value (TLV) scheme, we show only implicitly by giving
appropriate names to identifiers. Entries in a TLV list are called attributes.
WiMAX specification states that both roles silently discard all messages that
do not contain all required attributes and skip over unknown attributes. Note
that the use of TLVs together with signatures and hashed message authenti-
cation codes in WiMAX also implies that we may disregard type flaw attacks.
Finally, we model hash functions as encryptions with a special public key,
known by all parties, whose inverse key is not known by anyone. We thus

5 Since wsession and data-agree imply session , the use of the TEK’s in user data
protocols by both roles will automatically imply the session claim at that point.

37

write {|m |}h(salt) for the message m to which a message authentication code
has been attached. Private key signatures will be indicated by {|m |}sk(ms) and
{|m |}sk(bs).

4.2.1 PKMv2 RSA

The PKMv2 RSA protocol (Figure 4) is the initial mutual authentication pro-
tocol. It is repeated periodically to update the pPAK. Its purpose is to establish
a shared secret pPAK (called pre-PAK in WiMAX) between ms and bs. The
shared secret is used to derive the authentication key from which the keys for
hashed message authentication codes and symmetric encryptions are derived.

According to specification, the Request message consists of MS-Rnd, MS-Crt,
SAID and a signature over a SHA-1 hash of these fields using ms ’s secret
key, whose corresponding public key bs learns from MS-Crt. We model this
by sending MS-Crt outside of {| . . . |}sk(ms). The same applies to BS-Crt in the
Reply and Reject messages.

4.2.2 PKMv2 SA-TEK

The PKMv2 SA-TEK protocol (Figure 5) is a three-way handshake protocol
which follows the PKMv2 RSA protocol. Its purpose is to update the traffic
encryption keys if they already exist. The protocol’s messages are authen-
ticated by hashing them with keys derived from pPAK established by the
PKMv2 RSA protocol. Different keys are used for uplink and downlink traffic.
The base station sends a challenge to the mobile station, which the mobile
station repeats in its request for updated key material and thus proves live-
ness and knowledge of the shared secret (by using the derived HMAC key) to
the base station. The base station answers then with updated key material,
repeating the mobile station’s nonce.

4.2.3 PKMv2 Key

The PKMv2 Key protocol (Figure 6) allows the mobile station to obtain the
most recent TEK key from the base station.

4.3 Applying the Framework

We begin by analyzing the three protocols described in the previous section in
isolation and then we apply our theorems to their sequential composition. To
facilitate later exposition, we will, during the course of the analysis, simplify

38

MAN-Crt,MS-Crt, pk(ca)

ms

BS-Crt, pk(ca)

bs

Auth Info
MAN-Crt

MS-Rnd

Request
MS-Crt, {|MS-Rnd,SAID,MS-Crt |}sk(ms)

BS-Rnd, pPAK

Reply
BS-Crt,{|MS-Rnd,BS-Rnd,{| pPAK,ms |}pk(ms),BS-Crt |}sk(bs)

Reject
BS-Crt, {|MS-Rnd,BS-Rnd,BS-Crt |}sk(bs)

or

Acknowledgment
{|BS-Rnd |}sk(ms)

PKMv2-RSA

MAN-Crt manufacturer’s certificate

MS-Crt mobile station’s certificate {|ms, pk(ms) |}sk(man)

BS-Crt base station’s certificate {| bs, pk(bs) |}sk(ca)

SAID security association Id, equal to BCID

MS-Rnd mobile station’s nonce

BS-Rnd base station’s nonce

pPAK preliminary primary authentication key,

actually another nonce created by the base station

Fig. 4. The PKMv2 RSA protocol.

the protocols presented above. Since the aim of this work is not a careful and
formal analysis of these short subprotocols, we will reason on an informal level
for clarity, backed up by the automated verification tool Scyther. After that,

39

AKID,TEK0,TEK1

ms

AKID′,TEK0,TEK1

bs

BS-Rnd′

Challenge
{|BS-Rnd′,AKID′ |}h(HMAC-KD)

MS-Rnd′

Request
{|MS-Rnd′,BS-Rnd′,AKID |}h(HMAC-KU)

Response
{|MS-Rnd′,BS-Rnd′,AKID,{|TEK′

0,TEK′

1 |}KEK |}h(HMAC-KD)

PKMv2 SA-TEK

PAK Primary authentication key derived from pPAK as fol-
lows:

PAK = keyedhash(pPAK,ms | bs).

AK Authentication key derived from PAK as follows:

AK = keyedhash(PAK,ms | bs | PAK).

KEK key encryption key derived from AK as follows:

HMAC-KU | HMAC-KD | KEK =
keyedhash(AK,ms | bs).

HMAC-KD HMAC key derived from AK for authenticating down-
link communication

HMAC-KU HMAC key derived from AK for authenticating uplink
communication

MS-Rnd′ mobile station’s nonce

BS-Rnd′ base station’s nonce

AKSN AK sequence number, essentially a 2 bit counter

AKID AK Id: AKID = keyedhash(AK, AKSN | ms | bs)

AKID′ AK Id of new AK if re-authenticating

Fig. 5. The PKMv2 SA-TEK protocol.

we will analyse the composition in detail.

40

TEK0,TEK1

ms

TEK0,TEK1

bs

n

Request
{|n |}h(HMAC-KU)

Reply
{| {|TEK′

0,TEK′
1 |}KEK, n |}h(HMAC-KD)

Reject
{|n |}h(HMAC-KD)

or

PKMv2 Key

TEK0 Older traffic encryption key

TEK1 Newer traffic encryption key

TEK′
0, TEK′

1 Updated traffic encryption keys, replacing TEK0,
TEK1, respectively 6

KEK Key Encryption Key (see above)

Fig. 6. The PKMv2 Key protocol.

4.3.1 Analysis of PKMv2 RSA

We analyze the PKMv2 RSA protocol without the Auth Info message which
according to specification is only being sent right after Ranging and never
again. We first consider i -synch for ms and bs and then the session property
for pPAK.

4.3.1.1 i-synch. Since we have a choice in the third message between Reply
and Reject , we will first analyze the branch with Reply, then the branch with
Reject.

Reply. Note that the structure of Request, Reply, Acknowledgment is similar

41

to the standard X.509 protocol, except for the last message where the iden-
tity of bs is missing. As a consequence, it suffers from a man-in-the-middle
attack causing bs to not synchronize. The intruder executes the man-in-
the-middle attack by taking advantage of an ms trying to connect to the
intruder and redirecting those messages to a bs. In [43] the authors describe
a similar, but slightly more complicated attack, in which the intruder uses
two runs of ms to impersonate ms to bs. Both attacks can be found using
Scyther.

The attacker can not, however, impersonate bs to ms, and the ms role in
fact still synchronizes and the pPAK remains secret. It is also interesting
to note that Request, Reply, Acknowledgment followed by PKMv2 SA-TEK
has agreement (an authentication property slightly weaker than synchroni-
sation, see [16]) for both ms and bs . However, we still consider the lack of
bs ’s identity in Acknowledgment a design flaw, since it is supposed to be a
“mutual authentication” protocol according to specification and hence, in
its current form, breaks a modular design principle: small changes in other
protocols (for instance PKMv2 SA-TEK) could break the security of the
entire composition.

For future reference, we write P to denote the protocol consisting of Re-
quest, Reply, and Acknowledgment ’ where Acknowledgment ’ is the message
{|BS-Rnd, bs |}sk(ms) from ms to bs. Furthermore, we will denote the pPAK
in P simply by c. P has injective synchronization for both roles.

Reject. As in the branch analyzed above, the structure Request, Reject, Ac-
knowledgment resembles the X.509 standard. Here however, both Reject and
Acknowledgment are missing the recipient’s ID. Therefore neither bs nor ms
synchronize (the weaker agreement notion is not satisfied either). A pPAK
is not being sent, thus the secrecy claim is void. The fact that ms does not
synchronize can be abused for a denial of service attack.

We amend the flaws pointed out above by considering P instead of PKMv2 -
RSA. Note the absence of a Reject message from P . A Reject message sent
from bs to ms terminates the protocol. In order for ms to communicate with bs
it has to start over with the Ranging protocol. For this reason, we will simplify
the analysis of the composition in Section 4.3.4, without affecting any of the
security properties we are interested in, if we consider the protocol without the
Reject message; instead of a send event corresponding to the Reject message,
the run of the bs role ends.

The specification of protocol P is given below. For brevity, we omit the typing
of identifiers and use the shorthand for the message contents as displayed in
Figure 4. The descriptive labels of the claim events are inserted for further
reference.

42

P (ms) = createP1(ms) · sendP2(ms, bs,Request) · readP3(bs,ms,Reply)·

sendP4(ms, bs, {|BS-Rnd, bs |}sk(ms)) · claimi-synch(P,ms)(ms, i -synch)·

claimsession(P,ms,c)(ms, session, c) · endP5(ms)

P (bs) = createP6(bs) · readP2(ms, bs,Request) · sendP3(bs,ms,Reply)·

readP4(ms, bs, {|BS-Rnd, bs |}sk(ms)) · claim i-synch(P,bs)(bs, i -synch)·

claimsession(P,bs,c)(bs, session, c) · endP7(bs)

In the remainder, we will use the abbreviation i -synch(P) to stand for the
combination of i -synch(P,ms) and i -synch(P, bs). We will use similar abbre-
viations for the other claims and protocols.

Using Scyther, we prove synchronisation. Given the fact that P satisfies the
loop-property from [16], we establish

sat({P}, {i -synch(P)}).

4.3.1.2 session. We use Scyther to verify that pPAK is secret. The data-
agree property is satisfied because of injective synchronization, and the fact
that pPAK is part of a message causally preceding the synchronization claims.
Finally, session-unique is also satisfied because of injective synchronization
and the fact that pPAK is a constant in one of the roles appearing only in one
send event, accompanied, within a signature, by the recipient’s nonce.

The established result is

sat({P}, {session(P, c)}).

4.3.2 Analysis of PKMv2 SA-TEK

We call Q the protocol obtained from PKMv2 SA-TEK by introducing the
parameter d, which will obtain its value from the constant c produced by
protocol P . The parameter d will hold the shared secret established in P from
which the HMAC and KEK keys are derived. Furthermore, the collection of
TEK keys will be denoted by e in Q. Thus, Q is up to renaming of constants
equivalent to PKMv2 SA-TEK.

We insert session claim events for d, weak session claim events for e, and
injective synchronization at the end of both roles, with labels session(Q,ms, d),
session(Q, bs, d), wsession(Q,ms, e), wsession(Q, bs, e), i -synch(Q,ms), and

43

i -synch(Q, bs). This yields the following description of protocol Q (assuming
h1, h2, and h3 are distinct hash functions).

Q(ms) = createQ1(ms) · readQ2(bs,ms, {|BS-Rnd′,AKID′ |}h1(d))·

sendQ3(ms, bs, {|MS-Rnd′,BS-Rnd′,AKID |}h2(d))·

readQ4(bs,ms, {|MS-Rnd′,BS-Rnd′,AKID, {| e |}h3(d) |}h1(d))·

claim i-synch(Q,ms)(ms, i -synch) · claimsession(Q,ms,d)(ms, session, d)·

claimwsession(Q,ms,e)(ms,wsession, e) · endQ5(ms)

Q(bs) = createQ6(bs) · sendQ2(bs,ms, {|BS-Rnd′,AKID′ |}h1(d))·

readQ3(ms, bs, {|MS-Rnd′,BS-Rnd′,AKID |}h2(d))·

sendQ4(bs,ms, {|MS-Rnd′,BS-Rnd′,AKID, {| e |}h3(d) |}h1(d))·

claim i-synch(Q,bs)(bs, i -synch) · claimsession(Q,bs,d)(bs, session, d)·

claimwsession(Q,bs,e)(bs,wsession, e) · endQ7(bs)

Again, we verify injective synchronization and secrecy for d and e using Scyther.
Note that the verification has to be done for the trace restriction Q〈session/d〉.
Session trace restrictions can be simulated in Scyther using technical tricks,
but are expected to be supported natively in the future.

The session-unique property follows from arguments analogous to the ones
shown for c in P and the session trace restriction for both d and e. Data
agreement for d follows from injective synchronization and the appearance of
d in a message causally preceding the i -synch claim for both roles. For e we
do not get data agreement for the bs role, since e is sent in the last message
for which bs has no guarantee that ms received it.

We have shown

sat({Q〈session/d〉}, {session(Q, d),wsession(Q, e), i -synch(Q)})

4.3.3 Analysis of PKMv2 Key

Similarly to the previous two protocols, we will let R denote the protocol
obtained from PKMv2 Key by denoting the HMAC keys by d, the old TEK
keys by e and the new TEK keys by e′. We let R only consist of the Request and
Reply messages, since the alternative has exactly the same security properties.

We have i -synch for the ms role, shown by applying Scyther and using the

44

loop property, but only synch for bs.

The session property for d and wsession property for e′ can be shown in
exactly the same manner as for the Q protocol.

R(ms) = createR1(ms) · sendR2(ms, bs, {|n |}h2(d))·

readR3(bs,ms, {| {| e′ |}h3(d), n |}h1(d))·

claim i-synch(R,ms)(ms, i -synch) · claimsession(R,ms,d)(ms, session, d)·

claimwsession(R,ms,e′)(ms,wsession, e′) · endR5(ms)

R(bs) = createR6(bs) · readR2(ms, bs, {|n |}h2(d))·

sendR3(bs,ms, {| {| e′ |}h3(d), n |}h1(d))·

claimsynch(R,bs)(bs, synch) · claimsession(R,bs,d)(bs, session, d)·

claimwsession(R,bs,e′)(bs,wsession, e′) · endR7(bs)

Abbreviating the claim labels, we obtain

sat({R〈session/d〉}, {i -synch(R,ms), synch(R, bs),

session(R, d),wsession(R, e′)}).

4.3.4 The composition

In the preceding three subsections we have established that

sat({P}, {i -synch(P), session(P, c)}) (4)

sat({Q〈session/d〉}, {session(Q, d),wsession(Q, e), i -synch(Q)}) (5)

sat({R〈session/d〉}, {i -synch(R,ms), synch(R, bs),

session(R, d),wsession(R, e′)})
(6)

The methodology for the verification of these facts is standard. In what fol-
lows, we apply the collection of theorems in our framework to show how the
established properties imply correctness of the composed protocol P · Q · R.

Note that P , Q, and R are mutually strongly independent since the messages,
as stated in Section 4.2, are TLV encoded, the signatures or hashed mes-
sage authentication codes are made over the entire message, and the message
structures are different in the three protocols. More precisely, protocol P is
independent from Q and R because all messages in P are signed by private
keys and hence the signatures will not be accepted by either role in protocols

45

Q and R, their messages being authenticated using the shared secret keys.
Protocols Q and R are strongly independent, since they don’t have a message
in common in which all required attributes are identical.

Using strong independence, we can now deduce that P followed by Q satisfies
injective synchronization, session, and weak session as follows.

By Theorem 32 and equations (4) and (5), we can preserve the i -synch prop-
erty for P , Q. By Corollary 33, c and d keep the session property, and e the
wsession property.

Therefore, we obtain

sat({P 〈c〉, Q〈c/d〉}, {i -synch(P), i -synch(Q),

session(P, c), session(Q, d),wsession(Q, e)}),

and using Theorems 36 (to obtain i -synch), and Corollary 39 (wsession and
session) we get

sat({P · Q}, {i -synch(PQ), session(PQ, c),wsession(PQ, e)}). (7)

Here we assume that in the composed protocol P · Q roles bs and ms are
extended with appropriate claim events. We use the three labels i -synch(PQ),
session(PQ, c), and wsession(PQ, e) to refer to these claims.

Next, by Theorem 32 we establish from (6) and (7) injective synchronization
for both roles and by Corollary 33 session for c and wsession for e:

sat({P · Q〈c〉, R〈c/d〉}, {i -synch(PQ),

session(PQ, c),wsession(PQ, e),

i -synch(R,ms), synch(R, bs),

session(R, d),wsession(R, e′)})

Using Theorem 36 and Corollary 39 one more time, we can show that the entire
composition satisfies injective synchronization and (weak) session secrecy for
the shared secret c and the traffic encryption key e:

sat(P · Q · R, {i -synch(PQR), session(PQR, c),

wsession(PQR, e),wsession(PQR, e′)})

These are exactly the overall security properties we have formulated in Sec-
tion 4.2. As we have shown in that section, these security properties are a
precise interpretation of the security goals stated in the WiMAX specifica-
tion.

46

4.4 WiMAX: Conclusion and related work

We have verified that the sequential composition of the key management pro-
tocols PKMv2 RSA, PKMv2 SA-TEK, and PKMv2 Key satisfies strong au-
thentication and session secrecy for keys derived from the shared secret and for
traffic encryption keys. However, in order to achieve this verification, we had
to first formulate precise security properties for the subprotocols and their
composition, based on our interpretation of the rather vague security goals
specified in WiMAX.

While we have shown that our strong authentication property i -synch holds
for the protocol composition as stated, it has to be noted that a composition
consisting of repeated iterations of the PKMv2 Key protocol would fail to
satisfy this property, due to replay attacks. In practice, such attacks would
only be a nuisance, not a security threat, since secret would still hold true for
all keys, and such an active intruder would not be able to learn anything more
than a passive, listening, one. Thus, in future work, the WiMAX protocols
will be analyzed with an appropriately weakened notion of authentication.

Although several studies on WiMAX security have appeared, none of these
offer a precise and compositional verification of the WiMAX key management
protocols. Closest to our work is a preliminary study in [30], which sketches
the steps towards a compositional verification. An analysis of some protocols
from the 2001 version of the WiMAX standard is conducted in [28]. Their main
observation is that the old protocols achieve unilateral authentication, while
mutual authentication of bs and ms is required. The proposed fixes clearly
found their way into the current standard. However, the protocols are studied
in isolation and the authors did not apply formal reasoning to prove the fixed
protocols correct. Xu et al. [43,44] analyzed several isolated protocols from the
current WiMAX standard. Through informal reasoning, they discovered the
attack mentioned in Section 4.3.1 and proposed a fix. The modified protocol
is proved correct by using the BAN-logic [9], which is known to be incomplete
with respect to insider attacks. Finally, we mention an analysis of the cur-
rent WiMAX standard using the TLA+ logic in [44]. The authors study the
composition of the three mentioned key management protocols as one single
protocol. Exploiting symmetry reduction techniques, they manage to apply
the TLC model checker to verify the composed protocol. However, their focus
is not on the key management properties that we investigate (such as authen-
tication and secrecy), but on detecting a class of denial-of-service attacks. In
order to validate liveness, they focus on the state machines underlying the
protocols.

47

5 Related Work

In this section we address work related to the composition of security protocols.
We discuss strand spaces, as well as the more recent Protocol Composition
Logic, in some detail below. Afterwards we address related theoretical results,
and discuss some attempts at the verification of composed protocols.

5.1 Strand Spaces

Within a modified version of the Strand Spaces framework [41], called the
Mixed Strand Spaces model [42], some results about compositionality have
been proven. In [22], a disjoint encryption theorem is proven. This theorem
states that if two protocols have sufficiently different encrypted messages (at
the trace/run level), composing them in parallel will not introduce new at-
tacks. In terms of methodology, this work is closely related to ours: given any
two correct protocols, what abstract properties should they satisfy, in order
to ensure that their composition is correct?

The main differences between their approach and ours, are that (1) they only
consider parallel composition, and (2) verification of the disjoint encryption
property has to be done at the level of traces. With respect to the first item,
we note that the approach does not allow for the decomposition of large se-
quential protocols into smaller ones, as can be done with the chaining theo-
rems presented here. Similarly, there are no concepts such as session-secrecy.
Consequently, the disjoint encryption approach cannot be used for the compo-
sitional verification of strongly dependent subprotocols such as those present
in WiMAX, for instance.

The second item represents a more significant drawback of the approach. The
verification of disjoint encryption has to be performed at the trace level of the
composed protocols. For some protocols, this can be easily, but nevertheless
manually, deduced from the protocol specification, but in many other cases
(e.g. where session keys are used in protocols) the only way to verify that the
disjoint encryption property holds is by inspecting the traces of the composed
protocol. Therefore, in such cases there is no expected improvement on the
more traditional approach of, for example, model checking all traces of the
composed protocol.

As a more subtle drawback, the proof given for the disjoint encryption theorem
assumes that the security properties do not include ordering constraints. Thus,
it is not immediately possible to apply the theorem for the verification of strong
authentication properties, such as e.g. the synchronization property.

48

One advantage of the approach is that their results also hold for protocols
that include tickets, something that we have explicitly excluded here.

5.2 Protocol Composition Logic

One of the most significant theoretical results in the work on Protocol Com-
position Logic (PCL) [17] is a strategy for dealing with protocol composition.
The basic idea is to prove the protocols correct in isolation by constructing a
correctness proof in the logic. Certain so-called invariants are then identified
in the correctness proofs, such that protocol correctness follows from these
invariants only. If these invariants are not violated by the other protocols, it
is an easy consequence that correctness is retained under composition, since
correctness follows from the invariants alone.

In contrast to this very general strategy, our composition theorems identify
specific classes of protocols that can be composed in certain ways. The advan-
tage of our approach is that it is highly amenable to automatic verification (as
demonstrated in Section 4), especially when combined with the trivially ver-
ifiable strong independence property. In contrast, the full generality of proof
derivation in PCL seems difficult to automate.

It is easy to see that our notion of strong independence is a stronger require-
ment than the invariants used for composition in PCL. Nevertheless, strong
independence is trivial to verify, hence highly suited for an automatic verifica-
tion strategy. It is possible that composition theorems similar to ours, based
on strong independence, could be recovered in the PCL framework.

The PCL invariant approach can deal with cases that our notion of inde-
pendence cannot. The reason for this is that independence only considers
ciphertext terms and their origins, while PCL invariants cover more general
statements. Conversely, since independence is verified for traces while PCL
invariants are verified over so-called basic sequences, it is not immediately
obvious that the PCL approach can deal with every case our independence
notion can deal with. Investigating this relationship is an interesting topic for
future research.

We believe that many ideas and techniques used in PCL can be reused in our
framework. The techniques used to identify and verify invariants could possibly
be used to prove independence. Due to the highly manual nature of the PCL
compositionality strategy, we expect any such work to be complementary to
the theory developed in this paper, to be used only when automatic techniques
fail.

An alternative approach is taken in the PDa tool [3]. In this tool, an ax-

49

iomatic theory is set up to reason about protocol refinement and composition.
The tool uses ideas from PCL to reason about invariants. The tool can pro-
vide automatic discharging of simple proofs. However, the user has to provide
sufficiently strengthened invariants to allow for compositional proofs. The ax-
iomatic theory does not have a notion of run (or process or thread), similar to
e.g. BAN logic, and as a result only very weak notions of authentication can
be considered.

5.3 Related theoretical results

The complex problem of compositionality has been approached from a va-
riety of angles. Many of these approaches are restricted to weak forms of
authentication, such as [7,8,33]. When only such weaker forms are considered,
compositionality results can be achieved on the basis of simpler challenge-
response mechanisms within a protocol, similar to the authentication tests
from [23]. The existence of these mechanisms in a protocol does not ensure
synchronization, or even agreement.

Other approaches have considered secrecy, e.g. [29]. Here a notion of secrecy
is defined within the context of stream-processing functions. Using the notion
of an m-secrecy protecting process, a result is given that states that two such
processes can be safely composed. Furthermore, it is shown that such a process
remains secrecy-protecting under refinement. Similar to the Strand Spaces
approach, it is unclear how one can establish that a process (or protocol)
satisfies the required conditions for the stated theorems.

In the area of information flow analysis, which is related to the secrecy-only
approach, there are a number of results and supporting tools, e.g. [20, 21, 25,
29,34]. However, because of fundamental differences in the underlying models,
these results cannot be used for the compositional analysis of security protocols
such as WiMAX.

In [10] the observation is made that the correctness of security protocols de-
pends on the assumptions on the environment. In the wrong environment, or
in the context of specific protocols, seemingly secure protocols are incorrect.
The authors give no specific conditions or properties.

Over the past decades compositional verification has received quite some at-
tention from the process algebra community and was applied successfully in
the verification of complex concurrent systems (for an overview of these tech-
niques, see e.g. [39]). However, these techniques do not seem to carry over
easily to the process algebras developed especially for security protocols, such
as the spi calculus [1]. An attempt has been made in [6]. Here, composition-
ality is interpreted as a congruence property of a bisimulation-like relation

50

over several process operators. Although the authors provide compositional
rules for (restricted) parallel and action-prefix composition, rules for general
sequential composition are absent, making it impossible to apply this work to
e.g. the WiMAX protocol suite. Moreover, the rule for parallel composition
poses a very strong restriction on the set of processes that may run in parallel
with any given process.

Furthermore, the security properties treated are secrecy and weak forms of
authentication. It is not obvious how general protocol-centric properties and
especially injectivity can be expressed by means of the bisimulation relation
provided. Finally, we note that the proposed methodology has severe limita-
tions with respect to the verification of actual protocols. As an example, the
authors prove correctness of a version of the Wide Mouthed Frog protocol,
which is obviously insecure in the standard setting for security protocols. This
problem is due to the fact that their theory only supports the verification of
fixed scenarios.

5.4 Verification of composed security protocols

In the area of protocol verification, it seems that the first attempt at verifica-
tion of parallel subprotocols was made in [35], where the interaction between
subprotocols was investigated manually.

An attempt at composing security protocol proofs within a theorem-proving
environment was made in [40]. In this work, the authors construct composi-
tional proofs for a specific protocol, in order to work towards a general theory.
The conclusion of the authors is that even for a single protocol, the approach
requires much manual work, and that scaling problems might cause this ap-
proach to be infeasible.

More recently fully automated verification of composed protocols was per-
formed in [13] employing the same basic framework and tool used here. How-
ever, this verification, too, has been limited to protocols that are composed in
parallel.

6 Conclusion

We make two significant contributions in this paper. First, we create a frame-
work for easy verification of a large and useful class of security protocols built
from smaller subprotocols. Second, we initiate a study of WiMAX, by ap-
plying our framework to the composition of three protocols from its security

51

sublayer. This is done by first verifying that the three protocols are inde-
pendent and then analyzing each subprotocol in isolation. The results of this
analysis are used to deduce properties about the composition of the subproto-
cols, consisting of the subprotocols running in parallel with suitable transfer of
information. Consequently, this allows us to derive properties of the composed
protocol.

We do not claim that our framework can deal with every possible security
protocol. One important restriction is the requirement in many theorems that
subprotocols are independent. This makes it difficult to use our framework for
analysis of protocols that do not naturally split into independent subprotocols.
As we have argued, protocol tags are a reasonably cost-effective way to design
protocols that are amenable to analysis in our framework. WiMAX is just one
example of protocols in which such techniques are in use today. We believe
this is a very reasonable approach to future protocol design.

A significant advantage of our framework is ease of use. If we consider the
WiMAX analysis, the Scyther tool automatically proves secrecy and synchro-
nization for the subprotocols. Since session-uniqueness and data agreement
claims have not yet been implemented in Scyther, a small amount of reason-
ing is needed to prove that the protocols have these properties in isolation.
Once the properties are established, however, using the theorems to deduce
the security properties of the composed protocol is essentially trivial. As the
WiMAX analysis to some degree shows, it should be possible to verify proto-
cols without an intimate knowledge of the underlying semantics described in
Section 2, since a tool like Scyther (once it is suitably extended) can deal with
the proofs needed at this level.

An interesting feature of our framework is that the theorem statements are
not strongly connected to the underlying semantics. They are therefore in a
sense independent of the semantics. Indeed, we believe the framework could
be transferred to any other semantics powerful enough to express at least the
notion of independence and the security properties, and which has a similar
execution model.

In general, our theorems are tight in the sense that if any precondition is
relaxed, the theorem is no longer true. Of course, some theorems could be
extended in natural ways, and other theorems have many specialized varia-
tions. For the current work, we believe such extensions would add little value.
Instead, such results should be proved as needed, slowly increasing the knowl-
edge about how composition works.

In this work, we have defined the protocol-centric class of security properties
and proved many theorems for that class. Likewise, we can define other classes
of properties, for instance properties that only consider the intruder’s memory.

52

Studying such classes of properties and proving theorems about them is an
interesting future topic.

Another useful contribution in this paper is our definition of protocol indepen-
dence. Currently, we have only described one way to achieve independence,
namely protocol tags. There are several other ways one could imagine achiev-
ing independence, for instance through some notion of separate key infrastruc-
tures. One can also imagine other notions of independence that allow general
theorems to be proved. Such notions would create new protocol design strate-
gies and allow more protocols to be analyzed. We intend to continue our work
on this topic.

The requirement in our semantics that variables only contain nonce run terms
prevents us from expressing protocols using tickets in the semantics. The re-
quirement is only essential for Theorem 26. A more significant problem is
the fact that security properties such as synchronization or agreement do not
make sense in the context of tickets, since some roles are by definition insen-
sitive to the content of the tickets. An important topic for future work will be
to extend our framework with new security properties and new theorems for
ticket-based security protocols.

In our framework we discuss how to compose protocols. While sequential com-
position is the natural notion of protocol composition, there are other possible
composition operators that are natural to discuss, such as the choice operator
allowing one out of two protocols to run. Extending our framework with such
operators and theorems to support reasoning with them is an important future
topic.

As we have already noted, the Scyther tool does not have support for every
security property we have defined, nor for every trace restriction. In the near
future, we intend to extend Scyther with support for these security properties
and trace restrictions. A related task is the creation of a new tool to formally
verify reasoning in our framework. Essentially, this tool will use Scyther as a
back-end to analyze the subprotocols, then it will verify that every theorem
application is valid. This will allow automated verification of large protocols.
As the body of theorems in our framework increases, so will the power of the
tool when the theorems are added.

We have analyzed the security requirements of WiMAX and shown that a
somewhat restricted variant of the protocol satisfies these requirements, all
by reasoning in our framework and analyzing small subprotocols in isolation.
We believe our study, though not complete, is a useful first step towards a
complete analysis of the security requirements of WiMAX, as well as towards
a verification of the entire protocol suite. In the future, we intend to work out
a complete analysis of the security sublayer of WiMAX.

53

Today, most new protocols are not verified (in any sense of the word) when
they are released, for example, as standards. We believe this is because today,
verification of any sizable protocol is the exclusive province of the few skilled
specialists and researchers working in the area. An important goal of current
research is to remedy this problem. As the analysis of the WiMAX protocols
show, our work is a significant first step towards a framework for security
protocol analysis (with tool support) that could be used by engineers to verify
protocols during design, allowing a proper security analysis of the protocol
before release.

Acknowledgment We thank Eric Kaasenbrood for his help in understand-
ing and modeling WiMAX. We also thank the anonymous reviewers whose
comments have helped to improve this paper.

References

[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 1(148):1–70, 1999.

[2] J. Alves-Foss. Provably insecure mutual authentication protocols: The two-
party symmetric encryption case. In Proc. National Information System
Security Conference, pages 306–314, October 1999.

[3] M. Anlauff, D. Pavlovic, R. Waldinger, and S. Westfold. Proving authentication
properties in the Protocol Derivation Assistant. In Pierpaolo Degano, Ralph
Küsters, and Luca Vigano, editors, Proceedings of FCS-ARSPA 2006. ACM,
2006.

[4] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, L. Cuellar, P.H.
Drielsma, P. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA tool for the automated validation of internet security protocols
and applications. In Proc. Computer Aided Verification’05 (CAV), volume 3576
of Lecture Notes in Computer Science, pages 281–285. Springer, 2005.

[5] M. Backes, A. Datta, A. Derek, J.C. Mitchell, and M. Turuani. Compositional
analysis of contract-signing protocols. Theor. Comput. Sci., 367(1-2):33–56,
2006.

[6] M. Boreale and D. Gorla. On compositional reasoning in the spi-calculus. In
M. Nielsen and U. Engberg, editors, Proc. of 5th Intern.Conf. on Foundations
of Software Science and Computation Structures (FoSSaCS’02), volume 2303
of LNCS, pages 67–81. Springer, 2002.

[7] M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and typing.
In FMSE ’04: Proceedings of the 2004 ACM workshop on Formal methods in
security engineering, pages 1–12, New York, NY, USA, 2004. ACM Press.

54

[8] M. Bugliesi, R. Focardi, and M. Maffei. Compositional analysis of
authentication protocols. In D. A. Schmidt, editor, Proc. of the 13th
European Symposium on Programming (ESOP), volume 2986 of Lecture Notes
in Computer Science, pages 140–154. Springer, 2004.

[9] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Practical
Cryptography for Data Internetworks. IEEE Computer Society Press, 1996.
Reprinted from the Proceedings of the Royal Society, volume 426, number 1871,
1989.

[10] R. Canetti, C. Meadows, and P. Syverson. Environmental requirements for
authentication protocols. In M. Okada, B.C. Pierce, A. Scedrov, H. Tokuda,
and A. Yonezawa, editors, Software Security – Theories and Systems, Mext-
NSF-JSPS International Symposium, ISSS 2002, volume 2609 of Lecture Notes
in Computer Science, pages 339–355, Tokyo, Japan, 2002. Springer.

[11] C.J.F. Cremers. Scyther: Automatic verification of security protocols. http:

//www.win.tue.nl/~ccremers/scyther/.

[12] C.J.F. Cremers. Compositionality of security protocols: a research agenda. In
F. Gadducci and M. ter Beek, editors, VODCA 2004, volume 142(3) of ENTCS,
pages 99–110, Bertinoro, Italy, 2006.

[13] C.J.F. Cremers. Feasibility of multi-protocol attacks. In Proc. of the first
international conference on availability, reliability and security (ARES), pages
287–294, Vienna, Austria, April 2006. IEEE Computer Society Press.

[14] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols.
PhD thesis, Eindhoven University of Technology, 2006. ISBN 90-386-0804-7. -
ISBN 978-90-386-0804-4.

[15] C.J.F. Cremers and S. Mauw. Operational semantics of security protocols.
In S. Leue and T.J. Systä, editors, Scenarios: Models, Algorithms and Tools
(Dagstuhl 03371 post-seminar proceedings, September 7–12, 2003), volume 3466
of Lecture Notes in Computer Science, pages 66–89, 2005.

[16] C.J.F. Cremers, S. Mauw, and E.P. de Vink. Injective synchronisation: an
extension of the authentication hierarchy. Theoretical Computer Science, 367(1-
2):139–161, November 2006. Special issue on ARSPA’05, (P. Degano and L.
Vigano, eds.).

[17] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic
(pcl). Electron. Notes Theor. Comput. Sci., 172:311–358, 2007.

[18] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. Secure protocol
composition. In FMSE ’03: Proceedings of the 2003 ACM workshop on Formal
methods in security engineering, pages 11–23, New York, NY, USA, 2003. ACM
Press.

[19] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(12):198–208, March 1983.

55

[20] R. Focardi and R. Gorrieri. Automatic compositional verification of some
security properties. Lecture Notes in Computer Science, 1055:166–186, 1996.

[21] R. Focardi and R. Gorrieri. The compositional security checker: A tool for the
verification of information flow security properties. IEEE Trans. Software Eng,
23(9):550–571, 1997.

[22] J.D. Guttman and F.J. Thayer. Protocol independence through disjoint
encryption. In PCSFW: Proceedings of The 13th Computer Security
Foundations Workshop. IEEE Computer Society Press, 2000. citeseer.ist.

psu.edu/guttman00protocol.html.

[23] J.D. Guttman and F.J. Thayer. Authentication tests and the structure of
bundles. Theoretical Computer Science, 283(2):333–380, 2001.

[24] C. He, M. Sundararajan, A. Datta, A. Derek, and J.C. Mitchell. A modular
correctness proof of IEEE 802.11i and TLS. In V. Atluri, C. Meadows, and
A. Juels, editors, ACM Conference on Computer and Communications Security,
pages 2–15. ACM, 2005.

[25] N. Heintze and J.D. Tygar. A model for secure protocols and their compositions.
IEEE Trans. Softw. Eng., 22(1):16–30, 1996.

[26] IEEE. standard 802.16-2004, 2004.

[27] IEEE. standard 802.16e-2005, 2005.

[28] D. Johnston and J. Walker. Overview of IEEE 802.16 security. IEEE Security
& Privacy, 2(3):40–48, 2004.

[29] J. Jürjens. Composability of secrecy. In V. Gorodetski, V. Skormin,
and L. Popyack, editors, International Workshop on Mathematical Methods,
Models and Architectures for Computer Networks Security (MMM-ACNS 2001),
volume 2052 of Lecture Notes in Computer Science, pages 28–38, St. Petersburg,
May 2001. Springer.

[30] E. Kaasenbrood. WiMAX security - A formal and informal analysis. Master’s
project, Eindhoven University of Technology, Department of Mathematics and
Computer Science, 2006.

[31] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen
protocol attack. In B. Christianson, B. Crispo, T.M.A. Lomas, and M. Roe,
editors, Proceedings of the 5th International Workshop on Security Protocols,
volume 1361 of Lecture Notes in Computer Science, pages 91–104, London, UK,
1998. Springer.

[32] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceedings of TACAS, volume 1055 of Lecture Notes in Computer
Science, pages 147–166. Springer, 1996.

[33] M. Maffei. Tags for multi-protocol authentication. In Proc. of the 2nd
International Workshop on Security Issues in Coordination Models, Languages,
and Systems, volume 128(5) of Electronic Notes in Theoretical Computer
Science, pages 55–63. Elsevier ScienceDirect, August 2005.

56

[34] H. Mantel. On the composition of secure systems. In SP ’02: Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 88–101, Washington,
DC, USA, 2002. IEEE Computer Society.

[35] C. Meadows. Analysis of the Internet Key Exchange Protocol using the NRL
protocol analyzer. In Proc. 20th IEEE Symposium on Security & Privacy, pages
216–231. IEEE Computer Society, 1999.

[36] C. Meadows. Open issues in formal methods for cryptographic protocol analysis.
In Proc. of DISCEX 2000, pages 237–250. IEEE Computer Society Press, 2000.

[37] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(2):120–126, February
1978.

[38] L.C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1-2):85–128, 1998.

[39] W.P. de Roever, U. Hanneman, J. Hooiman, Y. Lakhneche, M. Poel, J. Zwiers,
and F. de Boer. Concurrency Verification. Introduction to Compositional
and Noncompositional Methods, volume 54 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, UK, 2001.

[40] O. Sheyner and J. Wing. Composing proofs of security protocols using
Isabelle/IOA, August 2000. In proc. of the Theorem Proving for Higher Order
Logics (TPHOLs) workshop, short paper.

[41] F.J. Thayer, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is a security
protocol correct? In Proc. 1998 IEEE Symposium on Security and Privacy,
pages 66–77, Oakland, California, 1998.

[42] F.J. Thayer, J.C. Herzog, and J.D. Guttman. Mixed strand spaces. In
Proceedings of the 1999 IEEE Computer Security Foundations Workshop, pages
72–82. IEEE Computer Society, 1999.

[43] S. Xu and C.-T. Huang. Attacks on PKM protocols of IEEE 802.16 and its
later versions. In Proceedings of 3rd International Symposium on Wireless
Communication Systems (ISWCS 2006), Valencia, Spain, 2006.

[44] S. Xu, M.M. Matthews, and C.-T. Huang. Security issues in privacy and
key management protocols of IEEE 802.16. In Proceedings of the 44th ACM
Southeast Conference (ACMSE 2006), Melbourne, Florida, USA, 2006.

57

