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Abstract. Mobile communication has grown quickly in the last two
decades. Connections can be wirelessly established from almost any hab-
itable place in the earth, leading to a plethora of connection-based track-
ing mechanisms, such as GPS, GSM, RFID, etc. Trajectories representing
the movement of people are consequently being gathered and analysed
in a daily basis. However, a trajectory may contain sensitive and private
information, which raises the problem of whether spatio-temporal data
can be published in a private manner.
In this article, we introduce a novel distance measure for trajectories that
captures both aspect of the microaggregation process, namely clustering
and obfuscation. Based on this distance measure we propose a trajectory
anonymisation heuristic method ensuring that each trajectory is indistin-
guishable from k−1 other trajectories. The proposed distance measure is
loosely based on the Fréchet distance, yet it can be computed efficiently
in quadratic time complexity. Empirical studies on synthetic trajectories
show that our anonymisation approach improves previous work in terms
of utility without sacrificing privacy.

1 Introduction

Not long ago, visual identification was the only mean to collect spatio-temporal
data from people. Nowadays this task is far easier since there is no need of direct
human intervention for monitoring and tracking. Instead, surveillance cameras,
social networks, credit card transactions, and many other worldwide adopted
technologies and services, automatically collect this type of data. Today’s per-
vasiveness of location-aware devices like mobile phones and GPS receivers helps
even further companies and governments to easily collect huge amount of infor-
mation about people’s movement.

Analysing and mining this type of information, also known as trajectories,
might reveal new trends and previously unknown knowledge to be used in traf-
fic, sustainable mobility management, urban planning and supply chain manage-
ment. By doing so, resources might be optimised and business and government
decisions can be solid and well-founded. In this sense, both companies and citi-
zens profit directly from the publication and analysis of databases of trajectories.

Despite of all these benefits, there are obvious threats to people’s privacy if
their movement data are published in a way which allows re-identification of the



person behind a trajectory. Just considering the locations visited by a trajectory,
it may reveal sensitive information about users like religious, political, or sexual
preferences. The privacy threat grows when the time information exposes user’s
habits that may be used for unauthorized advertisement and user profiling.

A tentative solution to achieve anonymity is de-identification by means of
removing identifying attributes of individuals. However, this is often insufficient
to preserve privacy due to other type of attributes called quasi-identifiers, which
are non-identifying attributes that together with external information might
uniquely identify the individual behind a record. Unfortunately, in the case of
spatio-temporal data, every location can be regarded as a quasi-identifier [26].
Therefore, just knowing some locations visited by an individual could be enough
to identify his trajectory in a database. As an example, let’s consider a GPS
application recording trajectories of citizens. Daily routine indicates that an early
morning trajectory is likely to begin at the user’s home and end at the user’s
workplace. This simple assumption might be enough to accurately re-identify a
user’s trajectory.

The above problem has been addressed relying on k-anonymity [19, 18, 20],
a widely used privacy notion. A set S is said to satisfy k-anonymity if each
combination of quasi-identifier attribute values is shared by at least k records in
S. Therefore, considering that all identifying attributes have been removed, k-
anonymity ensures that no anonymised record can be correctly linked to an indi-
vidual with probability higher than 1/k. In microdata, the set of quasi-identifiers
is typically considered small and known in advance. In spatio-temporal data,
however, a similar assumption can hardly hold; any location can be regarded
as a quasi-identifier. As a result, anonymisation methods aimed at achieving
k-anonymity on microdata cannot be directly applied on spatio-temporal data
and vice versa.

Contributions. In this article we propose a distance measure for trajectories
specially suited for clustering and obfuscation. The distance is loosely based on
the Fréchet distance [3], yet it is efficiently computable. The novel construc-
tion has significant advantages: (i) it can deal with non-overlapping trajectories,
(ii) it outputs, in addition to a distance value, a set of matching points that
are exploited later in the obfuscation process, and (iii) it considers the shape
of the trajectories due to the very nature of the Fréchet distance. We use the
proposed distance measure as the basis of a trajectory anonymisation technique
that releases datasets satisfying k-anonymity, regardless of the adversary knowl-
edge. We show, through experiments on synthetic spatio-temporal data, that our
approach outperforms previous comparable work in terms of utility.

Outline of the paper. This paper is structured as follows. Section 2 next pro-
vides related work. Section 3 introduces a novel distance measure based on the
Fréchet distance and the Manhattan norm. A microaggregation-based method
for trajectory anonymisation is proposed in Section 4, which is empirically eval-
uated in Section 5. Finally, Section 6 draws conclusions and future work.



2 Related work

Trajectory k-anonymity is aimed at hiding a single trajectory into a crowd of at
least k − 1 other trajectories. The idea is that every trajectory in the published
dataset be indistinguishable from k−1 other trajectories and, as a consequence,
an adversary cannot identify the individual behind a trajectory with probability
higher than 1/k.

An approach to achieve k-anonymity is by means of suppression of attribute
values, which is generally used on discrete and/or semantic data where perturba-
tion methods are not well suited. One of the first suppression-based methods for
trajectory anonymization is due to Terrovitis and Mamoulis [21]. They consider
trajectories to be sequences of addresses taken from an address domain P. The
adversary controls subsets of addresses of P, and thus his knowledge is repre-
sented as projections of original trajectories over the addresses in P that are in
the adversary’s knowledge. A greedy algorithm aimed at guaranteeing that no
address unknown by the adversary can be linked with an user with probabil-
ity higher than a given threshold is proposed in [21]. The main problem with
this approach is that dealing with all possible adversary’s knowledge becomes
harder than the original k-anonymity problem, which is already known to be
NP-Hard [13]. There exist other suppression-based methods in the literature,
e.g., [6]. However, they target privacy notions different to k-anonymity.

Like Terrovitis and Mamoulis in [21], Yarovoy et al. also consider an adversary
controlling a subset of user’s locations or quasi-identifiers [26], with the distinc-
tion that such a subset may differ for different users. Trajectory k-anonymity is
defined in terms of a bipartite attack graph relating original trajectories with
the anonymised trajectories. The authors propose to create anonymised groups
through generalisation with respect to the joint set of quasi-identifiers from the
users within the group. K-anonymity is thus achieved by creating anonymised
groups such that the bipartite attack graph is symmetric and the degree of each
vertex representing an anonymised trajectory is at least k. It is worth remark-
ing that the privacy model considered in this article is different, as any user’s
location is regarded as a quasi-identifier.

Another generalisation-based approach was proposed by Monreale et. al [14].
As in [21], they ignore the time information. Therefore, k-anonymity is achieved
if the generalisation of every original trajectory is a sub-trajectory of the gener-
alisation of k−1 other trajectories. In order to preserve the utility of the original
dataset, a Voronoi tessellation of the geographical area is created so that each
location is transformed into the Voronoi cell that contains it. Utility is measured
by simply comparing clustering results.

In [8, 9], Domingo-Ferrer et al. propose a different approach based on mi-
croagrregation and permutation rather than on generalisation. First, they intro-
duce a novel distance measure that consider both spatial and temporal aspects
of trajectories. The distance measure is flexible enough to be used either for
spatio-temporal data or time series. Based on this distance measure, the authors
propose to create clusters of trajectories so as to minimise the intra-cluster dis-
tance. Within a given cluster, locations are randomly swapped with other k− 1



unswapped close locations. Locations that cannot be swapped are removed and
so are the trajectories without swapped locations.

Abul, Bonchi, and Nanni [1, 2] proposed two trajectory anonymisation meth-
ods: Never Walk Alone (NWA) and Wait For Me (W4M). Both are partially
based on microggregation [7]. The microggregation technique works as follows.
The dataset of trajectories is partitioned into several clusters of size at least
k and at most 2k − 1. To do so, NWA relies on the Euclidean distance while
W4M uses on the edit distance on real sequences (EDR) [5]. Trajectories within
a cluster are perturbed by using space translation. The claimed privacy of these
proposals has proven to be flawed [23], though.

In [15, 16], Nergiz et al. consider a trajectory to be a sequence of square
geographical areas where a user moves randomly within a given time frame.
For clustering, the authors use the log cost metric that balances the spatial
and temporal distortion with user-provided weights. Since the log cost metric
is based on point matching, the anonymisation process is directly inferred from
the clustering process, which improves efficiency.

Recently, Gao et al. proposed a privacy-preserving technique that does not
target trajectory k-anonymity directly, as most previous work do, but a trade-
off between privacy and utility [12]. Privacy is measured in terms of anonymity
sets that are created based on a similarity measure that takes the angles and
directions of the trajectories into account. Utility relies on the classical Euclidean
distance.

In the literature we can find a variety of distance measures for trajectories and
time-series. Vlachos et al. proposed two distance measures based on the Longest
Common Subsequence problem (LCSS) [25]. The first one matches only points
that are within a given spatio-temporal region. Unmatched points are discarded
and taken as outliers. This criterion for outliers detection is smoothed in their
second distance measure by using a weighted matching function that considers
the distance between points. Another distance measure that has been designed to
cope with noise is the Edit Distance on Real sequences (EDR) [5]. The problem
is that it requires a fixed and global distance threshold that defines whether
a location is too far from another location. A survey on distance measures for
trajectory clustering can be found in [28].

3 A distance measure for trajectory microaggregation

We consider trajectories describing the movements of objects on the surface of
the earth. Even though a movement is assumed to be continuous, it is typically
described by a finite polyline. Formally, a trajectory is defined as a sequence of
time-stamped locations τ = `1 · · · `n such that `i.t < `i+1.t ∀i ∈ {1, · · · , n − 1}
where `.t, `.x, and `.y, denote the time, latitude, and longitude of the location
`, respectively. In general, trajectories can be recorded at different and irregular
sampling rates, are not noise-free, and the velocity between two consecutive
locations is assumed to be constant. A collection of trajectories is called a spatio-



temporal database. For large databases, the size of a trajectory is considered to
be significantly smaller than the size of the database.

The choice of the distance measure is critical in microaggregation. It in-
fluences the way trajectories are clustered and usually it also impacts on the
anonymisation process. There exist different factors that characterise a trajec-
tory distance measure. For example, a distance measure may consider only tra-
jectories within a given timespan, or look for spatial similarity regardless of
direction and sampling rate, or take into account trajectory’s features such as
speed and angle.

The distance measure we propose in this article is loosely based on the Fréchet
distance [11]. The Fréchet distance, also known as the dog-leash distance, as-
sumes that a person walks over one trajectory and his dog over the other trajec-
tory. Both may travel at independent but positive speed. The Fréchet distance
outputs the minimum-length leash required for that person to walk his dog.
Intuitively, the shorter the leash the closer the two curves.

Alt and Godau proposed in 1995 an algorithm to compute the Fréchet dis-
tance for two polylines [3] with computational complexity O(pq log(p+q)) where
p and q are the size of the polylines. To the best of our knowledge, this computa-
tional complexity has not been improved significantly without making assump-
tions on the curves. We thus consider variations of the Fréchet distance such as
the Coupling distance [10] and the Dynamic Time Warping (DTW) distance [27],
which are significantly simpler and runs in O(pq) time complexity.

We say that a sequence L = (ua1 , vb1) · · · (uan , vbn) is a coupling between
two trajectories U = u1 · · ·up and V = v1 · · · vq if the following conditions are
satisfied:

– a1 = 1 and b1 = 1
– an = p and bn = q
– For every i ∈ {1, · · · , n − 1} it holds that ai+1 = ai or ai+1 = ai + 1, and
bi+1 = bi or bi+1 = bi + 1

A coupling can be seen as sequence of matching points, as defined in the
Edit Distance on Real sequences (EDR) [5]. The difference, however, is that a
coupling respects the order of the locations and also ensures that all points are
considered.

Definition 1 (Coupling distance). Let U = u1 · · ·up and V = v1 · · · vq be
two trajectories and let L be the set of all couplings between U and V . Let ‖.‖
denote a norm on L. The coupling distance is defined as follows:

coupling dist(U, V ) = min{‖L‖|L ∈ L}

The coupling distance can be computed by a simple dynamic algorithm.
The norm that directly relates to the original discrete Fréchet distance is the
Infinite norm. Given L = (ua1 , vb1) · · · (uan , vbn), the Infinite norm ‖L‖∞ is
the longest distance between a pair of linked locations in L, i.e., ‖L‖∞ =



maxi∈{1,··· ,n} d(uai , vbi). Another relevant norm, which we use in this article,
is the Manhattan norm, defined as ‖L‖1 =

∑
i∈{1,··· ,n} d(uai , vbi).

Using the Infinite norm in the coupling distance has a clear interpretation in
microaggregation of trajectories, that is, the longest distance that ought to be
covered in order to spatially translate a trajectory into another one. However,
accounting for the longest distance may lead to non-robust behaviors, because
small variations in the trajectories can cause large variations in the distance
function. For this reason, we propose to use the infinity norm to compute the
optimal coupling between trajectories, yet we consider the average Manhattan
norm to represent the actual distance between them. We claim that the average
Manhattan norm approximates better the required distortion to microaggregate
trajectories. Formally, the distance measure used in the present article is defined
as follows.

Definition 2 (Fréchet/Manhattan coupling distance). Let U = u1 · · ·up
and V = v1 · · · vq be two trajectories and let L be the set of all couplings between
U and V . Let L ⊆ L such that for every l ∈ L it holds that ‖l‖∞ is minimum
amongst the couplings in L. The average coupling distance is defined as:

min
l∈L

1

|l|
‖l‖1

Computing the Fréchet/Manhattan distance is a bit more elaborated than
computing the coupling distance. Nevertheless, it can still be computed in O(pq)
time complexity as shown by Algorithm 1. Given two trajectories U = u1 · · ·up
and V = v1 · · · vq, we create a matrix I of size p× q where we store the optimal
coupling with respect to the Infinite norm. Such computation is performed by
the standard dynamic approach proposed in [10]. In order to determine the
Fréchet/Manhattan distance, we consider another matrix M where we store the
optimal coupling distance with respect to the Manhattan norm among those
optimal couplings with respect to the Infinite norm. To do so, we need to find
where those optimal couplings with respect to the Infinite norm come from. Let
us analyse what is the impact of having the pair (ux, vy) in an optimal coupling
l. First, we should notice that if (ux, vy) ∈ l then ‖l‖∞ ≥ d(ux, vy). Indeed, if
d(ux, vy) < min{[x−1, y], [x−1, y−1], [x, y−1]} then ‖l‖∞ = min{[x−1, y], [x−
1, y−1], [x, y−1]}, otherwise ‖l‖∞ = d(ux, vy). We thus store in a set C all pairs
that lead to an optimal coupling with respect to the Infinite norm amongst
the pairs {[x − 1, y], [x − 1, y − 1], [x, y − 1]}. Finally, M [x, y] is computed as
min{M [x, y]/L[x, y]|[x, y] ∈ C} where L[x, y] is the size of the optimal coupling
with respect the Manhattan norm for the subtrajectories u1 · · ·ux and v1 · · · vy.

4 A microaggregation-based approach

The anonymisation method proposed in this article is based on k-microaggregation,
that is, a process whereby clusters of at least k homogeneous trajectories are
anonymised independently. A usual homogeneity criterion is the sum of squared



Algorithm 1 Average coupling distance

Require: Two trajectories U = u1 · · ·up and V = v1 · · · vq
1: Let I, M , L be three matrices of size p × q. Intuitively, I and M represent the

Infinity and Manhattan norms, respectively, while L is the length of the optimal
coupling

2: Let d represent the Euclidean distance.
3: I[1, 1] = M [1, 1] = d(u1, v1)
4: L[1, 1] = 1
5: for i = 2 to p do
6: I[i, 1] = max{I[i− 1, 1], d(ui, v1)}
7: M [i, 1] = M [i− 1, 1] + d(ui, v1)
8: L[i, 1] = i
9: end for

10: for j = 2 to q do
11: I[1, j] = max{I[1, j − 1], d(u1, vj)}
12: M [1, j] = M [1, j − 1] + d(u1, vj)
13: L[1, j] = j
14: end for
15: for i = 2 to p do
16: for j = 2 to q do
17: Let R be the set {[i− 1, j], [i− 1, j − 1], [i, j − 1]}
18: Let C ⊆ R such that for every [x, y] ∈ C it holds that I[x, y] ≤ d(ui, vj)
19: if C is empty then
20: Let [a, b] ∈ R such that for every [x, y] ∈ R it holds that I[a, b] ≤ I[x, y]
21: I[i, j] = I[a, b]
22: Add to C every element [x, y] in R such that I[x, y] = I[a, b]
23: else
24: I[i, j] = d(ui, vj)
25: end if
26: Let [x, y] ∈ C such that M [x, y]/L[x, y] ≤M [a, b]/L[a, b] for every [a, b] ∈ C
27: M [i, j] = M [x, y] + d(ui, vj)
28: L[i, j] = L[x, y] + 1
29: end for
30: end for
31: return M [p, q]/L[p, q]

pairwise distances between trajectories within a cluster (intra-cluster distance).
Hence, an optimal microaggregation can be intuitively defined as the one max-
imising the within-groups homogeneity.

The optimal microaggregation problem for multivariate points, like trajec-
tories, has proven to be NP-hard [17]. That justifies the use of heuristics in
microaggregation-based approaches for trajectory anonymisation [24]. An addi-
tional challenge to be addressed is that distance measures between trajectories
tend to be computationally expensive. This implies that computing all pairwise
distances between trajectories in a large database is may not be feasible.



Below, we detail the two main components of our microaggregation-based
approach, namely the proposed heuristic for trajectory clustering and the obfus-
cation technique.

4.1 Clustering

We use a greedy approach to address the k-microaggregation problem explained
above. Each cluster is represented by a pivot trajectory, and contains k−1 other
trajectories that are close to the pivot trajectory. In other words, we consider as
homogeneity criterion the sum of squared distances between the pivot trajectory
and the other trajectories in the cluster. Once a cluster C is created from a
pool D of trajectories, all trajectories in C are removed from D. As shown by
Algorithm 2, this process is repeated until D contains less than k trajectories.

Algorithm 2 Trajectory clustering

Require: D = {τ1, . . . , τN} a set of trajectories; a distance measure d : D×D → R; a
natural number δ representing the number of clusters generated at each iteration;
and an anonymization parameter k

1: Let C be an empty set of clusters of trajectories
2: while |D| ≥ k do
3: Let τ ′1 be a random trajectory in D
4: Let τ ′δ be the farthest trajectory to τ ′1 with respect to d
5: Let τ ′1, τ

′
2, · · · , τ ′δ be δ trajectories in D that minimizes the sum of squares∑

i∈[1..δ−1] d(τ ′i+1, τ
′
i)

2

6: Let C0 be an empty set of trajectories and d0 =∞
7: for all i = 1 to δ do
8: Create the cluster of trajectories Ci containing τ ′i and the closest k − 1 tra-

jectories to τ ′i
9: Compute di =

∑
τ∈Ci

d(τ ′i , τ)2

10: if di < d0 then
11: C0 = Ci and d0 = di
12: end if
13: end for
14: C = C ∪ {C0}
15: Remove all trajectories in C0 from D
16: end while
17: return C

In our approach, depicted in Algorithm 2, finding the optimal set of clusters
is equivalent to finding the optimal sequence of pivot trajectories. The most ef-
fective greedy solution to this problem is to choose the best cluster amongst the
|D| clusters that can be created considering each trajectory in D a pivot trajec-
tory. However, that requires the computation of all pairwise distances between
the trajectories in D. As a trade-off, given a natural number δ � |D|, we choose
a random trajectory τ ′1 in D and find the sequence τ ′1, τ

′
2, · · · τ ′δ such that: i) τ ′δ



is the farthest trajectory to τ ′1 and ii) the sum of squares
∑
i∈[1..δ−1] d(τ ′i+1, τ

′
i)

2

is minimum. We thus choose the best cluster amongst the δ clusters that can be
built considering either τ ′1, or τ ′2, · · · , or τ ′δ, as pivot. Note that, if δ = |D| then
we actually find the optimal set of clusters.

4.2 Obfuscation technique

Our privacy-preserving method for the publication of trajectories is based on
the clustering technique and the Fréchet/Manhattan coupling distance described
above. Even though the coupling distance deals well with trajectories recorded at
different sampling rates, the lower is the sampling rate the better it approximates
the classical Fréchet distance. We thus use linear interpolation to decrease and
homogenise the sampling rate of two trajectories as follows. Let U = u1 · · ·up
and V = v1 · · · vq be two trajectories. For every i ∈ {1, · · · , p}, we insert in V

by using linear interpolation a new point at time v1.t+
(vq.t−v1.t)(ui.t−u1.t)

up.t−u1.t
. An

analogous procedure is used to increase the sampling rate of U with respect to
V . Note that, the trajectories U ′ and V ′ resulting from re-sampling U and V ,
respectively, have equal size.

We use the Fréchet/Manhattan distance in Algorithm 2 to partition a collec-
tion of trajectories {τ1, · · · , τN} into a set of homogeneous clusters {C1, · · · , Cm}.
For every i ∈ {1, · · · ,m}, let X be the pivot trajectory in the cluster Ci as con-
sidered in Algorithm 2. For each Y ∈ Ci (X 6= Y ), let (ua1 , ub1) · · · (uan , vbn) be
the optimal coupling between X and Y with respect to the Fréchet/Manhattan
distance, where U = u1 · · ·up and V = v1 · · · vq are the re-sampling of X and
Y , respectively. For each j ∈ {1, · · · , n} and if uaj ∈ X, i.e., if uaj is an original
location of X rather than an interpolated location added during the re-sampling
procedure, we add to the set S(uai) the location vbi . Once this process is fin-
ished for all trajectories in Ci, we consider, for every location x ∈ X, the set S(x)
containing those locations from other trajectories in Ci that formed a pair with
x in an optimal coupling. We always include x into S(x) whenever S(x) is not
empty. The anonymised trajectory for the cluster Ci will be that formed by the
average locations obtained from the sets {S(x)|x ∈ X,S(x) 6= ∅}. A pseudo-code
description of this procedure is given in Algorithm 3.

4.3 Privacy analysis

Several notions of trajectory k-anonymity exist. For example, in [14, 21], the
adversary ignores the time dimension. In [1, 2], an adversary is considered unable
to distinguish two locations if their distance is below a predefined threshold.
In [9], the model is defined considering that original locations must be preserved,
which means that random spatial distortion is disallowed.

In this article we consider trajectory k-anonymity as a property of the anonymised
dataset regardless the adversary capabilities. Our notion of k-anonymity is in-
deed similar to that presented in [15, 16] for generalised trajectories.



Algorithm 3 Trajectory anonymization algorithm

Require: {τ1, . . . , τN} a collection of original trajectories; a number δ to be used in the
clustering process; the Fréchet/Manhattan distance d; an anonymisation parameter
k

1: Use the clustering technique defined by Algorithm 2 on input {τ1, . . . , τN}, the
distance measure d, δ, and k, to obtain a set of clusters {C1, · · · , Cm}

2: Let D? be an empty set of trajectories
3: for i = 1 to m do
4: Let X be the pivot trajectory in Ci as defined in Algorithm 2
5: Let S(x) be an empty set for every x ∈ X
6: for Y ∈ Ci and X 6= Y do
7: Let (ua1 , vb1) · · · (uan , vbn) be the optimal coupling between X and Y with

respect to the Fréchet/Manhattan distance d, where U = u1 · · ·up and V =
v1 · · · vq are the re-sampling of X and Y , respectively

8: for j = 1 to n do
9: if uaj ∈ X then

10: S(uaj ) = S(uaj ) ∪ {vbj}
11: end if
12: end for
13: end for
14: Let τ be an empty trajectory
15: for x ∈ X and S(x) 6= ∅ do
16: S(x) = S(x) ∪ {x}
17: Add to τ the average location formed by the locations in S(x)
18: end for
19: D? = D? ∪ {τ, . . . , τ︸ ︷︷ ︸

k

}

20: end for
21: return D?

Definition 3 (Trajectory k-anonymity). Let D? be a collection of trajecto-
ries. D? meets trajectory k-anonymity if every trajectory in D? is equal to other
k − 1 trajectories in D?.

Theorem 1. Let D be a collection of original trajectories and D? the output of
Algorithm 3 on input D. D? satisfies trajectory k-anonymity.

Proof. The proof trivially follows from the fact that Algorithm 3 produces k
equal trajectories for each cluster (see Step 19 in Algorithm 3). ut

5 Empirical evaluation

As the privacy-preserving anonimisation technique introduced in this article re-
places a cluster of k close, but potentially different, trajectories by k identical
trajectories, it is of paramount importance to evaluate utility loss in this method.
Next, we introduce spatial-range queries as a measure of utility loss. We finally
compare our anonymisation approach with other state-of-the-art privacy pre-
serving techniques.



5.1 Trajectory analysis and utility measures

There exist a plethora of trajectory analysis techniques developed within the
Geographic Information Science and Data Mining fields. These techniques may
look for movement patterns such as flocking, leadership, commuting, and en-
counter, or may be aimed at answering basic queries such as nearest neighbor
or range queries.

In this article we mainly focus on queries that are used for aggregate statistics.
This queries are typically measurable, and thus they can be defined as functions
on the domain of all spatio-temporal databases ranging over a metric space.
Let D be the universe of all possible collections of trajectories and let (M,d)
be a metric space. A spatio-temporal query Q is formally defined as a function
Q : D → M . Examples of measurable queries are traffic density, travel time,
peak hours, amongst many others.

Measurable queries can be naturally used to define utility measures for anonymiza-
tion techniques as follows. Let D ∈ D be an original spatio-temporal database
and D? ∈ D its anonymized version. Given a measurable query Q : D →M , we
measure utility loss by the formula d(Q(D), Q(D?)). The closer this measure to
zero the better D? approximates D with respect to Q.

A well-known type of measurable query in trajectory analysis is spatio-
temporal range queries, which were introduced by Trajcevski et al. in [22] in
2004. In particular, we consider the two following queries.

– Sometime Definitely Inside(T , R, tb, te) is true if and only if there exists a
time t ∈ [tb, te] at which trajectory T is inside region R.

– Always Definitely Inside(T , R, tb, te) is true if and only if at every time
t ∈ [tb, te], trajectory T is inside region R.

At a first sight, it may seem that the query Always Definitely Inside(AI) is
stronger than Sometime Definitely Inside(SI). However, with the later we can
formulate questions at a local level like: how many users pass through the Grand
Place in Belgium?, whilst with AI the shape of trajectories becomes more rele-
vant and might be useful for questions like: how many users take the toll highway
placed between Barcelona and Tarragona cities?

Other important points to be remarked are the area of R and the time in-
terval [tb, te]. Both provide flexibility when dealing with uncertain or perturbed
trajectories. Asking for trajectories passing through a single location at a given
time-stamp is meaningless in this type of imprecise data. The size of the area
and the time interval should not be too large either, though.

Similarly to [1, 2, 9], we used both queries to define a distortion metric of
the anonymised dataset T ? with respect to original dataset T . The idea is to
define a large set of queries according to some distribution of regions and time
intervals. The same set of queries is applied to both datasets T ? and T and the
number of trajectories satisfying SI and AI are counted as shows the following
SQL style code.

– Query Q1(T , R, tb, te):



SELECT COUNT (*) FROM T WHERE SI(T .traj, R, tb, te)

– Query Q2(T , R, tb, te):
SELECT COUNT (*) FROM T WHERE AI(T .traj, R, tb, te)

Two different range query distortions SID(T , T ?) and AID(T , T ?) are defined
by using the accumulative queries Q1 and Q2, respectively.

– SID(T , T ?) = 1
|ξ|

∑
∀<R,tb,te>∈ξ

|Q1(T ,R,tb,te)−Q1(T ?,R,tb,te)|
max (Q1(T ,R,tb,te),Q1(T ?,R,tb,te))

where ξ is a

large set of SI queries.

– AID(T , T ?) = 1
|ξ|

∑
∀<R,tb,te>∈ξ

|Q2(T ,R,tb,te)−Q2(T ?,R,tb,te)|
max (Q2(T ,R,tb,te),Q2(T ?,R,tb,te))

where ξ is a

large set of AI queries.

Both metrics SID and AID are bounded by 0 and 1. The minimum is achieved
when Qi(T , R, tb, te) = Qi(T ?, R, tb, te), and the maximum if Qi(T ?, R, tb, te) =
0, where i ∈ {1, 2}. Therefore, the lower the range query distortion the lower the
utility loss of the anonymised dataset.

5.2 Implementation details of the considered methods

We compare our method with the generalisation-based and permutation-based
approach proposed in [16] and [9], respectively. The generalisation-based method
relies on a distance threshold, which allows the Log-cost distance measure to
discard outlier locations. Because in this section we only consider noiseless syn-
thetic data, we have set up such a distance threshold to its maximum value. The
permutation-based method, instead, discard outlier locations during the obfus-
cation process by considering both a distance and a time threshold. Again, we
set up both thresholds to their maximum values so as to avoid outlier removal
in a noiseless dataset. The permutation-based method considered in this article
is the one named SwapLocations in [9].

5.3 Results on synthetic trajectories

We compare our anonymisation method with other approaches by using a syn-
thetic dataset generated with Brinkhoff’s framework [4], which is used often to
evaluate privacy-preserving approaches. Synthetic data generated with Brinkhoff’s
generator have the advantage of being easily transferable and reproducible. We
thus provide next the parameters used to generate the dataset of trajectories
considered in our experiments.

The generation parameters over the map of Oldenburg were: 6 moving object
classes and 3 external object classes; 5 moving objects and 3 external object
generated per time-stamp; the maximum lifespan of a trajectory was set up
to 1, 000 time-stamps; speed 10; and report probability 1, 000. This resulted in
5, 000 synthetic trajectories provided by Brinkhoff’s generator [4], which contain
a total of 492, 105 locations in the German city of Oldenburg and 98.421 locations
per trajectory in average.



In order to generate spatial-range queries, we considered regions whose radius
randomly distributes over the interval of natural numbers [0, 500]. The maximum
of this interval is a small fraction of the average length of each trajectory, which is
7284. Remark that the smaller the spatial interval the tighter is the spatial-range
query and the harder become for an anonymisation technique to apply spatial
distortion without bringing down utility. We respect to the time dimension we
considered different time intervals [0, 0], [0, 300], [0, 600], [0, 1800], [0, 3600]. For a
given time interval [0, t], we generate a spatial-range query by choosing a random
interval [tb, te] such that 0 ≤ tb ≤ te ≤ t.

We generated for each time interval 100, 000 spatial-range queries of both
types: Q1 and Q2. Armed with these set of queries, we computed the range
query distortions SID and AID of the anonymised data sets provided by three
different anonymisation methods: the Generalisation-based approach [16], the
Permutation-based approach [9], and our method. Each anonymisation method
provided three different datasets satisfying k-anonymity with k ∈ {2, 4, 8}. The
results are depicted in Figure 1.

It can be seen from Figure 1 that our method performs better than the
approaches proposed in [16, 9] for every cluster size and every time interval. The
improvement in terms of utility increases as the offered privacy increases. For
k = 2, our method is just slightly better than the generalisation-based approach,
while for k ∈ {4, 8} our method performs significantly better. This means that
our technique clusters and anonymises trajectories more efficiently.

Figure 1 also shows that more research on trajectory anonymisation tech-
niques ought to be conducted. The ideal range query distortion is zero, and
none of the three considered techniques gets close to this optimal value. This
issue can be overcome by considering larger datasets of original trajectories. In-
tuitively, the larger the dataset the easier is to find clusters with low intra-cluster
distance. Other solution approach consists in removing outlier trajectories, that
is, trajectories that cannot be clustered with other k − 1 trajectories without
dramatically increasing the intra-cluster distance. The study and evaluation of
these solution approaches, as well as reporting on results over real-life datasets,
are left as future work.

6 Conclusions

In this article we have introduced a novel distance measure for trajectories, which
is well suited for both clustering and anoymisation. The proposed distance mea-
sure resembles to other types of coupling distance measures, such as the Fréchet
distance, with the particularity that the Infinite norm and the Manhattan norm
are considered together. To demonstrate the suitability of our distance measure,
we presented a trajectory-anonymisation heuristic method that creates cluster
with low intra-cluster distance and satisfies trajectory k-anonymity. Empirical
results show that our method offers better utility than other state-of-the-art
methods, such as the generalisation-based and permutation-based approaches.
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Fig. 1. Six charts showing the range query distortions of three different anonymisation
methods. Charts on the left depict the SI query distortion (SID), while charts on the
right show the AI query distortion (AID).



Future work will be directed towards reaching optimal range-query distortion
values.
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